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This paper concerns the coefficients of the chromatic polyno-
mial of a graph. We first report on a computational verification
of the strict log-concavity conjecture for chromatic polynomials
for all graphs on at most 11 vertices, as well as for certain cubic
graphs.

In the second part of the paper we give a number of conjectures
and theorems regarding the behavior of the coefficients of the
chromatic polynomial, in part motivated by our computations.
Here our focus is on ε(G), the average size of a broken-cycle-
free subgraph of the graph G, whose behavior under edge dele-
tion and contraction is studied.

1. LOG-CONCAVITY

In a paper from 1912 aimed at proving the four-color the-
orem, G. D. Birkhoff [Birkhoff 12] introduced a function
P (G, x), defined for all positive integers x to be the num-
ber of proper x-colorings of the graph G. As it turns out,
P (G, x) is a polynomial in x and so is defined for all real
and complex values of x as well. Of course, P (G, x) is the
by now well-known chromatic polynomial, and although
Birkhoff’s original hope that it would help resolve the
four-color conjecture did not bear fruit, it has attracted
a steady stream of attention through the years.

Most of the investigations regarding the chromatic
polynomial have focused on the location of its zeros.
An early example is the work of Tutte on the chromatic
roots of triangulations and the so-called golden identity,
nicely described in [Tutte 98]. More recently we have
the results of Thomassen on zero-free intervals of mi-
nor closed graph families [Thomassen 97] and the influ-
ence of Hamiltonian paths on the zeros of the chromatic
polynomial [Thomassen 00]. There has also been a re-
cent influx of ideas from statistical physics due to the
connection to the Potts model. Using this connection,
Sokal [Sokal 01] has shown that the moduli of the zeros
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are bounded by a function linear in the maximum de-
gree of the graph. Another recent development is the
results of Biggs accumulation points for the zeros of sets
of chromatic polynomials [Biggs 02]. For recent surveys
of results and conjectures about the zeros of chromatic
polynomials see [Jackson 02] and [Sokal 05].

Another line of work has focused on the coefficients of
the chromatic polynomial. For a graph G on n vertices
we can express P (G, x) as

P (G, x) =
n∑

i=0

(−1)n−iaix
i,

where ai are nonnegative integers. There are a number
of results giving bounds on the coefficients; for a good
survey see [Read and Tutte 88]. In 1968, Read [Read 68]
made the following conjecture.

Conjecture 1.1. (The unimodality conjecture.) For any
chromatic polynomial the following statement is false for
all j:

aj−1 > aj and aj < aj+1.

This basically means that at first the coefficients are
increasing with j and then possibly decreasing. A poly-
nomial with this property is said to have unimodal coeffi-
cients. The conjecture was later given a stronger form by
Hoggar [Hoggar 74], who made the following conjecture.

Conjecture 1.2. (The strict log-concavity conjecture.)
For any chromatic polynomial and any j,

aj−1aj+1 < a2
j .

A polynomial satisfying this inequality is said to be
strictly logarithmically concave, or strictly log-concave
for short. Log-concavity is a stronger property than
unimodality in the sense that it implies unimodality as
well. Log-concavity is also preserved under multiplica-
tion of polynomials, which ties in nicely with the fact
that the chromatic polynomial of a disconnected graph
is the product of the chromatic polynomials of its com-
ponents.

To our knowledge there has been basically no progress
on either of these two conjectures since they were first
stated. The corresponding conjectures for other ways of
writing the chromatic polynomials, surveyed in [Brenti
92], have been shown not to be strictly log-concave; see
the references in [Read and Tutte 88]. Conjectures 1.1

and 1.2 were verified for all graphs on at most nine ver-
tices during the 1980s [Read and Tutte 88], and now we
can report the following computational result:

Fact 1.3. Conjecture 1.2 holds for all graphs on n ≤ 11
vertices. Conjecture 1.2 also holds for all graphs on 12
vertices that have fewer than 20 or more than 45 edges.

