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Conjectured links between the distribution of values taken by
the characteristic polynomials of random orthogonal matrices
and that for certain families of L-functions at the center of the
critical strip are used to motivate a series of conjectures con-
cerning the value distribution of the Fourier coefficients of half-
integral-weight modular forms related to these L-functions. Our
conjectures may be viewed as being analogous to the Sato–Tate
conjecture for integral-weight modular forms. Numerical evi-
dence is presented in support of them.

1. INTRODUCTION

The limiting value distribution of the Fourier coefficients
of integral-weight modular forms is given by the cele-
brated Sato–Tate conjecture. Our purpose here is to
identify the implications of some recent conjectures con-
cerning the value distribution of certain families of L-
functions at the center of the critical strip for the distri-
bution of the Fourier coefficients of related half-integral-
weight modular forms.

These conjectures concern the relationship between
properties of L-functions and random matrix theory. It
was conjectured by Montgomery [Montgomery 73] that
correlations between the zeros of the Riemann zeta func-
tion on the scale of the mean zero separation coincide
with those between the phases of the eigenvalues of uni-
tary matrices, chosen at random, uniformly with respect
to Haar measure on the unitary group, in the limit of
large matrix size. This is supported both by theoreti-
cal [Montgomery 73, Rudnick and Sarnak 96, Bogomolny
and Keating 95, Bogomolny and Keating 96] and ex-
tensive numerical [Odlyzko 89, Rubinstein 98] evidence.
Katz and Sarnak [Katz and Sarnak 99] then generalized
the connection by suggesting that statistical properties
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of the zeros within various families of L-functions, com-
puted by averaging over a given family, coincide with
those of the eigenvalues of random matrices from the var-
ious classical compact groups, the particular group being
determined by the family in question. Based on these
ideas, a link was proposed in [Keating and Snaith 00a]
between the leading-order asymptotics of the value dis-
tribution of the Riemann zeta function on its critical line
and that of the characteristic polynomials of random uni-
tary matrices, giving, for example, an explicit conjecture
for the leading-order asymptotics of the moments of the
zeta function. This approach was then extended to relate
the value distribution of L-functions, in families, at the
center of the critical strip, to that of the characteristic
polynomials of matrices from the various classical com-
pact groups [Conrey and Farmer 00, Keating and Snaith
00b]. It has also recently been extended to include all
lower-order terms in the asymptotics [Conrey et al. 05].
(For other related results, see [Hughes et al. 00, Hughes et
al. 01].) These developments have recently been reviewed
in [Conrey 01, Keating and Snaith 03].

Our strategy here is to combine these random-matrix-
theory-inspired conjectures for the value distribution of
L-functions with formulas due to Waldspurger [Wald-
spurger 1981], Shimura [Shimura 73], Kohnen and Zagier
[Kohnen and Zagier 81], and Baruch and Mao [Baruch
and Mao 03] that relate the values taken by L-functions
associated with elliptic curves at the center of the critical
strip to the Fourier coefficients of certain half-integral-
weight modular forms. This approach was first outlined
in [Conrey et al. 02], where its implications for the van-
ishing of L-functions were examined. Here we use the
same ideas in order to develop conjectures for the value
distribution of the Fourier coefficients.

The outline of this paper is as follows. In Section 2 we
give a brief overview of the relationship between modular
forms and L-functions associated with elliptic curves. In
Section 3 we review the results from random matrix the-
ory that we shall need, and some conjectures they suggest
for the value distribution of L-functions associated with
elliptic curves. In Section 4, we combine results from
Section 2 and Section 3 to motivate conjectures for the
moments of the Fourier coefficients, the value distribu-
tion of the logarithm of the Fourier coefficients, and the
distribution of the coefficients themselves. In Section 5
we review the implications, first outlined in [Conrey et al.
02], for the vanishing of L-functions at the center of the
critical strip. Finally, in Section 6 we describe numerical
experiments whose results support our conjectures.

2. MODULAR FORMS AND L-FUNCTIONS

We review in this section the connection between the
quadratic twists of modular L-functions and the Fourier
coefficients of half-integral-weight modular forms. This is
central to the motivation underlying the conjectures we
make in subsequent sections. In order to be concrete, we
concentrate on the case of quadratic twists of L-functions
associated with elliptic curves.

Let LE(s) be the L-function associated with an elliptic
curve E over Q with Dirichlet series and Euler product
given by

LE(s) =
∞∑

n=1

an

ns
(2–1)

=
∏
p|∆

(
1 − app

−s
)−1∏

p�∆

(
1 − app

−s + p1−2s
)−1

=
∏
p

Lp(1/ps), Re(s) >
3
2
,

with ∆ the discriminant of E, and ap = p + 1−#E(Fp),
where #E(Fp) denotes the number of points on E re-
garded over Fp. It is a consequence of the recently
solved Taniyama–Shimura Conjecture [Wiles 95, Taylor
and Wiles 95, Breuil et al. 01] that LE(s) has an analytic
continuation to C and satisfies a functional equation of
the form(

2π√
Q

)−s

Γ(s)LE(s) = wE

(
2π√
Q

)s−2

Γ(2−s)LE(2−s),

(2–2)
where Q is the conductor of the elliptic curve E and
wE = ±1.

We let χd(n) =
(

d
n

)
for a fundamental discriminant

d, where
(

d
n

)
is the Kronecker symbol. The twisted L-

function

LE(s, χd) =
∞∑

n=1

anχd(n)
ns

(2–3)

is the L-function of the elliptic curve Ed, the quadratic
twist of E by d. If (d,Q) = 1, then LE(s, χd) satisfies
the functional equation(

2π√
Q|d|

)−s

Γ(s)LE(s, χd) (2–4)

= χd(−Q)wE

(
2π√
Q|d|

)s−2

Γ(2 − s)LE(2 − s, χd).

We shall be interested in the case in which wEχd(−Q) =
1, since otherwise LE(1, χd) is trivially equal to zero.

We now come to a key point. The L-functions above
are related to half-integer-weight modular forms via for-
mulas due to Waldspurger [Waldspurger 1981], Shimura
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[Shimura 73], Kohnen and Zagier [Kohnen and Zagier
81], and Baruch and Mao [Baruch and Mao 03]. One
must distinguish between positive and negative d, and
one must also sort them according to various residue
classes. This has been worked out explicitly for thou-
sands of examples by Rodriguez-Villegas and Tornaria
in the case that Q is square-free and they kindly sup-
plied a database of such forms to the authors [Rodriquez-
Villegas and Tornaria 04].

