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In this paper we gather experimental evidence related to the
question of deciding whether a curve has a rational point.
We consider all genus-2 curves over Q given by an equation
y* = f(x) with f a square-free polynomial of degree 5 or 6,
with integral coefficients of absolute value at most 3. For each
of these roughly 200 000 isomorphism classes of curves, we de-
cide whether there is a rational point on the curve by a combi-
nation of techniques that are applicable to hyperelliptic curves
in general.

In order to carry out our project, we have improved and opti-
mized some of these techniques. For 42 of the curves, our result
is conditional on the Birch and Swinnerton-Dyer conjecture or
on the generalized Riemann hypothesis.

1. INTRODUCTION

The problem to decide whether a given algebraic variety
defined over the rational numbers has rational points is
fundamental in arithmetic geometry. Abstracting from
concrete examples, this leads to the question whether
there exists an algorithm that is able to perform this task
for any given variety. This is probably too much to ask
for: we know that Hilbert’s tenth problem, which asks
the same question for integral points on general affine
varieties, has a negative answer. But we can hope for a
more favorable outcome if we restrict the class of varieties
we consider.

It is then most natural to look at curves first, since
they have been studied very intensively, resulting in good
theoretical knowledge and a very rich supply of algorith-
mic methods. Also, it makes sense to consider the geo-
metrically nicest class of varieties, namely those that are
projective. Since it is easy to check whether a curve has
rational singular points, we can assume that the curve
is smooth. Therefore, the question we are specifically
interested in is the following.
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Question 1.1. Is there an algorithm that decides for any
given smooth projective curve C'/Q whether C has ratio-
nal points?

Since we can always algorithmically prove that
C(Q) # @ if rational points exist by simply enumerating
all rational points of the relevant projective space and
checking for each point whether it is on C' until we find
a rational point on C, our question is equivalent to the
following, seemingly more restricted, version.

Question 1.2. Is there an algorithm that verifies that
C(Q) = @ for any given smooth projective curve C/Q
without rational points?

“Verification” here means that the algorithm con-
structs a proof of some kind.

For curves of genus 0, our question has a positive an-
swer, since the Hasse principle holds for these curves:
a curve of genus 0 has rational points if and only if it
is “everywhere locally solvable” (ELS), i.e., it has real
points and p-adic points for all primes p. Since for a gen-
eral curve C, we can check algorithmically whether it has
points everywhere locally, we can assume that C' is ELS.
The main problem is then to show that C'(Q) is empty
even though C' is ELS.

If C' is a curve of genus 1 with Jacobian elliptic curve
E, then we can perform descent calculations (on E or on
('), which will succeed in proving that C'(Q) is empty if
C represents an element of III(E), the Tate-Shafarevich
group of F, that is not divisible. In particular, if we
assume (as is generally believed) that III(E) is finite for
all elliptic curves E//Q, then our question has a positive
answer for curves of genus 1 as well.

We will therefore focus our attention on curves of
higher genus. It is only since fairly recently that there is
some confidence that the question might have a positive
answer, spurred by progress on the theoretical side [Stoll
07, Stoll 05] and also by heuristic considerations [Poonen
05]. In this paper, we attempt to give supporting evi-
dence of a more practical kind, by applying the available
algorithms (with some new improvements and additions)
to a large number of curves in order to see whether we ac-
tually can decide for each of them whether it has rational
points.

The obvious class of curves to look at for a first at-
tempt at gathering evidence is the class of curves of
genus 2. Their main advantage is that quite a variety
of algorithms is available for them, and so we can hope
to use them as adequate test cases. In order to keep the

computational effort within reasonable limits, we decided
to consider “small” genus-2 curves. More precisely, our
initial set of curves consists of all genus-2 curves over Q
that have a model of the form

y? = f(x) = fer® + fs2® + fazt + fr2® + fox® + frz + fo

with integral coefficients fo, f1,. .., fs satisfying | f;| < 3.
Excluding non-square-free f and f of degree < 4 and
identifying isomorphic curves, our initial set contains
196 171 isomorphism classes of curves.

