
Sparse Representation for Cyclotomic Fields
Claus Fieker

CONTENTS

1. Introduction
2. Sparse Representation
3. Arithmetic
4. Embeddings
5. Prime Splitting
6. Comparison
7. Generalization
8. Examples
References

2000 AMS Subject Classification: Primary 11-04;
Secondary 11R18, 11Y16

Keywords: Cyclotomic fields, sparse representation

Currently, all major implementations of cyclotomic fields as well
as number fields are based on a dense model in which elements
are represented either as dense polynomials in the generator of
the field or as coefficient vectors with respect to a fixed basis.
While this representation allows for the asymptotically fastest
arithmetic for general elements, it is unsuitable for fields of de-
gree greater than 104 that arise in certain applications such as
character theory for finite groups. We propose instead a sparse
representation for cyclotomic fields that is particularly tailored
to representation theory. We implemented our ideas in magma
and used it for fields of degree greater than 106 over Q.

1. INTRODUCTION

Currently, most implementations of number fields are
based on explicitly known primitive elements and use a
dense representation for the elements: a number field
K/Q is given by specifying a (monic) irreducible polyno-
mial f ∈ Z[x] over the integers, and K is constructed as
the quotient ring

K := Q[x]/f.

Based on this setting, elements are easily represented as
polynomials of degree less than deg f = [K : Q]. Since
univariate polynomials mostly have a dense representa-
tion on a computer, i.e., are represented as a vector of
length equal to the degree +1 of the polynomial, number-
field elements inherit this property.

The primary motivation for this project was an appli-
cation in the computation of characters of finite groups
[Unger 06] in which one needed to work in the nth cyclo-
tomic field for

n = 26 · 3 · 52 · 1201 = 5,764,800 = 78 − 1

of degree 1,536,000 over Q. In particular, we need to eval-
uate the sum of eigenvalues of matrices over a finite field
lifted into a cyclotomic field. Suppose the eigenvalues lie
in a finite field GF(pk). Then the lift of a multiplicative
generator of GF(pk)× is ζpk−1. Thus the above example

c© A K Peters, Ltd.
1058-6458/2007 $ 0.50 per page

Experimental Mathematics 16:4, page 493

494 Experimental Mathematics, Vol. 16 (2007), No. 4

originated from a matrix over GF(7) with eigenvalues in
GF(78).

A second motivation arose in computational class field
theory [Fieker 01], where one starts with a finite abelian
group and computes a number field whose automorphism
group is isomorphic to the given group. The field de-
composes naturally into a compositum of cyclic fields of
prime-power degree parallel to the decomposition of the
group.

Lastly, a large number of applications start with con-
structions like this:

Let K be a field containing a root of f and g

and an nth root of unity.

One would like to preserve this information if possible,
especially since usually, the size of a defining polynomial
for the resulting field as a simple extension of Q is pro-
hibitively large and also since users usually expect the
output to be given with respect to their input.

In this article, we will focus mainly on the cyclotomic
fields. While most of the techniques apply equally to
more general fields, we will discuss mainly the techniques
necessary in the context of character theory.

2. SPARSE REPRESENTATION

Our sparse representation is based on magma’s sparse
representation for multivariate polynomials: Let R :=
Q[x1, . . . , xr] be a polynomial ring of rank r over Q and
let I < R be a zero-dimensional maximal ideal. Then
K := R/I is a finite extension of Q, and thus a num-
ber field. Elements of K can be represented as reduced
polynomials in x1, . . . , xr, where the notion of reduced
depends on the term order of R.

In what follows, the ideal I will always be generated
by cyclotomic polynomials with pairwise coprime con-
ductors. The term order is the lexicographical order, so
that the generating polynomials already form a Gröbner
basis for I.

