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We describe an algorithm for determining elliptic curves defined
over a given number field with a given set of primes of bad re-
duction. Examples are given over Q and over various quadratic
fields.

1. INTRODUCTION

Let K be a number field with ring of integers OK , and
S a finite set of (nonarchimedean) primes of K. It is
well known (Shafarevich’s theorem; see [Šafarevič 62])
that the number of isomorphism classes of elliptic curves
defined over K and having good reduction outside S is
finite: see [Silverman 86, pp. 263–264] for a proof.

Here we describe a completely explicit algorithm for
finding all the elliptic curves with good reduction out-
side a given set S. The essential nontrivial algorithmic
ingredients for this are as follows:

• determining the finite groups K(S, p) (defined be-
low);

• determining the complete (finite) set of S-integral
points on a given elliptic curve E defined over K

(needed for certain curves of the form Y 2 = X3 + k

with k ∈ OK).

The first, which is trivial over Q, involves computa-
tion of the class group and unit group of K, or at least
the p-primary part of these. An efficient algorithm for
this has been implemented in Magma (see [Bosma et
al. 93]) by C. Fieker. We will also need to consider the
groups K(S,m) for m = 4, m = 6, and m = 12, and in
Section 2 below we show how to determine K(S,m) for
composite m.

The second is far more problematic, especially over
number fields. The methods of finding all integral points
(and more generally, all S-integral points) on an ellip-
tic curve have advanced substantially in recent years,
provided that generators for the full Mordell–Weil group
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E(K) are known. For K = Q, these methods are very
well developed, and Magma has a full implementation
that allows one (in most cases) to easily determine the
set of S-integral points. The implementation of the S-
integral-point-finding algorithm in Magma is by E. Herr-
mann, whose thesis [Herrmann 02] contains several re-
sults concerning the explicit determination of S-integral
points over number fields; see also [Herrmann and Pethő
01] and [Pethő et al. 99]. While the situation is less sat-
isfactory over number fields, and we are still waiting for
a general implementation, it is possible to settle certain
specific cases.

The advantage of our algorithm, compared with much
of the earlier work on cases of the problem, is that instead
of relying on a collection of ad hoc techniques for solving
a variety of Diophantine equations that arise, everything
instead depends on solving one very specific type of equa-
tion, namely the Mordell elliptic equations Y 2 = X3 +k.
Any algorithmic advances on that specific problem would
directly benefit the effectiveness of our algorithm.

The special case S = ∅ has been considered by sev-
eral authors, notably in the case that K is a quadratic
field. For example, we cite [Setzer 81, Setzer 78, Kida
01a, Kida 01b, Kida 01c, Kida 00, Kida 99, Kida and
Kagawa 97, Ishii 86, Comalada 90a, Comalada 90b, Co-
malada and Nart 87]. That work concentrates on deriv-
ing conditions on a field for the existence or otherwise of
curves with everywhere good reduction, in order to de-
cide on the existence of such curves for whole families of
fields. Our aim is rather different: given a specific field
K and set of primes S we give an algorithmic method to
find a potentially complete set of elliptic curves defined
over K with good reduction outside S.

In the examples below, we show that there are no
elliptic curves defined over the field K = Q(

√−23)
with everywhere good reduction, and we also exhibit
an elliptic curve with everywhere good reduction de-
fined over Q(

√
38). These results are new. Other ex-

amples are given for K = Q(
√−23), and also for K =

Q(
√−31), which arose in the second author’s PhD thesis

[Lingham 05].
We give several other complete examples for small sets

of rational primes below, indicating in some cases an ap-
plication to the solution of certain Fermat-like Diophan-
tine equations.

In the next section we cover some preliminary al-
gebraic matters concerning so-called Selmer groups
K(S,m) associated with the multiplicative group K∗.
In Section 3 we show how, given a set of primes S, to
find a finite set of j-invariants such that every elliptic

curve defined over K with good reduction outside S has
j-invariant in this set, and also how to find the curves
with each possible j-invariant when this is neither 0 nor
1728. In Section 4 we consider the special cases j = 0 and
j = 1728. In the final section we give several examples,
both over Q and over various quadratic fields.

The algorithm over Q is simple to program; a Magma

program is available from the first author. For general
number fields, a proper implementation will be depen-
dent on the further development of algorithms for find-
ing the Mordell–Weil group and all S-integral points on
elliptic curves (of the form Y 2 = X3 + k) defined over
the field; a preliminary version, which produces lists of
curves that are not necessarily complete, is also available.