Using some simple properties of the chromatic polyno-
mial [Read and Tutte 88], one can see that the conjecture
holds for all graphs if it holds for 2-connected graphs. We
used Brendan McKay’s graph generator geng [McKay 84]
to generate all 2-connected graphs on at most 12 vertices
and the number of edges stated; then we used a sim-
ple FORTRAN-90 implementation of the basic deletion–
contraction algorithm to compute the chromatic polyno-
mials and test them for log-concavity. To give a feel-
ing for the size of this undertaking, note that there are
900,969,091 2-connected graphs on 11 vertices. The poly-
nomials were computed and tested for concavity as the
graphs were generated, so no graphs or polynomials were
saved on disk. The computation was done on 48 Sun
workstations, each working for eight months. The com-
putation of the chromatic polynomials could certainly
have been done faster by using a more advanced algo-
rithm, but the increased complexity of the code would
also have meant a larger risk of programming errors. A
more advanced program could probably manage the 12-
vertex graphs with current computers as well.

We also made a smaller test on cubic graphs:

Fact 1.4. Conjecture 1.2 holds for all cubic graphs on
n ≤ 20 vertices. Conjecture 1.2 also holds for all cubic
graphs on 22 vertices that have girth at least 5; 24 vertices
and girth at least 6; and 26, 28, or 30 vertices with girth
at least 7.

Here we used a version of the program that deleted
edges until a spanning tree was reached, thereby making
it faster for sparse graphs. This computation was done
on a Linux cluster with 2.8-GHz Pentium 4 processors.
Each 30-vertex graph used about 23 CPU hours. The
high-girth graphs are of special interest, since Read and
Royle found counterexamples among them to the con-
jecture that chromatic polynomials have only roots with
nonnegative real parts; see, for example, [Read and Royle
91].

One of the main problems in trying to test Conjectures
1.1 and 1.2 is the fact that chromatic polynomials are
notoriously hard to compute. It is one of the classical
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#P-complete problems. There is a small number of graph
classes for which explicit expressions for the chromatic
polynomial are known, and the conjectures are known to
hold, for example, for trees, cycles, and wheels; see [Read
and Tutte 88] for a few more examples. One further class,
considered by Read, should be mentioned. A graph is
called a broken wheel if it can be constructed by deleting a
subset of the radial edges in a wheel. Read proved [Read
86] that broken wheels satisfy Conjecture 1.2. Apart from
where explicit expressions are known, there are few large
graphs for which chromatic polynomials are known and
these two conjectures have been verified.

One class of large graphs can be obtained using the
transfer matrix methods developed by Biggs, starting
with [Biggs 01]. Using this method the chromatic polyno-
mials of what Biggs calls bracelets can be computed. For
large graphs in this class the chromatic polynomials can
be written as a short sum of high powers of small poly-
nomials. Since powers of polynomials tend to make the
coefficients more and more log-concave, this class seems
unlikely to produce counterexamples to Conjecture 1.2.

There have been found isolated large graphs for which
the chromatic polynomial has been computed using sym-
metries to reduce the number of graphs in the recursions.
Here Haggard stands out, especially [Haggard and Math-
ies 99], with the computation of the chromatic polyno-
mial of the truncated icosahedron, or buckyball, with 60
vertices. The fact that the graph is both very sparse
and has a large automorphism group was essential for
the computation. For graphs of even moderate density
we know of no example of comparable size. A good com-
putational challenge, even with the use of symmetries, is
given in the following problem.

Problem 1.5. Compute the chromatic polynomial of a
regular self-complementary graph on 40 vertices.

There is one more class in which the chromatic polyno-
mials can be computed easily. Given graphs G0, G1, G2,
we say that G0 is a k-clique sum of G1 and G2 if G0 can be
constructed by identifying the vertices of a clique of size
k in G1 with a clique of size k in G2. Note that there are
many ways of forming a k-clique sum of two graphs. One
classical class of graphs that can be constructed as clique
sums are the chordal graphs, i.e., the graphs in which any
cycle of length greater than 3 has a chord. By a theorem
of Dirac [Dirac 61] these graphs can be built by repeat-
edly taking the clique sum of a smaller chordal graph and
a complete graph. Another well-known graph class con-
structed this way is that of the outerplanar graphs, i.e.,

planar graphs that can be drawn such that the outer face
is a Hamiltonian cycle. The outerplanar graphs can be
constructed by repeatedly taking 2-clique sums of cycles.
Given a graph G that is a k-clique sum of G1 and G2, we
can express the chromatic polynomial as

