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We conjecture that if C is a curve of genus > 1 over a num-
ber field k such that C(k) = ∅, then a method of Scharaschkin
(essentially equivalent to the Brauer–Manin obstruction in the
context of curves) supplies a proof that C(k) = ∅. As evidence,
we prove a corresponding statement in which C(Fv) is replaced
by a random subset of the same size in J(Fv) for each residue
field Fv at a place v of good reduction for C, and the orders
of Jacobians over finite fields are assumed to be smooth (in the
sense of having only small prime divisors) as often as random
integers of the same size. If our conjecture holds, and if Tate–
Shafarevich groups are finite, then there exists an algorithm to
decide whether a curve over k has a k-point, and the Brauer–
Manin obstruction to the Hasse principle for curves over the
number fields is the only one.

1. SETUP

Let k be a number field. Fix an algebraic closure k of
k, and let G = Gal(k/k). Let C be a curve of genus g
over k. (In this paper, curves are assumed to be smooth,
projective, and geometrically integral.) Let C = C ×k k.
Let J be the Jacobian of C, which is an abelian variety
of dimension g over k. Assume that C has a G-invariant
line bundle of degree 1: this gives rise to a k-morphism
C → J , and it is an embedding if g > 0. Let SC be the
set of finite primes v of good reduction for C. Similarly
define SA for any abelian variety A over k. We have
SC ⊆ SJ .

2. DETERMINING THE SET OF RATIONAL POINTS

Suppose that generators of the Mordell–Weil group J(k)
are known. Then C(k) equals the set of points in J(k)
that lie on the subvariety C. We would like to know
whether C(k) can be calculated, especially in the case g >
1 in which C(k) is guaranteed to be finite by [Faltings 83].

If J(k) is finite, then in principle we can list its ele-
ments and check which of them lie on C. On the other
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hand, if J(k) is infinite, it can be very difficult to decide
which points of J(k) lie on C.

3. CHABAUTY’S APPROACH

One approach, due to C. Chabauty [Chabauty 41], works
in J(kv), where kv is the completion of k at a nonar-
chimedean place v. Chabauty observed that the closure
J(k) of J(k) in J(kv) is an analytic submanifold of J(kv),
and proved that if the rank of J(k) is less than g, the
subset of points in J(k) lying on C is finite; in this case,
as explained by R. Coleman [Coleman 85], one gets an
effective upper bound for #C(k). Often one can even
determine C(k) explicitly. But the dimension hypothesis
is not always satisfied, and even when it is, the upper
bound on #C(k) may fail to be sharp.

4. SCHARASCHKIN’S APPROACH

A more recent approach, suggested by V. Scha-
raschkin [Scharaschkin 04], tries to find which points of
J(k) lie on C modulo p for many primes p. More pre-
cisely, he proposes the following method for proving that
C(k) is empty. Choose a finite subset S ⊂ SC . Let Fv

be the residue field at v. Then we have a commutative
square

C(k) ��

��

∏
v∈S C(Fv)

��
J(k) ��

∏
v∈S J(Fv) .

If the images of the solid arrows in
∏

v∈S J(Fv) do not
intersect, then C(k) is empty.

Remark 4.1. For this paragraph we assume that the Tate–
Shafarevich group X(J) is finite, or at least that its max-
imal divisible subgroup is trivial. Scharaschkin [Scha-
raschkin 04] proved that then the potential obstruction
to the existence of k-points described above is part of the
Brauer–Manin obstruction. More precisely, he showed
that if we consider the product of J(kv) (modulo its con-
nected component if v is archimedean) over all places
v instead of a product of only J(Fv) over only places
of good reduction, then we recover exactly the Brauer–
Manin obstruction.

For the connection of the Brauer–Manin obstruction
to the information on rational points obtained from finite
étale covers, see [Stoll 05].

5. A CONJECTURE AND ITS IMPLICATIONS

We conjecture the following, based on heuristics to be
explained later.

Conjecture 5.1. Let C → J be as in Section 1, with
g > 1. If C(k) = ∅, then there exists a finite subset
S ⊂ SC such that the images of J(k) and

∏
v∈S C(Fv) in∏

v∈S J(Fv) do not intersect.

The importance of Conjecture 5.1 is given by the fol-
lowing result:

Theorem 5.2. Assume Conjecture 5.1. Assume also
that Tate–Shafarevich groups of Jacobians of curves over
number fields are finite. Then

(a) There is an algorithm that takes as input a number
field k and a curve C over k, and decides whether C
has a k-point.

