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We give some heuristics for counting elliptic curves with certain
properties. In particular, we rederive the Brumer–McGuinness
heuristic for the number of curves with positive/negative dis-
criminant up to X, which is an application of lattice-point
counting. We then introduce heuristics that allow us to pre-
dict how often we expect an elliptic curve E with even parity
to have L(E, 1) = 0. We find that we expect there to be about
c1X

19/24(logX)3/8 curves with |∆| < X with even parity and
positive (analytic) rank; since Brumer and McGuinness predict
cX5/6 total curves, this implies that, asymptotically, almost all
even-parity curves have rank 0. We then derive similar estimates
for ordering by conductor, and conclude by giving various data
regarding our heuristics and related questions.

1. INTRODUCTION

We give some heuristics for counting elliptic curves
with certain properties. In particular, we rederive the
Brumer–McGuinness heuristic for the number of curves
with positive/negative discriminant up to X, which is an
application of lattice-point counting. We then introduce
heuristics (with refinements from random matrix theory)
that allow us to predict how often we expect an elliptic
curve E with even parity to have L(E, 1) = 0.

It turns out that we roughly expect that a curve with
even parity has L(E, 1) = 0 with probability proportional
to the square root of its real period, and since we have
an upper bound of size 1/∆1/12 on the real period, this
leads us to the prediction that almost all curves with
even parity should have L(E, 1) �= 0. By the conjecture
of Birch and Swinnerton-Dyer, this says that almost all
such curves have rank 0.

We then make similar heuristics for enumeration by
conductor. The first task here is simply to count curves
with conductor up to X, and for this we use heuristics
involving how often large powers of primes divide the
discriminant. On making this estimate, we are then able
to imitate the argument we made previously, and thus
derive an asymptotic for the number of curves with even
parity and L(E, 1) = 0 under the ordering by conductor.
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We again get the heuristic that almost all curves with
even parity should have L(E, 1) �= 0.

We then make a few remarks regarding how often
curves should have nontrivial isogenies and/or torsion
under different orderings, and then present some data
regarding average ranks and the proportion of rank-2
curves. In particular, we give new evidence that the
proportion of rank-2 curves goes to zero; this involves
a careful “random” sampling of curves whose conductor
is larger than previously considered, and we require an
analysis of the variation of the real period to ensure that
our sample is not overly biased.

We conclude by giving data for the Mordell–Weil lat-
tice distribution of rank-2 curves, and speculating about
symmetric power L-functions.

2. THE BRUMER–MCGUINNESS HEURISTIC

First we rederive the Brumer–McGuinness heuristic
[Brumer and McGuinness 90] for the number of elliptic
curves whose absolute discriminant is less than a given
bound X; the technique here is essentially lattice-point
counting, and we derive our estimates via the assumption
that these counts are well-approximated by the areas of
the given regions.

Conjecture 2.1. (Brumer–McGuinness.) The number
A±(X) of elliptic curves over Q whose minimal (integral)
discriminant has absolute value less than X is asymptot-
ically given by (splitting into positive and negative dis-
criminant)

A±(X) ∼ α±
ζ(10)

X5/6,

where

α± =
√

3
10

∫ ∞

±1

dx√
x3 ∓ 1

.

As indicated by Brumer and McGuinness, the identity
α− =

√
3α+ was already known to Legendre and is re-

lated to complex multiplication (CM). These constants
can be expressed in terms of beta integrals

B(u, v) =
∫ 1

0

xu−1(1− x)v−1 dx =
Γ(u)Γ(v)
Γ(u+ v)

,

since α+ = 1
3B

(
1
2 ,

1
6

)
and α− = B

(
1
2 ,

1
3

)
.

Recall that every elliptic curve over Q has a unique
integral minimal model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with
a1, a3 ∈ {0, 1} and |a2| ≤ 1.

Fix one of the 12 choices of (a1, a2, a3). Since these are
all bounded by 1, the discriminant is thus approximately
−64a3

4−432a2
6. So we essentially wish to count the num-

ber of (a4, a6) lattice points with
∣∣64a3

4 + 432a2
6

∣∣ ≤ X,
where we note that Brumer and McGuinness divide the
curves according to the sign of the discriminant. The
lattice-point count for a1 = a2 = a3 = 0 is given by∑∑

0<−64a3
4−432a2

6<X

1 +
∑ ∑

−X<−64a3
4−432a2

6<0

1.

We estimate this lattice-point count by the integral∫∫
U
du4 du6 for the region U given by

∣∣64u3
4 + 432u2

6

∣∣ <
X. After splitting into two parts based on the sign of the
discriminant and performing the u4-integration, we get

2
(64)1/3

∫ ∞

0

[
(−432u2

6)
1/3 − (−X − 432u2

6)
1/3

]
du6

+
2

(64)1/3

∫ ∞

0

[
(X − 432u2

6)
1/3 − (−432u2

6)
1/3

]
du6,

where the factor 2 comes from the sign of u6. Changing
variables u6 = w

√
X/432 and multiplying by 12 for the

number of choices of (a1, a2, a3), we get

24
(64)1/3

X5/6

√
432

∫ ∞

0

[
(w2 + 1)1/3 − (w2)1/3

]
dw

+
24

(64)1/3

X5/6

√
432

∫ ∞

0

[
(w2)1/3 − (w2 − 1)1/3

]
dw.

These integrals are probably known, but I am unable to
find a reference. The integrals respectively simplify1 to

3
5

∫ ∞

1

dx√
x3 − 1

=
1
5
B

(
1
2
,
1
6

)

and
3
5

∫ ∞

−1

dx√
x3 + 1

=
3
5
B

(
1
2
,
1
3

)
.

This counts all models of curves; if we eliminate nonmin-
imal models, for which we have p4 | c4 and p12 | ∆ for
some prime p, we expect to accrue an extra factor2 of

1As N. D. Elkies indicated to us, we can write

I(a) =

∫ ∞

0

[
(t2 + a)1/3 − (t2)1/3

]
dt,

differentiate under the integral sign, then substitute t2 + a = ax3,
and finally integrate again to obtain I(1).

2Note that some choices of (a1, a2, a3) necessarily have odd dis-
criminant, but the other choices compensate to give the proper Eu-
ler factors at 2 (and 3). A more direct way of getting the 1/ζ(10)
factor is to note that nonminimality at p occurs when c4/p4 and
c6/p6 satisfy the Connell congruences [Connell 91] we mention be-
low. A referee points out that Brumer [Brumer 92, Lemma 4.3]
obtains this same 1/ζ(10) factor via sieving.
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1/ζ(10). From this we get the conjecture of Brumer and
McGuinness presented above.

3. COUNTING CURVES OF EVEN PARITY WHOSE
CENTRAL L-VALUE VANISHES

Due to work of Wiles [Wiles 95, Taylor and Wiles 95] and
others [Diamond 96, Conrad et al. 99, Breuil et al. 01],
we know that elliptic curves over Q are modular, and this
implies that the completed L-function

Λ(E, s) = Γ(s)(
√
N/2π)sL(E, s)

extends to an entire function and satisfies the functional
equation

Λ(E, s) = ±Λ(E, 2− s).
When the plus sign occurs, we say that E has even parity.
(See [Silverman 92, Sections 15-16] for the definitions of
the conductor N and L-function L(E, s) of an elliptic
curve E.)

We now try to count elliptic curves E with even parity
for which L(E, 1) = 0. Throughout this section, E will
denote a curve with even parity, and we shall order curves
by discriminant. Via the conjectural 50-50 principle, we
expect that under any reasonable ordering, half of the
elliptic curves should have even parity.3 In particular,
we predict that there are asymptotically A±(X)/2 curves
with even parity and positive/negative discriminant up
to X.

Our main tool will be random matrix theory, which
gives a heuristic for predicting how often L(E, 1) is small.
We could alternatively derive a cruder heuristic by as-
suming that the order of the Shafarevich–Tate group is
a random square integer in a given interval, but random
matrix theory has the advantage of being able to predict
a more explicit asymptotic. Our principal heuristic is the
following.

Heuristic 3.1. The number R(X) of elliptic curves E/Q
with even parity and L(E, 1) = 0 and minimal abso-
lute discriminant less than X is given asymptotically by
R(X) ∼ cX19/24(logX)3/8 for some constant c > 0.

In particular, note that we get the prediction that al-
most all curves with even parity have L(E, 1) �= 0 under
this ordering.

3A referee reports that a preprint of [Helfgott 04] discusses this
question for parameterized families.

3.1 Random Matrix Theory

Originally developed in mathematical statistics by
Wishart [Wishart 28] in the 1920s and then in mathe-
matical physics (especially the spectra of highly excited
nuclei) by Wigner [Wigner 55], Dyson, Mehta, and oth-
ers (particularly [Marčenko and Pastur 67]), random ma-
trix theory [Mehta 04] has now found some applications
in number theory, the earliest being the oft-told story
of Dyson’s remark to Montgomery regarding the pair-
correlation of zeros of the Riemann ζ-function.

Based on substantial numerical evidence, random ma-
trix theory appears to give reasonable models for the dis-
tribution of L-values in families, though the issue of what
constitutes a proper family is a delicate one (see partic-
ularly [Conrey et al. 05, Section 3], where the notion of
family comes from the ability to calculate moments of
L-functions rather than from algebraic geometry).

The family of quadratic twists of a given elliptic curve

E : y2 = x3 +Ax+B

is given by

Ed : y2 = x3 +Ad2x+Bd3

for square-free d. The work (most significantly a mon-
odromy computation) of Katz and Sarnak [Katz and Sar-
nak 99] regarding families of curves over function fields
implies that when we restrict to quadratic twists with
even parity, we should expect that the L-functions are
modeled by random matrices with even orthogonal sym-
metry.