Specifically, for Q square-free, assume that d < 0 and
that χd(p) = −ap for every p | Q (ap = ±1 for p | Q when
Q is square-free). Notice that such d are restricted to∏

p|Q
p odd

((p−1)/2) residue classes mod Q or 4Q, depending
on whether Q is odd or even. Then, for such d,

LE(1, χd) = κE
cE(|d|)2√|d| , (2–5)

where cE(|d|) ∈ Z are the Fourier coefficients of a weight-
3
2 modular form, and where κE depends on E.

For d > 0, the work of Baruch, Mao, Rodriguez-
Villegas, and Tornaria [Baruch and Mao 03] [Mao et al.
06] gives the relevant weight- 3

2 form for Q prime and
d satisfying χd(Q) = aQ. One has the same relation
as above, but with a different proportionality constant.
Some examples are listed in Section 6. In either case,
given a coefficient of the weight- 3

2 form, the constant κE

can be evaluated either by comparison with the Birch
and Swinnerton-Dyer conjecture, or by numerically com-
puting LE(1, χd) as a series involving the exponential
function.

Our strategy will be to write down conjectures for the
value distribution of the Fourier coefficients c(|d|) by cou-
pling the connection (2–5) with conjectures motivated
by random matrix theory for the value distribution of
LE(1, χd).

3. L-FUNCTIONS AND RANDOM MATRICES

It was conjectured by Montgomery [Montgomery 73] that
the zeros of the Riemann zeta function are distributed
statistically like the eigenvalues of random Hermitian
(self-adjoint) matrices, or, equivalently, like the phases of
the eigenvalues of random unitary matrices. This extends
to the zeros of any given principal L-function [Rudnick
and Sarnak 96]. It was conjectured by Katz and Sarnak
[Katz and Sarnak 99] that the distribution of zeros de-
fined by averaging over families of L-functions with the
height up the critical line fixed coincides with the distri-
bution of the phases of the eigenvalues of matrices from

one of the classical compact groups, depending on the
family in question.

These ideas motivated the Conjecture [Keating and
Snaith 00a] that, asymptotically, the moments of the Rie-
mann zeta function (or any other principal L-function)
averaged high on its critical line coincide, up to a sim-
ple arithmetical factor, with the moments of the char-
acteristic polynomials of random unitary matrices. This
suggestion was then extended to relate the moments of
families of L-functions at the center of the critical strip to
those of the characteristic polynomials of matrices from
the various classical compact groups [Conrey and Farmer
00, Keating and Snaith 00b].

For any elliptic curve E it is conjectured that the fam-
ily of even-functional-equation quadratic twists

ΦE = {LE(s, χd) : wEχd(−Q) = +1} (3–1)

is orthogonal. Specifically, this family conjecturally has
symmetry type O+. Thus the value distribution of
LE(1, χd) should be related to that of the characteris-
tic polynomials of matrices in SO(2N), at the spectral
symmetry point, with N ∼ log(|d|).

For an orthogonal matrix A, the characteristic poly-
nomial may be defined by

Z(A, θ) = det
(
I − Ae−iθ

)
. (3–2)

The eigenvalues of A form complex conjugate pairs e±iθn ,
and so the symmetry point is at θ = 0. The moments of
Z(A, 0) are defined by averaging over A with respect to
normalized Haar measure for SO(2N), dA:

MO(N, s) =
∫

SO(2N)

|det (I − A) |sdA. (3–3)

It was shown in [Keating and Snaith 00b] that for Re s >

− 1
2 ,

MO(N, s) = 22Ns
N∏

j=1

Γ(N + j − 1)Γ(s + j − 1/2)
Γ(j − 1/2)Γ(s + j + N − 1)

,

(3–4)
and that as N → ∞,

MO(N, s) ∼ gs(O+)Ns(s−1)/2, (3–5)

with

gs(O+) =
2s2/2G(1 + s)

√
Γ(1 + 2s)√

G(1 + 2s)Γ(1 + s)
, (3–6)

where G is Barnes’s G-function:

G(z + 1) = (2π)z/2 exp(−((γ + 1)z2 + z)/2)

×
∞∏

n=1

(
1 +

z

n

)n

exp
(−z + z2/2n

)
. (3–7)
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It follows from the fact that G(1) = 1 and G(z + 1) =
Γ(z)G(z) that, for integer k,

gk(O+) = 2k(k+1)/2
k−1∏
j=1

j!
2j!

. (3–8)

Note that the right-hand side of (3–4) has a meromorphic
continuation to the whole complex s-plane.

For integer k, MO(N, k) is a polynomial of order k(k−
1)/2:

MO(N, k) =

⎛
⎝2k(k+1)/2

k−1∏
j=1

j!
(2j)!

⎞
⎠

×
∏

0≤i<j≤k−1

(
N +

i + j

2

)
. (3–9)

It can also be written in terms of a multiple contour
integral [Conrey et al. 03], a form that will be useful
later for comparison with L-functions:

MO(N, k) =
(−1)k(k−1)/22k

(2πi)kk!

∮
· · ·
∮

e
N
∑k

j=1
zj (3–10)

×
∏

1≤�<m≤k

(1 − e−zm−z�)−1 ∆(z2
1 , . . . , z2

k)2∏k
j=1 z2k−1

j

dz1 · · · dzk.

Here ∆(x1, . . . , xn) =
∏

1≤i<j≤n(xj − xi) and the con-
tours enclose the poles at zero.

The value distributions of the characteristic polyno-
mial and its logarithm can be written down directly using
(3–4). Let PN (t) denote the probability density function
associated with the value distribution of |Z(A, 0)|, i.e.,

meas{A ∈ SO(2N) : α < |det(I−A)| ≤ β} =
∫ β

α

PN (t)dt.