In Section 2, we describe our findings, and in Section
3, we give an overview of the methods we have used.
The details on the new methods and the improvements
on existing methods we have made can be found in a
series of forthcoming papers [Bruin and Stoll 08a, Bruin
and Stoll 08b, Bruin and Stoll 08c].

2.  RESULTS

As a first step, we searched for a small rational point on
each curve C. Note that C has one or two obvious points
if fo € {0,1} or fs € {0,1} (C is considered to have one
or two rational points “at infinity” if fg is respectively
zero or a nonzero square). At a later stage, we searched
for larger rational points on those curves that were not
yet decided. The largest points found at that stage were
(1519/601,4816728814/601%) on

C:y?=32-22"—22"—22+32-3
and (193/436, 165847285/436°) on

C:y>=3a2%—-325—2*—2®-3224+2-3.

This left us with 58681 curves C' without (appar-
ent) rational points, for which we need to prove that
C(Q) = @. Among these, there are 29278 curves with
points everywhere locally. Together with the curves that
do have rational points, this means that we found 166 768
with points everywhere locally, which is about 85% of all
the curves we considered. In [Poonen and Stoll 99b] (see
also [Poonen and Stoll 99a, Section 9]), it is shown that
the set of polynomials f giving rise to an everywhere lo-
cally solvable curve has a well-defined positive density d.
Numerical estimates of the local densities involved lead
to a value close to 0.85 for §, which fits well with our ob-
servations. This good agreement is a bit surprising, since
our set of curves certainly does not provide an even cov-
erage of polynomials over Z,, except perhaps for p = 7.

The next stage in the procedure is to perform a 2-cover
descent on each of the remaining curves. This constructs
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(implicitly) a finite collection of curves D; that cover
C and are such that every rational point on C is the
image of a rational point on some D;. So if we obtain an
empty covering collection {D;}, this proves that C' has
no rational points. For a more precise description of the
computation, see Section 3.1. With this method, we were
able to prove that C'(Q) is empty for all but 1492 curves.

For these 1492 curves, we wanted to perform a
“Mordell-WEeil sieve” computation. The idea is as fol-
lows. Let J be the Jacobian variety of C, and assume
that we can embed C' into J. Assume also that we can
determine generators of the Mordell-Weil group J(Q),
which is a finitely generated abelian group. By abuse
of notation, we call its free abelian rank the rank of the
curve C. Now consider the following commutative dia-
gram:

cQ

J(Q)

o)

H C(Fp) — H J(Fp)

peS peS

Here S is some finite set of primes (of good reduction for
C, say). Since we know J(Q) and can find the finite sets
C(F,), we can compute the images of o and 3. If these
images do not meet, this proves that C(Q) is empty.

First, we had to find generators of the Mordell-Weil
group. To do this, we performed a 2-descent (see [Stoll
01]) on J to get an upper bound, called the Selmer rank,
for the rank of the finitely generated abelian group J(Q).
Then we needed to find the correct number of indepen-
dent points in J(Q). In order to be able to do this suc-
cessfully, we had to come up with new strategies, involv-
ing a search for points on (quotients of) 2-covering spaces
for J. See Section 3.2 for more details. In this way, we
were able to find generators of a finite-index subgroup
of J(Q) for all but 47 curves. It is then a fairly easy
matter to check that we actually had generators of J(Q)
(modulo torsion); see [Stoll 02].

In the course of these computations, we also found a
rational point on the 2-covering space Pic}; for J, which
provides an embedding of C into J. So for these 1445
curves (3 of rank 0, 516 of rank 1, 772 of rank 2, 152 of
rank 3, and 2 of rank 4), the assumptions for the appli-
cation of the Mordell-Weil sieve are satisfied.

After several improvements of the algorithm perform-
ing the actual sieve computation (the problem here is
combinatorial explosion), we were finally able to run the
procedure successfully for all these curves. With the cur-
rent version of the algorithm, the maximal computation

time for a single curve was roughly 16 hours on a 1.7-
GHz processor; this curve is one of the two with rank 4.
The computations for all the other curves together can
be performed in about the same time.

