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Through computer enumeration with the aid of topological re-
sults, we catalogue all 18 closed nonorientable P

2-irreducible

3-manifolds that can be formed from eight or fewer tetrahedra.
In addition, we give an overview as to how the 100 resulting
minimal triangulations are constructed. Observations and con-
jectures are drawn from the census data, and future potential
for the nonorientable census is discussed. Some preliminary 9-
tetrahedron results are also included.

1. INTRODUCTION

Several surveys have been performed in recent years of
all small 3-manifold triangulations satisfying particular
properties. One of the key strengths of such a census
is in examining minimal triangulations (triangulations of
3-manifolds that use as few tetrahedra as possible).

Minimal triangulations are still poorly understood.
Many necessary conditions for minimality can be found
in the literature; see [Matveev 98], [Martelli and Petronio
01], [Jaco and Rubinstein 03], and [Burton 04a] for some
examples. However, sufficient conditions are much more
difficult to find. Most of the positive results regarding
minimality rely on exhaustive censuses such as these.

Beyond its use in studying minimal triangulations, a
census also forms a useful body of examples for testing
conjectures and searching for patterns. Section 3 illus-
trates some conjectures arising from the nonorientable
census described in this paper.

We restrict our attention here to closed P
2-irreducible

3-manifolds. Examples of other censuses involving mani-
folds with boundaries or cusps can be seen in the results
of Callahan, Hildebrand, and Weeks [Callahan et al. 99]
and Frigerio, Martelli, and Petronio [Frigerio et al. 03].

The extent of census data known to date for mini-
mal 3-manifold triangulations is fairly small. This is
due to the computational difficulty of performing such
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a survey—the number of potential triangulations to ex-
amine grows worse than exponentially with the number
of tetrahedra.

Closed orientable 3-manifolds have been surveyed suc-
cessively by Matveev for six tetrahedra [Matveev 98],
Ovchinnikov for seven tetrahedra, Martelli and Petro-
nio for nine tetrahedra [Martelli and Petronio 01], and
more recently Martelli for ten tetrahedra [Martelli 06]
and Matveev for eleven tetrahedra [Matveev 05].

Closed nonorientable 3-manifolds are less-well studied.
The 6-tetrahedron and 7-tetrahedron cases were tackled
independently by Amendola and Martelli and by Bur-
ton [Amendola and Martelli 03, Amendola and Martelli
05, Burton 03]. Only eight different nonorientable 3-
manifolds are found up to seven tetrahedra, and none
at all are found below six tetrahedra. In this sense, the
7-tetrahedron results are but a taste of what lies ahead.

The methods of these different authors are notably
distinct. Amendola and Martelli do not use a direct
computer search, but instead employ more-creative tech-
niques. For seven tetrahedra [Amendola and Martelli 05]
they examine orientable double covers and invoke the re-
sults of the 9-tetrahedron orientable census [Martelli and
Petronio 01]. More remarkable is their 6-tetrahedron cen-
sus [Amendola and Martelli 03], which is purely theoret-
ical and makes no use of computers at all.

On the other hand, Burton focuses on minimal trian-
gulations of these eight different 3-manifolds and their
combinatorial structures. With three exceptions in the
smallest case (six tetrahedra), the compositions of the 41
different minimal triangulations found in the census are
described in detail and generalized into infinite families
[Burton 03].

It is also worth noting the work of Casali, who has
used the theory of crystallizations to build a catalogue
of nonorientable colored triangulations [Casali 98]. This
catalogue has since been used to replicate and improve
upon the earlier results of Amendola and Martelli [Casali
04].

The work presented here extends the nonorientable-
census results to eight tetrahedra. Both 3-manifolds
and all their minimal triangulations are enumerated and
placed in the context of earlier results. In total, there are
10 new 3-manifolds with 59 different triangulations. All
59 of these minimal triangulations fit within the families
described in [Burton 03].

It is worth noting that the list of nonorientable 3-
manifolds formed from eight or fewer tetrahedra is equiv-
alently a list of nonorientable 3-manifolds with Matveev
complexity less than or equal to 8. Matveev defines the

complexity of a 3-manifold in terms of special spines
[Matveev 90], and it is proven in [Martelli and Petronio
02] that for all closed P

2-irreducible 3-manifolds other
than S3, RP 3, and L3,1, this is equivalent to the num-
ber of tetrahedra in a minimal triangulation (in the ori-
entable case this was proven by Matveev over a decade
earlier [Matveev 90]).

All of the computational work was performed using
Regina, a software package that performs a variety of dif-
ferent calculations and procedures in 3-manifold topology
[Burton 04b, Burton 05].1

In the remainder of Section 1 we describe in detail
the census parameters and give a concise summary of
the results. Section 2 presents an overview of how the
different minimal triangulations are constructed, though
the reader is referred to [Burton 03] for finer details (an
appendix is provided to match the individual census tri-
angulations to the detailed constructions of [Burton 03]).
Finally, Section 3 contains some observations and con-
jectures drawn from the census results, and closes with
some remarks regarding future directions of the nonori-
entable census. Partial results from the 9-tetrahedron
census (which is currently under construction) are briefly
discussed.

1.1 Summary of Results

As with the previous closed censuses described above,
we consider only triangulations satisfying the following
constraints:

• Closed: The triangulation is of a closed 3-manifold.
In particular, it has no boundary faces, and each
vertex link is a 2-sphere.

• P
2-irreducible: The underlying 3-manifold has no

embedded two-sided projective planes, and further-
more every embedded 2-sphere bounds a ball.

• Minimal: The underlying 3-manifold cannot be tri-
angulated using fewer tetrahedra.

Tetrahedra 3-Manifolds Triangulations
≤ 5 0 0
6 5 24
7 3 17
8 10 59

Total: 18 100

TABLE 1. Summary of closed nonorientable census results.

