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Tropical polytopes are images of polytopes in an affine space
over the Puiseux series field under the degree map. This view-
point gives rise to a family of cellular resolutions of monomial
ideals that generalize the hull complex of Bayer and Sturmfels
[Bayer and Sturmfels 98], instances of which improve upon the
hull resolution in the sense of being smaller. We also suggest a
new definition of a face of a tropical polytope, which has nicer
properties than previous definitions; we give examples and pro-
vide many conjectures and directions for further research in this
area.

1. INTRODUCTION

In this paper, continuing the work in [Develin and Sturm-
fels 04] and [Joswig 05], we investigate tropical polytopes,
which are the natural tropical analogue of ordinary poly-
topes in Euclidean space. We give examples of strange
behavior in this genus of objects and ponder their facet
descriptions; we also describe how tropical polytopes em-
body a family of resolutions of monomial ideals, which
includes the hull complex of [Bayer and Sturmfels 98].

The tropical semiring is given by the real numbers R

together with the operations of tropical addition ⊕ and
tropical multiplication �, defined by a ⊕ b = max(a, b)
and a � b = a + b. Let R

d be a tropical semimod-
ule under tropical addition ⊕ (which takes the compo-
nentwise maximum of two vectors) and tropical scalar
multiplication � (which adds a constant to each coordi-
nate). It proves more convenient to mod out by tropical
scalar multiplication and work in tropical projective space
TP

d−1 := R
d/(1, 1, . . . , 1), where we will typically choose

the coordinatization given by x1 = 0.
The tropical convex hull of a set of points V in trop-

ical projective space, denoted by tconv(V ), consists of
all tropical linear combinations of those points (not just
those with coefficients between 0 and 1, since 0 and 1
have no meaning in the tropics). A tropical polytope is the
tropical convex hull of a finite set of points; it consists of
all tropical linear combinations c1�v1⊕c2�v2 · · ·⊕ck�vk.
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FIGURE 1. Two examples of tropical polytopes in two-
and three-dimensional space, respectively. The poly-
tope on the right consists of the union of the three
indicated facets of a cube. The vertices are marked.

Tropical polytopes have a natural decomposition as com-
plexes of ordinary polytopes; see [Develin and Sturmfels
04] for more details. Some examples of tropical poly-
topes are shown in Figure 1. They enjoy many useful
properties, such as being contractible and having a trop-
ical Farkas lemma.

This tropical Farkas lemma says that any point not in
a tropical polytope can be separated from that polytope
by a tropical hyperplane. A tropical hyperplane is given
by a linear form

⊕
ci�xi; this form is said to vanish if the

maximum encoded by this tropical expression is achieved
at least twice, and the corresponding tropical hyperplane
is defined to be the locus of vanishing. This is a fan with
apex (−c1, . . . ,−cd), and is polar to the simplex given
by the convex hull of the standard basis vectors ei (of
which there are d living in TP

d−1). Thus, each tropical
hyperplane divides TP

d−1 into d sectors indexed by the
d coordinates; see Figure 2. A point x lies in the (closed)
sector indexed by coordinate i if xi − ci is maximized
among all xj−cj . Note that all hyperplanes are translates
of each other, meaning that all that is needed to specify
a hyperplane is its apex.

One manner in which tropical (discrete, algebraic) ge-
ometry arises naturally is as the image of ordinary (dis-
crete, algebraic) geometry over the Puiseux series field
with real exponents K := R[[tα]] (consisting of locally fi-
nite power series with a highest exponent and real coeffi-
cients and exponents) under the degree map deg : K → R

sending an element to its leading (highest) exponent.
(Sometimes it proves more convenient to define K as the
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FIGURE 2. A tropical hyperplane in TP
2.

Puiseux series field with rational exponents, in which case
the tropical objects in R

d or TP
d−1 are the topological

closures of the images of the lifted objects in Kd.) In
fact, tropical polytopes are images of polytopes in Kd.
We will discuss this point of view in Section 2, and as
an application, we will present a family of cellular reso-
lutions of monomial ideals in Section 3.

Michael Joswig, in his seminal paper [Joswig 05], used
these hyperplanes to propose a face structure of tropi-
cal polytopes; in Section 4, we investigate this structure
and raise some issues with it, presenting an alternative
definition that is both more intuitive and more practical.
We will discuss more examples in Section 5 and future
directions in Section 6.

2. POLYTOPES OVER THE PUISEUX SERIES FIELD

Let K = R[[tα]] be the Puiseux series field with real
exponents, as defined above. It is naturally an ordered
field, where a < b if the leading coefficient of b − a is
positive; its positive elements K+ constitute the set of all
elements with positive leading coefficient. As such, the
usual theory of discrete geometry applies in Kd, and in
particular we can define the convex hull of a point set as
the set of all affine combinations of the points. Indeed,
tropical polytopes are simply the images of objects up
above:

Proposition 2.1. Suppose P = tconv(v1, . . . , vk) ⊂
TP

d−1, where each vi has first coordinate zero. Define
lifts vi ∈ deg−1(vi) such that all leading coefficients of
the vi are positive, and define P = conv({vi}). Then
P = deg(P ).

Proof: First, we show that P ⊂ deg(conv({vi})). Sup-
pose that we have a point x =

⊕
ci � vi ∈ P . Since

P ⊂ TP
d−1, we can add a constant to each ci such that

the largest ci, without loss of generality c1, is equal to 0.
It is easy to lift the ci’s to ci ∈ K with deg(ci) = ci such
that ci > 0 and

∑
ci = 1: lift every ci < 0 to tci , and lift

ci = 0 to (1 − ∑
cj<0 tcj )/|{j | cj = 0}|.

But then we claim that deg(
∑

civi) = x. This follows
immediately: since there is no cancellation of the leading
terms, since all leading coefficients of the ci’s and vi’s are
positive, for each coordinate j we have

deg
(∑

i

cijvij

)
= max(deg(cijvij))

= max((ci)j + (vi)j) = xj ,

as desired.
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For the reverse direction, using the same logic, it is
easy to see that deg(

∑
αivi) =

⊕
deg(αi) � vi, again

due to the lack of cancellation of leading terms, which
shows that deg(conv({vi})) ⊂ P , completing the proof.

We call the polytope P a lift of P . Note that we can
take any lifts of the vertices of the polytope, as long as
the lifted points have positive leading coefficients; the
lift operation always preserves convex hulls. As an aside,
the stipulation that each vi have first coordinate zero is
merely for simplicity; we could ignore this and just look
at the facial structure of the cone generated by the lifts of
the vertices. Giving each vi first coordinate zero amounts
to slicing this cone with the hyperplane x1 = 1.

In a sense, each of these lifts yields a candidate for
the face lattice of the tropical polytope P . The prob-
lem is that when the points are not in (tropically) gen-
eral position, the lifts can have different combinatorial
structures.