For the remaining 47 curves (36 of Selmer rank 2, 10
of Selmer rank 3, and one of Selmer rank 4), the number
of independent points we found fell short of the Selmer
rank by 2. Therefore, we suspect that there is nontriv-
ial 2-torsion in ITI(J) in these cases. In 5 out of the 10
cases of Selmer rank 3, we found a rational point on Picf,.
Here we expect that III(.J)[2] = (Z/2Z)?. This was con-
firmed by an ad hoc visualization argument. See [Bruin
04, Bruin and Flynn 06] for a description and detailed
analysis of this method for hyperelliptic curves with a
rational branch point.

For these 5 curves, we know that rank J(Q) = 1, and
we have an embedding of C' into J, so that we can run
the Mordell-Weil sieve procedure, which confirms that
there are no rational points on these curves.

One of these curves is

C:yQ:f(x):—x6+23:5+3a:4+2333—$—3-

For the visualization argument we consider a quadratic
twist of this curve,

OV iy = —f(x).

We find that J(-D(Q) is of rank 4, where J(=1) is the
Jacobian of (=1 A slightly more involved computation
gives that J(Q(v/—1)) is of rank at most 5. Since this
rank is the sum of the ranks of J(Q) and J(~1(Q), this
means that the rank of J(Q) can be at most 1. This is
less than the rank bound of 3 we obtain from a 2-descent
on J directly.

In the remaining 42 cases, we did not find a rational
point on Picj,. On the other hand, from the 2-cover de-
scent, we know that C' has everywhere locally solvable
2-coverings; the same must then be true for Piclc7 since
C has a canonical embedding into Picg. This means
that the class of Picy in III(J) is divisible by 2. If
Pict(Q) = @, this then implies that there are elements
of order 4 in III(J). The computations necessary for a
visualization argument are hardly feasible in this situa-
tion: one needs to compute the 2-Selmer group of J over
a quartic number field. This involves finding an S-unit
group in a degree-24 number field.

Still, assuming the generalized Riemann hypothesis
(GRH) to make the number field computations feasible,
we were successful for four curves in showing that the
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true Mordell-Weil rank is smaller than the bound ob-
tained from a 2-descent. One of these curves is

C:y* =325 —2° +22* + 227 — 3x - 3.

The Jacobians of the quadratic twists by 2, —3, —6 can
easily be shown to have Mordell-Weil ranks 4,4, 3 re-
spectively. Furthermore, a 2-descent shows, conditional
on GRH, that J(Q(v/2,+/=3)) is of rank at most 11. It
follows that J(Q) must be of rank 0.

We do not expect that results along these lines can be
extended much further. To complement the above com-
putations, assuming that the Birch and Swinnerton-Dyer
conjecture (BSD) holds for the Jacobians of our curves,
we computed the analytic rank of the Jacobian and the
analytic order of III(J). For this we had to assume that
the L-series L(C,s) can be analytically continued and
satisfies the usual functional equation.

The results of our computations are consistent with
this assumption. First of all, we verified that the rth
derivative of L(C,s) at s = 1 is nonzero, where r is the
conjectured rank of J(Q) (i.e., the number of independent
points we have found). Secondly, the analytic order of
III(J) comes out to be 16 for the 42 curves for which we
expect elements of order 4, and it is 4 for the 5 curves
mentioned above, where we expect 1I1(J) = (Z/2Z)>.
Hence, assuming standard conjectures on L-series and
the Birch and Swinnerton-Dyer conjecture, we find that
Pict(Q) = @ for our 42 curves, and therefore C(Q) = @
as well. See Tables 1 and 2 for a summary of our findings.