1The program Regina, its source code, and accompanying docu-
mentation are freely available from http://regina.sourceforge.net/.
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Tetrahedra 3-Manifold Triangulations Homology

6 T 2 × I/
[

1 1
1 0

]
1 Z

T 2 × I/
[

0 1
1 0

]
6 Z ⊕ Z

T 2 × I/
[

1 0
0 −1

]
3 Z ⊕ Z ⊕ Z2

SFS
(
RP 2 : (2, 1) (2, 1)

)
9 Z ⊕ Z4

SFS
(
D̄ : (2, 1) (2, 1)

)
5 Z ⊕ Z2 ⊕ Z2

7 T 2 × I/
[

2 1
1 0

]
4 Z ⊕ Z2

SFS
(
RP 2 : (2, 1) (3, 1)

)
10 Z

SFS
(
D̄ : (2, 1) (3, 1)

)
3 Z ⊕ Z2

8 T 2 × I/
[

3 1
1 0

]
10 Z ⊕ Z3

T 2 × I/
[

3 2
2 1

]
2 Z ⊕ Z2 ⊕ Z2

SFS
(
RP 2 : (2, 1) (4, 1)

)
10 Z ⊕ Z2

SFS
(
RP 2 : (2, 1) (5, 2)

)
10 Z

SFS
(
RP 2 : (3, 1) (3, 1)

)
7 Z ⊕ Z6

SFS
(
RP 2 : (3, 1) (3, 2)

)
9 Z ⊕ Z3

SFS
(
D̄ : (2, 1) (4, 1)

)
3 Z ⊕ Z2 ⊕ Z2

SFS
(
D̄ : (2, 1) (5, 2)

)
3 Z ⊕ Z2

SFS
(
D̄ : (3, 1) (3, 1)

)
3 Z ⊕ Z3

SFS
(
D̄ : (3, 1) (3, 2)

)
2 Z ⊕ Z3

TABLE 2. Details for each closed nonorientable P
2-irreducible 3-manifold.

Requiring triangulations to be P
2-irreducible and min-

imal keeps the number of triangulations down to manage-
able levels, focusing only on the simplest triangulations
of the simplest 3-manifolds (from which more-complex
3-manifolds can be constructed).

The main result of this paper is Theorem 1.1 be-
low. As with most censuses described in the literature,
its proof relies on an exhaustive computer search. This
search was performed using the software package Regina,
with the help of several results described in [Burton 04a]
to increase the efficiency of the search algorithm. For an
overview of how the search algorithm is structured, see
the 7-tetrahedron census paper [Burton 03].

Theorem 1.1. (Census results.) Consider all closed
nonorientable P

2-irreducible 3-manifolds that can be tri-
angulated using at most eight tetrahedra. This set con-
tains 18 different 3-manifolds with a total of 100 minimal
triangulations between them, as summarized in Tables 1
and 2.

It should be noted that, when restricted to at most
seven tetrahedra, the eight different 3-manifolds obtained
match precisely the lists presented in [Amendola and
Martelli 05].

For complete details of the 100 minimal triangulations,
a data file may be downloaded from the Regina web site
[Burton 05].2 When opened within Regina, the triangula-
tions may be examined in detail along with various prop-
erties of interest such as algebraic invariants and normal
surfaces.

As promised in Theorem 1.1, a brief summary of re-
sults appears in Table 1. Here we see overall totals, split
according to the number of tetrahedra in the minimal
triangulations for each 3-manifold. Note that each tri-
angulation is counted once up to isomorphism, i.e., a re-
labeling of the tetrahedra within the triangulation and
their individual faces.

2The 8-tetrahedron nonorientable census data are also bundled
with Regina version 4.2.1 or later. They can be found in the File
→ Open Example menu.
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Boundary F (2 faces)

Boundary F (2 faces)

Product F × I

New boundary F (2 faces)
Layering to change boundary curves

Identification of
boundaries

FIGURE 1. Constructing a layered surface bundle.

Two striking observations can be made from Table 1,
which have been made before [Amendola and Martelli
05, Burton 03] but are worth repeating here. These are
that (i) there are no closed nonorientable P

2-irreducible
triangulations at all with five or fewer tetrahedra, and
that (ii) the number of minimal triangulations is much
larger than the number of 3-manifolds. Indeed, most
3-manifolds in the census can be realized by several dif-
ferent minimal triangulations, as seen again in the next
table.

Table 2 provides finer detail for each of the 18 different
3-manifolds, including the number of minimal triangula-
tions for each 3-manifold and the first homology group.
The notation used for describing 3-manifolds is as follows:

• T 2 × I/
[

p q
r s

]
represents the torus bundle over the

circle with monodromy
[

p q
r s

]
;

• SFS (B : . . .) represents a nonorientable Seifert
fibered space over the base orbifold B, where RP 2

and D̄ represent respectively the projective plane
and the disk with reflector boundary. The remain-
ing arguments (. . .) describe the exceptional fibers.

The most immediate observation is that the 8-
tetrahedron census offers little more variety than the 6-
and 7-tetrahedron censuses that came before it. The cen-
sus is populated entirely by torus bundles and by Seifert
fibered spaces over RP 2 or D̄ with two exceptional fibers.
Preliminary results suggest that the 9-tetrahedron cen-
sus will reveal more variety than this; see Section 3 for
further discussion.

Finally, it is worth noting that, as observed by Amen-
dola and Martelli [Amendola and Martelli 03], all four
flat Klein-bottle bundles can be triangulated with only
six tetrahedra. These include all 6-tetrahedron manifolds
in the table except for T 2 × I/

[
1 1
1 0

]
.

2. CONSTRUCTING MINIMAL TRIANGULATIONS

In the 7-tetrahedron census paper [Burton 03], the com-
binatorial structures of the 41 census triangulations are
described in full detail. A number of parameterized fam-
ilies are presented, precise parameterized constructions
are given for triangulations in these families, and the re-
sulting 3-manifolds are identified.

The census having been extended to eight tetrahedra,
all of the additional 59 triangulations are found to belong
to these same parameterized families. We therefore refer
the reader to [Burton 03] for details of their construction.
Here we present a simple overview of each family, show-
ing how their triangulations are pieced together to form
3-manifolds of various types. We go into some detail,
since these families feature in some of the conjectures of
Section 3.

For completeness, the appendix (Section 4) contains
a full listing with the precise parameters for each census
triangulation. This allows the triangulations to be fully
reconstructed and cross-referenced against [Burton 03],
though of course the reader is invited to download the 100
triangulations instead as a Regina data file as described
in the introduction.

There are three broad families of triangulations to
describe. These are the layered surface bundles, the
plugged thin I-bundles, and the plugged thick I-bundles.
Each is discussed in its own section below.

2.1 Layered Surface Bundles

A layered surface bundle is a triangulation that produces
either a torus bundle or a Klein-bottle bundle over the
circle.3 We postpone a formal definition for the moment,
instead giving a broad overview of the construction.