This means that local statistics involving the distri-
bution of spacings of zeros of the L-functions should be
the same as the statistics concerning the distribution of
the spacings of the eigenangles of matrices taken ran-
domly from SO(2M) with respect to Haar measure. Fur-
thermore, the distribution of the special values of such
L-functions should be related to the distribution of the
evaluations at 1 of the characteristic polynomials of such
matrices.

An argument based on frequency of small L-values
and discretization (similar to the below) then gives that
the number of d with Ed of even parity, |d| < D, and
L(Ed, 1) = 0 is given by cED3/4(logD)bE , where bE takes
on four possible values (see [Delaunay and Watkins 07])
depending on the splitting behavior of the cubic polyno-
mial x3 + Ax + B, while cE has yet to be determined
explicitly. Various data have been given by Rubinstein
[Conrey et al. 06] to lend credence to this guess. We note
that the exponent 3/4 can already be suspected from
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work of Waldspurger [Waldspurger 81], which relates4 to
E a modular form of weight 3

2 whose dth coefficient c(d)
is such that c(d)2 is proportional to L(Ed, 1).

In particular, the Ramanujan conjecture predicts that
the dth coefficient is bounded by d1/4+ε, and so, assuming
a reasonable distribution, the probability that it is zero
is about one in d1/4. Summing over d up to D then gives
the crude heuristic (possibly due to Sarnak).

Though we have no exact function-field analogue for
considering the set of all elliptic curves of even parity,
we brazenly assume (largely from looking at the sign in
the functional equation) that the symmetry type is again
orthogonal with even parity.5

What this means is that we want to model proper-
ties of the L-function via random matrices taken from
SO(2M) with respect to Haar measure. Here we wish
the mean density of zeros of the L-functions to match the
mean density of eigenvalues of our matrices, and so, as in
[Keating and Snaith 00], we should take 2M ≈ 2 logN .

We suspect that the L-value distribution is approxi-
mately given by the distribution of the evaluations at 1
of the characteristic polynomials of our random matri-
ces. At the crude level, this distribution is determined
entirely by the symmetry type, while finer considerations
are distinguished via arithmetic considerations.

With this assumption, via the moment conjectures of
[Keating and Snaith 00] and then using Mellin inversion,
as t→ 0 we have (see [Conrey et al. 02, (21)]) that (here
3
8 is

(−1/2
2

)
)

Prob[L(E, 1) ≤ t] ∼ α(E)t1/2M3/8. (3–1)

This heuristic is stated for fixed M ≈ logN , but we
shall also allow M → ∞. It is not easy to understand
this probability, since both the constant α(E) and the
matrix size M depend on E. We can take curves with
eM ≤ N ≤ eM+1 to mollify the impact of the conductor,
but in order to average over a set of curves, we need
to understand how α(E) varies. One idea is that α(E)
separates into two parts, one of which depends on local
structure (Frobenius traces) of the curve, and the other
of which depends only on the size of the conductor N .
Letting G be the Barnes G-function (such that G(z+1) =

4We give a simplified statement here, not worrying about con-
ditions regarding whether d is a square modulo 4N and the sign
of d.

5In was pointed out to us by E. Kowalski that Katz [Katz 05,
Section 12.8] has some results in the function-field case related to
(say) generalized or usual Weierstrass families of elliptic curves. A
referee also notes that there is work of Miller [Miller 04] and Young
[Young 06] in this direction.

Γ(z)G(z) with G(1) = 1) and M = 
logN�, we have that

α(E) = αR(M) · αA(E)

with αR(M)→ α̂R = 21/8G(1/2)π−1/4 as M →∞ and

αA(E) =
∏
p

F (p)

=
∏
p

(
1− 1

p

)3/8(
p

p+ 1

)
(3–2)

×
(

1
p

+
Lp(1/p)−1/2

2
+
Lp(−1/p)−1/2

2

)
,

where Lp(X) = (1 − apX + pX2)−1 when p � ∆ and
Lp(X) = (1 − apX)−1 otherwise; see [Conrey et al. 02,
(10)] evaluated at k = − 1

2 , though that equation is wrong
at primes that divide the discriminant; see [Conrey et al.
07, (20)], where Q should be taken to be 1. Note that
the Sato–Tate conjecture [Tate 65] implies that a2

p is p on
average, and this implies that the above Euler product
converges.6

3.2 Discretization of the L-Value Distribution

We let τp(E) be the Tamagawa number of E at the (pos-
sibly infinite) prime p, and write τ(E) =

∏
p τp(E) for the

Tamagawa product and T (E) for the size of the torsion
group. We also write Ωre(E) for the real period, and
S(E) for the size of the Shafarevich–Tate group when
L(E, 1) �= 0, with S(E) = 0 when L(E, 1) = 0. (For pre-
cise definitions of the Tamagawa numbers, torsion group,
periods, and Shafarevich–Tate group, see [Silverman 92],
though below we give a brief description of some of these.)

We wish to assert that sufficiently small values of
L(E, 1) actually correspond to L(E, 1) = 0. We do this
via the conjectural formula of Birch and Swinnerton-Dyer
[Birch and Swinnerton-Dyer 63, Birch and Swinnerton-
Dyer 65], which asserts that

L(E, 1) = Ωre(E) · τ(E)
T (E)2

· S(E).

Our discretization7 will be that

L(E, 1) < Ωre(E) · τ(E)
T (E)2

implies L(E, 1) = 0.

6A referee points out that Birch [Birch 68] has already shown
(using the Selberg trace formula) that the Sato–Tate distribution
holds with respect to all curves over a fixed field Fp, while Michel
[Michel 95] has the best results in the case of one-parameter fami-
lies.

7The precision of this discretization might be the most debatable
methodology we use. Indeed, we are essentially taking a “sharp
cutoff,” while it might be better to have a smoother transition
function. For this reason, we do not specify the leading constant
in our final heuristic.
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Note that we are using only that S(E) takes on integral
values, and do not use the (conjectural) fact that it is
square.

Using (3–1), we estimate the number of curves with
positive (for simplicity) discriminant less than X and
even parity and L(E, 1) = 0 via the lattice-point sum

W (X) =
∑ ∑

c4, c6 minimal
0<c34−c26<1728X

αR(M)αA(E) ·
√

Ωre(E)τ(E)

T (E)2
·M3/8.

We need to introduce congruence conditions on c4 and c6
to make sure that they correspond to a minimal model of
an elliptic curve. The paper [Stein and Watkins 02] uses
the work of Connell [Connell 91] in a different context to
get that there are 288 classes of (c4 mod576, c6 mod1728)
that can give minimal models, and so we get a factor of
288/(576·1728), assuming that each congruence class has
the same impact on all the entities in the sum. Indeed,
this independence (on average) of various quantities with
respect to c4 and c6 is critical in our estimation of W (X).
There is also the question of nonminimal models, from
which (as in the Brumer–McGuinness heuristic) we get a
factor of 1/ζ(10).

Guess 3.2. The lattice-point sum W (X) can be approxi-
mated as X →∞ by

Ŵ (X) =
288

(576 · 1728)
1

ζ(10)
· α̂RᾱAβ(

√
τ)

×
∫∫

1≤u3
4−u2

6
1728 <X

Ωre(E)1/2 · (log ∆)3/8 du4 du6.

Here α̂R is the limit 21/8G(1/2)π−1/4 of αR(M) as M →
∞, while ᾱA is a suitable average of the arithmetic fac-
tors αA(E), and β(

√
τ) is the average of the square root

of the Tamagawa product. We have also approximated
logN ≈ log ∆ and assumed that the torsion is trivial;
below we will give these heuristics justification (on aver-
age). Note that everything left in the integral is a smooth
function of u4 and u6.

We shall first evaluate the integral in Ŵ (X) given
these suppositions, and then try to justify the various
assumptions that are inherent in this guess.8 For con-
venience, we try to list all the heuristic assumptions we
have made.

8Note that our methods do not readily generalize to positive
rank, since there is no apparent way to model the heights of points
(and thus the regulator). A referee points out that Lang [Lang 83]
gives some bounds, and perhaps suggests a distribution, but this
seems insufficient for our purposes.

• Lattice-point sums are well approximated by areal
integrals.

• We have

Prob[L(E, 1) < t] ∼ α(E)t1/2(logN)3/8

via random matrix theory.

• We have

S(E) =
L(E, 1)
Ωre(E)

T (E)2

τ(E)

by the Birch–Swinnerton-Dyer (BSD) conjecture.

• There is independence among the arithmetic factor
αA(E), the Tamagawa products, and the real period.

• We can replace logN by log ∆, and torsion can be
ignored.

3.3 Evaluation of the Integral

Write E as y2 = 4x3 − (c4/12)x − c6/216, and put e1 >
e2 > e3 for the roots of the cubic polynomial on the right
side. We have

1
Ωre

=
π

agm
(√
e1 − e2,

√
e1 − e3

) .

We also have that

(e1 − e2)(e1 − e3)(e2 − e3) =
√

∆/16

from the formula for the discriminant. We next write

e1 − e2 = ∆1/6λ and e2 − e3 = ∆1/6µ,

so that we have µλ(λ+ µ) = 1
4 , while

e1 =
∆1/6

3
(µ+ 2λ), e2 =

∆1/6

3
(µ− λ),

and

e3 = −∆1/6

3
(2µ+ λ).