Let A = [aij ] be a d × d matrix whose columns are
considered as d points in TP

d−1. The tropical determi-
nant of A is defined by the formula ⊕σ∈Sd

(�ai,σi
), where

Sd denotes the group of permutations of d elements. We
say that A is tropically nonsingular if the maximum in its
tropical determinant is attained uniquely. In this case,
the tropical sign of A is defined (as in [Joswig 05]) to be
the sign of the permutation that attains the maximum.
Otherwise, the tropical sign is defined to be 0. Let A

be a d × d matrix with entries in K+ whose degree is
A. If the tropical sign of A is not zero, then the sign of
the unique permutation that attains the maximum in the
tropical determinant is also the sign of the leading term
of the determinant of A. This observation leads to the
following.

Lemma 2.2. For a tropical polytope P with at least d

vertices in TP
d−1, the oriented matroid structure of any

lift P must refine the partial oriented matroid structure
of P given by the tropical signs on each subset of the d

vertices.

On the other hand, there may be a point configura-
tion whose oriented matroid refines the partial oriented
matroid of vertices of P but cannot be obtained as a lift.
The oriented matroid of “the model” that we will see in
Example 4.3 is the same as that of a square pyramid with
two points at the cone point, but this point configuration
cannot be attained as a lift, since distinct points must be
lifted to distinct points.

Proposition 2.3. If a tropical polytope P with at least d

vertices in TP
d−1 is in general position, then all lifts P

are simplicial and have the same oriented matroid struc-
ture.

Proof: Let V be a matrix whose columns are vertices
of P . The assumption that P is in general position (in
the sense of [Block and Yu 06, Proposition 4]) implies
that all maximal (d × d) submatrices of V are tropically
nonsingular. By the previous lemma, the tropical signs
of these submatrices determine the chirotope of all the
lifts P . Moreover, since these signs are all nonzero, the
lifts are simplicial.

It is still possible for lifts of a nongeneric tropical poly-
tope to be simplicial and have the same face lattice. For
an example, see the tropical (2, 4)-hypersimplex (Exam-
ple 5.2).

The geometric objects that form the relevant atoms of
a theory of tropical faces are the images of faces of lifts
under the degree map, which we call fatoms (face atoms).
In this paper, we will discuss different ways to combine
these to form faces. A crucial step is the following, which
provides the link between lifted hyperplanes and tropical
hyperplanes.

Proposition 2.4. Let H = {X ∈ Kd : f(X) := f1X1 +
· · · + fdXd = 0} ⊂ Kd be a hyperplane, and define
H+ := {X ∈ Kd : f(X) ≥ 0}. The image of H un-
der the degree map is a tropical hyperplane with apex
(−deg(f1), . . . ,−deg(fd)), the image of H+ ∩ (K+)d

consists of the union of the closed sectors indexed by
{i : fi > 0}, and the image of H ∩ (K+)d is the bound-
ary of this tropical half-space. (If some fi is equal to 0,
then the apex of this tropical hyperplane has ith coordi-
nate equal to infinity.)

Proof: Let z = deg(X). If f(X) = 0, then the leading
term of f(X) has to cancel. The leading exponent of fiXi

is deg(fi) + zi, so the maximum of these d expressions
has to be achieved at least twice. This means that z is in
the indicated tropical hyperplane. Conversely, if z is in
the tropical hyperplane, then f(tz) has ties in the leading
terms, and it is trivial to adjust leading coefficients and
fill in subleading terms to find a lift of z that lies on H.

Suppose now that X ∈ H+ ∩ (K+)d. If z is not in any
closed sector indexed by fi > 0, then each fi for which
the maximum of all deg(fi) + zi is achieved has nega-
tive leading coefficient. Since these are the terms that
contribute to the leading term of f(X), f(X) must be
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negative, a contradiction. Conversely, if z is in a closed
sector indexed by, without loss of generality, f1 > 0, then
deg(fi) + zi is maximized by i = 1. Therefore f1X1 con-
tributes to the leading term of f(X). Finding a lift with
sufficiently large leading coefficient of X1 then ensures
that f(X) > 0. This completes the proof of the second
assertion.

The third statement can be proven the same way as
the first, and by noting that the leading term of f(X)
can cancel for X ∈ (K+)d if and only if deg(X) lies in
both the sectors {i : fi > 0} and sectors {j : fj < 0}.

Armed with this, we can prove a crucial step in this
discussion, namely that the boundary of the lifted poly-
tope indeed maps to the boundary of the tropical poly-
tope.

Proposition 2.5. Let P be a lift of the tropical polytope
P ⊂ TP

d−1. Then the image of the boundary of P under
the degree map is precisely the boundary of P .

Proof: Every point in the boundary of P lies in some
facet. Since the degree map preserves convex hulls, it
must map to a point in the convex hull of the vertices of
this facet. However, by Proposition 2.4, these vertices all
lie in a tropical hyperplane that bounds P (namely the
image of the hyperplane defining the facet of the lifted
polytope), and since tropical hyperplanes are convex, the
image of the point in question must also lie on the bound-
ary of P .

For the converse, suppose we have some point v on the
boundary of P . This point is the image of some point in
P , since lifts preserve convex hulls; however, a priori, this
point need not lie on the boundary. Consider a tropical
hyperplane H with apex v. Not every open sector of
this hyperplane contains a point in P , since that would
imply that v is in the interior of P . Therefore, we can
partition the sectors of this hyperplane into a pair (A,B)
such that the A-sectors contain P , with B nonempty.
Suppose without loss of generality that A = {1, . . . , k}
and B = {k + 1, . . . , d}. Define a linear functional f on
the lift space via

f = c1t
−v1x1 + · · ·+ ckt−vkxk − t−vk+1xk+1 −· · ·− tvdxd,

where the ci’s are positive real constants. Since P lies in
the union of the A-sectors of H, every vertex w of P has
wi − vi maximized for some i ∈ [k]. Therefore, the lead-
ing term of the expression given by f(w) contains some
positive summand from among the first k terms of f .

So, if we make the ci’s large enough, we can ensure that
f(w) > 0 for all vertices w of P . Fix a set of such ci’s.

But we can easily lift the point v to a point v with
f(v = 0), for instance, simply taking vi = 1

ci
tvi for i ∈ [k]

and vi = k
d−k tvi otherwise. Hence v has a lift that lies

outside of P .
So, we have constructed a lift of v that lies inside of

P and a lift that lies outside of it. The line segment
between these two lifts, each of which has positive leading
coefficient, consists entirely of other lifts of v, and must
intersect the boundary of P somewhere, completing the
proof.

The degree map is well behaved; for instance, it also
does not increase the dimension of a face.

Proposition 2.6. If F is a k-face of P , then the image of
F under the degree map is at most k-dimensional.

Proof: Suppose we have a k-face F of P . Triangulate
this with its original vertex set, dividing it into a number
of k-simplices that are the convex hulls of k + 1 lifts of
vertices of P . The image of each such simplex under the
degree map, by Proposition 2.1, is the convex hull of k+1
points in TP

d−1, and is therefore at most k-dimensional
(see, for example, [Develin and Sturmfels 04]). Therefore,
the image of F under the degree map is the finite union
of k-dimensional things, and is therefore k-dimensional.

The fatoms for which the dimension is preserved under
this map are particularly crucial to our theory.