3The name “layered surface bundle” has been chosen for consis-
tency with related families of triangulations such as layered solid
tori and layered lens spaces, as described in [Jaco and Rubinstein
03] and elsewhere.
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FIGURE 2. Decomposing a tetrahedron into triangles or quadrilaterals.

The product
T 2 × I

The two torus
boundaries

The central torus

FIGURE 3. An example of a thin I-bundle over the torus.

Figure 1 illustrates the general structure of a layered
surface bundle. Note that this is a rough outline only;
much of Section 2.1.1 is devoted to filling in the details.
First, the product T 2×I or K2×I is constructed (where
the surface F in the diagram is either T 2 or K2 for
the torus or Klein bottle accordingly). This leaves two
boundary surfaces, which are then identified according to
some specified monodromy. If this is impossible because
the boundary edges do not match, some additional tetra-
hedra may be layered onto one of the boundary surfaces
to adjust the boundary edges accordingly.

2.1.1 Components. We continue with enough detail
to allow a precise definition of a layered surface bundle as
seen in Definition 2.3 below. This requires us to describe
more precisely how the product T 2×I or K2×I is formed,
as well as what a layering entails.

Definition 2.1. (Untwisted thin I-bundle.) An untwisted
thin I-bundle over some closed surface F is a triangula-
tion of the product F × I formed as follows.

Consider the interval I = [0, 1]. The product F × I

is naturally foliated by surfaces F × {x} for x ∈ [0, 1].
When restricted to an individual tetrahedron, we require
that this foliation decompose the tetrahedron into either
triangles or quadrilaterals as illustrated in Figure 2. We
furthermore require that every vertex lie on one of the
boundaries F × {0}, F × {1}, as do the upper face in
the triangular case and the upper and lower edges in the
quadrilateral case.

In particular, the surface F ×{1
2} meets every tetrahe-

dron in precisely one triangle or quadrilateral. We refer
to F × {1

2} as the central surface of the I-bundle.
An example of an untwisted thin I-bundle over the

torus is illustrated in Figure 3. This triangulation con-
sists of six tetrahedra arranged into a cube. The front
and back faces of the cube form the boundary tori, which
are shaded in the second diagram of the sequence. The
remaining faces are identified in the usual way for a torus
(the top identified with the bottom and the left identified
with the right).

The central surface T 2 ×{1
2} is shown in the third di-

agram. In the fourth diagram we can see precisely how
the six tetrahedra divide this central torus into six cells,
each a triangle or quadrilateral, with the arrows indicat-
ing which edges are identified with which.

It follows from Definition 2.1 that a thin I-bundle is
“only one tetrahedron thick.” That is, each tetrahedron
runs all the way from one boundary surface to the other,
as does each nonboundary edge.

As a final note, it should be observed that the decom-
position of the central surface offers enough information
to completely reconstruct the thin I-bundle. This is be-
cause each triangle or quadrilateral of the central surface
corresponds to one tetrahedron, and the adjacencies of
the triangles and quadrilaterals dictate the correspond-
ing adjacencies between tetrahedra.

We move now to describe a layering, a well-known
procedure by which a single tetrahedron is attached to
a boundary surface in order to rearrange the boundary
edges.
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e
f

f

∆

B

FIGURE 4. Performing a layering.

Definition 2.2. (Layering.) Consider a triangulation
with some boundary component B. A layering involves
attaching a single tetrahedron ∆ to the boundary B as
follows. Two adjacent faces of ∆ are identified directly
with two adjacent faces of B, and the remaining two faces
of ∆ become new boundary faces. This procedure is il-
lustrated in Figure 4.

The underlying 3-manifold is unchanged—the primary
effect of the layering is to alter the curves formed by the
edges on the boundary. This is illustrated in the right-
hand diagram of Figure 4, where the old boundary edge
e has been made internal and a new, different, boundary
edge f has appeared in its place.

Given Definitions 2.1 and 2.2, we can now define a
layered surface bundle precisely.

Definition 2.3. (Layered surface bundle.) A layered
torus bundle or a layered Klein-bottle bundle is a triangu-
lation formed as follows. Let F be either the torus or the
Klein bottle. An untwisted I-bundle over F is formed
such that each boundary F × {0} and F × {1} consists
of precisely two faces. Then zero or more tetrahedra are
sequentially layered onto the boundary F × {1}, result-
ing in a new boundary surface F ′, again with precisely
two faces. Finally, the surfaces F ×{0} and F ′ are iden-
tified according to some homeomorphism of the original
surface F .

For convenience, we refer to both layered torus bun-
dles and layered Klein-bottle bundles as layered surface
bundles.

It is clear that the 3-manifold formed from a layered
torus bundle or a layered Klein-bottle bundle is a torus
bundle or Klein-bottle bundle over the circle. Once again,
the reader is referred to Figure 1 for a pictorial represen-
tation of this procedure.

2.1.2 Census Triangulations. The layered surface
bundles that appear in the census give rise to the follow-

ing 3-manifolds. From layered torus bundles we obtain
the six manifolds

T 2 × I/
[

1 1
1 0

]
, T 2 × I/

[
0 1
1 0

]
, T 2 × I/

[
1 0
0 −1

]
,

T 2 × I/
[

2 1
1 0

]
, T 2 × I/

[
3 1
1 0

]
, T 2 × I/

[
3 2
2 1

]
.

From layered Klein-bottle bundles we obtain the four flat
manifolds

T 2 × I/
[

0 1
1 0

]
, T 2 × I/

[
1 0
0 −1

]
,

SFS
(
RP 2 : (2, 1) (2, 1)

)
, SFS

(
D̄ : (2, 1) (2, 1)

)
,

each of which has an alternative expression as a Klein-
bottle bundle over the circle.

Table 3 places these observations within the context
of the overall census. Specifically, it lists the number of
different layered surface bundles that appear in the cen-
sus for each number of tetrahedra, as well as the number
of distinct 3-manifolds that these layered surface bun-
dles describe. Note that there are only eight distinct
3-manifolds in total, since in the lists above, the torus
bundles T 2 × I/

[
0 1
1 0

]
and T 2 × I/

[
1 0
0 −1

]
each appear

twice.
Again it can be observed that there are significantly

more triangulations than 3-manifolds. This is because
there are several different choices for the initial thin I-
bundle, as well as several different boundary homeomor-
phisms (and thus several different layerings) that can be
used to describe the same 3-manifold.