All curves 196171 | 100.00%
Curves with rational points 137490 70.09%
Curves without rational points 58 681 29.91%
ELS curves total 166 768 85.01%
ELS curves without rational points 29278 14.92%
Curves with ELS 2-covers among these 1492 0.76%
Curves that need GRH or BSD 42 0.02%

TABLE 1. Curve statistics (ELS = everywhere locally

solvable).
conj. III(J) 0] (2/22)* | (Z/4Z)? || Total
rank J(Q) = 0 3 36 | 39
rank J(Q) =1 || 516 5 510 526
rank J(Q) = 2 || 772 1| 773
rank J(Q) =3 || 152 152
rank J(Q) =4 2 2
all ranks 1445 5 42 1492

TABLE 2. Ranks and conjectural III for the curves
surviving 2-cover descent.

2.1 Discussion

The main result of our experiment is that we were suc-
cessful in deciding the existence of rational points un-
conditionally for all but 42 of our curves. If we assume
standard conjectures, we can prove that there are no ra-
tional points on these remaining 42 curves as well.

Let us explain these statements in more detail. If we
find a rational point on one of the curves, we are obvi-
ously done, and the result can easily be verified. If a
curve turns out not to have real points, or not to have p-
adic points for some specific prime p, this can also easily
be verified. For the 2-cover descent procedure, we have
to compute the class group of (in general) a sextic num-
ber field. A distinctive feature of MAGMA is that by de-
fault, it computes this information unconditionally; this
is different from the behavior of PARI, which by default
uses a heuristic assumption that is even stronger than the
generalized Riemann hypothesis. So, assuming that our
hardware was working correctly and the implementation
is correct, the results of the 2-cover descent computa-
tions are unconditional as well. The same applies to the
computation of the rank bound by 2-descent on the Ja-
cobian; this uses essentially the same information. If we
find rational points on the Jacobian, we can compute the
rank of the subgroup they generate and check that this
subgroup is saturated, using the canonical height on the
Jacobian. If this rank reaches the upper bound, this ver-
ifies that we have found generators of the Mordell-Weil
group. In this case, the Mordell-Weil sieve computation,
if successful, will prove that the curve has no rational
points.

When the rank bound is not reached, we try to get
a better bound. One approach is to visualize elements
of the 2-torsion in the Shafarevich-Tate group. For this,
we need to compute the class group of a number field of
degree 12. For the small coefficient sizes we are using,
this can still be done unconditionally, and was successful
for 5 curves.

For 42 curves, we expect 4-torsion elements in the
Shafarevich-Tate group. In these cases, to reduce the
upper bound for the rank by visualization requires the
computation of class groups in number fields of degree
24, which is beyond current technology. Therefore, we
had to assume some standard conjectures (Birch and
Swinnerton-Dyer, analytic continuation and functional
equation of the L-function) in order to get the required
result. However, it should be possible in principle (and
very likely at some point also in practice) to remove this
dependence on conjectures by actually performing the
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computations in these big number fields. We have done
so successfully in a few cases, assuming the generalized
Riemann hypothesis in order to speed up the class group
computation.

To what extent does our result provide evidence that
existence of rational points on curves of genus 2 should
be decidable in general? It can be argued (and this point
was raised by both referees) that our curves are “too
small” to allow such conclusions. It is probably true that
with our set of curves, we do not yet reach the “typi-
cal” regime (rational points abound, and only few curves
remain unresolved after the 2-cover descent). So it was
suggested that to work on a random sample of 200 000
larger curves would (if successful) provide more convine-
ing evidence. But against this, one can argue that coun-
terexamples may be extremely rare and of a special kind,
so that they are unlikely to show up in such a random
We see the strength of our result in its com-
pleteness: we have looked at each and every curve in our
“box” and dealt successfully with it. It is this complete-
ness that we think justifies the claim that our experiment
does indeed give strong evidence in favor of a positive an-
swer to Question 1.1.

Let us discuss the prospects of actually performing a

sample.

similar experiment on a large random sample of larger
curves. Some preliminary computations indicate that
the fraction of curves that remain unresolved after the
2-cover descent grows slowly with the size of the coeffi-
cients; it reaches ca. 14% for coefficients bounded by 100.
See [Bruin and Stoll 08a] for more information. The 2-
cover descent requires the computation of the class group
of the sextic number field given by the defining polyno-
mial of the curve. This is still possible unconditionally
for coeflicient sizes of about 20, but is already quite time-
consuming.