Thus we get

−c6
864

= −e1e2e3 =
∆1/2

27
(µ+ 2λ)(µ− λ)(2µ+ λ)

and

−c4
48

= e1e2 + e1e3 + e2e3 = −∆1/3

3
(µ2 + λµ+ λ2).
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Changing variables in the Ŵ -integral gives a Jacobian of
432/∆1/6

√
µ4 + µ, so that

Ŵ (X) = c̃

∫ X

1

∫ ∞

0

(log ∆)3/8√
∆1/12 agm(

√
λ,
√
λ+ µ)

× dµ d∆

∆1/6
√
µ4 + µ

,

for some constant c̃ > 0, where

λ =

√
µ4 + µ− µ2

2µ
.

Thus the variables are nicely separated, and since the
µ-integral converges, we do indeed get the asymptotic

Ŵ (X) ∼ cX19/24(logX)3/8.

A similar argument can be given for curves with negative
discriminant. This concludes our derivation of Heuristic
3.1, and now we turn to giving some reasons for our ex-
pectation that the arithmetic factors can be mollified by
taking their averages.

3.4 Expectations for Arithmetic Factors on Average

In the next section we shall explain (among other things)
why we expect that logN ≈ log ∆ for almost all curves,
and in Section 5, we shall recall the classical parame-
terizations of X1(N) due to Fricke to indicate why we
expect that the torsion size is trivial outside a sparse set
of curves. Here we show how to compute the various av-
erages (with respect to ordering by discriminant) of the
square root of the Tamagawa product and the arithmetic
factors αA(E).

For both heuristics, we make the assumption that
curves satisfying the discriminant bound |∆| ≤ X behave
essentially the same as those that satisfy |c4| ≤ X1/3 and
|c6| ≤ X1/2. That is, we approximate our region by a
big box. We write D for the absolute value of ∆, and
consider how often high powers of primes divide D.

3.4.1 Primes Dividing the Discriminant. We wish to
know how often a prime divides the discriminant to a
high power. Fix a prime p ≥ 5 with p much smaller
than X1/3. We estimate the probability that pk | ∆
by considering all p2k choices of c4 and c6 modulo pk;
that is, we count the number of solutions C(pk) to the
congruence c34−c26 = 1728∆ ≡ 0 (mod pk). This auxiliary
curve c34 = c26 is singular at (0, 0) over Fp, and has (p−1)
nonsingular Fp-solutions that lift to pk−1(p − 1) points
modulo pk.

For pk sufficiently small, our (c4, c6)-region is so large
that we can show that the probability that pk | ∆ is
C(pk)/p2k. We assume that big primes act (on average)
in the same manner, while a similar heuristic can be given
for p = 2, 3. Curves with p4 | c4 and p6 | c6 will not be
given by their minimal model; indeed, we want to exclude
these curves, and so we will multiply our probabilities by
κp = (1 − 1/p10)−1 to make them conditional on this
criterion. For instance, the above counting of points says
that there is a probability of (p2 − p)/p2 that p � D, and
so on conditioning on minimal models, we get κp(1−1/p)
for this probability.

What is the probability Pm(p, k) that a curve given by
a minimal model has multiplicative reduction at p ≥ 5
and pk ‖ D for some k > 0? In terms of Kodaira sym-
bols, this is the case of Ik. For multiplicative reduction
we need that p � c4 and p � c6. These events are assumed
independent, and each has a probability (1− 1/p) of oc-
curring. If we assume these conditions and work modulo
pk, there are (pk − pk−1) such choices for both c4 and
c6, and of the resulting (c4, c6) pairs we noted above that
pk−1(p− 1) of them have pk | D. So, given a curve with
p � c4 and p � c6, we have a probability of 1/pk−1(p − 1)
that pk | D, which gives 1/pk for the probability that
pk ‖ D. In symbols, we have that (for p ≥ 5 and k ≥ 1)

Prob
[
pk ‖ (c34 − c26)

∣∣∣ p � c4, p � c6

]
= 1/pk.

Including the conditional probability for minimal models,
we get

Pm(p, k) =
1
pk

(
1− 1

p10

)−1 (
1− 1

p

)2

,

for p ≥ 5 and k ≥ 1. Note that summing this over k ≥ 1
gives κp(1−1/p)/p for the probability for an elliptic curve
to have multiplicative reduction at p.

What is the probability Pa(p, k) that a curve given by
a minimal model has additive reduction at p ≥ 5 and
pk ‖ D for some k > 0? We shall temporarily ignore
the factor κp = (1 − 1/p10)−1 from nonminimal models
and include it at the end. We must have that p | c4 and
p | c6, and thus get that k ≥ 2. For k = 2, 3, 4, which cor-
respond to Kodaira symbols II, III, and IV respectively,
the computation is not too bad: we get that p2 ‖ D
exactly when p | c4 and p ‖ c6, so that the probability is

1
p
· 1− 1/p

p
=

1− 1/p
p2

;

for p3 ‖ D we need p ‖ c4 and p2 | c6 and thus get

1− 1/p
p

· 1
p2

=
1− 1/p
p3
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for the probability; and for p4 ‖ D we need p2 | c4 and
p2 ‖ c6, and so get

1
p2
· 1− 1/p

p2
=

1− 1/p
p4

for the probability. Note that the case k = 5 cannot
occur. Thus we have (for p ≥ 5) the formula

Pa(p, k) =
1
pk

(
1− 1

p10

)−1 (
1− 1

p

)

for k = 2, 3, 4.
More complications occur for k ≥ 6, where now we

split into two cases depending on whether additive re-
duction persists on taking the quadratic twist by p. This
occurs when p3 | c4 and p4 | c6, and we denote by Pn

a (p, k)
the probability that pk ‖ D in this subcase. Just as
above, we get that

Pn
a (p, k) =

1
pk−1

(
1− 1

p10

)−1 (
1− 1

p

)

for k = 8, 9, 10. These are respectively the cases of Ko-
daira symbols IV�, III�, and II�. For k = 11 we have
Pn

a (p, k) = 0, while for k ≥ 12 our condition of minimal-
ity implies that we should take Pn

a (p, k) = 0.
We denote by P t

a(p, k) the probability that p6 | D with
either p2 ‖ c4 or p3 ‖ c6. First we consider curves for
which p7 | D, and these have multiplicative reduction at
p upon twisting. In particular, these curves have p2 ‖ c4
and p3 ‖ c6, and the probability of this is

1− 1/p
p2

· 1− 1/p
p3

.

Consider k ≥ 7. We then take c4/p
2 and c6/p

3 both
modulo pk−6, and get that pk−6 ‖ (D/p6) with probabil-
ity 1/pk−6 in analogy with the above. So we get that

P t
a(p, k) =

(
1− 1

p10

)−1 (1− 1/p)2

pk−1

for k ≥ 7. This corresponds to the case of I�k−6.
Finally, for p6 ‖ D (which is the case I�0) we get a

probability of
1
p2
· 1
p3

that p2 | c4 and p3 | c6, and since there are p points mod
p on the auxiliary curve

(
c4
p2

)3

≡
(
c6
p3

)2

(mod p),

we get a conditional probability of (p2 − p)/p2 that p6 ‖
D. So we get that

P t
a(p, 6) =

1
p5

(
1− 1

p10

)−1 (
1− 1

p

)
.

We now impose our current notation on the previ-
ous paragraphs, and naturally let P t

a(p, k) = 0 and
Pn

a (p, k) = Pa(p, k) for k ≤ 5. Our final result is that

Pn
a (p, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
pk

(
1− 1

p10

)−1 (
1− 1

p

)
, k = 2, 3, 4,

1
pk−1

(
1− 1

p10

)−1 (
1− 1

p

)
, k = 8, 9, 10,

and

P t
a(p, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
p5

(
1− 1

p10

)−1 (
1− 1

p

)
, k = 6,

1
pk−1

(
1− 1

p10

)−1 (
1− 1

p

)2

, k ≥ 7,

with Pn
a (p, k) and P t

a(p, k) equal to zero for other k. We
conclude by defining P0(p, k) to be zero for k > 0 and to
be the probability (1 − 1/p10)−1(1 − 1/p) that p � D for
k = 0. We can easily check that we really do have the
required probability relation

∞∑
k=0

[
Pm(p, k) + Pn

a (p, k) + P t
a(p, k) + P0(p, k)

]
= 1,

since the cases of multiplicative reduction give κp(1 −
1/p)/p; the cases of Kodaira symbols II, III, and IV give
κp(1/p2 − 1/p5); the cases of Kodaira symbols IV�, III�,
and II� give κp(1/p7−1/p10); the cases of I�k summed for
k ≥ 1 give κp(1 − 1/p)/p6; the case of I�0 gives κp(1 −
1/p)/p5; and the sum of these with P0(p, 0) = κp(1 −
1/p) does indeed give us 1. We could do a similar (more
tedious) analysis for p = 2, 3, but this would obscure our
argument.

The heuristics we used in deriving these probabilities
were that the curves with |∆| ≤ X act like those in a
big box with |c4| ≤ X1/3 and |c6| ≤ X1/2, and that the
effect of large primes dividing the discriminant can be
estimated in a similar manner as with the small primes.