P (G, x) =
P (G1, x)P (G2, x)

P (Kk, x)
; (1–1)

see [Read and Tutte 88]. Thus for graphs that can be
constructed by repeated clique sums we can compute the
chromatic polynomial quite easily, in fact in polynomial
time. This has already been observed for chordal graphs
[Read and Tutte 88], for which it also follows that the
chromatic polynomials have only positive-integer roots.

What can we say about Conjecture 1.2 for graphs of
this last kind? Let us say that the chromatic polynomial
P (G, x) of a graph G has a good factoring if it can be
written as

P (G, x) = P (Kω, x)Q(G, x),

where ω is the clique number of G and Q(G, x) is a poly-
nomial with strictly log-concave coefficients. We now
have the following easy lemma.

Lemma 1.6. If both G1 and G2 in (1–1) have chromatic
polynomials with log-concave coefficients and at least one
of them has a good factoring, then P (G, x) has strictly
log-concave coefficients.

This follows immediately from the fact (see, for ex-
ample, [Karlin 68]), that products preserve log-concavity.
From the formulas for the chromatic polynomials of trees,
cycles, and complete graphs it is easy to see that they all
have good factorings. A more surprising fact is the fol-
lowing, which we have found by direct computation using
Mathematica.

Fact 1.7. The chromatic polynomials of all graphs on
n ≤ 9 vertices have good factorings.

Thus Conjecture 1.2 holds for all graphs that can be
built by repeated clique sums using complete graphs, cy-
cles, trees, and graphs with at most nine vertices. Since
the property of having a good factoring is stronger than
being strictly log-concave, it is natural to ask the follow-
ing question.

Problem 1.8. Do all chromatic polynomials have a good
factoring?
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The chromatic polynomial has a generalization to ma-
troids as well, the so-called characteristic polynomial of
a matroid; see, for example, [Oxley 92]. For this, poly-
nomial analogues of Conjectures 1.1 and 1.2 have been
posited to hold for all matroids. The conjectures have
been shown to hold for some classes of matroids, but
none of these include the graphic matroids, which would
imply Conjecture 1.2. For a survey of these matroid con-
nections see [Aigner 87].

2. SUBGRAPHS WITHOUT BROKEN CYCLES

There are several different expansions for the chromatic
polynomial of a graph in terms of its subgraphs; see
[Biggs 93]. In 1932, Whitney [Whitney 32] gave the
following characterization. Assume that the edges of a
graph G have been labeled with the integers 1, . . . , m,
where m = |E(G)|, in an arbitrary way. A path obtained
from a cycle in G by removing the edge with the largest
label among those in the cycle is called a broken cycle.

Theorem 2.1. [Whitney 32] The coefficient ai equals the
number of spanning subgraphs of G with n− i edges that
do not contain a broken cycle.

Here a subgraph is specified by its edge set. Note
that the theorem implies that the number of broken-
cycle-free subgraphs is independent of the labeling of the
graph. So in light of Whitney’s theorem and the deletion–
contraction formulas for the chromatic polynomial, we
see that Conjecture 1.2 really concerns how the number
of broken-cycle-free subgraphs changes under edge dele-
tion and contraction.

A subgraph that does not contain a broken cycle ob-
viously cannot contain a cycle, and so must be a forest.
This also implies that a0 = 0 and an = 1. So apart from
the alternating sign, the chromatic polynomial is the gen-
erating function for the broken-cycle-free subgraphs of G.
In connection with our test of the log-concavity conjec-
ture, we also made some further investigations into the
behavior of the coefficients of chromatic polynomials for
small graphs, and we will now discuss some of them and
state a few observations and problems for future work.
Let us first define

bi =
an−i∑

j aj
, i = 0, . . . , n − 1.

The number bi can be interpreted as the probability that
a uniformly chosen broken-cycle-free subgraph has size i.