(b) The Brauer–Manin obstruction to the Hasse prin-
ciple is the only obstruction to the existence of a
k-point on a curve C over a number field k.

Proof: For details on how elements of k and curves over
k can be represented, see [Baker et al. 05, Section 5.1].

Before proceeding, we recall a few well-known facts:

(i) There exists an algorithm for deciding whether a
smooth projective variety X over k has a point over
every completion kv. (Sketch of proof: For all nonar-
chimedean primes v of sufficiently large norm, the
Weil conjectures and Hensel’s lemma imply that X
automatically has a kv-point. One can test the re-
maining v individually, again using Hensel’s lemma
in the nonarchimedean case.)

(ii) IfX is a torsor of an abelian variety A over a number
field k, and if X(A) is finite, then there exists an al-
gorithm to decide whether X has a k-point, and the
Brauer–Manin obstruction to the Hasse principle is
the only one forX. (Sketch of proof: By the previous
fact, we may assumeX(kv) �= ∅ for all v, soX repre-
sents an element of X(A). If we search for k-points
onX by day, and perform higher and higher descents
on A by night, we will eventually decide whether X
has a k-point, assuming the finiteness of X(A), even
if we are not given a bound on #X(A). It remains
to show that if X has no k-point, then there is a
Brauer–Manin obstruction. Under our assumption
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that X(A) is finite, the Cassels–Tate pairing

〈 , 〉 : X(A) × X(A∨) → Q/Z

is nondegenerate. If X has no k-point, then X cor-
responds to a nonzero element of X(A), so there is
a torsor Y of the dual abelian variety A∨ such that
〈X,Y 〉 �= 0. By [Manin 71, Theorem 6], there is an
element y ∈ BrX related to Y such that the Brauer
pairing of y with every adelic point on X gives the
value 〈X,Y 〉 �= 0, so X has a Brauer–Manin obstruc-
tion.)

(iii) There exists an algorithm that in principle, given
any abelian variety A over k such that X(A) is fi-
nite, computes a finite list of generators of A(k).
(Sketch of proof: Compute the 2-Selmer group Sel
of A. Using (ii), we can decide which of its ele-
ments map to 0 in X(A), and hence determine the
image of A(k)/2A(k) → Sel. Search for points in
A(k) until one has enough to generate the image of
A(k)/2A(k) → Sel. Then the usual proof of the
Mordell–Weil theorem given the weak Mordell–Weil
theorem (see [Serre 97, Section 4.4], for example)
bounds the heights of generators of A(k). Finally,
search to find all points of height up to that bound.)

We now return to our problem. By [Baker et al. 05,
Lemma 5.1(1)], we can compute the genus g of C, so we
may break into cases according to the value of g.

If g = 0, then C satisfies the Hasse principle. Thus
to test for the existence of a k-point, it suffices to use
fact (i) above.

If g = 1, then C is a torsor of its Jacobian J , so it
suffices to use (ii).

From now on, we suppose g ≥ 2. By (i), we may
reduce to the case that C(kv) is nonempty for every v.
Let X := Pic1

C/k be the variety parameterizing degree-1
line bundles on C. Thus X is a torsor of the Jacobian
J . We have a canonical injection from C to X taking a
point c ∈ C to the class of the associated degree-1 divi-
sor. By (ii), we can check whether X has a k-point; if
not, then C has no k-point, and there is a Brauer–Manin
obstruction for X, which pulls back to a Brauer–Manin
obstruction for C. Thus from now on, we may assume
thatX has a k-point. In other words, C has aG-invariant
line bundle of degree 1. Such a G-invariant line bundle
can be found by a search, and it allows us to identify
X with J . We now can search for k-points on C each
day, while running Scharaschkin’s method using the first
r primes in SC for larger and larger r each night, making

use of the generators of J(k) computed as in (iii). Con-
jecture 5.1 implies that one of these two processes will
terminate. Thus there exists an algorithm for deciding
whether C has a k-point. Moreover, as mentioned in Re-
mark 4.1, assuming finiteness of X(J), if Scharaschkin’s
method proves the nonexistence of k-points, then there
is a Brauer–Manin obstruction.

Remark 5.3. If one knows that the Brauer–Manin ob-
struction to the Hasse principle is the only one for a
smooth projective variety X, that in itself lets one de-
termine whether X has a k-point, in principle, as we will
explain in the following paragraph. This gives an alter-
native approach to Theorem 5.2(a), based on part (b).