3.4.2 Tamagawa Averages. Given a curve of absolute
discriminant D, we can now compute the expectation for
its Tamagawa number. We consider primes p | D with
p ≥ 5, and compute the local Tamagawa number t(p);
this can be done as in [Cohen 93, Algorithm 7.5.1] (with
a corrected line 2 of step 3 in early printings).
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When E has multiplicative reduction at p and pk ‖ D,
then t(p) = k if −c6 is square mod p, and otherwise,
t(p) = 1, 2, depending on whether k is odd or even. So
the average of

√
t(p) for this case is

εm(k) =
1
2

(
1 +
√
k
)

or
1
2

(√
2 +
√
k
)

for k odd or even respectively.
When E has potentially multiplicative reduction at p

with pk ‖ D, for k odd we have t(p) = 4, 2, depending
on whether (c6/p3) · (∆/pk) is square mod p, and for k
even we have t(p) = 4, 2, depending on whether ∆/pk

is square mod p. In both cases the average of
√
t(p) is

1
2 (
√

2 +
√

4). In the case of I�0 reduction where we have
p6 ‖ D, we have that t(p) = 1, 2, 4, corresponding to
whether the cubic

x3 − 27c4
p2

x− 54c6
p3

has 0, 1, 3 roots modulo p. So the average of
√
t(p) is

√
1
(
(p− 1)(p+ 1)/3

)
+

√
2
(
p(p− 1)/2

)
+

√
4
(
(p− 1)(p− 2)/6

)
(
(p− 1)(p+ 1)/3

)
+

(
p(p− 1)/2

)
+

(
(p− 1)(p− 2)/6

)

=
2

3
+

√
2

2
− 1

3p

in this case.
For the remaining cases, when p2 ‖ D or p10 ‖ D

we have t(p) = 1, while when p3 ‖ D or p9 ‖ D we
have t(p) = 2. Finally, when p4 ‖ D we have t(p) =
3, 1, depending on whether −6c6/p2 is square mod p, and
similarly when p8 ‖ D we have t(p) = 3, 1, depending on
whether −6c6/p4 is square mod p, so that the average of√
t(p) in both cases is 1

2 (1 +
√

3). We get that

εna(k) = 1,
√

2,
1
2
(1 +

√
3),

1
2
(1 +

√
3),
√

2, 1

for k = 2, 3, 4, 8, 9, 10, while

εm(k) =

{
1
2 (1 +

√
k), k odd,

1
2 (
√

2 +
√
k), k even,

(3–3)

and

εta(p, k) =

{
2
3 +

√
2

2 − 1
3p , k = 6,

1
2 (
√

2 +
√

4), k ≥ 7,
(3–4)

with εna(k) and εta(p, k) equal to zero for other k.
We define the expected square root of the Tamagawa

number K(p) at p by

K(p) =
∞∑

k=0

[
εm(k)Pm(p, k) + εna(k)Pn

a (p, k) (3–5)

+ εta(p, k)P t
a(p, k) + P0(p, k)

]

and assume that all the primes act independently to get
that the expected global9 Tamagawa number is

β(
√
τ) =

∏
p

K(p).

The convergence of this product follows from an analysis
of the dominant k = 0, 1, 2 terms of (3–5), which gives a
behavior of 1 + O(1/p2). So we get that the Tamagawa
product is a constant on average, which we do not bother
to compute explicitly (we would need to consider p = 2, 3
more carefully to get a precise value).

3.4.3 Arithmetic Averages. To compute the average
value of αA(E) =

∏
p F (p) in (3–2), we similarly assume

that each prime acts independently.10 We then compute
the average value for each prime by calculating the dis-
tribution of F (p) for all the curves modulo p (includ-
ing those with singular reduction, and again making the
slight adjustment for nonminimal models). This gives
some constant for the average ᾱA of αA(E), which we
again do not compute explicitly. Note that

∏
p F (p) con-

verges if we assume the Sato–Tate conjecture [Tate 65],
since then we have that a2

p is p on average.

4. RELATION BETWEEN CONDUCTOR AND
DISCRIMINANT

We now give heuristics for how often we expect the ratio
between the absolute discriminant and the conductor to
be large. The main heuristic we derive is the following.

Heuristic 4.1. The number B(X) of elliptic curves over Q

whose conductor is less than X satisfies B(X) ∼ cX5/6

for some explicit constant c > 0.

Remark 4.2. It must be noted that the data of Cre-
mona [Cremona 06] do not coincide with this heuristic;
in fact, the growth seems almost linear in the conduc-
tor, for taking the curves with conductor in the range
40,000–130,000 in his database and doing a log-log re-
gression yields a best-fit exponent of 0.98, which is much
closer to 1 than to 5

6 . An upper bound of B(X)�ε X
1+ε

is explicated in [Duke and Kowalski 00, Section 3.1].

9Note that the Tamagawa number at infinity is 1 when E has
negative discriminant and otherwise is 2, the former occurring ap-
proximately

√
3/(1 +

√
3) ≈ 63.4% of the time.

10This argumentative technique can also be used to bolster our
assumption that using Connell’s conditions should be independent
of other considerations.
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Remark 4.3. We claim that the constant c here can be
made explicit, but this would require a more careful anal-
ysis at p = 2, 3 than we wish to describe here.

To derive this heuristic, we estimate the proportion
of curves with a given ratio of (absolute) discriminant
to conductor. Since the conductor is often the square-
free kernel of the discriminant, by way of explanation we
first consider the behavior of f(n) = n/sqfree(n). The
probability that f(n) = 1 is given by the probability that
n is square-free, which is classically known to be 1/ζ(2) =
6/π2. Given a prime power pm, to have f(n) = pm says
that n = pm+1u, where u is square-free and coprime to
p. The probability that pm+1 ‖ n is (1 − 1/p)/pm+1,
and given this, the conditional probability that

(
n/pm+1

)
is square-free is (6/π2) · (1 − 1/p2)−1. Extending this
multiplicatively beyond prime powers, we get that

Prob
[
n/sqfree(n) = q

]

=
6
π2

∏
pm‖q

1/p(m+1)

(1 + 1/p)
=

6
π2

1
q

∏
p|q

1
p+ 1

.

In particular, the average of f(n)γ exists for γ < 1; in our
elliptic curve analogue, we will require such an average
for γ = 5

6 . We note that it is an interesting question11 to
prove an asymptotic for

∑
n≤X n/sqfree(n).

4.1 Derivation of the Heuristic

We keep the notation D = |∆| and wish to compute the
probability that D/N = q for a fixed positive integer q.
For a prime power pv with p ≥ 5, the probability that
pv ‖ (D/N) is given by the following: the probability that
E has multiplicative reduction at p and pv+1 ‖ D, that
is, Pm(p, v+ 1); plus the probability that E has additive
reduction at p and pv+2 ‖ D, that is, Pa(p, v+2); and the
contribution from P0(p, v), which is zero for v > 0 and
for v = 0 is the probability that p does not divide D. So,
writing v = vp(q), we get that (with a similar modified
formula for p = 2, 3)

Prob
[
D/N = q

]
(4–1)

=
∏
p

[
Pm(p, 1 + v) + Pa(p, 2 + v) + P0(p, v)

]
.

We emphasize that this probability is with respect to
curve-ordering by discriminant (as in the last section),

11The saddle-point method as indicated in [Tenenbaum 88] and
[Burris and Yeats 05] might be applicable, but it appears to involve
quite careful estimation to achieve an asymptotic rather than a
log-asymptotic. It was pointed out to us by G. Tenenbaum that
[Schwarz 65] improves on the result of [de Bruijn 62], though the
result is not that explicit.

and as previously, we have assumed that the primes act
independently, that curves with |∆| ≤ X act like those
in a big box, and that the effect of large primes is similar
to that from small primes. Writing α = α+ + α−, from
Conjecture 2.1 we have

∑
E:NE≤X

1 =
∞∑

q=1

∑
E:N≤X
D/N=q

1 ≈
∞∑

q=1

∑
E:D≤qX

Prob
[
D/N = q

]

∼
∞∑

q=1

α · (qX)5/6 · Prob
[
D/N = q

]
, (4–2)

and if this last sum converges, we then get Heuristic 4.1.
To show that the last sum in (4–2) does indeed con-

verge, we get an upper bound for the probability in (4–1).
We have that Pm(p, v + 1) ≤ 1/pv+1 and Pa(p, v + 2) ≤
2/pv+1, which implies

f̂(q) = Prob
[
D/N = q

] ≤ 1
q

∏
p|q

3
p
.

We then estimate

∞∑
q=1

q5/6f̂(q) ≤
∞∑

q=1

1
q1/6

∏
p|q

3
p

=
∏
p

(
1 +

∞∑
l=1

3/p
(pl)1/6

)

≤
∏
p

(
1 +

3/p
p1/6 − 1

)
,

and the last product is seen to be convergent on compar-
ison to ζ

(
7
6

)3. Thus we shown that the last sum in (4–2)
converges, so that Heuristic 4.1 follows.

We note that Fouvry, Nair, and Tenenbaum [Fouvry
et al. 92] have shown that the number of minimal models
with D ≤ X is at least cX5/6, and that the number of
curves with D ≤ X with Szpiro ratio log D

log N ≥ κ is no
more than cεX1/κ+ε for every ε > 0.

4.2 Dependence of D/N and the Tamagawa Product
We assume that D/N should be independent of the real
period, but the Tamagawa product and D/N should be
somewhat related.12 We compute the expected square
root of the Tamagawa product when D/N = q. As with
(4–1) and using the ε defined in (3–3) and (3–4), we find
that this is given by

η(q) =
∏
p

[
εm(v1)Pm(p, v1) + εn

a (v2)P n
a (p, v2) + εt

a(p, v2)P t
a(p, v2) + P0(p, v)

]
[
Pm(p, v1) + Pa(p, v2) + P0(p, v)

] ,

where v1 = v + 1, v2 = v + 2 and v = vp(q).