FIGURE 1. ε (G) plotted for all connected graphs on eight
vertices. The horizontal coordinate shows the number of
edges in the graphs.

We say that two sequences αi and βi are coconcave if
αi + βi is a log-concave sequence. Due to the deletion–
contraction formulas for the chromatic polynomial, co-
concavity is a key property for understanding the struc-
ture behind the log-concavity conjecture. If the two chro-
matic polynomials in the formulas could be shown to be
coconcave, Conjecture 1.2 would follow. Here we would
like to state the following conjecture.

Conjecture 2.2. Let bi be defined as before for a connected
graph G of order n and let pi be the probabilities of the
binomial distribution on n − 1 events with expectation
ε (G). Then bi and pi are coconcave.

We have verified the conjecture for all graphs on at
most nine vertices.

Given a graph G, we can now calculate the mean size
of a broken-cycle-free subgraph of G. Let us denote this
size by ε (G), that is, ε (G) =

∑
i i bi. Let us look at two

simple examples.

Example 2.3. The chromatic polynomial of a tree T on n

vertices is just x(x− 1)n−1, and so the bi’s will equal the
probabilities of the binomial distribution for n−1 events
with p = 1

2 and mean n−1
2 .

The chromatic polynomial of Kn is
∏n−1

i=0 (x− i). Here
we find that bi =

[
n
i

]
/n!, where

[
n
j

]
are the Stirling num-

bers of the first kind. The mean size of a broken-cycle-
free subgraph here is n−∑n−1

i=1 i−1, and the bi’s converge
to a Poisson distribution with mean ε(Kn) [Moser and
Wyman 58].

In Figure 1 we have plotted ε (G) for all connected
graphs on eight vertices. At the bottom left we find all
the trees on eight vertices, all at the same point, and at
the top right we find K8. From our test on small graphs
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FIGURE 2. ε (10, k).

we would like to pose a few problems and conjectures on
the behavior of ε (G).

Conjecture 2.4. Let G be a connected graph on n vertices
that is not complete or a tree. Then

ε (Pn) < ε (G) < ε (Kn) ,

where Pn is the path on n vertices.

Of course Pn could be replaced by any tree on n ver-
tices.

Problem 2.5. Given n and k, what are the maximum
and minimum of ε (G) among all connected graphs with
n vertices and k edges?

In Figure 2 we have plotted the mean value of ε (G)
among the connected graphs on 10 vertices and k edges as
a function of k. Let us denote the corresponding mean for
a general n by ε (n, k). We immediately know the values
of ε (n, n − 1) and ε

(
n,
(
n
2

))
(see Example 2.3), and for a

few k very close to n− 1 and
(
n
2

)
the value of ε(n, k) can

be calculated as well.

Problem 2.6. What is the asymptotic behavior of ε (n, k)
for large n?

3. SOME RESULTS ON THE BEHAVIOR OF ε (G)

Apart from their inherent value, the interest in the prob-
lems and conjectures of the previous section really stems

from the concept of coconcavity. The chromatic poly-
nomial of a graph can be expressed in terms of chro-
matic polynomials of smaller graphs using the deletion–
contraction formula

P (G, x) = P (G − e, x) − P (G/e, x) ,

where G − e denotes the graph obtained by removing
the edge e from G, and G/e the graph obtained by
contracting e. So if the coefficients of P (G − e, x) and
−P (G/e, x) could be shown to be coconcave, the log-
concavity conjecture would follow.

As a first step in this direction we would like to find
out more about how both the sum of the ai’s and ε (G)
change when we form subgraphs in the above way. If
these quantities were not well behaved, that would clearly
reduce the chance of the involved polynomials having
coconcave coefficients. However, as we shall see, there
seems to be some nice structure to their behavior.

Let us first note that

ε (G) = n +
P ′ (G,−1)
P (G,−1)

. (3–1)

This makes the following definitions convenient:

η(G) = |P (G,−1)| ,
η′(G) = |P ′ (G,−1)| .

As noted by Stanley [Stanley 73], η(G) can also be inter-
preted as the number of acyclic orientations of the graph.