(3–11)
Then

PN (t) =
1

2πit

∫ c+i∞

c−i∞
MO(N, s)t−sds, (3–12)

for any c > 0.
The asymptotics of PN (t) as t → 0 come from the pole

of MO(N, s) at s = − 1
2 . The residue there is

h(N) =
2−N

Γ(N)

N∏
j=1

Γ(N + j − 1)Γ(j)
Γ(j − 1/2)Γ(j + N − 3/2)

, (3–13)

which, as N → ∞, is given asymptotically by

h(N) ∼ 2−7/8G(1/2)π−1/4N3/8. (3–14)

Thus as t → 0,

PN (t) ∼ h(N)t−1/2. (3–15)

Importantly for us, one may deduce a central limit the-
orem for log |Z(A, 0)| from equation (3–12) (see [Keating
and Snaith 00b]):

lim
N→∞

meas
{

A ∈ SO(2N) :
log |det(I − A)| + 1

2 log N√
log N

∈ (α, β)
}

=
1√
2π

∫ β

α

exp
(
− t2

2

)
dt. (3–16)

The above results, proved for the characteristic poly-
nomials of random matrices, suggest the following con-
jectures for LE(1, χd) (these are special cases of those
made in [Keating and Snaith 00b], but with the number-
theoretic details worked out explicitly).

Recall that we are assuming that Q is square-free. Let
(d,Q) = 1. For LE(s, χd) to have an even functional
equation, one needs wEχd(−Q) = 1. This imposes a
condition, in the case that Q is odd, on d mod Q, and,
in the case that Q is even on d mod 4Q (4Q because
χd(2) is periodic with period 8). Let

Q̃ =

{
Q if Q is odd and square-free,
4Q if Q is even and square-free.

(3–17)

Next, we focus our attention on a subset of the d’s ac-
cording to certain residue classes mod Q̃. We let

S−(X) = S−
E (X) (3–18)

= {−X ≤ d < 0;χd(p) = −ap for all p | Q},
i.e., the set of negative fundamental discriminants d up
to −X, but restricted according to a condition on d mod
Q̃. Let∫ α

0

W−
E (X, t)dt =

|{d ∈ S−(X);LE(1, χd) < α}|
|S−(X)|

(3–19)
and

M−
E (X, s) =

1
|S−(X)|

∑
d∈S−(X)

LE(1, χd)s, (3–20)

i.e., the sth moment of LE(1, χd).
For elliptic curves E whose conductor Q is prime, we

also look at the set of positive fundamental discriminants

S+(X) = S+
E (X) = {0 < d ≤ X;χd(Q) = aQ} (3–21)

and define W+
E (X, t),M+

E (X, s) as in the negative case.
Note that

W±
E (X, t) =

1
2πit

∫ c+i∞

c−i∞
M±

E (X, s)t−sds. (3–22)
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The central conjecture is that as X → ∞,

M±
E (X, s) ∼ A±(s)MO(log X, s), (3–23)

where

A±(s) =
∏
p�Q

(
1 − p−1

)s(s−1)/2
(

p

p + 1

)
(3–24)

×
(

1
p

+
1
2

(
Lp

(
1
p

)s

+ Lp

(−1
p

)s))

×
∏
p|Q

(
1 − p−1

)s(s−1)/2 Lp(±ap/p)s

is an arithmetical factor that depends on E. A heuristic
for A±(s) is given in [Conrey et al. 05]. The following
conjectures are then motivated by this.

First we consider the moments of elliptic curve L-
functions.

Conjecture 3.1. For M±
E (X, s) defined as in (3–20),

lim
X→∞

M±
E (X, s)

(log X)s(s−1)/2
= A±(s)gs(O+). (3–25)

Second, for large X, as t → 0 we have

W±
E (X, t) ∼ A±(− 1

2 )h(log X)t−1/2, (3–26)

and thus by scaling t so that t = O((log X)−γ), for γ > 1,
we are led to the following conjecture.

Conjecture 3.2. If log Xf(log X) → 0 as X → ∞, then

lim
X→∞

√
f(log X)

(log X)
3
8

W±
E (X, f(log X)y) = By−1/2, (3–27)

where

B = 2−7/8G(1/2)π−1/4A±(−1/2). (3–28)

In addition, we have the following.

Conjecture 3.3.

lim
X→∞

1
|S±(X)| (3–29)

×
∣∣∣∣∣
{

d ∈ S±(X);
log LE(1, χd) + 1

2 log log |d|√
log log |d|

}

∈ (α, β)

∣∣∣∣∣ =
1√
2π

∫ β

α

exp
(
− t2

2

)
dt.

We take log LE(1, χd) + 1
2 log log |d| to lie outside the in-

terval if LE(1, χd) = 0.

The above conjecture is similar to central limit theo-
rems for the Riemann zeta function and other L-functions
usually attributed to Selberg [Selberg 46a, Selberg 46b].
An analogous conjecture is made in [Keating and Snaith
00b] for quadratic Dirichlet L-functions.

Further, we have a conjecture, closely related to the
preceding one, for the distribution of the full range of
values of LE(1, χd).

Conjecture 3.4.

lim
X→∞

1
|S±(X)| (3–30)

× ∣∣{d ∈ S±(X);

α ≤ (
√

log |d|LE(1, χd))
1√

log log |d| ≤ β}
∣∣∣∣∣

=
1√
2π

∫ β

α

1
t

e−
1
2 (log t)2dt

for fixed 0 ≤ α ≤ β.

Finally, it is discussed in [Conrey et al. 05] how (3–10)
leads to conjectures for mean values of L-functions, not
just at leading order as in (3–25), but including all terms
in the expansion down to the constant term.

Conjecture 3.5. With k an integer,

M±
E (X, k) =

1
X

∫ X

0

Υ±
k (log(t)) dt + O

(
X− 1

2+ε

)
(3–31)

as X → ∞, where Υk is a polynomial of degree k(k−1)/2
given by the k-fold residue

Υ±
k (x) =

(−1)k(k−1)/22k

k!
1

(2πi)k

∮
· · · (3–32)

∮
F±

k (z1, . . . , zk)∆(z2
1 , . . . , z2

k)2∏k
j=1 z2k−1

j

× e
x
∑k

j=1
zj dz1 · · · dzk,

where the contours above enclose the poles at zero and

F±
k (z1, . . . , zk) (3–33)

= A±
k (z1, . . . , zk)

k∏
j=1

(
Γ(1 + zj)
Γ(1 − zj)

(
Q

4π2

)zj
)1/2

×
∏

1≤i<j≤k

ζ(1 + zi + zj)
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and A±
k , which depends on E, is the Euler product, which

is absolutely convergent for
∑k

j=1 |zj | < 1
2 ,

A±
k (z1, . . . , zk) =

∏
p

Fk,p(z1, . . . , zk)