12The size of the torsion subgroup should also be related to D/N ,
but in the next section we argue that curves with nontrivial torsion
are sufficiently sparse that they may be ignored.
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4.3 The Comparison of log ∆ with log N

We now want to compare log ∆ with logN , and explicate
the replacement therein in Guess 3.2. In order to bound
the effect of curves with large D/N , we note that

Prob
[
D/N ≥ Y ]

=
∑
q≥Y

f̂(q) ≤
∑
q≥Y

1
q

∏
p|q

3
p
,

and use Rankin’s trick (that is, bounding the character-
istic function of q ≥ Y by (q/Y )1−α for a parameter
0 < α < 1 that will be chosen optimally), so that for
any 0 < α < 1 we have (using pα − 1 ≥ α log p in the
penultimate step, and then the prime number theorem
to bound

∑
p

1
p log p � 1)

Prob
[
D/N ≥ Y ] ≤

∞∑
q=1

(
q

Y

)1−α

× 1
q

∏
p|q

3
p

=
Y α

Y

∏
p

(
1 +

3
p1+α

+
3

p1+2α
+ · · ·

)

=
Y α

Y

∏
p

(
1 +

3/p
pα − 1

)

� Y α

Y
exp

(∑
p

c̃/p

α log p

)
� ec

√
log Y

Y

for some constants c̃, c, by taking α = 1/
√

log Y (this
result is stronger than needed).

However, a more pedantic derivation of Guess 3.2 does
not simply allow replacing logN by log ∆, but requires
analysis (assuming Ωre(E) to be independent of q) of

α̂RᾱA

3456 ζ(10)

×
∫∫

√
X≤ u3

4−u2
6

1728 ≤X

Ωre(E)

×
[∑

q<∆

η(q)(log ∆/q)3/8Prob
[
D/N = q

]]
du4 du6.

The above estimate on the tail of the probability and
a simple bound on η(q) in terms of the divisor function
shows that we can truncate the q-sum at Y with an error
of Oε(1/Y 1−ε) (for all ε > 0), and choosing (say) Y =
e
√

log X gives us that log(∆/q) ∼ log ∆ (note that we have
restricted to ∆ >

√
X). So the bracketed term becomes

the desired
∑
q<Y

η(q)(log ∆)3/8 · Prob
[
D/N = q

] ∼ β(
√
τ)(log ∆)3/8,

on noting that the q-part of the sum converges to β(
√
τ)

as Y →∞.

4.4 Counting Curves with Vanishing L-value

We now estimate the number of elliptic curves E with
even parity and L(E, 1) = 0 when ordered by conductor.

Heuristic 4.4. Let R̃(X) be the number of elliptic curves
E with even parity and conductor less than X and
L(E, 1) = 0. Then R̃(X) ∼ cX19/24(logX)3/8 for some
constant c > 0.

From Guess 3.2 we get that the number of even-parity
curves with 0 < ∆ < qX, D/N = q and L(E, 1) = 0 is
given by

Ŵ (qX) · (η(q)/β(
√
τ)

) · Prob
[
D/N = q

]
,

and we sum this over all q. As we argued above, the
tail of the sum does not affect the asymptotic (and so
we can take log ∆ ∼ logN in Ŵ ), and again we get that
the q-sum converges. This then gives the desired asymp-
totic for the number of even-parity curves with conductor
less than X and vanishing central L-value (after arguing
similarly for curves with negative discriminant).

4.5 Relations to Other Work

It is proposed by Hindry [Hindry 05, Conjectures 5.4 and
5.5] that a theorem of Brauer–Siegel type might hold for
elliptic curves; that is, it should be that nonvanishing val-
ues of L(E, 1) are bounded quite far away (say 1/ logN)
from 0. This would say that the product of the regulator
and #X cannot be too small. We view this as unlikely;
already in the rank-zero case we can see no reason why
there should not be infinitely many curves with trivial
Shafarevich–Tate group. Indeed, having #X = 1 should
be approximately as common as having positive rank ac-
cording to the above discretization methodology. The
main difference between the elliptic curve case and that
for number fields is that the latter deals with L-values
at the edge of the critical strip, while our interest is in
central values.

We might also point out that a guesstimate of X19/24

curves of rank 2 up to X can also come from a couple of
different methods. One method is to consider the (con-
jectural) BSD formula

S(E) =
L(E, 1)
Ωre(E)

T (E)2

τ(E)

=

{
#X(E) when E has rank 0,
0 otherwise,

and note that the torsion and Tamagawa contributions
are small compared to the reciprocal of the real pe-
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riod.13 A generalization of the Lindelöf hypothesis im-
plies that L(E, 1) is bounded above by something like
logN ; this is also small compared to 1/Ωre, and so we
view S(E) as possibly taking values from 0 up to about
1/Ωre. Since S(E) should be an integral square, this
gives a crude probability of 1 in

√
1/Ωre of a curve of

even parity having a vanishing central value. Summing
over curves (which inter alia uses that 1/Ωre is typically
about ∆1/12), this gives14 a rough count of X19/24.

A different method to obtain X19/24 is to estimate the
number of integral points on the variety

y2 = x3 +Axz2 +Bz3

for various ranges of (A,B, x, y, z). Though highly spec-
ulative, especially for larger ranks where arithmetic con-
siderations may dominate, this predicts an upper bound
of size X(21−r)/24 for the number of curves of rank r,
yielding the asserted X19/24 for r = 2. This will be dis-
cussed further in a forthcoming paper with A. Granville.

5. TORSION AND ISOGENIES

We can also count curves that have a given torsion group
or isogeny structure. For instance, an elliptic curve with a
2-torsion point can be written as an integral model in the
form y2 = x3 + ax2 + bx, where ∆ = 16b2(a2 − 4b); thus,
by lattice-point counting, we estimate about

√
X curves

with absolute discriminant less than X. The effect on
the conductor can perhaps more easily be seen by using
the Fricke parameterization

c4 = (t+ 16)(t+ 64)T 2 and c6 = (t− 8)(t+ 64)2T 3

of curves with a rational 2-isogeny, and then substituting
t = p/q and V = T/q to get

c4 = (p+ 16q)(p+ 64q)V 2

and
c6 = (p− 8q)(p+ 64q)2V 3,

so that
∆ = p(p+ 64q)3q2V 6.

The summation over the twisting parameter V just mul-
tiplies our estimate by a constant, while ABC estimates
imply that there should be no more than X2/3+ε coprime

13This can be made precise; below we note that 1/Ωre � ∆1/12,
while the torsion is bounded and the Tamagawa product is bounded
by a divisor function.

14This is vaguely related to the Sarnak estimate of D3/4 for the
count of vanishings in families of quadratic twists, but relies only
on the size of the real period.

pairs (p, q) with the square-free kernel of pq(p + 64q)
smaller than X in absolute value.

So we get the heuristic that almost all curves have no
2-torsion, even under ordering by conductor. Indeed, the
exceptional set is so sparse that we can ignore it in our
calculations. A similar argument applies for other isoge-
nies, and more generally for splitting of division polyno-
mials. Also, the results [Duke 97] for exceptional primes
are applicable here, albeit with a different ordering.

6. EXPERIMENTS

We wish to provide some experimental data for the above
heuristics. However, it is difficult to distinguish numeri-
cally between 19/24 and 5/6 in the predictions

R(X) ∼ cX19/24(logX)3/8 and A±(X) ∼ c′X5/6.

Therefore, we instead try to refute the “null hypothe-
sis,” namely that there should be a positive proportion
of rank-2 curves. In particular, the two large data sets of
[Brumer and McGuinness 90] and [Stein and Watkins 02]
for curves of prime conductor up to 108 and 1010 show
little drop in the proportion of rank-2 curves, and an even
smaller drop in the observed average (analytic) rank.

These results led some to speculate that the average
rank might (asymptotically) be greater than 0.5, with
a positive proportion of elliptic curves having rank 2 or
more.

Brumer and McGuinness considered about 310,700
curves with prime conductor less than 108 and found an
average rank of about 0.978, while Stein and Watkins
extended this to over 11 million curves with prime con-
ductor up to 1010 and found an average rank of about
0.964. Both data sets are expected to be nearly exhaus-
tive15 among curves with prime conductor up to the given
limit. To extend the data in a computationally feasible
manner, we chose a selection of curves with prime con-
ductor of size 1014. It is nontrivial to get a good data
set, since we must account for congruence conditions on
the elliptic curve coefficients and the variation of the size
of the real period.

6.1 Average Analytic Rank for Curves with
Prime Conductor near 1014

As in [Stein and Watkins 02], we divided the (c4, c6) pairs
into 288 congruence classes with

(c̃4, c̃6) =
(
c4 mod 576, c6 mod 1728

)
.

15This is one reason to take curves of prime conductor; we also
have |∆| = N with few exceptions.
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Many of these classes force the prime 2 to divide the dis-
criminant, and thus do not produce any curves of prime
conductor. For each class (c̃4, c̃6), we took the 10,000
parameter selections

(c4, c6) =
(
576(1000 + i) + c̃4, 1728(100000 + j) + c̃6

)

for (i, j) ∈ [1..10]× [1..1000], and then of these 2,880,000
curves, took the 89,913 models that had prime discrimi-
nant (note that all the discriminants are positive). This
gives us good distribution across congruence classes, and
while the real period does not vary as much as possible,
below we will attempt to understand how this affects the
average rank.

It then took a few months to compute the (suspected)
analytic ranks for these curves. We got about 0.937 for
the average rank. We then did a similar experiment for
curves with negative discriminant given by

(c4, c6) =
(
576(−883 + i) + c̃4, 1728(100000 + j) + c̃6

)

for (i, j) ∈ [1..10] × [1..1000], took the subset of 89,749
curves with prime conductor, and found the average rank
to be about 0.869. This discrepancy between positive and
negative discriminant is also in the Brumer–McGuinness
and Stein–Watkins data sets, and indeed was noted in
[Brumer and McGuinness 90].16 We do not average
the results from positive and negative discriminants; the
Brumer–McGuinness conjecture, Conjecture 2.1, implies
that the split is not 50-50.