2. m-SELMER GROUPS FOR K∗

Let K be a number field with ring of integers OK , and
let S be a finite set of (nonarchimedean) primes of K

(that is, prime ideals of OK). Recall that the ring of S-
integers OK,S and its group of units, the S-units O∗

K,S ,
are defined as

OK,S = {x ∈ K | ordp(x) ≥ 0 ∀p /∈ S},
O∗

K,S = {x ∈ K | ordp(x) = 0 ∀p /∈ S}.
The S–class group of K is the finite group CK,S of OK,S -
ideals modulo principal OK,S -ideals. This is (isomorphic
to) the quotient of the usual class group CK by the sub-
group generated by the classes of the prime ideals in S.

For each natural number m > 1, and each finite set S
of primes of the number field K, we define the following
(finite) subgroup of K∗/K∗m:

K(S,m)

= {x ∈ K∗/K∗m | ordp(x) ≡ 0 (mod m) ∀p /∈ S}.
By abuse of notation we will say that an element x

of K∗ is in K(S,m) when xK∗m ∈ K(S,m), i.e., when
ordp(x) ≡ 0 (mod m) ∀p /∈ S. We observe that x ∈
K∗ is in K(S,m) if and only if the principal OK,S -ideal
(x)OK,S is an mth power, say (x)OK,S = Jm

S with JS �
OK,S . We now have the basic exact sequence,1 called the
m-Kummer sequence for K∗ (or for O∗

K,S):

1 → O∗
K,S/O∗m

K,S → K(S,m) αm−→ CK,S [m] → 1,

where CK,S [m] is the m-torsion subgroup of CK,S , and
the map αm : K(S,m) → CK,S [m] is given by x �→ [JS ],
where (x)OK,S = Jm

S .
1Note the close analogy with the m-descent Kummer sequence

for elliptic curves, 0 → E(K)/mE(K) → Sel(m)(K, E) →
X[m] → 0.
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For many applications, one needs to consider K(S, p)
only for primes p : this is a finite elementary abelian p-
group that may be computed efficiently and explicitly
given explicit knowledge of the class group CK and unit
group of K. In fact, we can see from the Kummer se-
quence that we need only the p-part of the S-class group
and the S-units modulo pth powers. However, below we
will also need to consider K(S,m) for m = 4, m = 6,
and m = 12, and so (lacking any suitable reference) we
now explain how to achieve this.

When gcd(m,n) = 1, the determination of K(S,mn)
reduces easily to that of K(S,m) and K(S, n):

Proposition 2.1. Let m,n be coprime. Then

K(S,mn) ∼= K(S,m) × K(S, n)

via the map w �→ (w,w), with inverse map (u, v) �→
vamubn, where am + bn = 1.

Proof: It is easy to check that the given maps are both
well defined and mutual inverses.

For example, K(S, 6) ∼= K(S, 2) × K(S, 3) via w �→
(w,w), with inverse map (u, v) �→ v−2u3.

For the general case, we have the following:2

Proposition 2.2. Let m,n be positive integers. The Kum-
mer sequences for m, mn, and n fit together to form
the following commutative diagram with exact rows and
columns:

1

��

1

��
1

��
1

��

1 �� µm,n �� O∗
K,S

O∗n
K,S

m ��

��

O∗
K,S

O∗mn
K,S

��

��

O∗
K,S

O∗m
K,S

��

��

1

��
1 �� µm,n ��

��

K(S, n)
m��

��

K(S, mn) ��

��

K(S, m)

��

αm,n�� CK,S [m]

nCK,S [mn]
�� 1

1 �� CK,S [n] ��

��

CK,S [mn]
n ��

��

CK,S [m]

��

�� CK,S [m]

nCK,S [mn]
��

��

1

1 1 1 1

The kernels µm,n = µm(K)/µmn(K)n are finite,
and trivial when gcd(m,n) = 1. The coker-
nels CK,S [m]/nCK,S [mn] are finite, and trivial when
gcd(m,n) = 1 or when CK,S has order coprime to m.

Proof: Exercise.

2The corresponding diagram for higher descents on ellip-
tic curves can be found online (http://www.maths.nott.ac.uk/
personal/jec/papers/d2.ps).

To compute K(S, 4) specifically, we may proceed
as follows. First we find K(S, 2) using the standard
algorithm. Then we determine the homomorphism
α2,2 : K(S, 2) → CK,S [2]/2CK,S [4]: for each u ∈ K(S, 2)
we may write (u)OK,S = J2

S and set α(u) to be the
class of JS modulo 2CK,S [4]. If [JS ] = [IS ]2 for some
S-ideal IS , then writing (v)JS = I2

S with v ∈ K∗ we
can replace u by uv2, which represents the same ele-
ment of K(S, 2) as x but which also lies in K(S, 4), since
(uv2)OK,S = I4

S .
Thus for each generator of the kernel of α2,2 we can lift

to a representative element u ∈ K∗ such that u modulo
K∗4 lies in K(S, 4). Then K(S, 4) is generated by these
elements, together with the v2 for v in a set of generators
of K(S, 2) modulo 〈−1〉. If required, we may determine
the precise structure of K(S, 4) (as an abelian group of
exponent 4) using standard techniques: see [Cohen 00,
Algorithm 4.1.8].