×
∏

1≤i<j≤k

(
1 − 1

p1+zi+zj

)
(3–34)

with, for p � Q,

Fk,p =
(

1 +
1
p

)−1
⎛
⎝1

p
+

1
2

⎛
⎝ k∏

j=1

Lp

(
1

p1+zj

)

+
k∏

j=1

Lp

( −1
p1+zj

)))
, (3–35)

and, for p | Q,

Fk,p =
k∏

j=1

Lp

( ±ap

p1+zj

)
. (3–36)

4. CONJECTURES RELATING TO THE VALUE
DISTRIBUTION OF THE FOURIER COEFFICIENTS
OF HALF-INTEGRAL-WEIGHT FORMS

Our goal now is to use the conjectures listed at the
end of the previous section for the value distribution of
the L-functions associated with elliptic curves to moti-
vate conjectures for the value distribution of the Fourier
coefficients of half-integral-weight forms. These follow
straightforwardly from the connection (2–5).

In each case, we let c(|d|) refer to the coefficients of the
corresponding weight-3

2 modular form, as in (2–5), and
κ±

E refer to the corresponding proportionality constant.
Our first conjecture then follows from (3–29):

Conjecture 4.1. (Central limit conjecture.)

lim
X→∞

1
|S±(X)| (4–1)

× ∣∣{d ∈ S±(X);

2 log c(|d|) − 1
2 log |d| + 1

2 log log |d|√
log log |d| ∈ (α, β)}

∣∣∣∣∣
=

1√
2π

∫ β

α

exp
(
− t2

2

)
dt.

We take 2 log c(|d|)− 1
2 log(|d|)+ 1

2 log log |d| to lie outside
the interval if c(|d|) = 0.

This leads directly to a conjecture for the appropri-
ately normalized distribution of the coefficients them-
selves, which is analogous to (3–30).

Conjecture 4.2.

lim
X→∞

1
|S±(X)|

∣∣{d ∈ S±(X);

α ≤
(

κ±
E

√
log |d|√|d| c(|d|)2

) 1√
log log |d|

≤ β

⎫⎪⎬
⎪⎭
∣∣∣∣∣∣∣

=
1√
2π

∫ β

α

1
t

e−
1
2 (log t)2dt (4–2)

for fixed 0 ≤ α ≤ β.

Our third conjecture follows from (2–5) and (3–25):

Conjecture 4.3. (Moment conjecture.)

lim
X→∞

1
(log X)s(s−1)/2

1
|S±(X)|

∑
d∈S±(X)

c(|d|)2s

|d|s/2

= (κ±
E)−sA±(s)gs(O+). (4–3)

Further, we have the conjecture following from (2–5)
and (3–27).

Conjecture 4.4. If log Xf(log X) → 0 as X → ∞, then

lim
X→∞

√
κ±

Ef(log X)

(log X)
3
8

1
|S±(X)|

×
∣∣∣∣∣{d ∈ S±(X);

c(|d|)2√|d| < f(log X)y}
∣∣∣∣∣ = By−1/2,

(4–4)

where
B = 2−7/8G(1/2)π−1/4A±(−1/2). (4–5)

Lastly, we have the analogue of (3–31).

Conjecture 4.5. With k an integer, and summing over
fundamental discriminants,

(κ±
E)k

|S±(X)|
∑

d∈S±(X)

c(|d|)2k

|d|k/2

=
1
X

∫ X

0

Υ±
k (log(t)) dt + O

(
X−(1/2)+ε

)
(4–6)
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as X → ∞, where Υ±
k is the polynomial of degree k(k −

1)/2 given in Conjecture 3.5.

The numerical evidence that supports these conjec-
tures is amassed in Section 6.

5. FREQUENCY OF VANISHING OF L-FUNCTIONS

Examining the frequency of LE(1, χd) = 0 as d varies, as
well as the order of the zeros, has particular significance
in the context of the conjecture of Birch and Swinnerton-
Dyer, which says that LE(s) has a zero at s = 0 with
order exactly equal to the rank of the elliptic curve E.
Random matrix theory appears to have a role in pre-
dicting the frequency of such zeros. We have argued in
[Conrey et al. 02] that since (2–5) implies a discretization
of the values of LE(1, χd) and∫ α

0

W±
E (X, t)dt (5–1)

is the probability that LE(1, χd) has a value of α or
smaller, then the combination of (3–22) and (3–23) sug-
gests the following.

Conjecture 5.1. There is a constant c±E ≥ 0 such that∑
d∈S±(X)
|d| prime

LE(1,χd)=0

1

∑
d∈S±(X)
|d| prime

1
∼ c±EX−1/4(log X)3/8. (5–2)

This conjecture first appeared in [Conrey et al. 02],
but was stated with c±E > 0. However, it became clear in
preparing numerics for this paper that c±E can equal zero,
and an arithmetic explanation has been given for one of
the examples in our data by Delaunay [Delaunay 06].

Here the fundamental discriminants have been re-
stricted to prime values to avoid extra two-divisibility
issues being placed on the coefficients c(|d|). The con-
stant c±E remains somewhat mysterious. The random
matrix model suggests that it should be proportional to

A± (−1
2

)√
κ±

E . However, when one attempts to apply
the random matrix model to the problem of the discrete
values taken on by the c(|d|), one ignores subtle arith-
metic. It seems, from numerical experiments, that one
needs to take into account further correction factors that
depend on the size of the torsion subgroup of E, but this
is still not understood. See Section 6.

Let q � Q be a fixed prime. Another conjecture that
follows from this approach concerns sorting the d’s for

which LE(1, χd) = 0 according to residue classes mod q,
according to whether χd(q) = 1 or −1. Let

R±
q (X) =

∑
d∈S±(X)

LE(1,χd)=0
χd(q)=1

1

∑
d∈S±(X)

LE(1,χd)=0
χd(q)=−1

1
. (5–3)

Conjecture 5.2. [Conrey et al. 02] Let

Rq =
(

q + 1 − aq

q + 1 + aq

)1/2

. (5–4)

Then for q � Q,

lim
X→∞

R±
q (X) = Rq. (5–5)

We believe this conjecture to hold even if we allow d

to range over different sets of discriminants, such as |d|
restricted to primes (though in the latter case we must
be sure to rule out there being no vanishings at all due
to arithmetic reasons).