Tetrahedra 3-Manifolds Triangulations

6 5 (out of 5) 15 (out of 24)
7 1 (out of 3) 4 (out of 17)
8 2 (out of 10) 12 (out of 59)

TABLE 3. Frequencies of layered surface bundles
within the census.
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Twisted product T 2 ∼× I (6 tets)

Boundary torus (4 faces)

Two layered
solid tori

FIGURE 5. Constructing a plugged thin I-bundle.

2.2 Plugged Thin I-Bundles

A plugged thin I-bundle is a type of triangulation
that allows us to create a nonorientable Seifert fibered
space with two exceptional fibers. It begins with a 6-
tetrahedron triangulation of the twisted product T 2 ∼× I,
which has four boundary faces. Attached to this bound-
ary are two new solid tori. This procedure is illustrated
in Figure 5.

The fibration results as follows. Let M2 represent
the Möbius band, and let the orbifold Ā be the annulus
with one reflector boundary component and one regular
boundary component. The twisted product T 2 ∼× I can
be represented as a trivial Seifert fibered space over ei-
ther M2 or Ā (depending on the placement of the fibers).4

The two new tori then close off the base orbifold and in-
troduce two exceptional fibers. The resulting 3-manifold
is a Seifert fibered space over either RP 2 or D̄ with two
exceptional fibers.

2.2.1 Components. We now describe details of how
the separate components of a plugged thin I-bundle are
formed. The original T 2 ∼× I is triangulated as a twisted
thin I-bundle, and the two additional tori are triangu-
lated as layered solid tori. We describe each of these
components in turn.

Definition 2.4. (Twisted thin I-bundle.) A twisted thin
I-bundle over the torus is a triangulation of the twisted
product T 2 ∼× I formed as follows.

Consider the interval I = [0, 1]. The twisted product
T 2 ∼× I is naturally foliated by surfaces T 2 × {x, 1 − x}
for 0 ≤ x ≤ 1

2 . For all x �= 1
2 , this surface is a double

cover of the torus T 2 × {1
2}.

As in Definition 2.1, we require that this foliation de-
compose each individual tetrahedron into either triangles
or quadrilaterals as illustrated in Figure 2. Once again,
we insist that every vertex lie on the boundary T 2×{0, 1},

4More generally, the Seifert fibrations of every I-bundle over
the torus or Klein bottle are classified by Amendola and Martelli
in [Amendola and Martelli 05 Appendix A].

as do the upper face in the triangular case and the upper
and lower edges in the quadrilateral case.

Again we observe that the surface T 2 ×{1
2} meets ev-

ery tetrahedron in precisely one triangle or quadrilateral.
This surface is referred to as the central torus of the I-
bundle.

An example of a twisted thin I-bundle over the torus is
shown in Figure 6. Here we have six tetrahedra arranged
into a long triangular prism, whose four back faces form
the boundary torus (as shaded in the first diagram). The
left and right triangles are identified directly (so that
∆ADG is identified with ∆CFJ ). The upper and lower
rectangles are identified with a twist and a translation,
so that �ABHG and �HJFE are identified and �GHED
and �BCJH are identified.

The central torus T 2 × { 1
2} is shaded in the second

diagram of the sequence, and in the third diagram it is
made clear how the six tetrahedra divide this torus into
four triangles and two quadrilaterals. The arrows on this
final diagram indicate how the edges of the central torus
are identified.

As with the untwisted thin I-bundles of the previous
section, it should be noted that the decomposition of the
central torus into triangles and quadrilaterals provides
enough information to completely reconstruct the thin
I-bundle.

The second component that appears in a plugged thin
I-bundle is the layered solid torus. Layered solid tori are
well understood, and have been discussed by Jaco and
Rubinstein [Jaco and Rubinstein 03, Jaco and Rubin-
stein 06] as well as by Matveev, Martelli, and Petronio in
the context of special spines [Matveev 98, Martelli and
Petronio 04]. In the context of a census of triangulations
they are described and parameterized in [Burton 03]. We
omit the details here.

For this overview it suffices to know the following: A
layered solid torus is a triangulation of a solid torus con-
taining one vertex, two boundary faces, and three bound-
ary edges, as illustrated in Figure 7. Moreover, it is
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The twisted

product T 2 ∼× I The central torus

A B C

D E F

G
H

J

FIGURE 6. An example of a twisted thin I-bundle.

Solid
torus

FIGURE 7. The boundary of a layered solid torus.

F

F ′

FIGURE 8. A degenerate layered solid torus.

constructed with the explicit aim of making its three
boundary edges follow some particular curves along the
boundary torus. There are infinitely many different lay-
ered solid tori, corresponding to infinitely many different
choices of boundary curves.

It is useful to consider the Möbius band as a degener-
ate layered solid torus with zero tetrahedra. That is, the
Möbius band formed from a single triangle can be thick-
ened slightly to create a solid torus with two boundary
faces F and F ′, as illustrated in Figure 8.

We are now ready to define a plugged thin I-bundle.

Definition 2.5. (Plugged thin I-bundle.) A plugged thin
I-bundle is a triangulation constructed as follows: Begin
with a twisted thin I-bundle over the torus. This twisted
thin I-bundle must have precisely six tetrahedra and four
boundary faces. Furthermore, these boundary faces must
form one of the two configurations shown in Figure 9.
We refer to these configurations as the allowable torus
boundaries.

AA B C

DD F

C

EE F

B

FIGURE 9. The two allowable torus boundaries.

Observe that these boundary faces can be split into
two annuli (the left annulus ABED and the right an-
nulus BCFE , with edge BE distinct from edges AD and
CF ). To each of these annuli attach a layered solid torus.
These tori must be attached so that edges AD , BE , and
CF are identified, and each annulus ABED and BCFE
becomes a torus instead. This is illustrated for the first
boundary configuration in Figure 10.

FIGURE 10. Attaching two layered solid tori to the boundary.

Note that either layered solid torus may be degener-
ate. In this case a one-face Möbius band is inserted, and
the two faces of the corresponding boundary annulus are
joined to each side of this Möbius band. Since the Möbius
band has no thickness, the result is that the two faces of
the boundary annulus become joined to each other. An
example of this is illustrated in Figure 11, where faces
∆CDA and ∆DAB become identified.