Let us fix the setting: We want to perform computa-
tions in K := Q(ζn), where ζn is a primitive nth root
of unity. Later we will specify ζn := exp(2πi/n) such
that ζn is uniquely determined as a complex number. In
order to have a meaningful sparse representation, we as-
sume that n is not a prime power:

n =
r∏

i=1

pni
i ,

with r > 1 and the pi distinct. For the implementation
we assume that

φ(pni
i) = (pi − 1)pni−1

i < 230

(1 ≤ i ≤ r).
Writing fn for the nth cyclotomic polynomial, we set

I :=
〈
fp

n1
1

(x1), . . . , fpnr
r

(xr)
〉

and immediately see that

Q(ζn) = Q(ζpn1
1
, . . . , ζpnr

r
) ∼= R/I. (2–1)

Elements of K are represented as sparse polynomi-
als, that is, as a (sorted) list of pairs (ce, e) with e =
(e1, . . . , er) the exponent vector and ce ∈ Q the co-
efficient. Thus (ce, e) represents ce

∏
ζei

p
ni
i

. Exponents
ei ≥ deg fp

ni
i

can be reduced using the cyclotomic poly-
nomials (or explicit formulas). Since the polynomials are
univariate in different variables, the reduction of ei does
not change any of the other exponents; the term is re-
placed by a sum of terms for which the ith exponents are
bounded by φ(pni

i). In general, however, since reduction
is a fairly expensive operation, we allow the exponents to
grow to approximately 2φ(pni

i) before we reduce, unless
a unique representation is required for some operation.

3. ARITHMETIC

3.1 Basic Arithmetic

The basic arithmetic operations, such as addition and
multiplication, are done using representatives in R. Thus
they reduce to addition and multiplication of multivari-
ate polynomials, possibly followed by a reduction. It is
important to note that none of these operations requires
a unique representation; any representative of f + I in
R can be used. In what follows, however, we require the
terms in f to be sorted. The complexity of the oper-
ations is straightforward to estimate: Let α, β ∈ K be
represented by f + I and g + I respectively, denoted by
α ∼= f + I and β ∼= g + I. We write #f for the number
of terms in f . By abuse of notation, we also write #α to
denote the number of terms in the current representative
for α when it is clear what the representative looks like.

Theorem 3.1. For α and β ∈ K, α ∼= f + I, β ∼= g+ I we
have

(i) α+ β = γ ∼= h+ I and h = f + g can be computed
in O((#f + #g)) operations,

Fieker: Sparse Representation for Cyclotomic Fields 495

(ii) αβ = γ ∼= h + I and h = fg can be computed in
O((#f#g) log(#f#g)) operations.

Proof: With naive algorithms used for the operation on
the multivariate polynomials, the only part of the state-
ment that needs any explanation is the log factor in the
complexity estimate for the multiplication. It comes from
the sorting that is required to find identical exponent vec-
tors. If we used a hash-based implementation for multi-
variate polynomials, the log factor would essentially dis-
appear.

It is important to realize that the complexity of oper-
ations depends mainly on the algebraic numbers involved
and is essentially independent of the degree of the field K
or even of the polynomials fp

ni
i

used to represent K. In
fact, the defining polynomials are used only to reduce a
representation; thus as long as no “overflow” occurs dur-
ing a multiplication, the defining polynomials are never
used. Thus for small numbers, the sparse representation
is much better than the classical dense one.

On the other hand, the hidden constants are not negli-
gible, and as the numbers involved get denser, the sparse
representation performs worse and worse. Therefore, for
dense numbers the classical representation is better. Ad-
ditionally, even if we assume that #f,#g ≤ degK and
therefore get for the complexity of the multiplication

O(#f#g log(#f#g)) = O((degK)2 log degK),

that is far worse than the O(degK log degK) that the
asymptotically fast methods in [Gathen and Gerhard 99]
that are available for the classical representation would
incur.

3.2 Minimal Polynomials

For arbitrary dense elements, the computation of mini-
mal polynomials is a hopeless task, since the degree of
such a polynomial will be the degree of the field. How-
ever, for elements that lie in small-degree subfields, it is
reasonable to compute minimal polynomials using linear
algebra. Later, we will indicate a different approach as
well.