For even larger curves, one would have to assume GRH
in order to keep the computations feasible. The 2-descent
on the Jacobians of the remaining curves uses the same
information.
generators of the Mordell-Weil group, since they can be
very large and may be impossible to find with current
methods. There are some very large ones even on our
“small” Jacobians.

The other problem is that the 2-Selmer group may not
provide a sharp bound on the rank, and so one needs to

The next obstacle here is the search for

use visualization or other methods in order to improve it.
Visualization becomes impractical soon, since it requires
computations with number fields of degree 12 or 24, and
application of the Birch—-Swinnerton-Dyer conjecture will
also become infeasible quickly, since the conductors of the

curves will be too large to allow the computation of suf-
ficiently many coefficients of the L-series. The Mordell-
Weil sieve computation itself seems to work quite reliably
on curves of rank up to 4; higher ranks may be problem-
atic.

Note that all these problems are of a practical nature;
given sufficient computing power and time, we should be
able to overcome them. We hope to be able to perform
such computations with larger curves in the future.

Moreover, our results also provide evidence for the
conjecture that the Brauer—Manin obstruction should be
the only obstruction against rational points on curves.
For all but the 1492 curves surviving a 2-cover descent,
we verify this unconditionally. For the remaining curves,
we need to assume that III(J) has trivial divisible sub-
group, plus whatever assumptions were necessary in ad-
dition for individual curves. See [Scharaschkin 99, Flynn
04, Stoll 07] for details on how our computations relate
to the Brauer—-Manin obstruction.

A complete list of all curves considered and indica-
tions on how to prove that each curve does or does not
have rational points are available at [Bruin and Stoll 06].
The file A11Curves.m lists all the curves, represented
by the polynomial f and ordered according to isomor-
phism classes. The first polynomial listed in each class
The file
Solvable.m gives the curves that have rational points.
In the file LocalObstruction.m, we list the curves that
fail to have a point over R or over @@, for some prime

is taken as a representative for the class.

p. The file DescentObstruction.m contains the curves
that have points everywhere locally, but can be shown
not to have rational points by a 2-cover descent. The
files MWSieve-rankr.m, where r € {0, 1,2, 3,4}, list the
curves with Jacobian of Mordell-Weil rank r that were
proved not to have rational points by a Mordell-Weil
We also provide data that should
make it fairly easy to check the computations. Finally,

sieve computation.

the file BSD-data.txt gives some information related to
the computation of the analytic order of III, which we
performed for some of the curves.

3. METHODS

In this section, we give an overview of the methods we
have used. Detailed descriptions will be provided in
[Bruin and Stoll 08a, Bruin and Stoll 08b, Bruin and
Stoll 08c].

3.1 2-Cover Descent

Let the curve C' be given by the equation y? = f(x), and
let L denote the étale Q-algebra Q[T']/(f(T)). We let 0
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be the image of T in L. If f has a rational root or is of
odd degree, then C' has a rational point. Therefore, we
can assume in the following that f is of degree 6 and has
no rational roots. Let a be the leading coefficient of f.
Let Kk = Q or k = Q,, where v is a prime p or co and
Qo0 = R. We have a map

(L ®q k)*
k*(L ®Q k)*2 ’
P=(z,y) — (z—0) -k (L@ k)™,

F:C(k) —

whose image is contained in the subset of elements whose
norm in k*/k*? is the class of a. Note that y? = f(x) =
aNpgr/k(r —0).

As in the case of 2-descent on the Jacobian J of C, one
shows that F'(C(Q,)) is contained in the image of the p-
adic units for all odd p not dividing a or the discriminant
of f (see [Stoll 01]). Let H' C L*/Q*L*? be the (finite)
group of elements that come from p-adic units for this
set of primes, and let H C H' be the subset of elements
whose norm is aQ*?; then F(C(Q)) C H. There are
cases in which H is already the empty set; we can then
immediately conclude that C(Q) = @. An example of
this is

C:y? =225+ 325 + 2 — 323 — 227 + 22+ 3.