Again it may help to refer to Figure 5 for an overview
of this construction. The step in which we attach the
layered solid tori is a little counterintuitive, since we
are essentially using two solid tori to fill just one torus

A AB B

C CD D

FIGURE 11. Attaching a degenerate layered solid torus
to an annulus.
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Layered solid torus #1

Layered solid torus #2

FIGURE 12. Pinching the torus boundary to create two separate tori.

boundary component. Figure 12 illustrates what is really
happening—the single torus boundary is pinched along
a curve to form two separate torus boundaries, each of
which is then filled with a separate layered solid torus.

We can now determine the underlying 3-manifold as
follows: The four-face boundary of the twisted T 2 ∼× I

can be filled with vertical fibers, as illustrated in Fig-
ure 13. As shown in [Amendola and Martelli 05], this ex-
tends to a Seifert fibration of T 2 ∼× I as a trivial Seifert
fibered space over either M2 or Ā. In the other direc-
tion, this extends to a Seifert fibration of each layered
solid torus with an exceptional fiber at its center (unless
the boundary curves for the layered solid torus are cho-
sen such that the meridional disk of the torus is bounded
by a fiber or meets each fiber just once).

The result is a Seifert fibered space over either RP 2

or D̄ with two exceptional fibers. See [Burton 03] for a
formula that gives the precise Seifert invariants in terms
of the individual parameters of the thin I-bundle and the
two layered solid tori.

FIGURE 13. Fibers in the two allowable torus boundaries.

2.2.2 Census Triangulations. The plugged thin I-
bundles in the census give rise to the Seifert fibered spaces

SFS
(
RP 2 : (2, 1) (2, 1)

)
, SFS

(
RP 2 : (2, 1) (3, 1)

)
,

SFS
(
RP 2 : (2, 1) (4, 1)

)
, SFS

(
RP 2 : (2, 1) (5, 2)

)
,

SFS
(
RP 2 : (3, 1) (3, 1)

)
, SFS

(
RP 2 : (3, 1) (3, 2)

)
,

SFS
(
D̄ : (2, 1) (2, 1)

)
, SFS

(
D̄ : (2, 1) (3, 1)

)
,

SFS
(
D̄ : (2, 1) (4, 1)

)
, SFS

(
D̄ : (2, 1) (5, 2)

)
,

SFS
(
D̄ : (3, 1) (3, 1)

)
, SFS

(
D̄ : (3, 1) (3, 2)

)
.

Table 4 lists the frequencies of plugged thin I-bundles
within the overall census. Here the large number of
triangulations results from the fact that there are sev-
eral possible choices for the triangulation of the initial
twisted product T 2 ∼× I, as well as the equivalence be-
tween some spaces such as SFS

(
RP 2 : (3, 1) (3, 1)

)
and

SFS
(
RP 2 : (3, 2) (3, 2)

)
.

Tetrahedra 3-Manifolds Triangulations

6 2 (out of 5) 4 (out of 24)
7 2 (out of 3) 6 (out of 17)
8 8 (out of 10) 22 (out of 59)

TABLE 4. Frequencies of plugged thin I-bundles within
the census.

2.3 Plugged Thick I-Bundles

A plugged thick I-bundle is very similar in construction to
a plugged thin I-bundle. The difference is that a smaller
twisted thin I-bundle is used, but the resulting torus
boundary is not one of the allowable torus boundaries of
Figure 9. As a result, some additional tetrahedra must
be added to reconfigure the torus boundary (thus “thick-
ening” the I-bundle). Once this is done, the two new
layered solid tori are attached as before. This procedure
is illustrated in Figure 14.

There are two different ways in which this construction
can be carried out:

(i) We begin with a 3-tetrahedron twisted thin I-bundle
over the torus. An example is shown in Figure 15.
The three tetrahedra are arranged into a triangu-
lar prism, and the boundary torus is formed from
the two back faces (as shaded in the second dia-
gram). The left and right faces are identified di-
rectly (with ∆ACE identified with ∆BDF ), and
the upper and lower squares are identified with a
twist and a translation (with ∆EFA and ∆CDF
identified and with ∆ABF and ∆EFC identified).
As usual, the third and fourth diagrams illustrate
the central torus T 2 × {1

2}.
The resulting boundary torus has only two faces,
which is clearly not an allowable torus boundary
(see Definition 2.5 and Figure 9). To compensate,
we attach a 3-tetrahedron thickening plug as illus-
trated in Figure 16. The two back faces of this plug
(shaded in the diagram) are attached to the old two-
face boundary torus. The four front faces become a
new allowable boundary torus, and the upper and
lower faces ∆ABC and ∆DEF are identified with
each other.

(ii) We begin with a 5-tetrahedron twisted thin I-bundle
over the torus. This is illustrated in Figure 17, with
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Twisted product T 2 ∼× I (3 or 5 tets)

Bad boundary torus (2 or 4 faces)

Thickening plug

Good boundary torus (4 faces)

Two layered
solid tori

FIGURE 14. Constructing a plugged thick I-bundle.

The twisted

product T 2 ∼× I
The torus
boundary The central torus

A B

C D

E F

FIGURE 15. A 3-tetrahedron twisted thin I-bundle.

A

B

C

D

E

F

FIGURE 16. A 3-tetrahedron thickening plug.

The twisted

product T 2 ∼× I
The torus
boundary The central torus

FIGURE 17. A 5-tetrahedron twisted thin I-bundle.

Old torus
boundary

Layering
New torus
boundary

FIGURE 18. Layering to obtain an allowable torus boundary.

the faces of the triangular prism identified as be-
fore in Figure 15. Here the torus boundary has
four faces, but they are not arranged into an allow-
able torus boundary. We must therefore reconfigure
the boundary edges by performing a layering as il-

lustrated in Figure 18, resulting in a new four-face
boundary that satisfies our requirements.

We can formalize this into the following definition. For
a complete enumeration of the different I-bundles and
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thickening plugs that can be used, the reader is referred
to [Burton 03].

Definition 2.6. (Plugged thick I-bundle.) A plugged
thick I-bundle is a triangulation formed as follows: We
begin with a twisted thin I-bundle over the torus, which
has either (i) three tetrahedra and two boundary faces,
or (ii) five tetrahedra and four boundary faces. We then
convert the torus boundary into one of the allowable
torus boundaries described in Definition 2.5 (see Fig-
ure 9), either by (i) inserting a 3-tetrahedron thickening
plug as described above, or (ii) layering a new tetrahe-
dron onto the torus boundary.