Our Magma implementation includes functions to de-
termine K(S, 4) and K(S, 6), using the Magma function
pSelmerGroup() to compute K(S, 2) and K(S, 3).

Denote by K(S,m)mn the image of the natural map
K(S,mn) → K(S,m) determined as above as ker(αm,n).
In our algorithm, as well as needing to determine K(S, 4)
(via K(S, 2)4), we will also need to consider K(S, 6)12;
but this is clearly isomorphic to K(S, 3) × K(S, 2)4.

3. CURVES WITH j-INVARIANTS j �= 0, 1728

We use the standard notation for the Weierstrass coef-
ficients ai of an elliptic curve E given by a Weierstrass
equation or model, together with the associated weighted
invariants c4 and c6, the discriminant ∆ = (c3

4−c2
6)/1728,

and the j-invariant j = c3
4/∆ = 1728+c2

6/∆. Recall that
the elliptic curve E is said to have good reduction at p

if there exists a p-integral model (i.e., ordp(ai) ≥ 0 for
all i) with ∆ a p-unit (i.e., ordp(∆) = 0).

Different Weierstrass models for E will have invari-
ants that are scaled according to their weight, say
(c′4, c

′
6,∆

′, j′) = (u4c4, u
6c6, u

12∆, j) with u ∈ K∗ arbi-
trary. So we see that associated to E we have well-defined
classes c4 ∈ K∗/K∗4, c6 ∈ K∗/K∗6, ∆ ∈ K∗/K∗12, as
well as the j-invariant j.

The following elementary observation will be used re-
peatedly below.

Lemma 3.1. Let E be an elliptic curve defined over K

with good reduction at the prime p. Then for any Weier-
strass model for E, with invariants c4, c6,∆, there exists



306 Experimental Mathematics, Vol. 16 (2007), No. 3

an integer e such that

ordp(∆) = 12e, ordp(c4) ≥ 4e, ordp(c6) ≥ 6e.

Moreover, if ordp(6) = 0, then this condition is sufficient
for E to have good reduction at p.

Proof: Necessity is obvious, since a local minimal model
with good reduction satisfies the conditions with e =
0, and the conditions are invariant under scaling. For
the converse, let π be a uniformizer at p; then the short
Weierstrass model for E with a4 = −27π−4ec4 and a6 =
−54π−6ec6 is integral, and has good reduction at p since
it has discriminant 612π−12e∆.

For the rest of this section we exclude the exceptional
cases j = 0 and j = 1728, which will be treated sepa-
rately later. Hence c4 and c6 are nonzero for any model.
We also define the possibly enlarged set S(6) by

S(6) = S ∪ {p | ordp(6) > 0}.

Proposition 3.2. Let E be an elliptic curve defined over
K with good reduction at all primes p /∈ S. Set w =
j2(j − 1728)3. Then

∆ ∈ K(S, 12); j ∈ OK,S ; w ∈ K(S, 6)12.

Conversely, if j ∈ OK,S with j2(j − 1728)3 ∈ K(S, 6)12,
then there exist elliptic curves E with j(E) = j and good
reduction outside S(6).

Proof: For all p /∈ S, since E has good reduction at
p, Lemma 3.1 shows that ordp(∆) ≡ 0 (mod 12), so
we have ∆ ∈ K(S, 12). Writing ordp(∆) = 12e, where
ordp(c4) ≥ 4e and ordp(c6) ≥ 6e, we also have ordp(j) =
ordp(c3

4/∆) ≥ 0. Moreover, ordp(j) ≡ ordp(c3
4) ≡ 0

(mod 3), and similarly, j−1728 = c2
6/∆ implies ordp(j−

1728) ≡ 0 (mod 2). Hence ordp(w) ≡ 0 (mod 6). Thus
w ∈ K(S, 6). Moreover, if we set u = ∆/(c4c6), then we
have

∆ = u6j2(j − 1728)3 = u6w,

from which we see that the class of w ∈ K(S, 6) lifts to
K(S, 12).

For the converse, suppose that j ∈ OK,S with w =
j2(j − 1728)3 ∈ K(S, 6)12. Since jw ∈ K∗3 and (j −
1728)w ∈ K∗2, we see that j ∈ K(S, 3) and j − 1728 ∈
K(S, 2).