Let ne denote the number of broken-cycle-free sub-
graphs of G containing the edge e, let n′

e denote the num-
ber of broken-cycle-free subgraphs of G not containing
the edge e, and let n′′

e be the number of broken-cycle-
free subgraphs H of G − e such that H considered as a
subgraph of G contains a broken cycle.

Proposition 3.1. Let G be a labeled connected graph on n

vertices and e the edge with the highest label in G. Then

(i) ne = n′
e;

(ii) η (G) = ne + n′
e = 2ne = η (G − e) + η (G/e);

(iii) η (G) > η (G − e);

(iv) η (G − e) = η (G)−ne+n′′
e = 1

2η(G)+n′′
e = ne+n′′

e ;

(v) η (G/e) = 1
2η(G) − n′′

e = ne − n′′
e ;

(vi) 2n−2 ≤ ne, and the bound is sharp if G is a tree.
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Proof: (i) Let us assume that the edges in G have been
labeled and that e is the edge with the highest label.
Now, n′

e ≥ ne, since from each graph counted by ne we
can obtain a unique graph counted by n′

e by removing e.
We also find that ne ≥ n′

e, since if H is counted by n′
e

and H∪e contains a broken cycle, then either H contains
a broken cycle or H ∪e contains a broken cycle for which
the missing edge has a higher label than e. In both cases
we have a contradiction.

(ii) The first equality follows directly from the defini-
tion of η(G); the second equality follows from (i); and
the last equality follows from the deletion–contraction
formula together with (3–1):

η(G) = |P (G,−1)| = |P (G − e,−1) − P (G/e,−1)|
= η(G − e) + η(G/e).

The last equality holds thanks to the minus sign in the
deletion–contraction formula, which ensures that the two
terms have the same sign.

(iii) Assertion (iii) follows from (ii).
(iv) Let H be a subgraph counted by ne. Then both

H and H − e will be broken-cycle-free subgraphs of G.
However, none of the graphs counted by ne are subgraphs
of G − e, and so they should be subtracted when we
count broken-cycle-free subgraphs of G − e. If H is a
subgraph counted by n′′

e , then H will be a broken-cycle-
free subgraph of G − e not counted by ne and n′

e, and
so should be added to the number of broken-cycle-free
subgraphs of G − e. The rest follows from (i) and (ii).

(v) Assertion (v) follows from (iv) and (ii).
(vi) Every broken-cycle-free subgraph of G/e can be

expanded into at least one subgraph of G counted by ne.
By (ii) we thus obtain that ne will be at least 1

2η (T ) =
2n−2, where T is a tree on n − 1 vertices.

Here we see that if we know how η (G − e) relates to
η (G), we will also know what happens to η (G/e).

Property (ii) in the proposition is nice, and together
with similar reasoning for η′ (G) one might be tempted to
make the following conjecture. Let G1 ≺ G2 mean that
G1 can be obtained from G2 by deleting edges. Together
with this partial order the set of graphs on n vertices
forms a lattice G(n).

False Conjecture 3.2. The function ε (G) is increasing on
chains in the lattice G(n).

However, as the alert reader might already have sus-
pected, the conjecture is not true.

Example 3.3. A counterexample can be constructed from
K2,n, n ≥ 4, by adding an edge e with endpoints in the
smaller part of the bipartition. Let G = K2,4 ∪ e. Then

P (G, x) = −16x + 48x2 − 56x3 + 32x4 − 9x5 + x6,

P (K2,4, x) = −15x + 44x2 − 50x3 + 28x4 − 8x5 + x6,

giving us ε (G) = 13
6 = 2.166 . . . and ε (K2,4) = 319

146 =
2.18 . . . .

The critical property of the graphs in the example is
that there exists one edge that is used by a very large
number of short cycles and at the same time is a chord
of all the longer cycles in the graph.

The rather weak Conjecture 2.4 is just a hint of what
should be true. Experiment shows that most transitions
in the lattice behave as the false conjecture claims. In
fact, every graph on at most eight vertices contains many
edges such that ε (G − e) < ε (G). Due to the counterex-
amples, it is not clear what the right conjecture should
be here. We can, however, prove the following result.