Let B := {∏r
i=1 x

ei
i | 0 ≤ ei < deg fp

ni
i
} be the canon-

ical basis for K/Q. By mapping

Ψ : K � α =
∑
b∈B

αbb �→ (αb)b∈B ∈ QB ,

we obtain a Q-vector-space isomorphism that we will use
to compute minimal polynomials. We write (A | B) for

the concatenation of two matrices A and B with the same
number of rows.

Algorithm 3.2. (Minimal Polynomial.) Let 0 �= α ∈ K be
arbitrary and Ψ : K → QB as above.

1. Set M := Ψ(1), β = 1, d := (K : Q) and i := 0.

2. While i ≤ d do

(a) Repeat i := i + 1, β := βα and M := (M |
Ψ(β)) until i divides d.

(b) Try to find a nontrivial element e = (e0, . . . , ei)t

in the null space of M , i.e., Me = 0. If there is
such an element, set f := 1/ei

∑i
j=0 ejx

j and
return f ; if not, continue with step 2.

Proof: Since minimal polynomials of elements always de-
fine subfields, the degree of f must be a divisor of d. By
construction, the above algorithm finds the relation be-
tween powers of α of minimal degree, and it is clear that
ei is nonzero in the last step. The fact that Ψ is an iso-
morphism of Q vector spaces and the basis property of B
guarantee that f is indeed the minimal polynomial of α.

To estimate the complexity of the above algorithm, we
note that deg f multiplications, O(deg f) rank computa-
tions, and 1 null-space computation are used. If we use
sparse matrices to represent M and assume that none of
the multiplications requires a reduction, then the com-
plexity is independent of the degree of K. Instead it
depends on the number of nonzero coefficients of α (and
its powers) and the degree of f .

By Theorem 3.1 we see that under the assumption that
α is (very) sparse (to be more precise, we assume that
no reductions are necessary after the multiplications, or
equivalently, that for all products of elements occurring,
the products of the basis elements with nonzero coeffi-
cients are in B), the dimension of the algebra problem
is bounded by (deg f)#α. The total complexity for the
deg f multiplications becomes O((#α)deg f log(#α)). It
must be stressed that this is a very crude estimate only.
In practice, overflow is very likely to occur, making it
very hard to give a better, realistic, estimate.

3.3 Automorphisms

Since Gal(K/Q) ∼= (Z/nZ)× ∼= ∏r
i=1(Z/p

ni
i Z)×, au-

tomorphisms can be parameterized by integer vectors
a = (a1, . . . , ar) ∈ Zr such that ai is coprime to pi. An

496 Experimental Mathematics, Vol. 16 (2007), No. 4

application of a to a basis element B � b =
∏r

i=1 x
ei
i

can thus be computed as a(b) = ba =
∏r

i=1 x
aiei
i followed

by a reduction modulo I. The cost of an application of
any automorphism a to an arbitrary α ∈ K is therefore
O(#α) plus the cost r for a reduction. An elementary
argument shows that r = O(#αmaxr

i=1 φ(pni
i)).

3.4 Inversion

Inversion is a more complicated operation. We will give
two algorithms that can be used to compute inverses:
the first is based on the minimal polynomial, while the
second uses the automorphism group.

The first method is straightforward: Given 0 �= α ∈
K, using Algorithm 3.2, compute a polynomial f =∑l

i=0 aix
i of minimal degree such that f(α) = 0. Now

β := −1/a0

∑l
i=1 aiα

i−1 is the inverse. By reusing the
matrixM built in Algorithm 3.2, we can compute β with-
out any additional operations in K, thus obtaining the
inverse with the same complexity as the minimal polyno-
mial.

The second method is based on the identities 1/α =∏
g∈G,g �=1 α

g/N(α) and N(α) =
∏

g∈G α
g and the fact

that products (and sums) over all group elements of an
abelian group can be evaluated efficiently.

Algorithm 3.3. (Inversion.) Let 0 �= α ∈ K be arbitrary
and decompose G = Gal(K/Q) =

∏l
i=1〈gi〉 into a direct

product with #〈gi〉 = ci.