We require that the resulting structure be a 6-
tetrahedron triangulation of the twisted product T 2 ∼× I

with an allowable torus boundary. We finish the con-
struction by attaching two layered solid tori exactly as
described in Definition 2.5.

Since we are producing triangulations of the twisted
product T 2 ∼× I with the same allowable boundary tori
used for plugged thin I-bundles, it follows that we should
obtain the same underlying 3-manifolds. Specifically, we
obtain Seifert fibered spaces over either RP 2 or D̄ with
two exceptional fibers. Again a precise formula appears
in [Burton 03] for calculating the exact Seifert invariants
in terms of the individual parameters of the triangula-
tion.

2.3.1 Census Triangulations. The plugged thick I-
bundles in the census give rise to the spaces

SFS
(
RP 2 : (2, 1) (2, 1)

)
, SFS

(
RP 2 : (2, 1) (3, 1)

)
,

SFS
(
RP 2 : (2, 1) (4, 1)

)
, SFS

(
RP 2 : (2, 1) (5, 2)

)
,

SFS
(
RP 2 : (3, 1) (3, 1)

)
, SFS

(
RP 2 : (3, 1) (3, 2)

)
,

SFS
(
D̄ : (2, 1) (2, 1)

)
, SFS

(
D̄ : (2, 1) (3, 1)

)
,

SFS
(
D̄ : (2, 1) (4, 1)

)
, SFS

(
D̄ : (2, 1) (5, 2)

)
,

SFS
(
D̄ : (3, 1) (3, 1)

)
, SFS

(
D̄ : (3, 1) (3, 2)

)
.

As expected from the similarity in construction, these are
exactly the same 12 spaces as the plugged thin I-bundles
produce (though none of the specific triangulations are

Tetrahedra 3-Manifolds Triangulations

6 2 (out of 5) 4 (out of 24)
7 2 (out of 3) 7 (out of 17)
8 8 (out of 10) 25 (out of 59)

TABLE 5. Frequencies of plugged thick I-bundles
within the census.

the same). Table 5 lists the frequencies of plugged thick
I-bundles within the overall census.

3. OBSERVATIONS AND CONJECTURES

In this section, we pull together observations from the
census and form conjectures based on these observations.
Following this, we discuss the future of the nonorientable
census, including what we might expect to see when the
census is extended to higher numbers of tetrahedra.

As explained in the introduction, there is an extremely
heavy computational load in creating a census such as
this. Each new level of the census (measured by num-
ber of tetrahedra, or equivalently by the complexity of
Matveev) is an order of magnitude more difficult to
construct than the last. At the time of writing, the
9-tetrahedron nonorientable census is under construc-
tion, with a healthy body of partial results already ob-
tained.5 Each of the conjectures below is consistent with
these partial results. We return specifically to the 9-
tetrahedron census in Section 3.3.

3.1 Minimal Triangulations

Our first observation relates to the combinatorial struc-
tures of nonorientable minimal triangulations. Recall
from the introduction that very few sufficient conditions
are known for minimal triangulations. Conjectures have
been made for various classes of 3-manifolds, but such
conjectures are notoriously difficult to prove.

Matveev, Martelli, and Petronio have made a variety
of well-grounded conjectures about the smallest number
of tetrahedra required for various classes of orientable 3-
manifolds [Matveev 98, Martelli and Petronio 04]. Here
we form conjectures of this type in the nonorientable case.
Moreover, based upon the growing body of experimental
evidence, we push further and make conjectures regard-
ing the construction of all minimal triangulations of var-
ious classes of nonorientable 3-manifolds.

Section 2 introduces three families of triangulations:
(i) layered surface bundles, (ii) plugged thin I-bundles,
and (iii) plugged thick I-bundles. It is easy enough to
see that these families produce (i) torus or Klein-bottle
bundles over the circle and (ii, iii) Seifert fibered spaces
over RP 2 or D̄ with two exceptional fibers. What is less
obvious is that every minimal triangulation of such a 3-
manifold should belong to one of the three families listed
above.

5The 9-tetrahedron and 10-tetrahedron censuses were completed
in 2006 and are described in [Burton 06]. These newer results
remain consistent with the conjectures presented in this paper.
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In fact, the evidence supports this suggestion, with
the exception of the four flat manifolds at the lowest
(6-tetrahedron) level of the census. Although most 3-
manifolds have many different minimal triangulations
(up to 10 in some cases), these minimal triangulations
all belong to the three families above. The partial results
for the 9-tetrahedron census also support this hypothe-
sis, even though a much wider variety of triangulations
is found at this level (as discussed below in Section 3.3).
We are therefore led to make the following conjectures.

Conjecture 3.1. Let M be a torus bundle over the circle
that is not one of the flat manifolds

T 2 × I/
[

0 1
1 0

]
, T 2 × I/

[
1 0
0 −1

]
.

Then every minimal triangulation of M is a layered torus
bundle, as described by Definition 2.3.

Moreover, at least one minimal triangulation of M has
at its core the 6-tetrahedron product T 2 × I illustrated
in Figure 3. In other words, this 6-tetrahedron product
T 2 × I may be used as a starting point for constructing
a minimal triangulation of M .

Conjecture 3.2. Let M be a Seifert fibered space over
either RP 2 or D̄ with precisely two exceptional fibers.
Moreover, suppose that M is not one of the flat manifolds
SFS

(
RP 2 : (2, 1) (2, 1)

)
, SFS

(
D̄ : (2, 1) (2, 1)

)
. Then

every minimal triangulation of M is either a plugged thin
I-bundle or a plugged thick I-bundle, as described by Def-
initions 2.5 and 2.6.

Note that if these conjectures are true, the number of
tetrahedra in such a minimal triangulation is straight-
forward to calculate. The number of layerings required
to obtain a particular set of boundary curves is well de-
scribed by Martelli and Petronio [Martelli and Petronio
04], though in the equivalent language of special spines.
Similar calculations in the language of triangulations and
layered solid tori have been described by Jaco and Ru-
binstein in a variety of informal contexts.

What remains then is to calculate the number of tetra-
hedra that are not involved in layerings. For Conjec-
ture 3.1 we can assume this to be the 6-tetrahedron prod-
uct T 2 × I of Figure 3, and for Conjecture 3.2 we can
simply count the six additional tetrahedra involved in
the twisted product T 2 ∼× I to which our layered solid
tori are attached.