In any case, our results show a substantial drop in
the average rank, which, at the very least, indicates that
the average rank is not constant in the range we consid-
ered. The alternative statistic of frequency of positive
rank for curves with even parity also showed a signifi-
cant drop. For curves of prime positive discriminant it
was 44.1% for Brumer–McGuinness and 41.7% for Stein–
Watkins, but only 36.0% for our data set; for curves of
negative discriminant and prime conductor, these num-
bers are 37.7%, 36.4%, and 31.3%.

6.2 Variation of Real Period

Our random sampling of curves with prime conductor
of size 1014 must account for various properties of the
curves if our results are to possess legitimacy. Above, we
speculated that the real period plays the most significant
role, and so we wish to understand how our choice has
affected it. Indeed, as was pointed out to us by X.-F.
Roblot, the variation of real period from enumerating in

16“An interesting phenomenon was the systematic influence of
the discriminant sign on all aspects of the arithmetic of the curve.”
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FIGURE 1. ∆ > 0: Curve distribution as a function of t.

a large (c4, c6)-box is quite different from the result of
enumerating by discriminant.

However, while this discrepancy with the distribution
of the real period may be the weakest link in our experi-
ment, we can still make a reasonable comparison between
data sets, due to our assertion that only the size of the
real period should matter.

To judge the effect that variation of the real period
might have, we did some comparisons with the Stein–
Watkins database. First consider curves of positive prime
discriminant, and write E as

y2 = 4x3 + b2x
2 + 2b4x+ b6

and e1 > e2 > e3 for the real roots of the cubic. We
looked at curves with even parity and considered the fre-
quency of positive rank as a function of the root quotient

t =
e1 − e2
e1 − e3 ,

noting that17

Ωre∆1/12 =
21/3π(t− t2)1/6

agm(1,
√
t)

.

The curves we considered all had 0.617 < t < 0.629.
However, in analogy to our consideration of curves or-

dered by conductor, before counting curves with extra
rank we should first simply count curves. Figure 1 indi-
cates the distribution of the root quotient t for the curves
of prime (positive) discriminant and even parity from the
Stein–Watkins database (more than two million curves

17The calculation follows as in the previous sections; via cal-
culus, we can compute that this function is maximized at t ≈
0.0388505246188 with a maximum just below 4.414499094.
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FIGURE 2. ∆ > 0: Positive-rank frequency as a func-
tion of the root quotient t, and Ωre∆

1/12 as a function
of t.

meet the criteria). The x-axis is divided up into bins of
size 1/1000; there are more than one hundred times as
many curves with t < 0.001 as with 0.500 < t < 0.501,
with the most extremal dots not even appearing on the
graph.

Next we plot the frequency of L(E, 1) = 0 as a func-
tion of the root quotient in Figure 2. Since there are
only about one thousand curves in some of our bins, we
do not get such a nice graph. Note that the leftmost and
especially the rightmost dots are much below their near-
est neighbors and that the graph slopes down in general
and drops more at the end. We see no evidence that
our results should be overly biased. In particular, the
frequency of L(E, 1) = 0 is 41.7% among all curves of
even parity and prime discriminant in the Stein–Watkins
database, and is 42.8% for the 12,324 such curves with
0.617 < t < 0.629. The function plotted (labeled on the
right axis) in Figure 2 is

Ωre∆1/12 =
21/3π(t− t2)1/6

agm(1,
√
t)

as a function of t, and note that this goes to zero as
t → 0, 1; there is nothing canonical about the choice of
our t parameter, and we chose it more for convenience
than anything else.

Similar computations can be made in the case of neg-
ative discriminant, which we briefly discuss for complete-
ness (again restricting to curves with even parity where
appropriate). Let r be the real root of the cubic poly-
nomial 4x3 + b2x

2 + 2b4x + b6, and Z > 0 the imagi-
nary part of the conjugate pair of nonreal roots. Letting
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FIGURE 3. ∆ < 0: Distribution of curves as a function
of C.
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FIGURE 4. ∆ < 0: Positive-rank frequency as a func-
tion of C, and Ωre|∆|1/12 as a function of C.

r̃ = r + b2/12 and c = r̃/Z, we then have18

Ωre|∆|1/12 =
π
√

2

(1 + 9c2/4)1/12agm
(
1,

√
1
2 + 3c

4
√

1+9c2/4

) .

We renormalize by taking C = 1
2 + arctan(c)/π, and

graph the distribution of curves versus C in Figure 3. The
symmetry of the graph might indicate that the coordinate
transform is reasonable.19 All our curves have 0.555 <
C < 0.557.

Next we plot the frequency of L(E, 1) = 0 as a function
of the root quotient in Figure 4. Again we also graph the
function Ωre|∆|1/12 on the right axis. Here the drop-off
is more pronounced than with the curves of positive dis-
criminant. Note the floating dot around C = 1

2 . Indeed,

18This is maximized at c ≈ −33.58515148525, with the maximum
a bit less than 8.82921518.

19The blotches around 0.22–0.23 and 0.77–0.78 appear to come
from the fact that curves with a4 small (in particular ±1) tend to
have C in these ranges (for our discriminant range), and this causes
instability in the counting function.
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the hundred closest curves with C < 1
2 all have positive

rank; this breaks down when the barrier 1
2 is crossed.

This is not particularly a mystery: these curves have
a6 = 0 and/or b6 = 1, and thus have an obvious rational
point. Recall that C = 1

2 corresponds to c = 0 = r̃.
We again see no evidence that our results should be

biased. In particular, the frequency of L(E, 1) = 0 is
36.4% among all curves of even parity and negative prime
discriminant in the Stein–Watkins database, and is 37.0%
for the 4695 such curves with 0.555 < C < 0.557.

6.3 Other Considerations

The idea that the “probability” that a curve of even
parity possesses positive rank should be proportional to√

Ωre is perhaps overly simplistic; in particular, it is not
borne out too precisely by the Stein–Watkins data set.
We consider curves of positive prime discriminant with
even parity; for those with 0.64 < Ωre < 0.65 we have
78,784 curves, of which 45.9% have positive rank, while
of the 9872 with 0.32 < Ωre < 0.325, we have 36.0% with
positive rank, for a ratio of 1.28, which is not too close
to
√

2.
One consideration here is that we have placed a dis-

criminant limit on our curves, and there are curves with
larger discriminant and 0.32 < Ωre < 0.325 that we have
not considered. This, however, is in contrast to the idea
that only the real period should be of import.

One possibility is that curves with small discrimi-
nant and/or large real period have smaller probability of
L(E, 1) = 0 than our estimate of c

√
Ωre would suggest.

Indeed, it might be argued (perhaps due to arithmetic
considerations, or perhaps explicit formulas for the zeros
of L-functions) that curves with such small discriminant
cannot realize their nominal expected frequency of posi-
tive rank.

Unfortunately, we cannot do much to quantify these
musings, since the effect would likely be in a secondary
term, making it difficult to detect experimentally. Note
also that a relative depression of rank for curves of
small discriminant would give a reason for the near-
constant average rank observed by Brumer–McGuinness
and Stein–Watkins.

6.4 Mordell–Weil Lattice Distribution for
Rank-2 Curves

We have other evidence that curves of small discriminant
might not behave quite as expected. We undertook to
compute generators for the Mordell–Weil group for all
2,143,079 curves of (analytic) rank 2 of prime conductor

less than 1010 in the Stein–Watkins database.20 J. E.
Cremona ran his mwrank program [Cremona 05] on all
these curves, and it was successful in provably finding
the Mordell–Weil group for 2,114,188 of these. For about
2500 curves, the search region was too big to find the
2-covering quartics via invariant methods, while around
8500 curves had a generator of large height that could
not be found, and over 18,000 had 2-Selmer rank greater
than 2.

We then used the FourDescent machinery of Magma,
which reduced the number of problematic curves to 54.
Of these, 19 have analytic X of 16.0, and we expect that
either 3-descent or 8-descent [Stamminger 05] will com-
plete (assuming the generalized Riemann hypothesis to
compute the class group) the Mordell–Weil group verifi-
cation; for the 35 other curves, there is likely a generator
of height more than 225, which we did not attempt to
find.21

We then looked at the distribution of the Mordell–Weil
lattices obtained from the induced inner product from
the height pairing; since all of our curves have rank 2, we
get 2-dimensional lattices. We are not so interested in the
size of the obtained lattices, but more in their shape. Via
the use of lattice reduction (which reduces to continued
fractions in this case), given any two generators we can
find the point P of smallest positive height on the curve.
By normalizing P to be the unit vector, we then get a
vector in the upper half-plane corresponding to another
generator Q.

Via the standard reduction algorithm, we can trans-
late Q so that it corresponds to a point in the fundamen-
tal domain for the action of SL2(Z). Finally, by replacing
Q by −Q if necessary, we can ensure that this point is in
the right half of the fundamental domain (in other words,
we must choose an embedding for our Mordell–Weil lat-
tice). In this manner, for each rank-2 curve we associate
a unique point z = x + iy in the upper half-plane with
x2 + y2 ≥ 1 and 0 ≤ x ≤ 1

2 .
With no other guidance, we might expect that the ob-

tained distribution for the z is given by22 the Haar mea-

20We also computed the Mordell–Weil group for curves with
higher ranks but do not describe the obtained data here.

21A bit more searching might resolve a few of the outstanding
cases, but the extremal case of

[0, 0, 1,−237882589,−1412186639384]

appears to have a minimal generator of height more than 600, so
that other methods are likely to be needed in order to find it.
Indeed, T. A. Fisher [Fisher 07] has recently used 6-descent and
12-descent to find the missing generators on these 35 curves.