Theorem 3.4. Let G be the union of two subgraphs G1

and G2 such that their intersection is a Kk. Then

ε (G) = ε (G1) + ε (G2) − ε (Kk) .

Proof: We first recall [Read and Tutte 88] that the chro-
matic polynomial of G can be expressed as

P (G, x) =
P (G1, x)P (G2, x)

P (Kk, x)
. (3–2)

If we now differentiate this and use the identity (3–1), we
obtain

ε (G) = n +
P ′(G1,−1)
P (G1,−1)

+
P ′(G2,−1)
P (G2,−1)

− P ′(Kk,−1)
P (Kk,−1)

,

as claimed.

Corollary 3.5. If G is the union of two graphs G1 and G2

intersecting in at most one vertex, then

ε (G) = ε (G1) + ε (G2) .

The corollary implies that ε (G) is determined by the
blocks of G.

Corollary 3.6. If G has a cut-edge e and the two compo-
nents of G − e are G1 and G2, then

ε (G) = ε (G1) + ε (G2) +
1
2
.
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Using Theorem 3.4 we can, for example, quickly com-
pute ε(Kn − e).

Example 3.7. Let e be any edge of Kn; Kn − e is the
union of two Kn−1’s, the intersection of which is a Kn−2.
Using Theorem 3.4 and the value of ε(Kn) from Example
2.3, we find that

ε(Kn − e) = 2ε(Kn−1) − ε(Kn−2) = ε(Kn) − 1
n(n − 1)

.

In view of the two corollaries, it makes sense to study
Conjecture 2.4 on the subset Gc(n) of all connected
graphs in G(n). The poset Gc(n) is not a lattice, since all
trees are minimal elements, but all the minimal elements
of Gc(n) give the same value of ε (G). So in order to prove
Conjecture 2.4 one could try to prove that any graph in
Gc(n) belongs to a chain in which the statement of the
false conjecture holds. This in turn reduces to showing
that any 2-connected graph contains an edge e such that
ε (G − e) < ε (G), which we state as a conjecture.

Conjecture 3.8. Every 2-connected graph G contains at
least one edge e such that ε (G − e) < ε (G).

We have verified this property for all graphs on at
most eight vertices.

From Theorem 3.4 we can obtain the following posi-
tive, but somewhat narrow, result.

Proposition 3.9. Let v be a vertex of G such that the
neighbors of v induce a Kk and let e be an edge incident
with v. Then

ε(G − e) = ε(G) − 1
k(k − 1)

.

Proof: First split G into a Kk+1 containing v and a new
graph G′ = G − v. Their intersection is a neighborhood
of v that is a Kk. By Theorem 3.4 we have

ε(G) = ε(Kk+1) + ε(G′) − ε(Kk)

and

ε(G − e) = ε(Kk+1 − e) + ε(G′) − ε(Kk),

whose difference, by Example 3.7, is − (k(k − 1))−1.

This implies that our graph family from Example 3.3,
which did not satisfy the false conjecture, does satisfy
Conjecture 3.8.

We can also ask how much ε (G) can be changed by
removing an edge.

Theorem 3.10. We have

ε (G − e) ≥ ε (G) − 1
2
.

Equality holds if e is a cut-edge.

Proof: Let ne, n′
e, and n′′

e be as before and recall that by
Proposition 3.1, ne = 1

2η(G). We now find that ε (G − e)
will be a linear combination pl1 + (1 − p)l2, 0 ≤ p ≤ 1.
Here l1 is the average size of a broken-cycle-free subgraph
of G counted by n′

e, and l2 is the average size of the
graphs counted by n′′

e . The value of p depends on the
relative sizes of n′

e and n′′
e and is 1 when n′′

e = 0.
By the same reasoning as in the proof of Proposition

3.1, we see that l1 = ε (G) − 1
2 , since for every graph

counted by ne there is a graph with one edge fewer con-
tributing to the average and ne is 1

2η(G).
Similarly, we see that l2 will be at least as large as

the average size of the graphs counted by ne, since each
graph counted by n′

e has been obtained by adding at least
one edge to a graph counted by ne and then removing e.