Since w ∈ K(S, 6)12, there exists u ∈ K∗ such that
(3u)6w ∈ K(S, 12). We claim that the elliptic curve

E : Y 2 = X3 − 3u2j(j − 1728)X − 2u3j(j − 1728)2

(which does have j(E) = j) has good reduction at all
primes p /∈ S with ordp(6) = 0. Let p be such a prime.
Let ordp(j) = 3e1 ≥ 0 and ordp(j − 1728) = 2e2 ≥ 0.
The invariants of E are

c4 = (12u)2j(j − 1728),

c6 = (12u)3j(j − 1728)2,

∆ = (12u)6j2(j − 1728)3 = 212(3u)6w.

Hence ordp(∆) = 12e, where e = 1
2 (ordp(u)+e1+e2) ∈ Z

(by choice of u). Also, ordp(c4) = 2 ordp(u)+3e1 +2e2 =
4e + e1 ≥ 4e, and ordp(c6) = 3 ordp(u) + 3e1 + 4e2 =
6e + e2 ≥ 6e. Lemma 3.1 now implies that E has good
reduction at p.

If there are primes p dividing 6 and not in S, E may
not have good reduction at p, but we have at least en-
sured that ordp(∆) ≡ 0 (mod 12).

The strategy of our algorithm will be to consider each
class w ∈ K(S, 6)12 in turn, and determine for each the
possible j ∈ OK,S with w ≡ j2(j−1728)3 (modulo K∗6).
There are finitely many classes w to consider; for each w

there is only a finite set of possible values of j (see the
next proposition), and for each (w, j) pair there are only
finitely many suitable curves.

Proposition 3.3. Let K be a number field and S a finite
set of primes of K. Let w ∈ K(S, 6). Each j ∈ OK,S \
{0, 1728} with j2(j−1728)3 ≡ w (mod K∗6) has the form
j = x3/w = 1728 + y2/w, where P = (x, y) is an S-
integral point on the elliptic curve

Ew : Y 2 = X3 − 1728w

with xy �= 0.

Proof: For each such j there exists v ∈ K∗ such that
w = j2(j − 1728)3v6. Then wj = x3 with x = j(j −
1728)v2 and w(j − 1728) = y2 with y = j(j − 1728)2v3.
We then trivially have x3 − y2 = 1728w, so P = (x, y)
has the properties stated: x, y are S-integral since x3 =
wj ∈ OK,S and y2 = w(j − 1728) ∈ OK,S . Conversely,
if P = (x, y) is an S-integral point on Ew such that
j = x3/w ∈ OK,S , then j2(j − 1728)3 = v−6w, where
v = w/(xy).

This shows that the number of possible j-invariants is
finite, for each w and hence overall, since for each w the
number of S-integral points on Ew is finite. To find this
finite set of j we consider each elliptic curve Ew in turn
and determine the complete set of S-integral points on it.
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We do not claim that for each S-integral point on each
Ew the value j = x3/w is S-integral. Moreover, not every
S-integral value of j that arises from an S-integral point
on some Ew is necessarily the j-invariant of a suitable
elliptic curve; but if we restrict to j-invariants coming
from w ∈ K(S, 6)12, then we will see that there exist
suitable curves for each j found (at least if S contains
all primes dividing 6), and we can determine them all
precisely.

Proposition 3.4. Let K be a number field and S a finite
set of primes of K. Let w ∈ K(S, 6)12. Let j ∈ OK,S \
{0, 1728} with j2(j − 1728)3 ≡ w (mod K∗6). Choose
u0 ∈ K∗ such that (3u0)6w ∈ K(S, 12); then the elliptic
curve

E : Y 2 = X3 − 3xu2
0X − 2yu3

0

(where x and y are as in Proposition 3.3) has j-invariant
j and good reduction outside S(6). Moreover, the com-
plete set of curves with good reduction outside S(6) hav-
ing j-invariant j is the set of quadratic twists E(u) for
u ∈ K(S, 2).

Proof: The first part follows from the proof of Propo-
sition 3.2, since the curve E is the one considered
there with u = u0v, where w = j2(j − 1728)3v6 and
(3u)6j2(j − 1728)3 = (3u0)6w ∈ K(S, 12).

Any other curve with the same j-invariant is a
quadratic twist E(u) with u ∈ K∗ (modulo K∗2). The
last statement of the proposition is that such a quadratic
twist has good reduction outside S(6) if and only if
u ∈ K(S, 2).

In one direction, twisting by u ∈ K(S, 2) has the effect
of replacing u0 by uu0, which does not affect the condi-
tion (3u0)6w ∈ K(S, 12); so these twists do have good
reduction outside S(6).

Conversely, since twisting E by u multiplies ∆ by u6,
we see that for E(u) to have good reduction at a prime
p /∈ S it is necessary to have ordp(u) even.