1. Set i := 1, α1 := α, β1 := α, and γ1 := 1.

2. While i ≤ l do

(a) Compute βi+1 :=
∏ci−1

j=1 α
gj

i
i , γi+1 := γiβi+1,

and αi+1 := βi+1αi.

3. Return γl+1/αl+1

Proof: After each iteration, we have γi+1 =
∏

1 �=g∈Gi
αg

and αi+1 =
∏

g∈Gi
αg, where Gi := 〈g1, . . . , gi〉. Thus at

the end of the algorithm, αl+1 ∈ Q, so that the division
is easily done.

The complexity of this operation is easily estimated:
we need

∑l
i=1 ci − 1 automorphism applications and∑l

i=1 ci multiplications in K.
For further optimization, note that we can essentially

omit step 2(a) for all i such that αi = αgi

i and thus reduce
the complexity for elements in certain subfields.

We also note that similar techniques can be used to
compute the norm and trace of elements, and easy mod-
ifications allow one to compute a set of all algebraic con-
jugates of an element, i.e., a full Galois orbit. This full
orbit can then be used to compute the degree of an ele-
ment and its minimal polynomial.

4. EMBEDDINGS

From the point of view of character theory, an important
property of the sparse representation is that it is trivial
to decide whether an element already lies in a smaller
cyclotomic field, and if so, to compute the new represen-
tation. If we set ζn := exp(2πi/n), then for all ml = n

we have ζl
n = ζm. In particular, ζp

pl+1 = ζpl .
Therefore for a monomial α =

∏r
i=1 ζ

ei

p
ni
i

∈ Q(ζn), the

smallest m | n such that α ∈ Q(ζm) is obtained as m =∏r
i=1 p

li
i for li = ni − vpi

(ei), and the new representation
is

α =
r∏

i=1

ζfi

p
li
i

for fi := ei/p
vpi

(ei)

i .
In order to decide whether α ∈ Q(ζm) for some given

m | n, we only need to check whether all the exponents
are divisible by the correct prime powers. Similarly, to
represent α in a larger field, the exponents have to be
scaled by some powers of pi.

A related task that is needed frequently is to find a
fixed primitive root of unity in a given field. However,
while for p and q coprime, ζpζq is a primitive pqth root
of unity, in general, ζpζq �= ζpq. We make use of the
following algorithm:

Algorithm 4.1. Let K := Q(ζn) be given in sparse repre-
sentation and let m | n be arbitrary.

1. Set ai = n/pni
i for i ≤ i ≤ r.

2. Compute (using the extended GCD) bi such that
aibi ≡ 1 mod pni

i .

3. Set ζn :=
∏r

i=1 ζ
bi

p
ni
i

.

4. Return ζn/m
n .

Proof: We must have ζai
n = ζpni

i
in view of the complex

embeddings. Thus expanding ζn, we get

ζai
n =

r∏
j=1

ζ
aibj

p
nj
j

=
r∏

j=1

(ζaj
n)aibj .

Fieker: Sparse Representation for Cyclotomic Fields 497

Now aibj is divisible by pnj

j for all j �= i, since ai already

is; thus ζajaibj
n = 1. For j = i our construction gives

ζaiajbj
n = (ζai

n)ajbj = ζ
ajbj

p
ni
i

= ζpni
i
,

as desired.

This algorithm can obviously also be used to compute
sparse representations from dense ones, while the reverse,
computing sparse from dense, is trivial.

5. PRIME SPLITTING

We consider only the unramified primes here, so let p be a
prime, coprime to n. The prime will split in the maximal
order ZK = Z[ζn] into a product of prime ideals:

pZK =
l∏

i=1

Pi,

where fi := degPi := deg(ZK/Pi : GF(p)), the degree of
the residue class field of Pi, is constant for all i. Class
field theory easily gives f = fi = ord(p(nZ)) in the group
(Z/nZ)×, so we can assume the degree to be known. The
standard way of computing the splitting behavior of an
unramified prime is based on a theorem of Kummer:

Theorem 5.1. (Kummer.) Let g be the minimal polynomial
for a primitive element α of K/Q. If p is a prime coprime
to the discriminant of g, then pZK =

∏l
i=1 Pi and Pi =

〈p, gi(α)〉, where gi is a lift from the factorization g =∏l
i=1 gi mod pZ.