A more precise conjecture given in [Conrey et al. 06]
incorporates the next term. The lower terms do de-
pend on whether we are looking at S+(X) as opposed
to S−(X). We require some notation. Let p be prime.
For p | Q set

β(p) = β±(p) =

{
log(p)/(1 + p) in the + case,
log(p)/(1 − p) in the − case,

(5–6)
and for p � Q set

β(p) = log(p)

(
(2 − ap)f1(p)−1/2 + (2 + ap)f2(p)−1/2

2 + p
(
f1(p)1/2 + f2(p)1/2

)
)

,

(5–7)
where

f1(p) = 1 − ap/p + 1/p,

f2(p) = 1 + ap/p + 1/p.

Next, let

λν(q) =
log(q)(νaq − 2)

νaq − q − 1
− 3 log(q)

2(q − 1)
− 5γ

2

+
∑
p�=q

(
β(p) − 3 log(p)

2(p − 1)

)
, (5–8)

where γ is Euler’s constant.
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Conjecture 5.3. [Conrey et al. 06] For q � Q,

R±
q (X) =

(
q + 1 − aq

q + 1 + aq

)1/2
g + λ1(q)
g + λ−1(q)

+ O(1/ log(X)2)

(5–9)
where

g =
8
3

log
(

XQ1/2

2π

)
− 1. (5–10)

These conjectures are supported by numerical evi-
dence that will be described in the next section.

6. NUMERICAL EXPERIMENTS

We present numerics for 2398 elliptic curves and millions
of quadratic twists for each curve (|d| < 108) confirming
the aforementioned conjectures. To test these conjec-
tures we used the relation (2–5). To make our exam-
ples explicit, we list in Tables 3-3 relevant data for 26 of
the 2398 elliptic curves examined. The remaining data
may be obtained from the L-function database of one
of the authors [Rubinstein 04]. We used as the starting
point for our computations a database of Tornaria and
Rodriguez-Villegas [Rodriquez-Villegas and Tornaria 04]
that lists, for thousands of elliptic curves, the relevant
ternary quadratic forms.

Each entry in this table contains the following data:

name [a1, a2, a3, a4, a6] κ no. of d no. ternary forms

relevant residue classes |d| mod Q̃
linear combination
ternary forms

The name we use for an elliptic curve E corresponds to
Cremona’s table [Cremona], but with an extra subscript,
either i or r, standing for imaginary or real respectively,
to specify whether we are looking at quadratic twists
LE(s, χd) with d < 0 or d > 0. The naming convention
used by Cremona includes the conductor Q in the name
for the elliptic curve. So, for example, the first entry has
name 11Ai, which is the elliptic curve of conductor 11.
The i indicates that we are looking at quadratic twists of
11A with d < 0.

The notation [a1, a2, a3, a4, a6] refers to the coefficients
defining the equation of E,

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (6–1)

For each curve, our data consists of values of LE(1, χd)
with |d| < 108, and d restricted to

∏
p|Q

p odd
((p − 1)/2)

residue classes mod Q or 4Q, depending on whether Q

is odd or even. For imaginary twists, all the Tornaria–
Rodriguez-Villegas examples have Q square-free, and in
the case of real twists, all their examples have Q prime.
The relevant residue classes and relevant modulus are
listed in the second line of each entry, and the number of
such d up to 108 is given by “no. of d.”

Our L(1, χd) values are expressed in terms of the coef-
ficients of a weight- 3

2 modular form of level 4Q in the case
of imaginary quadratic twists, d < 0, and of level 4Q2 in
the case of real quadratic twists, d > 0. This weight-
3
2 form is expressed as a linear combination of theta se-
ries attached to positive definite ternary quadratic forms.
The number of forms, say r, is given in the last part of
the first line, while the linear combination, [α1, . . . , αr],
and ternary forms occupy the last two lines of each entry.
Each ternary form is specified as a sextuple of integers
β = [β1, β2, β3, β4, β5, β6]. The ternary form is

fβ(x, y, z) = β1x
2 + β2y

2 + β3z
2 + β4yz + β5xz + β6xy

(6–2)
and the associated theta series is given by

θβ(w) =
∑

(x,y,z)∈Z3

wfβ(x,y,z). (6–3)

Given this data, one defines

∞∑
n=1

c(n)wn =
r∑

j=1

αjθβj
(w). (6–4)

Then, for fundamental discriminants lying in the relevant
residue classes in the table (and d < 0 or d > 1 according
to the name of the entry), one has

LE(1, χd) =
κc(|d|)2
|d|1/2

. (6–5)

Note that our values of κ and c(|d|) differ slightly from
the values given in [Mao et al. 06] in that in our tables,
we ignored the value of c(1), for example in the case that
d > 0, and normalized the αj ’s so that the gcd of all the
c(n)’s, for n �= 1, is equal to one, absorbing if necesary an
extra square factor into κ. For example, while [Mao et al.
06] gives for the curve 11Ar a value of κ = .25384186 . . . ,
we list a value of κ that is 52 = 25 times as big, but give
c(n)’s that are 1

5 as large.
The most comprehensive test carried out [Conrey et

al. 05] for moments involved looking at Conjecture 3.5 for
millions of values of LE11A

(1, χd), with d < 0 and |d| =
1, 3, 4, 5, 9 mod 11. The coefficients from [Conrey et al.
05] of the polynomials Υ−

k in Conjecture 3.5 are given by
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r fr(1) fr(2) fr(3) fr(4)

0 1.2353 .3834 .00804 .0000058
1 1.850 .209 .000444
2 1.57 .0132
3 2.85 .1919
4 1.381
5 4.41
6 4.3

TABLE 1. Coefficients of Υ−
k (x) = f0(k)xk(k−1)/2 +

f1(k)xk(k−1)/2−1 + · · · , for k = 1, 2, 3, 4.