These propositions together give an algorithm for com-
puting all elliptic curves defined over K with good reduc-
tion outside S and j-invariant neither 0 nor 1728:

1. Compute K(S, 6) from K(S, 2) and K(S, 3), and
the subgroup K(S, 6)12, as in the previous section;
hence determine a (finite) representative set W of
S-integers w ∈ K(S, 6)12; for each such w, compute
u0 ∈ K∗ such that (3u0)6w ∈ K(S, 12). The follow-
ing steps are then carried out for each w in turn.

2. Find all S-integral points (x, y) on the elliptic curve
Ew such that j = x3/w is S-integral.

3. For each S-integral point (x, y) ∈ Ew(K), consider
the elliptic curve E : Y 2 = X3−3xu2

0X−2yu3
0 (with

the value of u0 found in step 1 for the current w),
which certainly has good reduction outside S(6). If
there are any primes p dividing 6 not in S, check
whether E has good reduction at each such p (say
by using Tate’s algorithm), and discard E if not.

4. Repeat the preceding step for each quadratic twist
E(u) as u runs through representatives for K(S, 2).

As an alternative to step 3, we may consider the fol-
lowing more self-contained version, which requires only a
value j ∈ OK,S satisfying j2(j − 1728)3 ∈ K(S, 6)12, as
in Proposition 3.2:

3′. For each S-integral j for which j2(j − 1728)3 ∈
K(S, 6)12, determine u0 ∈ K∗ such that (3u0)6j2(j−
1728)3 ∈ K(S, 12), and consider the elliptic curve
E : Y 2 = X3 − 3j(j − 1728)u2

0X − 2j(j − 1728)2u3
0;

this has good reduction outside S(6). If there are any
primes p dividing 6 not in S, check whether E has
good reduction at each such p (say by using Tate’s
algorithm), and discard E if not.

When K = Q, the determination of W is of course
trivial. Writing S = {p1, . . . , pn}, we may take

W =
{
±

n∏
i=1

pei
i | 0 ≤ ei ≤ 5 ∀i

}
,

so that #W = 2 · 6n. In this case we certainly have
K(S, 6) = K(S, 6)12 (the class number being 1); for step
3 we may take u0 = 3 if 3 /∈ S, and otherwise u0 = 1
(for all w). In the self-contained step 3′ we may take
u0 to be the product of those primes p /∈ S such that
ordp(36j2(j − 1728)3) ≡ 6 (mod 12).

When the set S contains some or all of the primes
dividing 2 and 3 we may be able to replace the curves
Ew by curves that are closer to minimal at these primes,
by dividing the coefficient 1728w by a sixth power. We
omit the details.

4. CURVES WITH j-INVARIANTS 0 AND 1728

Elliptic curves with j-invariant 0 all have models of the
form

Y 2 = X3 + w,
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and are sextic twists of the curve Y 2 = X3 + 1, with
w unique modulo K∗6. Similarly, elliptic curves with j-
invariant 1728 all have models of the form

Y 2 = X3 + wX,

and are quartic twists of the curve Y 2 = X3 + X, with
w unique modulo K∗4.

To have good reduction outside S we will see that the
twisting factor w is restricted to lie in K(S ′, 6) or K(S ′, 4)
for a certain set S ′ (defined precisely below) with

S ⊆ S ′ ⊆ S(6) = S ∪ {p | ordp(6) > 0}.

Proposition 4.1. (For curves with j = 0.) If S does not
contain all primes p with ordp(3) odd, then there are no
elliptic curves E defined over K with j-invariant 0 and
good reduction outside S. Otherwise, every such curve
is isomorphic to Y 2 = X3 + w with w ∈ K∗, uniquely
determined modulo K∗6, representing a class in K(S ′, 6),
where

S ′ = S ∪ {p | ordp(2) ≡ ±1 (mod 3)}
∪ {p | ordp(3) ≡ 2 (mod 4)}

such that

• ordp(w) ≡ ∓2 (mod 6) for all p ∈ S ′ \ S with
ordp(2) ≡ ±1 (mod 3);

• ordp(w) ≡ 3 (mod 6) for all p ∈ S ′ \ S with
ordp(3) ≡ 2 (mod 4).

Proof: Every curve defined over K with j-invariant 0
is isomorphic to a curve of the given form, where w

is determined up to sixth powers. The discriminant of
Y 2 = X3 + w is ∆ = −2433w2; a necessary condition
for the curve to have good reduction at p is ordp(∆) ≡ 0
(mod 12). This is impossible if ordp(3) is odd, since then
ordp(∆) is also odd; this establishes the first statement.
For the rest it suffices to observe that we require

• ordp(w) ≡ 0 (mod 6) if ordp(3) ≡ 0 (mod 4) and
ordp(2) ≡ 0 (mod 3);

• ordp(w) ≡ 3 (mod 6) if ordp(3) ≡ 2 (mod 4);

• ordp(w) ≡ ∓2 (mod 6) if ordp(2) ≡ ±1 (mod 3).