By an unpublished result of O. Gabber, re-proved by
A. J. de Jong, each element of the cohomological Brauer
group BrX := H2

et(X,Gm) can be represented by an
Azumaya algebra A, i.e., a locally free OX -algebra that
is étale locally isomorphic to a finite-dimensional matrix
algebra. Each A can be described by a finite amount of
data:

1. a covering ofX by finitely many Zariski-open subsets
Xi such that A|Xi

is free as an OXi
-module,

2. the multiplication table for A|Xi
with respect to a

chosen OXi
-basis, for each i,

3. the change-of-basis map on the intersection Xi∩Xj ,
for each i and j,

4. a covering Ui → Xi in the étale topology, for each i,

5. a positive integer ri and an OUi
-algebra isomorphism

A⊗OX
OUi

�Mri
(OUi

), for each i.

Moreover, given such data, one can easily check whether
it actually defines an Azumaya algebra. Therefore there
is a (very inefficient) algorithm that when left running
forever, eventually produces all Azumaya algebras over
X, each possibly occurring more than once, simply by
enumerating and checking each possible set of data. Now,
we search for k-points by day and generate Azumaya
algebras by night, calculating at the end of each night
whether the Azumaya algebras generated so far give an
obstruction.

Remark 5.4. It is not clear whether Conjecture 5.1 and
the finiteness of Tate–Shafarevich groups imply the exis-
tence of an algorithm for listing all k-points on a given
curve C of genus g ≥ 2 over k. For the listing prob-
lem, applying Chabauty’s method to finite étale covers
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seems more promising; see [Stoll 05] for an analysis of
the situation.

6. COMPUTATIONAL EVIDENCE FOR THE
CONJECTURE

E. V. Flynn [Flynn 04] has developed an implementation
of Scharaschkin’s method for genus-2 curves over Q. He
tested 145 such curves defined by equations with small
integer coefficients, having Qp-points for all p ≤ ∞, but
having no Q-point with x-coordinate of height less than
1030. These were grouped according to the rank r of
the Jacobian. In all cases with r ≤ 1, he successfully
showed that there was a Brauer–Manin obstruction. In
most cases with r = 2, a Brauer–Manin obstruction was
found, and all the unresolved r = 2 cases were later re-
solved by an improved implementation of M. Stoll. The
remaining cases had r = 3, and a few of these were re-
solved; it was unclear from the computation whether the
remaining ones could be resolved by a longer computa-
tion: the combinatorics quickly became prohibitive.

7. THEORETICAL EVIDENCE FOR THE CONJECTURE

Here we give a heuristic analysis of Conjecture 5.1. Recall
that if B ∈ R>0, an integer is called B-smooth if all
its prime factors are less than or equal to B. For any
fixed u ∈ (0, 1), the fraction of integers in [1, B] that
are Bu-smooth tends to a positive constant as B → ∞
[De Bruijn 51].

As our main evidence for Conjecture 5.1, we prove a
modified version of it in which C(Fv) is modeled by a ran-
dom subset of J(Fv) of the same order, and in which we
assume that the integer #J(Fv) is as smooth as often as
a typical integer of its size. The smoothness assumption
is formalized in the following:

Conjecture 7.1. Let A be an abelian variety over a num-
ber field k, and let u ∈ (0, 1). Then

lim sup
B→∞

{v ∈ SA : #Fv ≤ B and #A(Fv) is Bu-smooth }
{v ∈ SA : #Fv ≤ B}

> 0.

Let g = dimA. If #A(Fv) behaves like a typical in-
teger of its size, which is about (#Fv)g ≤ Bg, then it
should have a positive probability of being Bu-smooth,
since Bu is a constant power of Bg. If anything, #A(Fv)
can be expected to factor more than typical integers its
size, because of splitting of A up to isogeny, or because

of biases in the probability of being divisible by small
primes. Thus Conjecture 7.1 is reasonable.

We are now ready to state our main result giving evi-
dence for Conjecture 5.1.

Theorem 7.2. Let C → J be as in Section 1, with g > 1.
Assume Conjecture 7.1 for J . For each prime v ∈ SC ,
let C(Fv) be a random subset of J(Fv) of size #C(Fv);
we assume that the choices for different v are indepen-
dent. Then with probability 1, there exists a finite subset
S ⊆ SC such that the images of J(k) and

∏
v∈S C(Fv) in∏

v∈S J(Fv) do not intersect.

Proof: It suffices to find S such that the probability that
the images intersect is arbitrarily small.