Table 1. In checking Conjecture 3.5, we compared
∑

−850000<d<0
|d|=1,3,4,5,9 mod 11

L11Ai
(
1
2
, χd)k (6–6)

to ∑
−850000<d<0

|d|=1,3,4,5,9 mod 11

Υ−
k (log(|d|)) . (6–7)

This comparison is depicted in Table 2.

k (6–6) (6–7) ratio

1 14628043.5 14628305. 0.99998
2 100242348.8 100263216. 0.9998
3 1584067116.8 1587623419. 0.998
4 41674900434.9 41989559937. 0.993

TABLE 2. Moments of L11Ai(1, χd) versus their conjectured
values, for fundamental discriminants −85 000 000 < d <
0, |d| = 1, 3, 4, 5, 9 mod 11, and k = 1, . . . , 4. The data
agree with our conjecture to the accuracy to which we have
computed the moment polynomials Υ−

k .

The first part of Conjecture 3.1 is, for integral mo-
ments, a weaker form of Conjecture 3.5, while Conjec-
tures 4.3 and 4.5 follow from Conjectures 3.1 and 3.5.

In Figure 1 we depict the numerical value distri-
bution of L11Ai

(1, χd), for fundamental discriminants

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5

L_E(1,chi_d) values
SO even prediction

FIGURE 1. Value distribution of LE11(1, χd), with
−85 000 000 < d < 0, d = 2, 6, 7, 8, 10 mod 11.

−85 000 000 < d < 0, |d| = 1, 3, 4, 5, 9 mod 11, com-
pared to PN (t) obtained by taking the inverse Mellin
transform of (3–4) with N = 20. Because we are ne-
glecting the arithmetic factor in computing the density,
a slight cheat was used to get a better fit. The histograms
were rescaled by a constant along both axes until the his-
togram displayed matched up nicely with the solid curve.
Considering that we are compensating for leaving out the
arithmetic factor in such a naive way, it is a bit surpris-
ing how nicely the two fit. The main point we wish to
make is that the histogram does exhibit t−1/2 behavior
near the origin in support of part 2 of Conjecture 3.1.

In Figure 2 we verify the central limit theorem de-
scribed in Conjecture 3.3. The first picture shows the

 0
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FIGURE 2. Value distribution of(
log LE(1, χd) + 1

2
log log |d|

)
/
√

log log |d| compared to
the random matrix theory counterpart PN (g(t))g′(t) with
N = 20 (rescaled as explained in the text), and its limit
the standard Gaussian. In the first picture we superimpose
the value distributions for the twenty-six curves described
in Table 3. The second picture shows the average value
distribution of the twenty-six.
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value distributions, superimposed, of

log LE(1, χd) + 1
2 log log |d|√

log log |d| , |d| < 108, (6–8)

for the twenty-six curves described in Table 3. The sec-
ond plot depicts the average value distribution of the
twenty-six. These are compared against the standard
Gaussian predicted in the conjecture and also against the
density function associated with the value distribution of

log |Z(A, 0)| + 1
2 log N√

log N
(6–9)

with N = 20. This density is given by

PN (g(t))g′(t), (6–10)

where

g(t) =
exp(t

√
log N)

N1/2
, (6–11)

and is shown in [Keating and Snaith 00b] to tend to the
standard Gaussian as N → ∞. To get a better fit to the
numeric value distribution, one would also need to incor-
porate the arithmetic factor. In the limit, this factor has
no effect, but the convergence to the limit is extremely
slow. The variability of the arithmetic factor explains
why the twenty-six densities superimposed in Figure 2
don’t fall exactly on top of one another. To get a better
fit to the average, we set p(t) = PN (g(t))g′(t) and plot
instead αp(αt), with α = 1.21 chosen so that the density
function visually lines up with the data.

Conjecture 5.2 is verified numerically in the top plot
in Figure 3, which compares, for the first one hundred
elliptic curves E in our database and the sets S±

E (X),
the predicted value of Rq to the actual value R±

q (X),
with X = 108.

The horizontal axis is q. For each q and each of the
one hundred elliptic curves E we plot R±

q (X)−Rq, with
X = 108 and q ≤ 3571. For each q on the horizon-
tal there are 100 points corresponding to the 100 values,
one for each elliptic curve, of R±

q (X) − Rq. We see the
values fluctuating about zero, most of the time agreeing
to within about 0.02. The convergence in X is predicted
from secondary terms to be logarithmically slow, and one
gets a better fit by including more terms as predicted in
Conjecture 5.3.

This is depicted in the second plot of Figure 3, which
shows the difference

R±
q (X) −

(
q + 1 − aq

q + 1 + aq

)1/2
g + λ1(q)
g + λ−1(q)

, (6–12)
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FIGURE 3. A plot [Conrey et al. 04] for one hundred elliptic
curves of R±

q (X) − Rq, left plot, and of (6–12), right plot,
for 2 ≤ q ≤ 3571, X = 108.

again with X = 108, q ≤ 3571, and the same one hun-
dred elliptic curves E. We see an improvement to the
first plot, which uses just the main term.

This improvement is emphasized in Figure 4, which
compares the distribution of R±

q (X)−Rq for all our 2398
elliptic curves, X = 108, q ≤ 3571, versus the distribu-
tion of (6–12). The latter has smaller variance. These
distributions are not Gaussian. They depict the remain-
der of R±

q (X) compared to the first and second conjec-
tured approximations. There are yet further lower terms
and these are given by complicated sums involving the
Dirichlet coefficients of LE(s).

To verify Conjecture 5.1 we computed the left-hand
side of (5–2) divided by

A±(−1/2)
√

κ±
EX−1/4(log X)3/8 (6–13)
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FIGURE 4. Distribution first approximation versus second
approximation for ratio of vanishings [Conrey et al. 04]
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FIGURE 5. A test of Conjecture 5.1 for 55 elliptic curves in
our database: we are plotting for each curve the left-hand

side of (5–2) divided by A± (−1
2

)√
κ±

EX−1/4(log X)3/8,

X = 100 000, 200 000, . . . , 108. The graphs appear relatively
flat.

FIGURE 6. The same as the previous figure, but for all
elliptic curves in our database.

for our 2398 curves (545 of these have c±E = 0 and these
are omitted) and X = 100 000, 200 000, . . . , 108. The re-
sulting values are depicted in Figure 6. We also display in
Figure 5 the same data for a subset of 55 of these curves
(those in our database with c±E �= 0 and whose conductor
have leading digits 11). The graphs displayed in these
two figures appear relatively flat.