The first condition in ensured by requiring w ∈ K(S ′, 6)
with S ′ as in the statement of the proposition.

Remark 4.2.

1. When S already contains the primes dividing 6, we
may observe that the curves we consider with j = 0
are precisely the ones considered in the first part of
the algorithm.

2. Over Q, we can omit j = 0 unless 3 ∈ S, and if
2 /∈ S then we set S ′ = S ∪ {2} and use only those
w ∈ K(S ′, 6) with ord2(w) ≡ 4 (mod 6). This just
amounts to taking w = 16w1, where w1 ∈ K(S, 6).

Proposition 4.3. (For curves with j = 1728.) Every
elliptic curve E defined over K with j-invariant 1728
and with good reduction outside S is isomorphic to Y 2 =
X3+wX, with w ∈ K∗ uniquely determined modulo K∗4,
representing a class in K(S ′, 4), where S ′ = S ∪ {p |
ordp(2) ≡ 1 (mod 2)}, such that for all p ∈ S ′ \ S (if
any), ordp(w) ≡ 2 (mod 4).

Proof: Every curve defined over K with j-invariant 1728
is isomorphic to a curve of the given form, where w is
determined up to fourth powers. The discriminant of
Y 2 = X3+wX is −26w3, so a necessary condition for the
curve to have good reduction at p is ordp(w) ≡ 0 (mod 4)
if ordp(2) is even (this includes all p � 2), and ordp(w) ≡
2 (mod 4) if ordp(2) is odd; hence we must have w ∈
K(S ′, 4), and w must also satisfy the last condition of
the statement.

Remark 4.4. Over Q, we set S ′ = S ∪ {2}, and if 2 /∈
S, we use only those w ∈ K(S ′, 4) with ord2(w) ≡ 2
(mod 4). This just amounts to taking w = 4w1, where
w1 ∈ K(S, 4).

5. EXAMPLES

In all cases, the full lists of curves found may be ob-
tained from the first author’s web page (http://www.
maths.nott.ac.uk/personal/jec/ftp/data/extra.html).

5.1 Examples over Q

Take K = Q and S = {2}. We obtain the following 13
possible values of j:

1728, 10976,−864, 3375/2,−189613868625/128,−3456,

432, 128,−35937/4,−784446336, 8000, 287496, 6912.

From these, we find four elliptic curves with good reduc-
tion outside 2 for each j ∈ {128, 8000, 10976, 287496},
eight curves with j = 1728, and none for the others
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(which only produced curves that have bad reduction
at 3).

Similarly, with S = {2, 3} we obtain 83 possible j-
invariants. In all these cases we find a Mordell–Weil basis
and the S-integral points with no difficulties.

From these, we obtain a total of 752 curves; each
j �= 0, 1728 gives 8 curves (up to isomorphism) as ex-
pected, this being the size of K(S, 2), and there are also
32 curves with j = 0 and 72 curves with j = 1728. Their
conductors are of the form 2a3b with a ≤ 8 and b ≤ 5.
As a check, we compared with the list compiled by F. B.
Coghlan in 1966 (see [Birch and Kuyk 75]), and found
the same list.

With S = {11} we find 23 possible j-invariants:

1728,−32768, 13824/1331,−19008,−297, 704, 59319/121,

− 21024576/121,−24729001,−122023936/161051,−121,

− 110592/11, 139798359/19487171,−161700475392/11,

− 7077888/11,−4096/11, 13824/11,−1728/11,

− 2515456/11,−51778336347648/19487171, 512/11,

− 8120601/11,−52893159101157376/11.

Some of the curves Ew that arise deserve special men-
tion: w = 114 = 14641 and w = 115 = 161051. Both
the curves E14641 and E161051 have trivial Mordell–Weil
group (over Q), but the standard 2-descent is not suffi-
cient to show this, since the 2-Selmer rank in both cases
is 2. However, we can compute the analytic ranks, and
find that (in both cases) it is 0, with the order of X
(as predicted by the Birch–Swinnerton-Dyer conjecture)
equal to 4. Neither curve has any rational torsion, so
neither contributes to the list of possible j-values.

Only 6 of these 23 j-invariants give rise to curves with
good reduction outside 11, namely

− 52893159101157376/11,−24729001,−32768,

− 122023936/161051,−4096/11,−121.

For each we find two elliptic curves with good reduction
away from 11, giving 12 curves in all, as in [Birch and
Kuyk 75]: three with conductor 11 and nine with con-
ductor 121.

For several other small sets S of rational primes we
have also been able to determine the complete set of
curves. The following examples have applications in
the resolution of certain Fermat-like Diophantine equa-
tions such as those treated in [Bennett et al. 04, Ben-
nett and Skinner 04]. Previously, the first author had at-
tempted to assist such applications by finding all elliptic
curves with conductor N of the given type using modular-
symbols techniques, as in [Cremona 97], but that method

becomes very arduous when the space of cusp forms of
weight 2 for Γ0(N) has large dimension.