Definition 2.7. A k-fatom of a tropical polytope P is
a k-dimensional piece of the boundary of P that is the
image of a k-dimensional face F of some lift P of P .

Next, we discuss the dual formulation of a tropical
polytope. Tropical polytopes are typically considered as
the convex hulls of point sets, and when expressed in this
fashion they obtain a natural polyhedral decomposition
as detailed in [Develin and Sturmfels 04]. Joswig [Joswig
05] noted that each tropical polytope is the bounded in-
tersection of a finite number of half-spaces, and that the
apices of these half-spaces are drawn from an easily com-
putable set (the pseudovertices of the polytope, which are
the vertices of the polyhedral decomposition of [Develin
and Sturmfels 04]).

Our goal is to come up with a reasonably succinct
list of tropical half-spaces whose intersection is P . One
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natural attempt is to take a lift of the polytope, find the
facet-defining half-spaces whose intersection is that lift,
and then map the whole setup down to TP

d−1. This does
not work in general; the problem is that the intersection
of the images of the half-spaces under the degree map can
be larger than the degree of the intersections. In other
words, there could be a point in TP

d−1 that does not lift
anywhere in P but that lifts to a (different) point inside
each facet-defining half-space of P ; see Example 4.2 for
an example. However, this process does work for the
interior of the polytope:

Proposition 2.8. Let P ⊂ TP
d−1 be a full-dimensional

tropical polytope. Take a generic lift P , and consider the
images of its facet-defining half-spaces, which are tropical
half-spaces in TP

d−1. Then the intersection of the inte-
riors of these tropical half-spaces is precisely the interior
of P .

Proof: First, note that P is contained in each tropi-
cal half-space, since P is contained in each of its facet-
defining half-spaces. If we have a point in the interior
of P , there is a ball surrounding it that is entirely in P .
It therefore cannot be on the boundary of any tropical
half-space.

For the reverse direction, suppose we have a point
x = (x1, . . . , xd) in the interior of each tropical half-space.
Since the boundary of P is contained in the union of the
boundaries of the tropical half-spaces by Proposition 2.5,
x cannot lie in the boundary of P . So we need only to
show that x ∈ P . First, we claim that any lift of x lies
in each lifted half-space. Suppose without loss of gen-
erality that the half-space in question consists of sectors
{1, . . . , k} of the hyperplane with apex (0, . . . , 0). Since x

is in the interior of the tropical half-space, the maximum
of x1, . . . , xd is achieved only in the first k coefficients.

The lifted half-space is defined by f1X1 + · · ·+fdXd ≥
0, where each fi has degree zero. Let us evaluate this on
any lift x of x. Since deg(Xi) = xi, the leading terms of
these d terms have degrees x1, . . . , xd, and thus only the
first k terms have a chance of contributing to the leading
term. Furthermore, we know that fi > 0 for i ∈ [k],
since the half-space is to map to the union of the first k

sectors, and Xi > 0 by the definition of a lift. Therefore,
the leading term of fiXi is positive for i ∈ [k], and so
the leading term of f(x) is positive; therefore, x is in this
lifted half-space.

Therefore, any lift x is in the interior of all facet-
defining half-spaces of P , and is therefore in (the interior
of) P . So x ∈ deg(P ) = P , which completes the proof.

If P is pure, this process often results in an actual
half-space description of P .

Proposition 2.9. Suppose that the intersection of all trop-
ical half-spaces in Proposition 2.8, which is a polyhedral
complex, is pure. Then it is equal to P .

Proof: The intersection contains P , and their interiors
are the same. Since the intersection is pure, it is equal to
the closure of its interior; P contains this closure, since
it is closed, and so the two must be the same.

Indeed, we conjecture that this is true in general:

Conjecture 2.10. If P is pure, then the half-spaces from
a generic lift P of P map to tropical half-spaces whose
intersection is P itself. If in addition, P is generic, then
any lift works.

Conjecture 2.11. A tropical polytope P is pure and full-
dimensional if and only if it has a half-space description
in which the apices of these half-spaces are in general
position with respect to the tropical semiring (R,min,+).

In ordinary polytope theory, getting a half-space de-
scription of a polytope is important for many reasons.
Perhaps foremost is that it provides a way for checking
whether a point is in a polytope; simply evaluate the
relevant linear functionals on that point. However, in
tropical geometry, it is easy to check whether a point is
in a polytope from the vertex description:

Proposition 2.12. [Develin and Sturmfels 04] Let P be the
tropical convex hull of v1, . . . , vk ∈ TP

d−1, and let x be a
point in TP

d−1. For each vi, define ci = minj(xij − vij).
Then x ∈ P if and only if

∑
civi = x.

Because of this proposition, the half-space description
we search for is less crucial tropically than it is normally.
However, it is still important; for instance, it is easy to
intersect two polytopes given by half-space descriptions
(take the union of the sets of half-spaces in question).
At press time there is no shortcut like the above propo-
sition for intersecting tropical polytopes, so a half-space
description would allow us to accomplish this.

Another natural question to ask is the following:

Question 2.13. How does one obtain a vertex description
of a tropical polytope from its hyperplane description?
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If the tropical polytope is pure, then lifting each
tropical hyperplane to a hyperplane up above does the
trick; this will create some polytope P in Kd, and
by Proposition 2.9 its image in TP

d−1 will be ex-
actly equal to P , and the vertices of P will be drawn
from among the degrees of the vertices of P (there
may be some redundancy, especially if there is redun-
dancy in the hyperplane description). If the polytope
is not pure, it is trickier. Computing the extreme
points of a tropically convex object is relatively simple
geometrically—they are the points for which a closed sec-
tor of the hyperplane with that apex contains only P—
but can these be computed directly from the hyperplane
description?

3. CELLULAR RESOLUTIONS OF
MONOMIAL IDEALS

In [Bayer and Sturmfels 98], the authors defined the hull
complex, a complex that yields a resolution of a mono-
mial ideal I. The construction is simple: lift each gener-
ator xa ∈ k[x1, . . . , xd−1] to a vector ta ⊂ R

d−1, where
t is some large number. Form then a polyhedron Pt by
adding the positive orthant to the convex hull of these
vectors. For t sufficiently large, Bayer and Sturmfels
showed that this polyhedron has constant combinatorial
type, and that the complex of bounded faces of Pt yields
a cellular resolution of the monomial ideal. We give a
brief review of the process that leads from a complex to
a resolution.

Given any polytopal complex P with the vertices la-
beled by generators xa, we label each face by the least
common multiple of the generators corresponding to its
vertices. We then form a chain complex as follows: each
face F of the polytopal complex corresponds to a gener-
ator lying in homological degree equal to its dimension.
This chain complex PX is to be graded, with the degree
of F equal to the label of F (which we denote by xF );
each generator maps to the appropriately homogenized
signed sum of the generators corresponding to its facets,
i.e.,

∂F =
∑

F ′∈F

± xF

xF ′
F ′,

where the sum runs over all facets F ′ of F and the signs
are chosen so that ∂2 = 0.