Of course, since in our case the degree (K : Q) is
large and the defining polynomial is not “known,” we
cannot directly use this theorem. Nevertheless, it is the
foundation of our method:

Algorithm 5.2. (Prime Splitting.) Let K := Q(ζn) be
given in sparse representation and let p be a prime co-
prime to n.

1. Compute f = ord(p) in (Z/nZ)×.

2. Let C := GF(p, f), z ∈ C× be an element of or-
der n and zn a primitive nth root of unity given by
Algorithm 4.1.

3. Compute ḡ :=
∏f

i=1(x − zpi

) ∈ GF(p)[x] and a lift
g ∈ Z[x] of ḡ.

4. Let I := { }, U := 〈p〉 < (Z/nZ)×, and S :=
(Z/nZ)×//U a set of coset representatives.

5. Return I := {〈p, g(zs
n)〉 | s ∈ S}.

Proof: The validity of the algorithm follows directly from
Theorem 5.1 and the fact that the Galois group of a num-
ber field operates transitively on the prime ideals lying
over a fixed prime number.

The complexity of the algorithm can roughly be esti-
mated to depend on f and #S = n/f .

While this very simple method is certainly extremely
efficient for cyclotomic fields and unramified primes, it
does not easily generalize to arbitrary number fields, not
even to normal or abelian ones.

6. COMPARISON

In the last few sections we demonstrated how the sparse
representation can be used to implement efficient algo-
rithms for some tasks relating to representation theory.
In particular, for the computation of characters of fi-
nite groups there are other representations for cyclotomic
numbers known in the literature. In [Bosma 90], a basis
for the ring of integers is suggested such that certain sub-
sets form bases for cyclotomic subfields, and in [Breuer
97], a different approach gives bases such that all abelian
subfields have a basis that can be derived easily from it.

In general, it is difficult to compare the different meth-
ods, since their implementations follow completely differ-
ent strategies. However, some observations can be made.

Firstly, [Bosma 90] focuses essentially on a representa-
tion that allows for easy recognition of numbers that are
in cyclotomic subfields. A close examination of Section 4
shows that our field basis has essentially the same prop-
erties as Bosma’s basis, namely that subfields correspond
to subsets.

However, since our implementation is based on sparse
multivariate polynomials, while Bosma’s is based on
dense elements, it is clear that for sparse elements our
representation will be much more efficient. Moreover, el-
ements in cyclotomic subfields automatically get almost
optimal arithmetic, even without changing their repre-
sentation to reflect the smaller fields. Thus the problem
of finding a good strategy to decide when to find minimal
fields of definition is far less important and can usually
be deferred right to the end.

Also, since Bosma uses a “generic” basis, multiplica-
tion of elements has to be done either by using the struc-
ture constants or by changing the representation. Both

498 Experimental Mathematics, Vol. 16 (2007), No. 4

possibilities require either slow algorithms or the storage
of a large amount of data, n2 elements for structure con-
stants or 2n elements for a base change, both of which
are infeasible for huge values of n.

For the second method [Breuer 97], we can actually
directly compare the algorithms, since they are imple-
mented in the Gap system.1 The Gap implementation
also uses a sparse representation. Based on architectural
differences, the implementation is limited to n < 228,
while the magma version can handle larger n if the prime
powers are bounded by 230. In practice, none of those
limitations matter, since general operations become very
slow regardless.

The algorithms used for multiplication and addition
are essentially the same as ours, the main difference being
that the polynomial reduction is replaced by an explicit
formula for rewriting “wrong” powers of the primitive
element in terms of the basis, and thus the complexity
should be the same. For the computation of inverses,
they use the same idea that we use in Algorithm 3.3,
but instead of using the structure of the automorphism
group, they use a list of all automorphisms, and thus
obtain a far worse runtime.