In the case N = 2k72, modular-symbol methods were
successful in reaching the highest level N = 2872 =
12544. As a check, we verified that the curves obtained
by our method with S = {2, 7} include the same curves
with conductor divisible by 72 as obtained via modular
symbols.

For N = 2k112, modular-symbol methods were suc-
cessful in reaching the highest level N = 28112 = 30976
(dimension 4081). Again, we verified that the curves ob-
tained by our method with S = {2, 11} include the same
curves with conductor divisible by 112 as obtained via
modular symbols.

When N = 2k132, modular-symbol methods were suc-
cessful in reaching the highest level N = 28132 = 43264
(dimension 5657). Again, we verified that the curves ob-
tained by our method with S = {2, 13} include the same
curves with conductor divisible by 132 as obtained via
modular symbols.

For N = 2k172, modular-symbol methods were suc-
cessful in reaching level N = 27132 = 36992 (dimension
4753), but we were (until recently) unable to compute
the 9577-dimensional space at level N = 28172 = 73984.
With our method we found all 256 elliptic curves with
good reduction outside {2, 17}, including 144 with con-
ductor N = 2k172; for k ≤ 7 these were exactly the same
curves as obtained via modular symbols, but we also
find 32 curves with conductor N = 28172, in 16 isogeny
classes. (Recently, these computations for N = 28172

were verified using modular symbols.)
We give some details of the computations in the pre-

ceding example, for it illustrates clearly where the diffi-
culties with our approach lie, even in the case K = Q.
There is no difficulty in the second phase (finding the
curves from their j-invariants). In the first phase (find-
ing the j-invariants), we obtain 42 possible j-invariants
from 72 values of w. For five w, Magma was not able
to determine the full Mordell–Weil group of Ew, leading
to extra work. For w = −175, the curve Ew has rank 0
and trivial torsion, but its 2-Selmer rank is 2, so we re-
sorted to computing the analytic rank, by checking that
L(Ew, 1) �= 0.

For the four values w = 25 · 175, w = 22 · 174, w =
−25 ·174, w = −24 ·174, the Mordell–Weil group has rank
1, with no torsion, and a rather large generator that was
not found automatically by Magma. In order to show
that there are no S-integral points in each of these four
cases, we had to find the generator and verify that in each
case it is not S-integral. For the last three of these cases
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this was done by using our 2-descent program mwrank; for
the case w = 25 · 175, the generator has canonical height
160 (approximately) and was found by computing the
Heegner point associated to the discriminant D = −47
to 85 decimal places. The denominator of the generator’s
x-coordinate is d2, where d has 33 digits and factorization

d = 3 · 5 · 64189 · 259907 · 20745658643 · 79102726763.

It would be highly desirable in cases like this to be able
to decide that the generator is not S-integral without
finding it explicitly!

The computations of analytic ranks and Heegner
points were originally carried out using our own PARI/GP

programs; now these are also available within Magma.
In the case N = 2k192, a similar calculation was car-

ried out with S = {2, 19}. The same curves were found
as were already known from modular-symbol calculations
at levels up to 28192 = 92416.

For N = 2k232, a similar calculation was carried out
with S = {2, 23}. For k ≤ 7, the same curves were
found as were already known from modular-symbol calcu-
lations. In addition, 32 curves of conductor N = 28232 =
135424 were found, in 20 isogeny classes; this level is cur-
rently beyond the range of our modular-symbol compu-
tations.

5.2 Examples over Quadratic Fields

In the second author’s thesis [Lingham 05], spaces of
cusp forms of weight 2 and small level N were com-
puted using the method of modular symbols for the fields
K = Q(

√−23) and K = Q(
√−31) of class number 3.

The newforms in these spaces that have rational Hecke
eigenvalues are expected, via a conjectural generalization
of the Eichler–Shimura construction over Q, to corre-
spond to elliptic curves defined over K with conductor N.
(Here N is an integral ideal in the ring of integers OK).

Lacking a way of constructing elliptic curves from new-
forms in this context, one has to use other methods for
finding elliptic curves with small conductor defined over
K. One then attempts to match up the curves found
to the newforms. For imaginary quadratic fields of class
number 1 this was done systematically by the first au-
thor [Cremona 84, Cremona 92, Cremona and Whit-
ley 94]. The first attempt to find elliptic curves with
small conductor consists in searching through all inte-
gral Weierstrass equations whose 5-tuple of coefficients
[a1, a2, a3, a4, a6] lies in some finite search region, elimi-
nating those whose conductor (found using Tate’s algo-
rithm) is outside the desired range. It frequently hap-
pens that some of the expected curves are not found this

way, having coefficients that are too large and so lie out-
side the original search region. One way of refining the
search for these missing curves was described in [Cre-
mona 87], where the curves missing from [Cremona 84]
were all found. The method of this paper gives an al-
ternative method that has also been successful in many
cases, as we now illustrate.