22Siegel [Siegel 45] similarly uses Haar measure to put a natural
measure on n-dimensional lattices of determinant 1.
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0.00 ≤ x < 0.05 9.1% 0.25 ≤ x < 0.30 10.0%
0.05 ≤ x < 0.10 9.7% 0.30 ≤ x < 0.35 10.1%
0.10 ≤ x < 0.15 9.8% 0.35 ≤ x < 0.40 10.4%
0.15 ≤ x < 0.20 9.8% 0.40 ≤ x < 0.45 10.6%
0.20 ≤ x < 0.25 9.9% 0.45 ≤ x ≤ 0.50 10.6%

TABLE 1. Horizontal distribution of rank-2 lattices
with y ≥ 1.

sure (dx dy)/y2. We find, however, that this is not borne
out too well by experiment. In particular, we should ex-
pect that 1/2

π/6 ≈ 95.5% of the curves should have y ≥ 1,
while the experimental result is about 93.5%. Further-
more, we should expect that the proportion of curves
with y ≥ Y should die off like 1/Y as y → ∞; however,
we get that 35.6% of the curves have y ≥ 2, only 9.7%
have y ≥ 4, while 1.97% have y ≥ 8 and 0.35% have
y ≥ 16.

The validity of the vertical distribution data might be
arguable based on concerns regarding the discriminant
cutoff of our data set, but the horizontal distribution is
also skewed. If we consider only curves with y ≥ 1, then
we should get uniform distribution in the x-aspect; how-
ever, Table 1 shows that we do not have such uniformity.

We cannot say whether these unexpected results from
the experimental data are artifacts of choosing curves
with small discriminant; it is just as probable that our
Haar-measure hypothesis concerning the lattice distribu-
tion is simply incorrect. At the suggestion of D. B. Za-
gier, we made a density plot of the ratio between the ex-
perimental and conjectural counts for bins in the funda-
mental domain; see Figure 5, where the axes are switched
and the y-coordinate is plotted logarithmically. At the
right edge of the graph, the conjectural amount (≈ 1500
per bin) is typically ten times the experimental amount;
this increases to a factor of 100 for y ≈ 70. Overall, our
data seem to imply that the lattices are not as skinny
and are less orthogonal than might be guessed.

6.5 Symmetric Power L-Functions

Similar to questions about the vanishing of L(E, s), we
can ask about the vanishing of the symmetric power L-
functions L(Sym2k−1E, s). We refer the reader to [Mar-
tin and Watkins 06] for more details about this, but men-
tion that due to conjectures of Deligne and more gener-
ally Bloch and Bĕılinson [Rapoport et al. 88], we expect
that we should have a formula similar to that of Birch
and Swinnerton-Dyer, stating that

L(Sym2k−1E, k)
(2πN)(

k
2)

Ω(k+1
2 )

+ Ω(k
2)
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FIGURE 5. Density plot of ratio of experimental to
conjectural counts.

should be rational with small denominator. Here, for k
odd, Ω+ is the real period and Ω− the imaginary pe-
riod, with this reversed for k even. As noted in [Buhler
et al. 97], the order of vanishing of the central L-value
should be related to the rank of the Griffiths group of the
symmetric power variety.

Ignoring the contribution from the conductor, and
crudely estimating that Ω+ ≈ Ω− ≈ 1/∆1/12, an
application of discretization as before gives that the
probability that L(Sym2k−1E, s) has even parity and
that L(Sym2k−1E, k) = 0 is bounded from above
by c(log ∆)3/8 ·

√
1/∆k2/12.Again following the anal-

ogy of the above, we can then get an upper bound
ck(ε)X5/6−k2/24+ε (for every ε > 0) for the number of
curves with conductor less than X with even-signed sym-
metric (2k − 1)st power and L(Sym2k−1E, k) = 0.

It could be argued that we should order curves accord-
ing to the conductor of the symmetric power L-function
rather than that of the curve, but we do not think such
concerns are that relevant to our imprecise discussion.
In particular, the above estimate predicts that there are
finitely many curves with extra vanishing when k ≥ 5
(that is, finitely many extra vanishings for the ninth sym-
metric power and beyond).

It should be said that this heuristic will likely mislead
us about curves with complex multiplication, for which
the symmetric power L-function factors (it is imprimitive
in the sense of the Selberg class), with each factor hav-
ing a 50% chance of having odd parity. However, even
ignoring CM curves, the data23 of [Martin and Watkins
06] find a handful of curves for which the 9th, 11th, and
even the 13th symmetric powers appear (up to 12 dig-

23Data in [Martin and Watkins 06, Table 6] are inexact, since
[Cremona 06] missed curves with 63 | N and 90000 ≤ N ≤ 105.



120 Experimental Mathematics, Vol. 17 (2008), No. 1

its of precision) to have a central zero of order 2. We
find this surprising, and it casts some doubt about the
validity of our methodology of modeling vanishings.

6.6 Quadratic Twists of Higher Symmetric Powers

The techniques we used earlier in this paper have also
been used to model vanishings in quadratic twist families,
and we can extend the analyses to symmetric powers.

6.6.1 Non-CM Curves. We fix a non-CM curve E and
let Ed be its dth quadratic twist, taking d to be a funda-
mental discriminant. From an analogue of the Birch and
Swinnerton-Dyer conjecture we expect to get a rational
number with small denominator from the quotient24

L(Sym3Ed, 2)(2πNE)
Ωim(Ed)3Ωre(Ed)

.

We have that

Ωim(Ed)3Ωre(Ed) ≈ Ωim(E)3

d3/2
· Ωre(E)
d1/2

(with the periods reversed when d < 0), and so we expect
the number of fundamental discriminants |d| < D such
that L(Sym3Ed, s) has even parity with L(Sym3Ed, 2) =
0 to be given crudely (up to log factors) by

∑
d<D c/

√
d2.

So we expect about (logD)b quadratic twists with double
zeros for the third symmetric power; generalizing predicts
finitely many extra vanishings for higher (odd) powers.

We took the curves 11a: [0,−1, 1, 0, 0] and 14a:
[1, 0, 1,−1, 0], and computed either L(Sym3Ed, 2) or
L′(Sym3Ed, 2) for all fundamental discriminants d with
|d| < 5000. We did the same for 15a: [1, 1, 1, 0, 0] for
|d| < 4000. We then looked at the number of vanish-
ings (to nine digits of precision). For 11a we found 58
double zeros and one triple zero (indicated by a star in
Table 2), while for 14a we found 88 double zeros and
three triple zeros, and 15a yielded 83 double zeros and
two triple zeros. It is quite difficult to accrue much data,
mostly due to the fast growth of the conductor; for ellip-
tic curves, Rubinstein [Conrey et al. 06] does not com-
pute L(Ed, 1) directly, but rather uses the Waldspurger
formula (as made explicit in works such as [Pacetti and
Tornaŕıa 08]) and then just computes the coefficients of a
modular form of weight 3

2 by enumerating lattice points
in an ellipsoid.

24The contribution from the conductor actually comes from
nonintegral Tamagawa numbers from the Bloch–Kato exponential
map, and in the case of quadratic twists, the twisting parameter d
should not appear in the final expression.

6.6.2 CM Curves. Next we consider CM curves, for
which we can compute significantly more data, but the
modeling of vanishings is slightly different. Let E be a
rational elliptic curve with CM, and ψ its Hecke char-
acter. We shall take ψ to be “twist-minimal”; this is
not the same as the “canonical” character of Rohrlich
[Rohrlich 80, Rohrlich and Montgomery 80], but rather
we just take E to be a minimal (quadratic) twist. Indeed,
we shall consider only 11 different choices of E, given (up
to isogeny class) by 27a, 32a, 36a, 49a, 121a, 256a, 256b,
361a, 1849a, 4489a, and 26569a, noting that 27a/36a and
32a/256b are respectively cubic and quartic twist pairs.
In the tables herein, these can appear in a briefer format,
such as 672 for 4489a.

We normalize the Hecke L-function L(ψ, s) to have
s = 1 be the center of the critical strip. For d a fundamen-
tal discriminant, we let ψd be the Hecke Grössencharakter
ψ twisted by the quadratic Dirichlet character of dis-
criminant d. Finally, note that the symmetric powers
L(Sym2k−1ψ, s) are just L(ψ2k−1, s), where we must take
ψ2k−1 to be the primitive underlying Grössencharakter.

We then expect L(ψ3, 2)(2π)/Ωim(E)3 to be rational
with small denominator. We can then use discretization
as before to count the expected number of fundamental
discriminants |d| < D for which the L-function L(ψ3

d, s)
has even parity but vanishes at the central point; since
we have

Ωim(Ed)3 ≈ Ωim(E)3

d3/2
,

we expect the number of discriminants d with even parity
and L(ψ3

d, 2) = 0 to be crudely given by
∑

d<D 1/
√
d3/2,

so we should get about D1/4 such discriminants up to D.
Alternatively, we note that ψ3 corresponds to a weight-4
modular form, so that there is a weight-5

2 Shimura lift of
it whose coefficients are related to L(ψ3

d, 2) via the Wald-
spurger correspondence; on considering how often these
coefficients should vanish, we obtain a similar heuristic.

For higher symmetric powers, we expect that

L(ψ2k−1, k)
(2π)k−1

Ω+(E)2k−1

is rational with small denominator, and thus that there
should be finitely many quadratic twists of even parity
with vanishing central value.