Given any multidegree b, the complex X≤b is defined
to be the subcomplex of this chain complex obtained by
taking the generators with xF dividing xb. The key result
about cellular resolutions is the following:

Proposition 3.1. [Bayer and Sturmfels 98] The chain com-
plex PX is a free resolution (called a cellular resolution)
of I if and only if the subcomplex X≤b is acyclic for all
b ∈ Z

n.

Bayer and Sturmfels go on to prove that the hull com-
plex satisfies this condition. Indeed, their proof works
essentially verbatim if we lift each generator xa to any
vector in Kd that maps to a under the degree map, i.e.,
a d-vector of elements in the Puiseux series field with
specified leading exponents. Note that we can evaluate
the facial structure of the resulting polyhedron in Kd,
without having to plug in a specific value for t.

Theorem 3.2. Let P be the tropical polytope given by the
convex hull of the points (0,a), where a ranges over the
exponent vectors of the generators of a monomial ideal I

in k[x1, . . . , xd−1]. Take any lift P of P and add the posi-
tive orthant in the last d−1 coordinates, {0}× (K+)d−1,
to P to obtain a polyhedron P

+
. Then the complex of

bounded faces of P
+

yields a cellular resolution of I.

Proof: We have only to check that for each b =
(b1, . . . , bd−1), the bounded faces of P

+
with labels di-

viding b form an acyclic complex. Let the coordinates of
the space Kd that P

+
lives in be given by x0, . . . , xd−1,

and consider the linear functional on Kd given by f(x) =
t−b1x1 + · · ·+ t−bd−1 . Then on a given vertex of P

+
, f(x)

has positive leading exponent if and only if that gen-
erator does not divide xb. Thus the bounded faces in
the half-space given by f(x) ≤ t1/2 are precisely those
in the subcomplex X≤b. Applying a projective transfor-
mation sending this hyperplane to infinity yields X≤b as
the complex of bounded faces of some polytope, which
is acyclic. Therefore, each X≤b is acyclic, and thus by
Proposition 3.1, this complex yields a cellular resolution
of I.

These cellular resolutions can be smaller than the hull
resolution. For instance, in a previous paper [Develin 04],
the first author showed that no face of the hull complex
can have more than (d − 1)! vertices; this is not true
for these cellular resolutions. For example, if we had
seventeen million generators of a three-variable ideal all
lying on the same tropical hyperplane, we could find a
lift such that these all lay on a single facet.

These lifts include the hull complex as a special case,
where each point is simply lifted to ta. Like the hull
complex, each of them includes the Scarf complex as a
subcomplex; this complex is a simplicial complex where
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a set of vertices forms a face if the corresponding set of
generators has a unique least common multiple among
all least common multiples of sets of generators.

Proposition 3.3. Suppose that a set S of the generators
of I has a unique least common multiple. Then S forms
a (simplicial) bounded face in every P

+
.

Proof: The proof is by induction. We claim that for ev-
ery v ∈ S, S \ {v} has a unique least common multiple.
Suppose it did not; let T be another set with the same
least common multiple. Then T ∪{v} has the same least
common multiple as S \ {v} ∪ v, so since S has a unique
least common multiple, we must have T ∪ {v} = S. The
only other set for which this is true is T = S, but this
contradicts the statement that S has a unique least com-
mon multiple.

Therefore, by induction on the dimension, every
proper subset of S forms a face. Let the least com-
mon multiple of S be xb, and as before, consider the
linear functional given by f(x) =

∑
t−bixi. No genera-

tor not in S divides xb (otherwise, adding it to S gives
the same least common multiple), and so the hyperplane
f(x) = t1/2 separates the vertices in S from the vertices
outside of S. Again applying a projective transforma-
tion to map this hyperplane to infinity, the induced sub-
complex of bounded faces on S must be acyclic. Since
it contains every proper subset of S as a face, it must
also contain S itself. So S is a bounded face of P

+

as desired.

The following result follows from [Miller and Sturmfels
04, Proposition 6.26] and Propositions 2.3 and 3.3.

Proposition 3.4. If the exponent vectors of the minimal
generators of a monomial ideal I are in general position
tropically, then I is a generic monomial ideal in the sense
of [Miller and Sturmfels 04, Chapter 6 ].

Bayer and Sturmfels referred to the hull complex as
a canonical free resolution of a monomial ideal. Here,
however, we see that the hull complex is just one of a
family of resolutions arising from different lifts of the cor-
responding tropical polytope. For instance, in Example
4.3 (Figure 3), we come up with different free resolutions
of the corresponding monomial ideal. Note that we can
always obtain a simplicial resolution by taking a generic
lift. It would be interesting to answer the following
questions:

E

F

A B

C

D E

F

A

B

C

D E

F

A
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D

FIGURE 3. Various lifts of the model.

Question 3.5. What does the family of lifts of a given
tropical polytope look like? Are there generalized hull
resolutions we can get only by lifting to nonconvergent
power series? Is there a reasonable algorithm for picking
a small resolution from among these hull complexes?

Note that the faces that are bounded upon adding the
positive orthant to P correspond to faces of the polytope
with direction {{2, . . . , d}, 1} for some set S, i.e., those
whose defining linear functional has all positive coeffi-
cients in all but the first coordinate.

4. FACES OF TROPICAL POLYTOPES

In order to find a good notion of faces of tropical poly-
topes, let us enumerate some desirable properties:

• The faces should be extreme sets, in the sense that
there should not be two points in the polytope not in
a face such that the tropical line segment connecting
them intersects the face.

• The vertices of a tropical polytope (its extreme
points) should be faces.

• The face lattice should be graded, and should have
height equal to the dimension of the tropical poly-
tope.

• The homology of the face lattice should be that of a
sphere.

• The intersection of two faces should be a face of
both, or at least a union of faces of both.

4.1 Joswig’s Facet Definition

While [Develin and Sturmfels 04] gave a canonical de-
composition of a tropical polytope as an ordinary poly-
topal complex dual to a subdivision of a product of two
simplices, this decomposition was larger than desired by
Michael Joswig. For instance, according to this decompo-
sition, the convex hull of three points in two-space could
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have as many as six edges. In [Joswig 05], Joswig there-
fore proposed the following definition of a facet of a trop-
ical polytope, to which we ascribe his initial.

Definition 4.1. A J-facet of a tropical polytope P is the
convex hull of a maximal set of vertices of P contained
in a closed half-space containing P . The J-face lattice
of a tropical polytope is given by the intersection lattice
of the vertex sets of these J-facets, and a J-face of a
tropical polytope is given by the convex hull of one of
these intersections.

Joswig’s definition looks at the maximal fatoms, and
defines these to be the facets; it then assumes that, as
in ordinary geometry, it makes sense to recover the ver-
tex sets of faces by combinatorially intersecting the ver-
tex sets of facets. This definition works well for two-
dimensional tropical polytopes; the polytope formed by
the convex hull of n points in convex position will have
face lattice identical to that of an n-gon. However, in
larger dimensions, things go awry. Although the J-faces
are themselves tropical polytopes, they do not have any
of the properties listed above. Moreover, a J-facet may
not be the intersection of the half-space defining it with
the polytope itself, and the intersection of the facet-
defining half-spaces is not necessarily equal to the poly-
tope itself. In this section, we present examples exhibit-
ing several issues with this definition.