Thus we see that ε (G − e) ≥ ε (G) − 1
2 , and equality

will hold only if n′
e = 0, which means that there are no

cycles through e and so e is a cut-edge.

In a typical situation one would expect both l1 and
l2 to contribute to the average and so make ε (G − e)
stay much closer to ε (G). In fact, if Conjecture 2.4 is
true, the function ε(G) must increase by an amount of
about n

2 − log n along a maximal chain, corresponding to(
n
2

)− (n− 1) edges, thus giving us an average increase in
ε(G) of

n
2 − log n(

n
2

)− (n − 1)
= O(n−1).

Theorem 3.10 also tells us that for graphs taken uni-
formly at random from G(n,m), the set of all graphs on
n vertices and m edges, the value of ε(G) will be well
concentrated.

Theorem 3.11. Let X(n,m) be the random variable given
by ε(G) when G is a connected graph taken uniformly at
random from G(n,m). Then

Pr (|X(n,m) − ε(n,m)| ≥ t) ≤ 2e−8t2/T ,

where T = min
(
m − (n − 1),

(
n
2

)− m
)
.
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Proof: When m−(n−1) ≤ (n2)−m, the result follows from
Azuma’s inequality (Theorem 3.12) together with Theo-
rem 3.10 by considering the value of ε(G) on a graph con-
structed by adding m random edges to an empty graph.
We get a denominator of only T = m − (n − 1) in the
exponent, since the first n−1 edges can be taken to form
a spanning tree in G, thereby giving no variation in ε.

For the dense case we can instead consider the graph as
constructed by removing

(
n
2

)−m random edges from Kn.

Theorem 3.12. (Azuma’s inequality.) [Azuma 67] Let
X1, . . . , Xn be a martingale sequence such that |Xi −
Xi−1| ≤ ci. Then

Pr (|Xn − E(Xn)| > t) < 2e−t2/(2
∑

c2
i ).

We thus find that the value of ε(G) should be well con-
centrated for sparse and very dense graphs, and possibly
less so for graphs of intermediate densities. This agrees
well with the observed behavior in Figure 1.

4. SOME HEURISTIC BOUNDS FOR PROBLEM 2.6

Problem 2.6 essentially boils down to finding the expec-
tation of ε (G) when G is drawn from G(n,m), the set of
all graphs on n vertices and m edges. We have not been
able to solve this problem, but we can say something
about the expectation of ε (G) in G(n, p), the graphs on
n vertices with edges drawn independently with proba-
bility p. Let us denote the two expectations mentioned
by ε(n,m) and ε(n, p).

Let P (p, x) denote the expectation of P (G, x) in
G(n, p). Grimmett [Grimmett 77] has found the follow-
ing generating function for P (p, x):

∞∑
n=0

Pn (p, x)
tn

n!
= F (p, t)x

with

F (p, t) =
∞∑

n=0

(1 − p)(
n
2) tn

n!
.

What we would like now to calculate is

E

(
P ′ (G, x)
P (G, x)

)
,

which we have not been able to do, but from the gener-
ating function above we can calculate

E (P ′ (G, x))
E (P (G, x))

for moderate values of n. Let us do so and at the same
time say something about why we believe it to be a good
approximation of the proper expectation. Let us intro-
duce the following notation in order to simplify our writ-
ing:

η(p) = |P (p,−1) |,
η′(p) = |P ′ (p,−1) |.

If η(G) and η′(G) had been independent random vari-
ables, we would have had

E

(
η′(G)
η(G)

)
= E (η′(G)) E

(
1

η(G)

)
.

Next we can create a Taylor expansion of the distribution
of 1

η(G) around x = 1
η(p) , and we see that if η(p) is rea-

sonably large and η(G) does not have too large variance,
then

E

(
1

η(G)

)
≈ 1

η(p)
.