Given B > 0, let S = S(B) be the set of v ∈ SC such
that #Fv ≤ B2 and #J(Fv) is B-smooth. Because we
have assumed Conjecture 7.1 for J , there exists c > 0
such that for arbitrarily large B ∈ R>0 (the square root
of the B occurring in Conjecture 7.1), the set S contains
at least a fraction c of the primes v ∈ SC with #Fv ≤ B2.

Let π(x) be the number of rational primes less than
or equal to x. The prime number theorem says that
π(x) = (1 + o(1))x/ log x as x → ∞. For v ∈ S, the
Weil conjectures give #J(Fv) ≤ O

(
(#Fv)2g

) ≤ B2g+o(1)

as B → ∞, so by B-smoothness, the least common mul-
tiple L of #J(Fv) for v ∈ S satisfies

L ≤
∏

primes p ≤ B

p�logp B2g+o(1)� ≤
∏

primes p ≤ B

B2g+o(1),

or equivalently,

logL ≤ π(B)(2g + o(1)) logB = (2g + o(1))B.

Suppose that J(k) is generated by r elements. Every
element of

∏
v∈S J(Fv) has order dividing L, so the order

of the image I of J(k) in
∏

v∈S J(Fv) is at most

Lr ≤ exp ((2g + o(1))rB) .

The probability that a fixed element of a set of size
n belongs to a random subset of size m is m/n, so the
probability P that a fixed element of I belongs to the
image I ′ of

∏
v∈S C(Fv) →∏

v∈S J(Fv) satisfies

P =
∏
v∈S

#C(Fv)
#J(Fv)

≤
∏
v∈S

(#Fv)1+o(1)

(#Fv)g+o(1)
,

where again we have used the Weil conjectures. Equiva-
lently,

logP ≤ (1 − g + o(1))
∑
v∈S

log #Fv.
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The number of primes v of k with #Fv ≤ B2 is at least
the number of rational primes p ≤ B2 that split com-
pletely in k, which is asymptotically greater than or equal
to c1π(B2). (We use c1, c2, . . . to denote positive con-
stants independent of B.) Since S contains a positive
fraction of these v, and since the numbers #Fv are pow-
ers of primes, with each prime occurring at most [k : Q]
times, we find that

∑
v∈S log #Fv is at least the sum of

log p for the first c2π(B2) primes. By the prime number
theorem, the nth prime is (1 + o(1))n log n, so

∑
v∈S

log #Fv ≥
c2π(B2)∑

n=1

log((1 + o(1))n log n)

≥
c2π(B2)∑

n=c2π(B2)/2

log((1 + o(1))n log n)

≥ c3π(B2) log π(B2)

≥ c4B
2

as B → ∞. Since 1 − g < 0, we get

logP ≤ −c5B2,

or equivalently,

P ≤ exp(−c5B2).

Thus the probability that I intersects I ′ is at most

#I · P ≤ exp ((2g + o(1))rB) · exp(−c5B2),

which tends to 0 as B → ∞, as desired.

Remark 7.3. For the case of C(k) nonempty, we would
have liked to analyze a refined heuristic that reflects the
existence of the k-points. Namely, suppose that C(Fv) is
a random subset of J(Fv) of size #C(Fv) chosen subject
to the constraint that it contains the image of C(k) in
J(Fv). We then expect that with probability 1, the only
points of J(k) whose image in

∏
v∈SC

J(Fv) lies in the
image of

∏
v∈SC

C(Fv) are those in C(k). But we were
unable to prove this, even assuming Conjecture 7.1.

Question 7.4. Is it true more generally that if X is a
closed subvariety of an abelian variety A over a number
field k, and S is a density-1 set of primes of good reduc-
tion for X and A, then the intersection of the closure

of the image of A(k) in
∏

v∈S A(Fv) with
∏

v∈S X(Fv)
equals the closure of the image of X(k) in

∏
v∈S A(Fv)?

One could also ask the question with
∏

v∈S A(Fv) re-
placed by the product of A(kv) (modulo its connected
component) over all v. We expect a positive answer; this
together with finiteness of X(A) would imply that the
Brauer–Manin obstruction to the Hasse principle is the
only one for such X; cf. Remark 4.1.

ACKNOWLEDGMENTS

I thank Jean-Louis Colliot-Thélène and Michael Stoll for sev-
eral discussions about the Brauer–Manin obstruction during
the Fall 2004 trimester at the Institut Henri Poincaré. I thank
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