Our first example is in TP
2, where Joswig’s theory is

plainly correct; it highlights a difference between ordi-
nary polytopes and tropical polytopes.

Example 4.2. Let P be the tropical convex hull of
{(0, 3, 0), (0, 1, 1), (0, 2, 3)} ⊂ TP

2.

Discussion. This polytope is a tropical triangle in the
plane, whose vertices are the solid circles in Figure 4.
It evidently has three facets, and three facet-defining
half-spaces, one for each edge. These facet-defining half-
spaces have apices given by the dotted circles, which are
(0, 1, 2), (0, 3, 3), and (0, 3, 1); the half-space at (0, 1, 2)
is given by sector 2, the one at (0, 3, 3) by sector 1, and
the one at (0, 3, 1) by sectors 2 and 3.

However, the intersection of these three facet-defining
half-spaces is bigger than the polytope; it also contains
a ray starting at (0, 3, 0) and emanating downward. As
stated in [Joswig 05], every tropical polytope is in fact the
intersection of a finite number of half-spaces; to obtain
P , we need to add a fourth half-space. One with apex
(0, 3, 0) would work.

1 2

3

FIGURE 4. A tropical triangle in TP
2.

This problem seems fundamental to the nature of trop-
ical polytopes. The problem here is not one of genericity;
moving the point (0, 3, 0) infinitesimally results in a com-
binatorially identical tropical polytope. Rather, this is
just a way in which tropical polytopes are different from
ordinary polytopes.

Note also that the two facets involving (0, 3, 0) inter-
sect in a line segment, not a point. One way of express-
ing this is that each J-facet is defined by a tropical hy-
perplane that splits space into two parts, each a union
of sectors of the hyperplane; P is contained in one of
these parts, and the J-facet in question is contained in
the boundary between the two parts. In this case, the
facet connecting (0, 3, 0) and (0, 2, 2) contains the extra
data that sector 1 contains P , and that this facet is con-
tained in the boundary between sector 1 and the union
of sectors 2 and 3. This extra data can also be computed
by finding a lift for which the J-facet lifts to a facet and
using Proposition 2.4.

Using this extra data, the two facets ought to intersect
in the single point (0, 3, 0); in essence, they are on differ-
ent sides of the rest of the line segment (see Section 4.3
for more discussion). Joswig gets around this by stating
that the intersection of two facets is defined to be the
convex hull of the intersection of their vertex sets; as we
will see later, though, this definition has major problems.
We will give a definition that provides a better solution
to this apparent problem in Section 4.2.

Example 4.3. Let P be the tropical convex hull of

(A,B,C,D,E, F ) = (0201, 0210, 0125, 0134, 0143, 0152)

⊂ TP
3,

where wxyz means the point (w, x, y, z).

Discussion. This example will prove to be very illumi-
nating throughout this paper, and so we give it a name:
we call it the model. The model is a tropical 3-polytope
lying in three-space, shown in Figure 5. Its natural poly-
hedral decomposition [Develin and Sturmfels 04] consists
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z

FIGURE 5. The model. The three-dimensional part
is the three cubes in the lower right-hand corner of
the figure; it also contains a pair of vertical two-
dimensional flaps near vertices C and F and an ex-
tensive top flap connecting vertices A and B to the
other vertices.

of three three-dimensional cells, all unit cubes, and a
number of two-dimensional flaps.

This polytope exhibits a number of the problems men-
tioned earlier in this section. The vertex sets of the
J-facets as defined by Joswig are ABDC (hyperplane
with apex 0235), ABED (0244), ABFE (0253), ABFC
(0255), and CDEF (0155). Consider the facet with ver-
tices ABED. This comprises the center third of the upper
flap, as well as two boundary squares connecting the apex
0244 with the vertices 0134 and 0143. This facet is not
the intersection of the polytope with its facet-defining
hyperplane, which includes some more of the upper flap;
taking two points on opposite sides of ABED yields two
points not in the facet for which the tropical line segment
containing them intersects the facet. See Figure 6.

The fundamental problem here is that in some lifts,
ABED itself is not a facet of the lift. In those lifts, we
can take two points not in the lift of ABED for which
the tropical line segment connecting them (these could
be the lifts of 0242 and 0224, for instance) pierces the
convex hull of ABED.

Investigating these facets further, we find that the
facets ABDC, ABED, ABFE, and ABFC intersect patho-
logically. To be precise, their intersections are two-
dimensional; the convex hulls of ABDC and ABED inter-
sect in the convex hull of ABD, a two-dimensional object.
The intersection of ABED and ABFC is the “top flap”
portion of ABED, which is not the convex hull of the in-
tersection of their vertex sets (AB); indeed, this is not a

A

B

C

E

F

D

x

y

z

FIGURE 6. The J-facet ABED and two points that
demonstrate that it is not an extreme set.

J-face at all according to the definition. This last prob-
lem again is unavoidable, and can be explained by the
fact that these facets lie in different directions, and thus
do not morally intersect two-dimensionally.

But the problem with ABDC and ABED, which are
faces lying in the same direction, is not of this fla-
vor. Simply put, two-dimensional faces should not in-
tersect two-dimensionally. Looking at ABDC, its edges
are clearly given by AB, BD, DC, and CA; any reason-
able person would call it a square. Yet ABED’s edges
are clearly AB, BE, ED, and DA, meaning that AD is
also an edge; this is clearly false, as can be seen by an
examination of the square ABDC.

Furthermore, according to Joswig’s definition, A and
B are not actually vertices of this polytope. If we in-
tersect the facet vertex sets setwise, we never get the
singletons A and B, but merely the atom AB. So accord-
ing to Joswig’s definition, this object is a pyramid over
a square, with vertices AB (apex), C, D, E, and F. But
this misses some aspects of the tropical polytope, since
A and B are both vertices in the sense that if we remove
either, the convex hull changes. It is merely the weird-
ness of the tropical structure that ensures that there is
no facet-defining hyperplane that contains one of them
but not the other.

However, there certainly exist hyperplanes that con-
tain P in a half-space and intersect it only in, for in-
stance, vertex A. In every way other than Joswig’s defi-
nition, A appears to be a vertex; indeed, it is a vertex of
every lift. It should be a vertex of P .

It is worth noting that in ordinary geometry, we can
obtain a hyperplane that defines a face F ∩G by finding
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hyperplanes that define F and G and adding their linear
functionals. This operation does not work in tropical
geometry, where (a) the directions of F and G may be
different, and (b) there is no reasonable way to take linear
combinations of hyperplanes.

In this example, the J-face lattice is actually reason-
able; it is graded, with height equal to the dimension of
the polytope, namely 3. Indeed, as previously mentioned,
it is the face lattice of an Egyptian pyramid. However,
this is easily breakable by expanding the example.

Example 4.4. Let P be the tropical convex hull of

(A,B,C,D,E, F,G,H, I)

= (0301, 0310, 0224, 0233, 0242, 0158, 0167, 0176, 0185)

⊂ TP
3.