Since Breuer’s motivation is purely group-theoretical,
he does not give any algorithms for minimal polynomials,
norm and trace computations, or prime splitting. On the
other hand, Breuer’s representation allows one in princi-
ple to find minimal fields of definition easily, while ours
finds only minimal cyclotomic fields. However, in prac-
tice, no one seems to use noncyclotomic fields.

7. GENERALIZATION

Several of the algorithms presented here for sparse cyclo-
tomic fields apply easily to arbitrary sparsely represented
number fields. The algorithms that do not carry over
easily are those that rely on knowledge of the (abelian)
automorphism group (Algorithm 3.3) and the primitive
element (Algorithm 5.2). While it is clear that inverses
can be computed using minimal polynomials, if the auto-
morphism group is known, a variation of Algorithm 3.3
applies.

So it remains to give an alternative to Algorithm 5.2.
In [Pohl 02], it is shown that the polynomial factoriza-
tion in Kummer’s theorem can be replaced by a primary
decomposition. However, in practice, this is not fast
enough. Alternatively, also in [Pohl 02], an algorithm
is given in which a randomly chosen primitive element is

1See http://www-gap.mcs.st-and.ac.uk/.

used, the difficulties being that the verification of prim-
itivity is rather expensive and the construction of the
minimal polynomial is complicated. Here we suggest a
different method:

Algorithm 7.1. Let K := Q(α1, . . . , αr) be given and
assume that the intermediate fields Q(αi) have disjoint
normal closures. Let fi be the minimal polynomial of αi.
Furthermore, let p be a rational prime that is coprime to
the discriminants of the fi for all 1 ≤ i ≤ r.

1. Set I := { }.

2. Compute li,j ∈ GF(p)[x] such that fi =
∏ri

j=1 li,j .

3. Set Li := {li,j | 1 ≤ j ≤ ri}.

4. For all l = (l1, . . . , lr) ∈ L1 × · · · × Lr do

(a) Compute d := lcm{deg li | 1 ≤ i ≤ r} and set
k := GF(p, d).

(b) Compute Ri := {x ∈ k | li(x) = 0} (1 ≤ i ≤ r)
and set R := {x ∈ R1 × · · · ×Rr}.

(c) While R �= { } do

i. Fix some x ∈ R and set R := R \
{(xpj

i)1≤i≤r | 1 ≤ j ≤ d}.
ii. Set ψ : K → k : αi �→ xi and φ : k →

GF(p)d and compute a basis b for the null
space of φ ◦ ψ restricted to Z[B] as a map
between modules.

iii. Finally, set I := I ∪ {〈b〉}.

5. Return I.

Proof: The condition on p guarantees that Z[B] is p-
maximal as an order in K (implying that prime ideals
in Z[B] “are” primes in the maximal order as well) and
that fi is square-free over GF(p). Since ψ is obviously
a (surjective) ring homomorphism from Z[B] onto k, its
kernel is an ideal. Since k is a field, the ideal has to be
prime. Using the fact that φ is an isomorphism of GF(p)
vector spaces, it is now obvious that the kernel of φ ◦ ψ
generates the prime ideal that has ψ as a residue class
field map.

The algorithm can be optimized in various ways. For
example, since pZ[B] is obviously contained in the kernel
of ψ, we can compute the kernel as a null space over
GF(p) and supplement it afterward.