FIGURE 19. Normal disks within a tetrahedron.

3.2 Central Surfaces

Our next observation is regarding embedded surfaces
within nonorientable 3-manifolds. Recall that all three
families of triangulations described in Section 2 begin
with a thin I-bundle. The central surface of this thin I-
bundle is an embedded surface meeting each tetrahedron
of the thin I-bundle in either a single quadrilateral or a
single triangle.

This is reminiscent of the theory of normal surfaces.
Normal surfaces, first introduced by Kneser [Kneser 29]
and subsequently developed by Haken [Haken 61, Haken
62], play a powerful role in algorithms in 3-manifold
topology. A normal surface within a triangulation meets
each tetrahedron in one or more normal disks, which
are either triangles separating one vertex from the other
three or quadrilaterals separating two vertices from the
other two. A variety of normal disks can be seen in Fig-
ure 19.

It follows then that the central surface of a thin I-
bundle is a special type of normal surface, namely one
that meets each tetrahedron of the thin I-bundle in one
and only one normal disk. This leads us to make the
following more general definition.

Definition 3.3. (Central Normal Surface.) Let N be an
embedded normal surface in a 3-manifold triangulation.
We refer to N as a central normal surface if N meets each
tetrahedron of the triangulation in at most one normal
disk (i.e., one triangle, one quadrilateral, or nothing).

Note that we have replaced “one and only one” with
“at most one,” since the central surface of a thin I-bundle
does not meet the tetrahedra involved in the other parts
of the triangulation (such as the layered solid tori in a
plugged thin I-bundle).

It can be observed that every triangulation in this cen-
sus contains a central normal surface. This is to be ex-
pected, since a thin I-bundle appears at the core of every
family described in Section 2. This observation is more
general, however, as shown by the following result.

Theorem 3.4. Every triangulation of a closed nonori-
entable 3-manifold contains a central normal surface.
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FIGURE 20. Constructing a central surface from black
and white edges.

An outline of a proof is sketched below; thanks are due
to Matveev and Rubinstein for independently suggesting
the approach.

Proof: The edges of such a triangulation can be colored
black or white as follows. Let τ be a maximal tree in
the 1-skeleton of the triangulation, and color each edge
of τ white. Each remaining edge represents a path from
τ back to itself; color such an edge white if this path is
orientation-preserving within the 3-manifold, or black if
it is orientation-reversing. Note that since the manifold
is nonorientable, there is at least one black edge.

It is straightforward to see that the black edges of each
tetrahedron must form one of the patterns illustrated in
the upper half of Figure 20 (where solid lines represent
black edges and dotted lines represent white edges). We
can insert normal disks into the tetrahedra as illustrated
in the lower half of the figure, so that each black edge
meets exactly one disk, and each white edge meets none.
These disks can be seen to fit together to form a central
normal surface as required.

Central normal surfaces have proven invaluable for an-
alyzing census triangulations by hand. They are quickly
enumerated, and once a well-positioned central surface
has been found, the surrounding structures often become
simpler to analyze and understand.

Moreover, Theorem 3.4 may well offer a starting point
for the proofs of Conjectures 3.1 and 3.2—as with the
central surface of a thin I-bundle, a central normal sur-
face can be used to reconstruct the portion of the trian-
gulation that surrounds it, which may then lead to new
structural results.

It is worth noting that Theorem 3.4 does not hold in
the orientable case. Of the 191 closed orientable minimal
irreducible triangulations with six or fewer tetrahedra,6

only 118 have a central normal surface.
6These triangulations are enumerated in [Matveev 98] in the

equivalent language of special spines.

3.3 Future Directions

As mentioned in the introduction, the triangulations and
3-manifolds seen in the 8-tetrahedron census offer little
variety beyond what has already been seen in the cen-
suses of seven and fewer tetrahedra. The primary advan-
tage of the 8-tetrahedron census has been the larger body
of data (an additional 59 triangulations and 10 distinct
3-manifolds) that has supported the formulation of the
conjectures above.

Clearly, a greater variety must appear in the census
at some point, since there are far more nonorientable
3-manifolds than those described by the families of Sec-
tion 2. The question is how much larger the census must
become before we begin to see them.

Fortunately, the answer is, not much larger at all. As
discussed at the beginning of Section 3, the 9-tetrahedron
census is currently under construction, and a significant
body of partial results is already available. In addition
to the 3-manifolds already described (torus bundles over
the circle and Seifert fibered spaces over RP 2 or D̄ with
two exceptional fibers), the 9-tetrahedron results include
the following:

• Seifert fibered spaces over RP 2 and D̄ with three ex-
ceptional fibers. In particular, the spaces

SFS
(
RP 2 : (2, 1) (2, 1) (2, 1)

)

and
SFS

(
D̄ : (2, 1) (2, 1) (2, 1)

)

are found.

• Seifert fibered spaces over several other base orbifolds
with one exceptional fiber. The base orbifolds in-
clude the torus, the Klein bottle, the annulus with
two reflector boundaries, and the Möbius strip with
one reflector boundary. In each case a single (2, 1)
exceptional fiber is found.

• Manifolds with nontrivial JSJ composition. In par-
ticular, a number of spaces are found that begin with
a Seifert fibered space over the annulus with a single
(2, 1) fiber, followed by a nontrivial identification of
the two torus boundaries.

It is therefore hoped that once completed, the 9-
tetrahedron census can offer richer insights into the struc-
tures of nonorientable minimal triangulations than what
we have seen to date.