Discussion. This polytope (Figure 7) is merely a three-
tiered version of the two-tiered previous example. The
J-facets are ABFI, ABDC, ABED, CDEGF, CDEHG,
and CDEIH. By Joswig’s definition, taking setwise inter-
sections of these J-facets, we have a chain of faces given
by D ⊂ CDE ⊂ CDEG ⊂ CDEGF . This chain is too
long to live in the boundary of a 3-polytope. The prob-
lem geometrically, of course, is that CDEG and CDEGF
are both two-dimensional; by adding the third tier, we
merely ensured that D would actually be a vertex by
Joswig’s definition.

One possible solution would be to treat the facets as
maximal elements of a cell complex, evaluating their faces
by looking at the facets and taking the collection of all of
their faces as the cells (for instance, the faces of ABDC
are AB, BD, DC, and CA). Under this definition, the
J-facets ABDC and ABED would not intersect in the
triangle ABD, but rather in the union of the edge AB and
the vertex D. This breaks the condition that two faces
should intersect in a single face, but restores the grading
to the face lattice in a rather crude way. However, even

 
 

  
  

 
 

 
     

 
 

  

 

 

 
 

  

  

  

  

  

 
 

 
 

     
 

 
     

 
 

 

 

 

 

 
 

 
 

  

  

  
 

 

    
    

 
 

 
 

 
 

    

 

 

 

 
 

 
 

 
 

  

 

 

    
 

 
 

  

 

 

             

    
      

             
 

 
 

  

 

 

 
 

 

 

 

 

 

 

 
 

 
 

    
    

                   

 

 

 
 

 
 

   

 
 

 
 

 
 

    
 

 
 

 

 
 

 
 

    

 
 

  

 

 

 

 

      

 
 

 
 

 

 

  
 

 
 

 
  

  
 

 

  

     

 

 

 

 

     
 

 

    

 

 

 

 

 

 

 

 

      

      

 

 

 

 

 

   
 

 
 

  

 

 

  
 

 
 

 
 

 
 

 
 

    

 
 

 
 

 
                 

    

 
 

 

 

    

 

 

 

 

 

 

 

 

 
 

 
    

 
 

 
  

 

 

 
 

 
                   

   
 

    

    

 
 

 
 

 
 

    

 
 

 
      

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

      

  
 

 
 

 

 

 

  

   
 

 
 

  

 

 

 

 

 

 

     

 

 

 

 

  
 

    
 

 

 

 

 
 

 

 

      

 

 

 

 

      

 
 

 
 

  

 

 

 

 

 

 

 

  
 

 
    

 

 

 

      

    

 

 

 

 

 

 

    

 

 

 

 

 

 

    

 
 

 
 

 

 

 

 

    

 

 

 

 

      

 

 
  

 
 

 
 

  

 

 

   

 

 

 

    

    

 

 

 

 

 

 

      

 

 

 

 

 

 

  

 

 

      

 

 

 

   

 
 

 
 

 

 

  

  

    

    

    

 

 

 

 

 

 

 

 

       

 

 

 

 

 

  

  

 

     

     

 

 

 

 

   

FIGURE 7. A tropical 3-polytope that is a more com-
plicated version of the model.

if we do this, the homology of the face lattice (which
was not even definable if the lattice wasn’t graded) will
not be that of an appropriately dimensioned sphere; for
instance, in the model, the homology turns out to be Z

in dimension 1, and 0 in all other dimensions.

4.2 A New Definition of Faces of a Tropical Polytope

As outlined in the previous section, Joswig’s definition
has several undesirable properties. In this section, we in-
troduce a new definition that deals with these problems.

Definition 4.5. A k-face F of P is a minimal subset of
the boundary of P such that for any lift of P , F is always
the union of k-fatoms emanating from this lift, i.e., the
union of images of k-faces of the lift under the degree
map.

If P is in general position, then by Proposition 2.3, the
face lattice of P is the same as that of any lift. In this
case, the face lattice is determined by combinatorially in-
tersecting the vertex sets of facets, and this new definition
is the same as Joswig’s. In essence, this definition gets
rid of many of the problems with Joswig’s definition in
the nongeneric case via the following method: whenever
two J-facets fundamentally intersect improperly, they are
declared to be part of the same facet of P . Note also that
it is clear that the 0-faces of P are always precisely the
vertices.

It is illuminating to reinvestigate the model; re-
call that this is the convex hull of the points
(0201, 0210, 0125, 0134, 0143, 0152). By this definition,
the model P has three facets; the upper shell comprising
the convex hull of {A,B,C, F}, the lower face compris-
ing the convex hull of {C,D,E, F}, and the “underbelly”
given by the union of the convex hulls of {A,B,C,D},
{A,B,D,E}, and {A,B,E, F}.

The problematic pairs of faces that intersect improp-
erly, such as (ABCD,ABDE), have all been combined
into the underbelly. This underbelly is a facet because
in every lift, it is the union of facets of the lifted poly-
tope. For instance, it could be the union of the faces
{ABC,BCD,BDE,BEF}, or {ACD,ABDE,BEF},
or {ACD,ADE,ABEF}, or numerous other possibili-
ties depending on the lift. However, in every lift, it
is the union of images of facets. Furthermore, it is
minimal with this property; for instance, the J-facet
ABDE is not the union of facets in some lifts, such as
{ABC,BCD,BDE,BEF}. This is because it overlaps
other J-facets in an essential manner.
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Our new definition also handles inessential overlaps
elegantly. Consider the underbelly and the upper shell.
Setwise, these intersect in an awkward two-dimensional
region, but this overlap does not cause them to be united
into the same face, since in all lifts ABCF is partitioned
and the underbelly is partitioned independently. This
is because the surface ABCF always partitions the top
portion of the lift into facets with different directions.

For any lift P of P , the facets of P partition the bound-
ary of P in a natural way; every face of P has an image
under the degree map that is contained in a face of P .
This opens the door to an improved definition of the in-
tersection of two faces of P ; in particular, it would be nice
if the underbelly and the upper shell were in the union of
the edges CA, AB, and BF rather than in the awkward
two-dimensional region that is their setwise intersection.
The following does the trick.

Definition 4.6. Let P be a tropical polytope, and let F

and G be faces. Then the intersection of F and G is
defined as follows: take any lift P of P , and consider the
lifts F and G, i.e., the unions of all faces of the same
dimension that map into F . The intersection of F and
G is the image under the degree map of the intersection
of these two lifts.

To see this in action, consider the various lifts of the
model shown in Figure 3. In each of these lifts, each of
the three facets is a union of various faces of the lifts.
Their intersections, however, are always the same, each
a union of edges. Note that each edge contained in one
of these intersections is an edge in each lift.

In practice, this definition seems to yield extremely
sensible results. The complete results for the model show
three 2-faces, seven 1-faces (AB, AC, CD, DE, EF, CF,
BF), and six 0-faces (the vertices); see Figure 8. This,
along with many other examples and intuition, leads us
to formulate the following conjectures about our new
definition, each of which represents an improvement on
Joswig’s.

Conjecture 4.7.