We took the above eleven CM curves and took their
(fundamental) quadratic25 twists up to 105. We must

25The quartic twists of 32a and cubic twists of 27a/36a might also
give interesting data; already in the early 1980s, N. M. Stephens
computed that the seventh symmetric power of the Hecke character
for y2 = x3+127x yields a double central vanishing. See [Greenberg
83] for related information.
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11a −40 −52 −563 −824 −1007 −1239 −1460 −1668 −1799 −2207 −2595 −2724 −2980 −3108 −3592 −4164 −4215
−4351 −4399 12 69 152 181 232 273 364 401 412 421 444 476 488 652 669 696 933 1101 1149 1401 1576 1596 1676
1884 1928 2348 2445 2616 2632 3228 3293 3404 3720� 3793 4060 4093 4161 4481 4665 4953

14a −31 −52 −67 −87 −91 −111 −203 −223 −255 −264 −271 −311 −327 −367 −535 −552 −651 −759 −804 −831
−851 −852 −920 −1099 −1263 −1267 −1335 −1524 −1547 −1567 −1623 −1679 −1707� −2047 −2235 −2280
−2407 −2443 −2563 −2824 −2831 −3127 −3135 −3523 −4119 −4179 −4191 −4323 137 141� 229 233 281 345
469 473 492 497� 697 901 1065 1068 1353 1457 1481 1513 1537 1793 1873 1905 2024 2093 2193 2265 2321 2589
2657 2668 2732 2921 2981 2993 3437 3473 3529 4001 4124 4389 4488 4661 4817

15a −11 −51 −71 −164 −219 −232 −292 −295 −323� −340 −356 −399 −519 −580 −583 −584 −671 −763 −804
−851 −879 −943 −1012 −1060 −1151 −1199 −1284 −1288 −1363 −1551 −1615 −1723 −1732 −2279 −2291
−2379 −2395 −2407 −2571 −2632 −2635 −2756 −3396 −3588� −3832 17 21 61 77 136 156 181 229 349 444 481
501 545 589 649 781 876 905 924 949 1009 1144 1249 1441 1501 1580 1621 1804 1861 1921 2041 2089 2109 2329
2581 2829 2840 2933 3001 3916

TABLE 2. Fundamental d with ords=2 L(Sym3Ed, s) ≥ 2.

27a 32a 36a 49a 121a 256a 256b 361a 1849a 4489a 26569a

3rd 59 32 – 67 78 32 21 45 28 31 1
5th 3 1 5 2 1 2 2 0 0 0 0
7th 0 0 2 0 1 0 0 0 0 0 0

TABLE 3. Counts of double-order zeros for primitive twists.

be careful to exclude twists that are isogenous to other
twists. In particular, we need to define a primitive dis-
criminant for a curve with CM by an order of the field K;
this is a fundamental discriminant d such that disc(K)
does not divide d, expect that K = Q(i) when d > 0 is
additionally primitive when 8 ‖ d. Note also that 27a
and 36a have the same symmetric cube L-function.

Table 3 lists our results for counts of central double
zeros (to 32 digits) for the L-functions of the third, fifth,
and seventh symmetric powers.26 Tables 4 and 5 list
the primitive discriminants that yield the double zeros.
The notable signedness can be explained via the sign of
the functional equation.27 We are unable to explain the
paucity of double zeros for twists of 26569a; [Liu and
Xu 04] has the latest results on the vanishing of such
L-functions, but their bounds are far from the observed
data. Similarly, the last-listed double zero for 4489a at
67,260 seems a bit odd. We stress, however, that we fully
expect the asymptotic prediction of cD1/4(logD)b to be
correct here, our suspicion being that the constant c for
26569a is rather small.

There appear to be implications vis-à-vis higher van-
ishings in some cases; for instance, except for 27a, in the
thirteen cases that L(ψ5

d, s) has a double zero at s = 3,
we have that L(ψd, s) also has a double zero at s = 1.

26We found no even twists with L(ψ9
d, 5) = 0 and no triple zeros

appeared in the data.
27The local signs at p = 2, 3 involve wild ramification and are

thus much more complicated (see [Kobayashi 02, Whitehouse 04,
Dokchiter and Dokchitser 06, Dummigan et al. 06] for a theoretical
description); thus there is no complete correlation.

Similarly, the seventh symmetric power for the 27,365th
twist of 121a has a double zero, as does the third sym-
metric power, while the L-function of the twist itself has
a triple zero. Also, the 22,909th twist of 36a has double
zeros for its first, third, and fifth powers (note that 36a
does not appear in Table 4, since the data are identical
to those for 27a).

6.6.3 Comparison between the CM and Non-CM Cases.
For the twist computations for the symmetric powers, we
can go much further (about 20 times as far) in the CM
case because the conductors do not grow as rapidly. For
the third symmetric power, the crude prediction is that
we should have (asymptotically) many more extra van-
ishings for twists in the CM case than in the non-CM
case, but this is not borne out by the data. Addition-
ally, we have no triple zeros in the CM case (where the
data set is almost one hundred times as large), while we
already have six for the non-CM curves.28 This is di-
rectly antithetical to our suspicion that there should be
more extra vanishings in the CM case. As before, this
might cast some doubt on our methodology of modeling
vanishings.

In [Rodriguez Villegas and Zagier 91, Section 8],
the authors mention the possibility of a formula
of Waldspurger type for the twists of the Hecke
Grössencharakters, but it does not seem that an exact
formula has ever appeared. Using the techniques devel-

28We similarly checked twists of the level-5 weight-4 cusp form,
with no triple zeros up to 105.
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27a 172 524 1292 1564 1793 3016 4169 4648 6508 9149 9452 9560 10636 11137 12040 13784 14284 15713 17485 17884
22841 22909 22936 25729 27065 27628 29165 30392 34220 35749 38636 40108 41756 44221 47260 51512 54385
57548 58933 58936 58984 59836 59996 62353 64268 70253 74305 77320 77672 78572 84616 86609 86812 87013
92057 95861 96556 97237 99817

32a −395 −5115 −17803 −25987 −58123 −60347 −73635 −79779 −84651 −99619 257 1217 2201 2465 14585 26265
45201 82945 4632 5336 5720 7480 9560 30328 30360 31832 38936 45848 69784 71832 83512 92312

49a −79 −311 −319 −516 −856 −1007 −1039 −1243 −1391 −1507 −1795 −2024 −2392 −2756 −2923 −3527 −3624
−4087 −4371 −4583 −4727 −5431 −5524 −5627 −6740 −7167 −7871 −8095 −8283 −10391 −10628 −13407
−13656 −13780 −16980 −18091 −22499 −27579 −28596 −30083 −30616 −32303 −32615 −36311 −36399 −38643
−39127 −40127 −42324 −52863 −64031 −64399 −66091 −66776 −66967 −69647 −70376 −71455 −72663 −73487
−73559 −77039 −84383 −90667 −91171 −98655 −98927

112 12 140 632 1160 1208 1308 1704 1884 2072 2136 2380 2693 2716 3045 4120 4121 5052 5528 5673 5820 6572 7532
11053 11208 12277 12568 12949 13884 14844 15465 16136 18588 18885 19020 19884 24060 25788 27365 27597
28265 28668 29109 29573 32808 32828 35261 36552 37164 38121 38297 44232 44873 49512 49765 50945 52392
54732 55708 56076 56721 58460 59340 65564 66072 66833 71688 72968 79557 80040 80184 83388 84504 84620
84945 86997 87576 92460 95241

256a 401 497 2513 3036 3813 6933 6941 9596 9932 11436 14721 17133 17309 18469 21345 21749 26381 26933 28993
29973 30461 33740 51469 53084 62556 63980 67721 69513 73868 76241 81164 87697

256b 73 345 3521 5133 6693 7293 21752 25437 27113 34657 38485 41656 42433 44088 46045 75581 79205 83480 89737
93624 96193

192 44 60 1429 1793 3297 3340 3532 3837 3880 4109 5228 5628 7761 8808 9080 9388 12280 12313 12545 13373 13516
13897 19164 22204 23241 25036 25653 41205 41480 42665 43429 44121 44285 44508 45660 48828 50584 52989
64037 74585 75324 76921 81885 85036 96220

432 88 152 440 2044 4268 5852 6376 7880 8908 9880 14252 15681 17864 20085 20353 28492 29477 45368 55948 56172
57409 60177 68136 79916 84524 85580 86853 96216

672 17 57 869 1612 1628 3260 6380 6385 7469 8328 11017 13772 14152 14268 14552 15901 22513 24605 24664 27992
29676 33541 33789 36344 36588 38028 40280 43041 49884 62353 67260

1632 30720

TABLE 4. Primitive d with ord s=2 L(ψ3
d, s) = 2.

27a 5th: −13091 4040 18044 49a 5th: 437 19317
32a 5th: 1704 121a 5th: −183 7th: 27365
36a 5th: −856 −2104 −31592 −88580 22909 256a 5th: −79 −21252
36a 7th: −95 2488 256b 5th: −511 89320

TABLE 5. Primitive d with ord s=k L(ψ2k−1
d , s) = 2 for some k ≥ 3.

oped by Basmaji and Frey [Frey 94], we are able to com-
pute the weight-5

2 lift for (say) the symmetric cube of
Hecke Grössencharakter attached to 49a. However, since
we are currently unable to write it as a twisted ternary
theta series as in [Rosson and Tornaŕıa 07], it does not
seem to aid our computations. In the non-CM case, it has
been noted by R. Schulze-Pillot that a special case of a
result of Ramakrishnan and Shahidi [Ramakrishnan and
Shahidi 07] reinterprets the symmetric cube L-function
as a weight-3 spinor L-function associated to a degree-2
Siegel modular form; again we are currently unable to
use this in our computations.
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