To measure how flat these graphs are, we show in Fig-
ure 7 the distribution of the slopes of the graphs in Figure
6, measured by sampling each one at X = 5 × 107 and
X = 108. Most have slopes that are of size less than
10−10, and this suggests that the power of X, namely 3

4 ,
in our conjecture is not off by more that 0.01, and that
the power of log(X), namely 3

8 is not off by more than
0.1. The mean does appear slightly to the right of 0,
occurring at 0.5 × 10−10, but this might be the result of
using a limited number of curves and may also perhaps
be due to lower-order terms.

Next we sort the graphs in Figure 6 by their rightmost
values at X = 108, and, in Figure 8, plot these values
against the order of the torsion subgroup of the corre-
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FIGURE 7. Distribution of the slopes of the graphs in Figure
6 from X = 5×107 to X = 108. This tells us that the graphs
are relatively flat.

sponding elliptic curves. The plot shows that curves with
trivial torsion tend to have smaller constants, followed by
curves of torsion size equal to 7 or 5 or 3, then 2 and 1
again, etc. We do not yet have an explanation for this
phenomenon and do not know how to incorporate it into
our model. It seems [Rubinstein 04] that to nail down
the constant c±E one would need to incorporate into the
model Delaunay’s heuristics for Tate–Shavarevich groups
[Delaunay 01]. However, it appears that for primes p di-
viding the order of the torsion subgroup, the probability
that c(|d|) is divisible by p deviates in a way we do not
yet understand from a prediction made by Delaunay for
the probability that the order of the Tate–Shavarevich
group is divisible by a given prime. Delaunay’s pre-
dictions are for all elliptic curves sorted by conductor,
and here we are examining a skinny set of elliptic curves,
namely quadratic twists of a fixed elliptic curve.
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FIGURE 8. The rightmost values of the graphs in Figure
6 plotted against the order of the torsion subgroups of the
corresponding elliptic curves. We see, for example, that the
smallest constants tend to go along with the curves whose
torsion is trivial. The few curves at the far right with torsion
size equal to 2 have c(|d|) divisible by 2 when |d| �= 4, and
hence, because the corresponding discretization is twice as
large, the c(|d|)’s are four times as likely to vanish.
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11Ai [0, -1, 1, -10, -20] 2.91763323388 13931691 2
1, 3, 4, 5, 9 mod 11
[1/2, -1/2]
[3, 15, 15, -14, -2, -2], [4, 11, 12, 0, -4, 0]

11Ar [0,−1, 1,−10,−20] 6.34604652140 13931649 6
1, 3, 4, 5, 9 mod 11
[1/10, -1/10, 3/10, -3/10, -2/10, 2/10]
[1, 44, 132, -44, 0, 0], [4, 12, 121, 0, 0, -4], [4, 33, 45, -22, -4, 0], [5, 9, 124, -8, -4, -2], [5, 36, 36,
28, 4, 4], [16, 16, 25, -4, -4, -12]

14Ai [1, 0, 1, 4, -6] 5.30196495873 4432803 2
15, 23, 39 mod 56
[1/4, -1/4]
[4, 15, 15, 2, 4, 4], [7, 8, 16, -8, 0, 0]

15Ai [1, 1, 1, -10, -10] 3.19248444426 4749434 2
2, 8 mod 15
[1/4, -1/4]
[3, 20, 20, -20, 0, 0], [8, 8, 15, 0, 0, -4]

17Ai [1, -1, 1, -1, -14] 2.74573911809 14353828 2
3, 5, 6, 7, 10, 11, 12, 14 mod 17
[1/2, -1/2]
[3, 23, 23, -22, -2, -2], [7, 11, 20, -8, -4, -6]

19Ai [0, 1, 1, -9, -15] 4.12709239172 14438275 2
1, 4, 5, 6, 7, 9, 11, 16, 17 mod 19
[1/2, -1/2]
[4, 19, 20, 0, -4, 0], [7, 11, 23, -10, -6, -2]

19Ar [0, 1, 1, -9, -15] 4.07927920046 14438248 12
1, 4, 5, 6, 7, 9, 11, 16, 17 mod 19
[-1/6, 1/6, -1/6, 1/6, -1/3, -1/3, -1/3, 1/3, 1/3, 1/3, 1/3, -1/3]
[1, 76, 380, -76, 0, 0], [4, 20, 361, 0, 0, -4], [4, 77, 96, 40, 4, 4], [5, 16, 365, 16, 2, 4], [5, 61, 92, 16,
4, 2], [5, 76, 92, -76, -4, 0], [9, 44, 77, 28, 6, 8], [16, 24, 77, 20, 8, 4], [17, 44, 44, 12, 16, 16], [20,
24, 73, 4, 8, 20], [20, 36, 45, 20, 16, 12], [25, 36, 36, -4, -16, -16]

21Ai [1, 0, 0, -4, -1] 3.82197956150 4986931 2
10, 13, 19 mod 21
[1/4, -1/4]
[3, 28, 28, -28, 0, 0], [7, 12, 24, -12, 0, 0]

26Ai [1, 0, 1, -5, -8] 3.47934348343 4704178 2
7, 15, 31, 47, 63, 71 mod 104
[-1/2, 1/2]
[7, 15, 31, -14, -6, -2], [8, 15, 28, 4, 8, 8]

26Bi [1, -1, 1, -3, 3] 1.80405719338 4704185 2
3, 27, 35, 43, 51, 75 mod 104
[-1/2, 1/2]
[3, 35, 35, -34, -2, -2], [4, 27, 27, 2, 4, 4]

30Ai [1, 0, 1, 1, 2] 18.5342737810 1583137 2
31, 79 mod 120
[1/8, -1/8]
[4, 31, 31, 2, 4, 4], [15, 16, 16, -8, 0, 0]

33Ai [1, 1, 0, -11, 0] 2.74463335747 5224398 3
5, 14, 20, 23, 26 mod 33
[1/4, 1/4, -1/2]
[3, 44, 44, -44, 0, 0], [11, 12, 36, -12, 0, 0], [15, 20, 20, -4, -12, -12]

34Ai [1, 0, 0, -3, 1] 7.45670022989 4784604 2
19, 35, 43, 59, 67, 83, 115, 123 mod 136
[1/4, -1/4]
[4, 35, 35, 2, 4, 4], [8, 19, 36, 4, 8, 8]

35Ai [0, 1, 1, 9, 1] 2.20504427610 5540991 2
1, 4, 9, 11, 16, 29 mod 35
[-1/2, 1/2]
[4, 35, 36, 0, -4, 0], [11, 15, 39, -10, -6, -10]