For this curve it can be checked that 2Q*2 is not the norm
of an element of H'.

We denote LogQ, by L,. Let H, C L}/Q;L:? denote
the subset of elements whose norm is aQ??. We have the
following commutative diagram:

CQ) ———H

|, b

[T c@,) - II H,

veES veES

Here, S is a suitable finite set of places. One can show
that F(C(Qp)) = H, for p > 1154 if p does not divide
disc(f). Therefore, we obtain the maximal amount of
information when we choose

S={oo}U{p:p <1154} U{p:p|disc(f)}.

Note that the sets H, are finite and that F' is v-adically
continuous, hence locally constant.
compute F(C(Q,)) C H, explicitly for every v. Follow-
ing [Poonen and Schaefer 97], we define the fake 2-Selmer
set of C, Selgl)(e(C), to be the preimage in H under p of
the image of the lower F' map. Then F maps C(Q) into

Therefore we can

Selgl){c(C), and hence if Selgl){c(C) = ¢, then we know
that C'(Q) is empty as well.

The geometric interpretation of the elements of
Selgl){e(C) is that they correspond to everywhere locally
solvable 2-covering curves of C. 1If ¢ € L represents
an element of Selgl){c(C), then the corresponding cov-
ering D¢ — C can be obtained as follows. We write
2 =20+ 210+ + 250° for a generic element of L. The
condition for a rational point P = (x,y) on C to be in
the image of D¢(Q) is that

(x—0) QL™ =F(P)=¢-Q"L*.

So z — 0 = c£2? for some c € Q, z € L.

Expanding the right-hand side in terms of powers of 6,
we obtain four quadrics in the six variables zg, . . ., z5 that
express the condition that the coefficients of 62, ..., 6°
have to vanish. These four quadrics define the curve
D¢ C PP of degree 16 and genus 17. To obtain the
covering map, note that = can be recovered from the
coefficients of 1 and 6 in €22, and y can be recovered
from these, the norm of z, and a square root of N(§)/a.
One has to make a sign choice here, so that there are re-
ally two different covering maps in most cases. See also
[Bruin 02, 5.3] and [Bruin and Flynn 05] for a description
of the cover. For details on how to compute Selgl){e(C)
efficiently, see [Bruin and Stoll 08a].

3.2 Finding Generators

Since the simplest generally available projective model
of the Jacobian J is given by 72 quadrics in P1° [Cassels
and Flynn 96], it is usually not a good idea to search for
rational points directly on J. A better alternative is to
consider the Kummer surface K = J/{£1}, which sits
naturally as a quartic surface in P3. We now can search
for rational points on K that lift to rational points on
J. A fairly efficient implementation of this idea that
uses mod-p information for several primes p in order
to rule out many candidates is obtainable as j-points
from M. Stoll’s homepage; this program is also incorpo-
rated in MAGMA. This approach is feasible for points of
naive (nonlogarithmic) height around 10000 or a little
bit more, where the height is that of the image point on
K c ps.

However, there are many cases in our list for which
there is a much bigger generator. In order to find these,
we use the idea (by now in common use in the context
of elliptic curves) that rational points on J lift to usually
much smaller rational points on a 2-covering of J. There-
fore we attempt to search for rational points on these 2-
coverings. However, these coverings are as complicated
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geometrically as J itself, and therefore we consider a suit-
able quotient again.