So what can be said about η(p) and the variance of η(G)?
There are general upper and lower bounds for η(G) in
terms of the degree sequence of the graph G that come
in handy, namely∏

v∈V (G)

f(dv + 1) ≤ η(G) ≤
∏

v∈V (G)

(dv + 1),

where dv is the degree of the vertex v and f(x) = (x!)1/x.
The lower bound is from [Goddard et al. 93] and the up-
per from [Graham et al. 80]. Further bounds can be found
in [Kahale and Schulman 96]. Since the degree sequence
of a graph from G(n, p) is quite well concentrated [Bol-
lobás 01a], η(G) will be slightly less than (pn)n and does
not have too large a variance,1 and so our estimate for
E
(

1
η(G)

)
will be quite good. Thus we should find that

E

(
η′(G)
η(G)

)
∼ E (η′(G))

E (η(G))
,

where ∼ means that they are comparable for large n.
All of this is valid under the assumption that η(G) and

η′(G) are independent, which of course is false. However,
unless η(G) and η′(G) are strongly anticorrelated, the
approximation should be reasonably good.

In Figure 3 we have plotted the exact values for
ε (10, k) together with η′(10, p)/η(10, p). As can be seen
in the figure, we have good agreement for large values
of p, but for smaller values the curves grow apart. This

1In fact, one would expect η(p)/(pn)n to have a log-normal dis-
tribution.
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FIGURE 3. ε (10, k) together with η′(10,p)
η(10,p)

. Both axes have
been rescaled to run between 0 and 1.
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FIGURE 4. η′(n,p)
η(n,p)

for n = 10, 20, 30, 40 (n = 10 is the lowest

curve). Both axes have been rescaled to run between 0 and 1.

is not unexpected, since the exact values use only con-
nected graphs, and for small p our approximation uses
a large number of disconnected graphs, thus giving an
overestimate for ε(n, p). However, for a fixed p > 0 we
expect to get better and better agreement between the
curves as n increases and the proportion of disconnected
graphs diminishes. Here we can also note that for p = 1
our estimate is actually exact,

η′(1) = ±
(

n −
n−1∑
i=1

i−1

)
, η(1) = ±1,

and for p = 0 we also get the correct value ε(n, 0) = 0.
In Figure 4 we have plotted our estimate for n =

10, 20, 30, 40, each estimate divided by its value at p = 1
in order to make them comparable.

Following the reasoning behind Proposition 3.10, we
can also strive for a lower bound on ε (n, p). Given a
broken-cycle-free subgraph of Kn, the probability that it
is also a subgraph of a graph from G(n, p) is simply pi,
where i is the number of edges in the subgraph. Using the
formula for P (Kn, x), we find that the average generating
function for these subgraphs is

Sn(p, x) =
n∑

i=0

[
n

n − i

]
pixi = (px)n(pn)n−1,

0.2 0.4 0.6 0.8 1
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0.8

1

FIGURE 5. ε (10, k) together with η′(10,p)
η(10,p)

and
S′
10(p,−1)

S10(p,−1)
.

Both axes have been rescaled to run between 0 and 1.
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FIGURE 6. η′(40,p)
η(40,p)

and
S′
40(p,−1)

S40(p,−1)
. Both axes have been

rescaled to run between 0 and 1.

where xn̄ = x(x + 1) · · · (x + (n − 1)). The subgraphs
counted by this generating function are expected to be
on average smaller than those present in a graph from
G(n, p), simply because many of the latter can be made
larger by adding edges that would have created broken
cycles in Kn. So we expect to get a lower bound for
ε(n, p) if we calculate S′

n(p,−1)/Sn(p,−1). This can be
done as follows:

S′
n(p,−1)

Sn(p,−1)
=

d

dx
log
(
(px)n(pn)n−1

)∣∣∣∣
x=−1

= n −
n−1∑
i=0

1
1 + ip

.

We see that for p = 1 the bound coincides with the
exact value. For p = (n/2)−1, corresponding to trees, we
get a value that is slightly lower than the exact (n−1)/2.
Further, we see that for a fixed p > 0 the bound will be
of the form n −O(log n).

In Figure 5 we have plotted ε(10, k), our previous up-
per bound, and our lower bound. In Figure 6 we have
plotted both bounds for ε(40, p).
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