Fieker: Sparse Representation for Cyclotomic Fields 499

na = 4 8 12 16 20 30 40 50 100 200 300

+ 0.000 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.030 0.040
× 0.020 0.050 0.120 0.180 0.360 0.570 1.020 1.410 3.510 8.620 16.930

+ 0.010 0.020 0.010 0.020 0.010 0.010 0.020 0.010 0.020 0.010 0.010
× 0.090 23.910 24.140 24.240 24.310 24.160 24.340 24.330 24.310 24.320 24.270

TABLE 1. l = 4, degree (Q(ζ74−1) : Q) = 640, nb = 10. The first two rows are timings in sparse representation; the last
two are for the dense model. Times are in seconds for 1000 operations each.

l na = 4 8 12 20 30 40

+ 0.020 0.030 0.030 0.030 0.030 0.030
2 × 0.030 0.050 0.060 0.070 0.090 0.090

+ 0.030 0.020 0.030 0.040 0.040 0.060
3 × 0.040 0.070 0.120 0.210 0.330 0.440

+ 0.020 0.030 0.030 0.040 0.050 0.060
4 × 0.040 0.080 0.150 0.370 0.720 1.130

+ 0.040 0.020 0.030 0.040 0.050 0.060
5 × 0.030 0.080 0.150 0.400 0.870 1.460

+ 0.020 0.030 0.040 0.050 0.050 0.060
6 × 0.040 0.080 0.150 0.410 0.940 1.710

+ 0.050 0.030 0.030 0.040 0.050 0.060
7 × 0.040 0.080 0.150 0.460 0.970 1.760

+ 0.030 0.030 0.030 0.050 0.050 0.060
8 × 0.040 0.080 0.160 0.410 0.970 1.870

TABLE 2. l = 2, . . . , 8, na = 4, 8, 12, 20, 30, 40, nb = 10. Times are in seconds for 1000 operations each

A major difference between Algorithms 5.2 and 7.1
is the way the prime ideals are represented: in Algo-
rithm 5.2 the ideals are given in a very compact form
using only two generators, while Algorithm 7.1 computes
only a Z-basis for the ideals. While this does not ap-
pear to be a major problem, it limits the applicability
quite severely: the second generator (or a close rela-
tive) is crucial for many algorithms. For example, it
is used to compute valuations at this prime. One way
to overcome this is to randomly choose elements of the
ideal and test whether they are suitable as second gener-
ators. While this method is usually successful, is still
has two problems. First, as pointed out in [Belabas
04], for small prime numbers that are highly split, the
probabilities for randomly choosing a suitable element
are quite small. Second, the test for suitability involves
norm computations that easily dominate the running
time.

If a primitive element β for K/Q as a polynomial
in the αi is known and if the prime p is coprime to
the discriminant of Z[β], then Algorithm 7.1 can easily
be adapted to compute two-element representations as
well.

It should also be noted that the complexity of the com-
putation of the complete prime-splitting depends on the

degree of K/Q, so that even the more optimized algo-
rithms such as Algorithm 7.1 cannot be applied to really
large fields.

8. EXAMPLES

We want to illustrate the power of the sparse method and
demonstrate that the very rough complexity analysis of
the previous sections indeed reflects the behavior of the
algorithms properly.

We start with simple arithmetic. We will work in the
fields Q(ζn) for n = 7l − 1, using random elements with
a growing number na of nonzero coefficients in the range
[0, nb]. Table 1 compares times for elements with small
coefficients nb = 10 in moderately large fields (n = 74 −
1, φ(n) = 640) for basic operations (+, ×) in sparse and
dense representations. It is easy to see that the time for
the dense representation is independent of the sparsity.

In the next table, Table 2, we compare the times for
basic operations in a family of fields, na = 7l − 1 for l =
2, . . . , 8. Again, the times support our rough complexity
analysis, since they show that the times depend only on
the number of nonzero coefficients and is independent
of the field degree. The dependence on the degree in

500 Experimental Mathematics, Vol. 16 (2007), No. 4

l = 4 8 16 20

#a 13 9 20 60

f 0.240 0.380 2.120 11.800
()−1 10.660 10.460 12.190 22.340

TABLE 3. Minimal polynomials and inverses of ele-
ments of degree l = 4, 8, 16, 20 in Q(ζn) for n = 74 − 1
of elements with “small” coefficients. The times are in
seconds for 100 random elements of the same subfield
each.

the table for small l is due to the fact that the elements
are relatively dense in those examples, φ(72 − 1) = 16,
φ(73 − 1) = 108. Thus the multiplication is dominated
by the reduction, which for dense elements is dependent
mainly on the representation of the field.