Moving beyond the 9-tetrahedron census, one might
ask how much further we must go before we move
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∆ 3-Manifold Triangulations

6 T 2 × I/

[
1 1
1 0

]
BT2

6 |−1,1|1,0

T 2 × I/

[
0 1
1 0

]
BT1

6 |−1,0|−1,1, BT1
6 |0,−1|−1,0, BT1

6 |0,1|1,0 = BK2
6 |0,−1|−1,0,

BT1
6 |1,0|1,−1, BK1

6 |0,−1|−1,0, E6,3

T 2 × I/

[
1 0
0 −1

]
BT2

6 |1,0|0,−1, BK1
6 |1,0|0,1, BK2

6 |1,0|0,1

SFS
(
RP 2 : (2, 1) (2, 1)

)
BK1

6 |0,1|1,0, BK2
6 |0,1|1,0, HT̃1

6
, HT̃2

6
, HT̃3

6
,

KT̃1
5
, KT̃2

5
, KT̃3

5
, E6,2

SFS
(
D̄ : (2, 1) (2, 1)

)
BK1

6 |−1,0|0,−1, BK2
6 |−1,0|0,−1, HT̃4

6
, KT̃4

5
, E6,1

7 T 2 × I/

[
2 1
1 0

]
BT2

6 |−1,1|2,−1, BT2
6 |0,−1|−1,2, BT7|−1,−1|−1,0, BT7|1,1|1,0

SFS
(
RP 2 : (2, 1) (3, 1)

)
HT̃1

6 |3,−2, HT̃1
6 |3,−1, HT̃2

6 |3,−2, HT̃2
6 |3,−1, HT̃3

6 |3,−1,

KT̃1
5 |3,−1, KT̃2

5 |3,−2, KT̃2
5 |3,−1, KT̃3

5 |3,−2, KT̃3
5 |3,−1

SFS
(
D̄ : (2, 1) (3, 1)

)
HT̃4

6 |3,−1, KT̃4
5 |3,−2, KT̃4

5 |3,−1

8 T 2 × I/

[
3 1
1 0

]
BT2

6 |−3,1|1,0, BT2
6 |−2,3|1,−1, BT2

6 |−1,3|1,−2,

BT7|−2,−1|−1,0, BT7|−1,−1|−2,−1, BT7|2,1|1,0,

BT1
8 |−1,−1|−1,0, BT1

8 |1,1|1,0, BT2
8 |0,1|1,1, BT2

8 |1,1|1,0

T 2 × I/

[
3 2
2 1

]
BT2

6 |−1,2|2,−3, BT7|−1,−2|−1,−1

SFS
(
RP 2 : (2, 1) (4, 1)

)
HT̃1

6 |4,−3, HT̃1
6 |4,−1, HT̃2

6 |4,−3, HT̃2
6 |4,−1, HT̃3

6 |4,−1,

KT̃1
5 |4,−1, KT̃2

5 |4,−3, KT̃2
5 |4,−1, KT̃3

5 |4,−3, KT̃3
5 |4,−1

SFS
(
RP 2 : (2, 1) (5, 2)

)
HT̃1

6 |5,−3, HT̃1
6 |5,−2, HT̃2

6 |5,−3, HT̃2
6 |5,−2, HT̃3

6 |5,−2,

KT̃1
5 |5,−2, KT̃2

5 |5,−3, KT̃2
5 |5,−2, KT̃3

5 |5,−3, KT̃3
5 |5,−2

SFS
(
RP 2 : (3, 1) (3, 1)

)
HT̃1

6 |3,−1|3,−2, HT̃2
6 |3,−1|3,−2, HT̃3

6 |3,−1|3,−2,

KT̃1
5 |3,−1|3,−2, KT̃2

5 |3,−2|3,−1, KT̃2
5 |3,−1|3,−2, KT̃3

5 |3,−1|3,−2

SFS
(
RP 2 : (3, 1) (3, 2)

)
HT̃1

6 |3,−2|3,−2, HT̃1
6 |3,−1|3,−1, HT̃2

6 |3,−2|3,−2,

HT̃2
6 |3,−1|3,−1, HT̃3

6 |3,−1|3,−1, KT̃1
5 |3,−1|3,−1,

KT̃2
5 |3,−1|3,−1, KT̃3

5 |3,−2|3,−2, KT̃3
5 |3,−1|3,−1

SFS
(
D̄ : (2, 1) (4, 1)

)
HT̃4

6 |4,−1, KT̃4
5 |4,−3, KT̃4

5 |4,−1

SFS
(
D̄ : (2, 1) (5, 2)

)
HT̃4

6 |5,−2, KT̃4
5 |5,−3, KT̃4

5 |5,−2

SFS
(
D̄ : (3, 1) (3, 1)

)
HT̃4

6 |3,−1|3,−1, KT̃4
5 |3,−2|3,−1, KT̃4

5 |3,−1|3,−2

SFS
(
D̄ : (3, 1) (3, 2)

)
HT̃4

6 |3,−1|3,−2, KT̃4
5 |3,−1|3,−1

TABLE 6. All 18 distinct 3-manifolds and their 100 minimal triangulations.
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away from graph manifolds. It was proven by Matveev
[Matveev 90] that the first hyperbolic manifolds to ap-
pear in the orientable census are those of smallest known
volume (first seen at nine tetrahedra). It is reasonable to
expect the same of the nonorientable census; the candi-
date smallest-volume nonorientable hyperbolic manifold
described by Hodgson and Weeks [Hodgson and Weeks
94] can be triangulated with 11 tetrahedra, though nei-
ther the minimality of the volume nor the minimality of
the triangulation has been proven.

Finally it must be noted that any extension of the cen-
sus will require new improvements in the algorithm—the
worse-than-exponential growth of the search space means
that increased computing power is not enough. Ideally,
such improvements would involve a blend of topological
results (such as those seen in [Burton 04a]) and pure al-
gorithmic optimizations. The expected yield from higher
levels of the census is a great incentive, and so work on
the enumeration algorithm is continuing.

4. APPENDIX: TRIANGULATIONS FROM
THE CENSUS

For convenience we include a list of all 100 triangulations
from the census, named according to the precise param-
eterizations described in [Burton 03]. See Table 6. This
allows the reader to cross-reference triangulations and
constructions between these two papers. In summary,
we have the following:

• Triangulations HT̃ ... are plugged thin I-bundles, and
triangulations KT̃ ... are plugged thick I-bundles.

• Triangulations BT ... are layered torus bundles, and
triangulations BK... are layered Klein-bottle bun-
dles. Note that there is one triangulation of T 2 ×
I/

[
0 1
1 0

]
that can be expressed in both forms.

• Triangulations E6,1, E6,2, and E6,3 are described in
[Burton 03] as exceptional triangulations. However,
both E6,1 and E6,2 are also layered Klein-bottle bun-
dles whose central Klein bottles were not originally
included in the parameterization of [Burton 03].

• More specifically, triangulations BTn... and BKn...

are constructed from thin I-bundles containing pre-
cisely n tetrahedra. The four triangulations named
BT8... are not included in the parameterization of
[Burton 03], since 8-tetrahedron thin I-bundles were
not covered.

For full details, including a precise explanation of the pa-
rameterization system, the reader is referred to [Burton
03].
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