1. The k-faces of tropical polytopes are extreme sets.

2. The (topological) boundary of a k-face is a union of
(k − 1)-faces. Thus, the faces fit together to form a
cell complex.

3. The homology of this cell complex is that of a sphere.

C F

A B

D E

A B C D E F

CDEFABCF
underbelly

edges (L to R): AB, BF, AC, CD, DE, EF, CF

FIGURE 8. The face lattice of the model (L) and an
artist’s rendition of it as a cell complex (R). The latter
consists of a flat hexagon with a couple of squares
puckering up, forming a “pita pocket.”

4. The intersection of two faces is well-defined (i.e., does
not depend on the lift), and is itself a contractible
union of faces. Note that in some cases, a (for in-
stance) 3-face in a lift that maps to a two-dimensional
object under the degree map may be part of the lifts of
two 3-faces of P . In this case, though, its contribution
to the intersection will still be two-dimensional.

5. The k-faces of tropical polytopes are always con-
tractible.

6. The faces of a tropical polytope do not depend on the
provided vertex set. In other words, if we consider P

as the convex hull of a different set of points (and form
lifts by lifting this different set of points), the k-faces
of P will be the same for all k.

4.3 Directions

Item 3 of Conjecture 4.7 essentially states that the
boundary of a tropical polytope can be partitioned into
a natural cell complex, which triangulates this spheri-
cal boundary. Of course, since a tropical polytope need
not be pure, its boundary need not be homeomorphic
to a sphere. However, there is some natural sense in
which we can modify a tropical polytope to obtain a ball:
pumping some air into its interior will “inflate” the lower-
dimensional parts of the boundary. The intersection rule
given in the previous section will ensure that faces that
are morally on opposite sides of these lower-dimensional
parts will intersect properly, i.e., as they would upon
inflation.

Another natural sense in which the boundary is a
sphere is given by lifting the polytope. Any lift P of
a tropical polytope P is of course an ordinary polytope,
homeomorphic to a ball, and thus the boundary ∂P is
homeomorphic to a sphere. This boundary is subdivided
by the boundary complex of P , and maps to the bound-
ary of P ; in this fashion, each lift of P provides a subdi-
vision of the boundary of P . Again, different faces (even



288 Experimental Mathematics, Vol. 16 (2007), No. 3

A

B

C

FIGURE 9. A tropical triangle in TP
2, not in general

position.

from the same lift) can map to parts of P that overlap
setwise, but do not do so morally (upon inflation). Con-
sider, for instance, the model; the 2-fatoms ABCF and
ABDE appear to intersect in a two-dimensional region.
This should not be the case, and the reason is that ABDE
covers the bottom side of this region, while ABCF covers
the top side. Meanwhile, ABCD and ABDE do intersect
in a two-dimensional region, since both lie on the bottom
side of this flap.

In this case, it is easy to define the concept of direction.
ABCF is cut out by a hyperplane with apex 0255, and
the polytope lies in sector 1 of this hyperplane, with the
face lying in the boundary between 1 and {2, 3, 4}. So the
2-face has direction given by {1, 234}. Similarly, ABDE
is cut out by a hyperplane with apex 0244; the polytope
lies in the sectors indexed by 2, 3, and 4, and the face
lies in the boundary between the union of these sectors
and sector 1. So ABDE has direction given by {234, 1}.
ABCD similarly has direction {234, 1}, so ABDE and
ABCD fundamentally overlap, while the overlap between
either and ABCF is illusory.

These directions also correspond to equations of hy-
perplanes f · x ≥ 0 defining the faces of the lift that
make these 2-fatoms, via Proposition 2.4. The first set
in the direction is given by those i for which fi > 0 in all
lifts, while the second set is given by those i for which
fi < 0 in all lifts. Otherwise, i is in neither set. This
happens in the following example:

Example 4.8. Let P be the convex hull of {A,B,C} =
{002, 003, 010} ⊂ TP

2 (see Figure 9).

Discussion. In this example, vertical edge AB has direc-
tion given by {2, 1}, while edge AC has direction {23, 1}
and edge BC has direction {1, 23}. Note that as before,

AC and BC are on opposite sides of their setwise one-
dimensional overlap.

In all of these situations thus far, it is clear what the
direction would be. This concept is an intuitive notion
as to when k-fatoms intersect improperly, and when they
merely appear to intersect improperly. However, there
are potential problems. If k is fairly small, different lifts
may have different minimal direction sets (R,S); for in-
stance, a fatom in some large-dimensional polytope could
conceivably lie in the boundary between sectors 1 and 2,
but also in the boundary between sectors 1 and 3, with
the polytope lying in 1. It makes no sense for the di-
rection here to be {1, ∅}. Another important question in
direction theory is to figure out how to compute the inter-
sections of faces with different directions. For instance,
ABCF and ABDE in the model have complementary di-
rections. How do we use this information to determine
that they intersect in edge AB?

Indeed, determining the direction of edge AB, and of
lower-dimensional faces in general, is a tricky one. Even
fixing the lift, there are many different face-defining func-
tionals. For instance, consider the hull lift of the model,
where we lift the point abcd to (ta, tb, tc, td). This lift has
as two of its facets ABCF and ABDE, which are defined
by the following linear functionals (the notation (65-21)
represents the coefficient t6 + t5 − t2 − t, and so on):

ABDE: − (65 − 21)x1 + (43 − 10)x2 + (2 − 1)x3

+ (2 − 1)x4 ≥ 0,

ABCF: (74 − 21)x1 − (52 − 10)x2 − (2 − 1)x3

− (2 − 1)x4 ≥ 0.

So far, so good; the directions indicated by the sign
vectors of the coefficients agree with the sectors of the
corresponding tropical hyperplane in which the polytope
is contained, and this is true of any lift for which these
are faces. However, we can find a linear functional cut-
ting out the lifted edge AB by taking any positive linear
combination of these two functionals; this produces many
possible sign vectors. The set that can be obtained from
this lift alone is {(+ − −−), (+ − 00), (+ − ++), (0 −
++), (−0++), (−+++)}, and others such as (+−+−)
can be obtained from different lifts. What is the true
direction of this edge?

Some of these hyperplanes, namely the set {(+ −
−−), (+ − 00), (+ − ++), (− + ++)}, map to tropical
hyperplanes whose intersection with the model polytope
P is not just the edge AB. Indeed, if we perturb the facet-
defining functionals of ABDE and ABCF infinitesimally,
they will map to the same tropical hyperplanes, but their
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intersection with the lifted polytope will decrease in di-
mension. Similarly, the hyperplane (+− 00) maps to the
degenerate tropical hyperplane with apex at (02∞∞);
this is just the hyperplane x−w = 2, whose intersection
with P is two-dimensional (although it intersects the ver-
tex set of P in only the vertices A and B).