In the last table, Table 3, we give timings for the com-
putation of minimal polynomials of small degree and of
inverses using Algorithm 3.3. We first choose a “random”
subgroup U of the automorphism group

G ∼= (Z/(74 − 1)Z)×

of K = Q(ζ74−1) of small index l = 4, 8, 16, 20, then
compute a basis for the field fixed by U , and finally choose
small linear combinations of those basis elements. We
also give the average number of nonzero coefficients with
respect to B.

It should be noted that the times for minimal poly-
nomials are obtained using an optimized implementation
in the C language, while the inverses were computed us-
ing a (crude) magma implementation. So while the times
should not be compared directly, it can be noted that the
times for the minimal polynomial depend strongly on the
degree of the polynomial, while the inverse depends on
the structure of G.

So for elements in small-degree subfields, the minimal-
polynomial method is better suited for inverses than Al-
gorithm 3.3, which depends on the sparsity and the struc-
ture of the automorphism group.

Finally, we present an example showing the overall
impact of the sparse representation in computational
class field theory. Starting with the field k := Q(

√
10),

we compute R, the 5-part of the ray class group modulo
52 · 11 · 31, which is isomorphic to C4

5 . Since the defining
modulus is invariant under the Q-automorphisms of k,

it follows that R, as a GF(5)-module, has an induced
action of

√
10 �→ −√

10.
Under this action, R has a unique invariant subspace

isomorphic to C5. Thus R has a Galois-stable quotient
that is isomorphic to C3

5 . Using magma, we can compute
a sparse representation for the corresponding field K in
2.6 seconds, i.e., three polynomials of degree 5, that can
be printed using four hundred characters. In this repre-
sentation it takes magma a further two minutes to com-
pute explicitly three generating k-automorphisms and an
extension of the Q-automorphism of k to K.

These computations use the sparse representation for
both K and the Kummer extension K(ζ5)/k(ζ5). Each
of the automorphisms can be written down using fewer
than 1000 characters; that is, the total number of dig-
its in the coefficients of the images of the generators is
reasonably small (for a field of degree 250 over Q). On
the other hand, it takes magma 450 seconds to compute
the minimal polynomial of a sum of the three generators.
The resulting polynomial, which can be used to define K
in the traditional way, needs a total of about 50,000 char-
acters to print. Each of the generating automorphisms
takes more than 200,000 characters to write down, mak-
ing them totally useless for any further applications.

REFERENCES

[Belabas 04] K. Belabas. “Topics in Computational Algebraic
Number Theory.” J. Theor. Nombres Bordeaux 16 (2004),
19–63.

[Bosma 90] W. Bosma. “Canonical Bases for Cyclotomic
Fields.” Appl. Algebra Eng. Commun. Comput. 1:2 (1990),
125–134.

[Breuer 97] T. Breuer. “Integral Bases for Subfields of Cyclo-
tomic Fields.” Appl. Algebra Eng. Commun. Comput. 8:4
(1997), 279–289.

[Fieker 01] C. Fieker. “Computing Class Fields via the Artin
Map.” Math. Comput. 70 (2001), 1293–1303.

[Pohl 02] S. Pohl. “Primidealzerlegung in Komposita von
Zahlkörpern.” Diplom thesis, TU-Berlin, 2002.

[Unger 06] W. Unger. “Computing the Character Table of a
Finite Group.” J. Symb. Comput. 41:8 (2006), 847–862.

[Gathen and Gerhard 99] J. von zur Gathen and J. Gerhard.
Modern Computer Algebra. Cambridge: Cambridge Uni-
versity Press, 1999.

Claus Fieker, School of Mathematics and Statistics F07, University of Sydney, NSW 2006, Australia (claus@maths.usyd.edu.au)

Received May 28, 2006; accepted November 13, 2006.