Recall [Poonen and Schaefer 97, Stoll 01] that the fake
2-Selmer group of J is a finite subgroup of L* /Q*L*2. It
contains the image of J(Q) under a map that sends a
rational point P to an element represented by xg— x160 4+
0% € L, for certain zp,x; € Q depending on P. Let
& be an element of the fake Selmer group. We use the
same idea as in the previous section to construct a surface
K¢: we are looking for z € L such that €22 does not in-
volve 63,6%,0°. This gives us an intersection K ¢ of three
quadrics in P°. We simplify the defining equations as far
as possible by a change of projective coordinates so that
they have small coefficients. Then we perform a search
for rational points on K¢ using a p-adic variant of Elkies’
lattice-based point-searching techniques [Elkies 00]. For
each point found, we check whether it corresponds to a
rational point on J. In this way, we can find points in
J(Q) whose image in the fake Selmer group is nontrivial.

However, note that Picg. is a 2-covering of .J via the
map D +— 2D —W, where D € Picé and W is the canon-
ical class. Its image in the fake Selmer group is trivial,
so the method above will not help in finding rational
points on it. Instead, in analogy to the use of the Kum-
mer surface in searching for points on J, we can use the
dual Kummer surface [Cassels and Flynn 96, Chapter 4].
We can even go a step further and consider 2-coverings
of Piclc. In this case, we obtain 3-dimensional varieties,
given as intersections of two quadrics in P°, that are quo-
tients of P!-bundles over the coverings we are interested
in. We can search for rational points on these 3-folds
and check whether they give rise to a rational point on
J. This amounts to a partial explicit 4-descent on J. It
is therefore perhaps not surprising that we were able to
find some quite large generators in this way. The record
example is

C:y?>=-32+25—22"—222+22+3

with J(Q) infinite cyclic generated by P;+ P> — W, where
the xz-coordinates of P; and P, are the roots of

CEZ 4 37482925498065820078878366248457300623
34011049811816647384141492487717524243
4 581452628280824306698926561618393967033 .
544176796989066358146263879803480387888 ?

the canonical logarithmic height of this generator is
95.26287. The second-largest example is

C:y?=-22°-325+2"+323+322+32-3

with J(Q) generated by a point coming from

$2 + 83628354341362562860799153063

26779811954352295849143614059

4 852972547276507286513269157689
321357743452227550189723368708 *

The canonical height of this generator is 77.33265. For
details, see [Bruin and Stoll 08b].

3.3 Mordell-Weil Sieve

As mentioned in Section 2, we consider the commutative
diagram

cQ

J(Q)

[1 C(F,) = T] J(EF,)
peS peS

with a suitable finite set S of (good) primes. In some
cases, it can be helpful to use some more general finite
quotient of J(Q,) instead of J(F,), for example to make
use of information modulo higher powers of p, or also
in order to use information at primes of bad reduction.
In the following discussion, we will assume for simplicity
that we are working with J(IF,).

Our goal is to prove that the images of a and 3 above
do not meet for some set S, which implies that C'(Q) = @.
This approach was (to our knowledge) first suggested by
Scharaschkin [Scharaschkin 99, Scharaschkin 98]. Flynn
[Flynn 04] used it for more extensive calculations. We
would like to mention here that in the course of improv-
ing the algorithms, we were able to prove all the curves
marked “Unresolved” in the tables of [Flynn 04] to have
no rational points. All but five of these already succumb
to a 2-cover descent, while the remaining five, all of which
have Jacobians of Mordell-Weil rank 3, can be dealt with
using our Mordell-Weil sieve implementation.

The basic algorithmic problem one has in this com-
putation is that the product of the J(F,) can be a
very large group. Onme approach to keeping the com-
binatorics in check is to work with J(Q)/BJ(Q) and
[1, J(Fp)/BJ(F,) for a suitable choice of B. In prac-
tice, we compute the subset of J(Q)/BJ(Q) that maps
under « into the image of 5. We first need to choose
a promising set S of primes. Since we can hope to ar-
rive at a contradiction only when the group orders of the
J(IF,) have (preferably large) common factors, we select
those primes p for which the order of J(F,) is sufficiently
smooth. We then compute the image of C(F),) in J(F,)
and the image of the generators of J(Q). Note that this
involves a discrete logarithm computation in J(F,) for
each point in C(F,) and each generator of J(Q). While
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this is a hard problem in general, it is harmless here, since
the group order is smooth and we can reduce to several
discrete logs in small groups.