We start with one case in which we were able to de-
termine that there are no curves with everywhere good
reduction defined over a field for which this was not al-
ready known. In the remaining cases, we use our method
for finding curves with certain conductors, but have not
proved that the sets we obtained are complete.

5.2.1 K = Q(
√−23) and S = ∅. Modular-symbol

calculations in [Lingham 05] suggested that there ex-
ist no elliptic curves defined over Q(

√−23) with every-
where good reduction. Since this fact was not, appar-
ently, known in the literature, we applied our methods
and were able to establish this.

Theorem 5.1. There are no elliptic curves with every-
where good reduction defined over the field Q(

√−23).

Proof: Write ω = (1+
√−23)/2, so that OK = Z[ω]. The

class group of OK has order 3, generated by the class of
p = (2, ω), and the only units are ±1; a generator of p3 is
2−ω. Hence we may take W = {±1,±(1+ω),±(2−ω)}.
Of the six curves Ew, the four with w �= ±1 have trivial
Mordell–Weil group. For example, consider E = E1+ω.
Using Magma’s function RankBound(), which finds the
2-Selmer rank, we find that E(K) has rank 0; and con-
sidering the reduction modulo small primes shows that
E(K) has no torsion, so E(K) is trivial. Three other
cases are similar. The curves Y 2 = X3 ± 1728 both have
rank 1 over K and a 2-torsion point (∓12, 0). Neither
curve has any integral points apart from the 2-torsion
points; we are grateful to E. Herrmann for verifying this
for us.

Hence we find that the only possible j-invariants are
{0,±1728}. Now a result of Setzer [Setzer 81] shows that
none of these is in fact the j-invariant of an elliptic curve
with everywhere good reduction over any quadratic num-
ber field, so we can conclude that there are no elliptic
curves with everywhere good reduction over K. Alterna-
tively, for the last part we may apply the general algo-
rithm.

5.2.2 K = Q(
√−23), General S. We will denote by

pl a prime of OK dividing the rational prime l. Among
the conductors for which we expected elliptic curves but
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did not find them by searching are the following:

N1 = p2p2p3p3
2, N2 = p3

2p2p
2
3, N3 = p3

2p2p3p3.

For conductor N1 we expected three isogeny classes
of curves, of expected rank 0, 1, and 2 (predicted from
the analytic rank of the L-function of the associated
newform, for compatibility with the Birch–Swinnerton-
Dyer conjecture). Searching found only the curve [1, ω−
1, 0, 2ω−3, 5], of rank 0. Using the method of this paper,
we also found the following curves of conductor N1:

[0, 0, 0, 552ω + 1221, 4888ω − 34762] (rank 1),

[0, 0, 0,−53160ω − 43995,−5067640ω + 19402006]

(rank 2),

whose L-functions match those of the newforms as ex-
pected (comparing the first several Euler factors).

For conductors N2 and N3 we expected one isogeny
class each, of curves with rank 0; our method did find
such curves:

[0, 0, 0,−18927ω − 14202, 1857222ω − 1211004]

(conductor N2),

[0, 0, 0, 864ω − 26811,−95472ω + 1553094]

(conductor N3).

However, there are still some conductors for which el-
liptic curves are “missing,” involving bad reduction at
primes above 5, 13, and 29; see [Lingham 05] for more
details.

5.2.3 K = Q(
√−31). We limit ourselves to one ex-

ample. Modular-symbol computations suggest the exis-
tence of an elliptic curve defined over K = Q(

√−31) with
conductor N = p2p

2
5, which was not found by our search.

Using our method we find the following curve with this
conductor (here ω = (1 +

√−31)/2):

[−ω, 1 − ω, 0, ω + 8,−8ω].

This model is minimal at all primes except p2; its dis-
criminant ideal is p13

2 p8
5.

5.2.4 Real Quadratic Fields. Several authors have
worked systematically to decide which quadratic fields
possess curves with everywhere good reduction. We do
not give a complete list of what is known here, but give
one example that to our knowledge was not previously
known, found by our method.

Theorem 5.2. Let K = Q(
√

38) and set α =
√

38. The
elliptic curve with coefficients (of a global minimal Weier-
strass model)

[α, α + 1, α + 1, 4α + 15, 4α + 21]

has everywhere good reduction over K.

Proof: The discriminant of the given equation is 32850α+
202501 = ε3, where ε = 6α + 37 is the fundamental unit
of K.
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