The sign vectors (0 −++) and (−0 + +) are the ones
that best embody the Platonic ideal of a direction for
AB. The apex of the tropical hyperplane that defines AB
should, morally speaking, be the point (0211). If we place
a tropical hyperplane there, it intersects P precisely in
the edge AB. Furthermore, the rest of P is contained
in (the union of) sectors 3 and 4. Meanwhile, the edge
AB lies entirely in the intersection between sector 1 and
the union of sectors 3 and 4, but also lies entirely in the
intersection between sector 2 and the union of sectors
3 and 4. Therefore, from considering this hyperplane,
both {34, 1} and {34, 2} are reasonable candidates for
the direction of AB. By translating this hyperplane in
the positive-1 or positive-2 direction, we can easily obtain
tropical hyperplanes that suggest either of these as the
unique direction of AB.

Question 4.9. Is there always a natural apex for a (trop-
ical) hyperplane defining a k-fatom of a tropical poly-
tope P?

If there were, we could use these to determine (more
or less) directions, and use these directions to determine
many things, among them which fatoms should be part
of the same face (an alternative definition that should be
equivalent to the one presented here, made without hav-
ing to consider all lifts of the polytope), and what the
intersection of two faces should be (i.e., their moral in-
tersection, as opposed to their setwise intersection). The
study of tropical polytopes via directions deserves more
investigation; note that such a thing is possible in tropi-
cal geometry because the set of edge directions of tropical
polytopes viewed as ordinary polyhedral complexes is re-
stricted to the set of 0/1-vectors (with a similar statement
about higher-dimensional faces).

5. EXAMPLES

In this section, we present two more examples of tropical
polytopes.

Example 5.1. Let P be the convex hull of

{A,B,C,D,E} = (0101, 0011, 0002, 0001, 0110) ⊂ TP
3,

as depicted in Figure 10.

x

y

z

B

C

D

E

A

FIGURE 10. A five-vertex tropical polytope in TP
3:

cube with pendant edge.

Discussion. This is a cube with a pendant edge. We pre-
viously encountered the convex hull of the vertices ABC;
this tropical polytope consists of the union of three facets
of a cube surrounding a vertex (0112 here). Adding the
point D realizes the unit cube as a tropical polytope; its
facets are simply the convex hull of ABC, which con-
sists of three facets of the cube, and the convex hulls of
ABD, ACD, and BCD, each of which is another facet
of the cube. This is a perfectly normal tropical tetrahe-
dron (albeit not one in general position). All lifts of this
polytope are simplices.

Adding the pendant vertex, however, produces a vari-
ety of possible lifts. There exist lifts for which the lifted
point E lies in various places with respect to the tetra-
hedron ABCD; for instance, it could be coplanar with 0,
e1, and e2 (since these four points lie in a tropical hy-
perplane), or with e1, e2, and e3. Even if it is in general
position, it can be beyond different faces of the tetrahe-
dron. See Figure 11 for some possibilities.

In all, the face lattice of this tropical 3-polytope is
depicted in Figure 12. This is a tetrahedron formed
by ABCD, with the edge AB subdivided by point E. It
has four facets: two triangles ACD and BCD, and two
squares ABCE and ABDE. The two squares intersect in
the union of the edges AE and BE. Its f-vector is (5, 7, 4).
The fact that point E subdivides edge AB is interest-
ing; intuitively, this makes sense, since the point through
which point E is connected to the rest of the polytope lies
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B
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FIGURE 11. Four lifts of the cube with pendant vertex.
Two are bipyramids and two are square pyramids.



290 Experimental Mathematics, Vol. 16 (2007), No. 3

D
E

A

B

C

A B C D E

ACD BCD AEBC AEBD

edges (L to R): AC, BC, AD, BD, CD, AE, BE

FIGURE 12. The face lattice of a cube with pendant
edge (L) and its realization as a cell complex (R), a
tetrahedron with one edge subdivided.

on edge AB. If we had placed point E on point AB, the
diagram would be the same, except that point E would
not appear as a vertex at all.

Example 5.2. Let P be the convex hull of

{A,B,C,D,E, F} = (0011, 0101, 0110, 1001, 1010, 1100)

⊂ TP
3,

as depicted in Figure 13.

Discussion. This polytope is an instance of a tropical hy-
persimplex, to be precise, the (2, 4)-hypersimplex, whose
vertex set consists of all 4-tuples with two 1’s and two
0’s. These (n, d)-hypersimplices always lie in a hyper-
plane; to be precise, one with apex 0. However, their
hull lifts are bona fide hypersimplices, and in particular
are full-dimensional; their face lattice will accordingly be
d-dimensional. Indeed, it turns out that every lift of this
object is a (2, 4)-hypersimplex, which is an octahedron,
so its face lattice is simply that of an octahedron. In
general, the face lattice of the tropical hypersimplex is
identical to that of the corresponding ordinary hyper-
simplex.

Interestingly, four of the facet-defining tropical hyper-
planes are the same (the one with vertex 0); this hyper-

x

y

z

FIGURE 13. A tropical (2, 4)-hypersimplex, i.e., octahedron.

plane cuts out different facets by virtue of taking different
sectors to constitute the relevant half-space.

6. FURTHER QUESTIONS

We have described how to compute the faces of a trop-
ical polytope. In ordinary polytope theory, each face is
the intersection of a polytope with the boundary of a
half-space including the polytope; is there an analogue
of this here? Clearly the bounding objects are not, in
general, hyperplanes (i.e., the underbelly of the model),
but they should fall into a reasonable set of geometric
objects.

The notion of sign of a tropical determinant intro-
duced in [Joswig 05] and also used in Lemma 2.2 and
Proposition 2.3 is related to the facial structure defined
in this paper. What is the precise relationship? Can
we use tropical determinants to aid us in defining direc-
tions and thus intrinsically (i.e., without reference to the
family of all lifts) defining faces?

A priori, there is only a finite number of (combinatori-
ally different) possible lifts of a tropical polytope. Is there
a good way to enumerate these? The connection between
tropical chirotopes and oriented matroids of lifted point
configurations as seen in Lemma 2.2 and Proposition 2.3
can help with this problem.

The various parts of Conjecture 4.7 all seem to be
true based on experimental evidence in three dimensions.
Proving these nice properties would certainly be an im-
portant step in understanding tropical polytopes.

What do k-faces of tropical polytopes look like?
Unlike ordinary polytopes, these need not be iso-
morphic (as tropical objects) to polytopes in trop-
ical projective k-space. Are they combinatorially
isomorphic?

The octahedron (Example 5.2) is an example of a
tropical regular polytope, one for which the face lattice
is (combinatorially) transitive on the complete flags of
faces. Can we classify these in general? Are there any
other than simplices, the octahedron in dimension three,
and polygons?

In addition to their half-space description, tropical
polytopes can be formed by intersecting hyperplanes in
another way.

Theorem 6.1. [Develin and Sturmfels 04] The convex
hull of {v1, . . . , vk} consists of the union of the bounded
regions formed by the tropical hyperplane arrangement
given by putting a negated hyperplane at each vi.
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How does this formulation interact with the hyper-
plane description of P? This provides a natural decom-
position of P as a polytopal complex; can we use the
polytopes here (the types of [Develin and Sturmfels 04])
to find the faces of P? Joswig [Joswig 05] showed that the
0-faces of this polytopal complex include all the apices of
hyperplanes that are needed to cut out P .
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