In the following discussion, the set S is fixed. For
a given B, we can find the image Cp, of C(F,) in
J(F,)/BJ(F,), and we can then compute the expected
size

#Cbyp

B) = B
() = #(7Q/B1) 1 507,755,
of the subset A(B) of J(Q)/BJ(Q) that maps into these
images for all p € S. We now search for a sequence 1 =
By, By,..., By, such that Bj;; = Bjg; for some prime
gj, such that n(B,,) < 1, and such that max; n(B;) is
not too large. (See [Poonen 05] for heuristics on why
there should exist B with n(B) < 1, at least when S is
sufficiently large.)

After we have fixed our sequence (B;), we successively
compute the sets A(B;) for j = 1,2,... until A(B;) =
@. If we reach j = m and A(B,,) # &, then we can
check whether this is caused by an exhibitable rational
point. The set A(B,,) will give a very good indication of
which elements of J(Q) could give rise to such a point.
If we cannot find a point, we can extend the sequence or
choose a bigger set S. This situation never occurred in
our computations, however.

To obtain A(Bj41) from A(B;), we run through the
elements of A(Bj;). For each element, we run through its
possible lifts to J(Q)/B;j+1J(Q), and check for each lift
whether it maps into the image of C' mod p for all rele-
vant p (i.e., such that the largest power of ¢;1 dividing
Bji1 also divides the exponent of J(F,)). The largest
set A(Bj) that we encountered in our computations had
a size of about 10°. It is perhaps worth mentioning that
the estimate n(B) for #A(B) was in most cases accurate
up to a factor of 2 to 5, so that a value n(B,,) < 1073
(say) virtually guarantees success in practice. For details
see [Bruin and Stoll 08c].

3.4 BSD Computations

Finally, let us give some indications of how to compute
the analytic order of III. Dokchitser [Dokchitser 04] de-
scribes how the numbers L") (C, 1) can be computed nu-
merically, given (i) the coefficients a,, of the L-series for
sufficiently many n, (ii) the conductor N of C' (or J), and
(iii) the sign € in the (conjectured) functional equation.
The last of these is determined by the parity of the rank.

The coefficients a,, and ap2 for good primes p can be
computed by counting the points in C(IF,) and C(F,2);
these coefficients then determine a,. for all k¥ > 1. For

bad primes p, the coefficients can be deduced from a min-
imal proper regular model of C' over Z,; a description of
the computation of such a model can be found in [Flynn
et al. 01]. The most frequent case is that an odd prime
p divides the discriminant of the polynomial f just once;
then

f(@) = (z — a)?g(x) mod p,

and the Euler factor at p of L(C,s) depends on whether
g(a) is a square and on the number of F,-points on the
genus-1 curve 2 = g(x). In most other cases, the orig-
inal model is already regular. For all of the curves, we
computed 5 - 10° or even 10° coefficients; this led to an
error in the value of #I11(J) predicted by the Birch and
Swinnerton-Dyer conjecture of less than 1073 in all cases.

We can find the odd part of the conductor N using
Q. Liu’s genus2reduction program [Liu 94b], based on
[Liu 94a]. If the given model of the curve is regular at
2, then the power of 2 dividing N is that dividing the
discriminant of C. Otherwise, we use the approach de-
scribed in [Dokchitser 04, Section 7] to determine the
right power of 2 (which is then less than that in the dis-
criminant). We can then verify the functional equation
for the inverse Mellin transform of L(C,s) numerically,
thus corroborating our computations.

Given the value of L(")(C, 1), we compute the analytic
order of III by solving the conjectural equality between
L(C,1)/r! and a combination of invariants of C' and .J
for #III. See [Flynn et al. 01] for how to compute the
other invariants. As already mentioned, the values we
obtain were always close to an integer, which was 4 in the
five cases in which we expect III(.J) 2 (Z/2Z)* and 16 in
the remaining cases, where we expect 111(J) = (Z/47Z)>.
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