TABLE 3. Some of the ternary forms from [Rodriquez-Villegas and Tornaria 04].
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37Bi [0, 1, 1, -23, -50] 7.07044268094 14798224 2
2, 5, 6, 8, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 29, 31, 32, 35 mod 37
[1/2, -1/2]
[8, 19, 39, 2, 8, 4], [15, 20, 23, -8, -14, -4]

43Ar [0, 1, 1, 0, 0] 10.9373790599 14852746 22
2, 3, 5, 7, 8, 12, 18, 19, 20, 22, 26, 27, 28, 29, 30, 32, 33, 34, 37, 39, 42 mod 43
[1/4, 1/4, -1/4, -1/4, 1/4, 1/4, -1/4, 1/4, -1/4, -1/4, -1/4, -1/4, -1/4, 1/4, 1/4, 1/4, -1/4, 1/4,
1/4, 1/4, -1/4, -1/4]
[5, 69, 929, -34, -2, -2], [5, 241, 276, 104, 4, 2], [8, 65, 624, 44, 4, 4], [8, 108, 389, 88, 8, 4], [12, 29,
932, -28, -4, -4], [12, 73, 373, 30, 4, 8], [20, 29, 621, 22, 12, 16], [20, 61, 277, 54, 12, 8], [28, 32,
377, 28, 16, 12], [28, 33, 376, 28, 12, 16], [29, 77, 157, 14, 18, 26], [29, 77, 161, 46, 10, 26], [32, 69,
157, 26, 12, 24], [37, 45, 237, -2, -26, -34], [37, 89, 104, 44, 16, 10], [37, 93, 104, -60, -16, -2], [45,
77, 113, 62, 42, 10], [48, 77, 104, -56, -4, -32], [48, 77, 108, -48, -28, -32], [61, 80, 89, 76, 42, 16],
[69, 76, 77, -4, -58, -32], [69, 77, 80, -44, -8, -58]

67Ai [0, 1, 1, -12, -21] 6.05993680291 14974655 3
1, 4, 6, 9, 10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35, 36, 37, 39, 40, 47, 49, 54, 55, 56,
59, 60, 62, 64, 65 mod 67
[1/2, -1, 1/2]
[4, 67, 68, 0, -4, 0], [15, 36, 39, -16, -14, -4], [16, 19, 71, 6, 16, 12]

67Ar [0, 1, 1, -12, -21] 1.27377003655 14974660 70
1, 4, 6, 9, 10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35,
36, 37, 39, 40, 47, 49, 54, 55, 56, 59, 60, 62, 64, 65 mod 67
[-1/2, 1/2, 1/2, -1, -1/2, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1,
1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1,
-1, -1, -1, 1, 1, -1, 1]
[1, 268, 4556, -268, 0, 0], [4, 68, 4489, 0, 0, -4], [4, 269, 1140, 136, 4, 4], [9, 269, 508, 92, 8, 6], [16,
17, 4493, 2, 16, 4], [17, 237, 332, -172, -8, -6], [17, 268, 332, -268, -8, 0], [21, 77, 753, -38, -2, -6],
[21, 217, 308, 192, 12, 2], [21, 220, 308, 196, 12, 16], [24, 157, 328, 48, 20, 8], [24, 236, 261, -196,
-20, -12], [25, 248, 248, 228, 12, 12], [29, 56, 760, -44, -16, -8], [29, 89, 504, 20, 24, 26], [29, 205,
216, 88, 20, 14], [29, 205, 224, 124, 16, 14], [29, 224, 224, 180, 16, 16], [33, 144, 292, -92, -32, -28],
[33, 173, 236, 124, 8, 18], [33, 173, 237, -118, -14, -18], [36, 68, 509, 48, 20, 12], [36, 173, 216, 120,
4, 16], [37, 77, 464, 68, 8, 26], [37, 116, 293, -64, -22, -4], [37, 188, 189, 84, 10, 32], [37, 189, 189,
110, 10, 10], [40, 77, 449, 2, 4, 40], [40, 77, 457, 18, 36, 40], [40, 149, 237, -130, -20, -16], [49, 104,
260, -92, -24, -4], [60, 77, 277, -62, -4, -16], [60, 84, 277, 64, 4, 44], [60, 89, 285, -42, -44, -56], [64,
129, 160, 4, 36, 44], [65, 68, 301, -20, -2, -40], [65, 68, 304, -12, -28, -40], [65, 140, 140, 12, 32, 32],
[65, 140, 160, -84, -44, -32], [65, 149, 149, 30, 58, 58], [65, 149, 157, 110, 34, 58], [68, 77, 237, 10,
12, 24], [68, 84, 265, 8, 16, 68], [68, 96, 217, -28, -8, -60], [68, 96, 237, 92, 12, 60], [68, 140, 149,
72, 44, 52], [73, 77, 240, 32, 20, 46], [73, 92, 181, 12, 18, 8], [73, 132, 132, -4, -32, -32], [76, 77,
272, 48, 12, 72], [76, 93, 173, -6, -8, -20], [76, 93, 188, 16, 68, 20], [77, 84, 193, 40, 22, 12], [77, 89,
220, -8, -36, -70], [77, 129, 157, 70, 74, 66], [77, 132, 148, 92, 52, 56], [77, 132, 157, 100, 74, 56],
[81, 93, 196, 4, 16, 74], [84, 116, 153, 88, 32, 60], [84, 116, 169, -48, -80, -60], [88, 92, 173, 76, 44,
36], [88, 96, 173, 80, 44, 52], [89, 132, 132, -4, -72, -72], [89, 132, 148, -92, -48, -72], [92, 92, 181,
-12, -12, -84], [93, 93, 173, -6, -6, -82], [93, 93, 193, -46, -46, -82], [96, 96, 157, -16, -16, -76], [100,
104, 149, 64, 96, 44], [104, 104, 149, -64, -64, -60]

73Ai [1, -1, 0, 4, -3] 2.79278430294 14992818 4
5, 7, 10, 11, 13, 14, 15, 17, 20, 21, 22, 26, 28, 29, 30, 31, 33, 34, 39, 40, 42, 43, 44, 45, 47, 51, 52,
53, 56, 58, 59, 60, 62, 63, 66, 68 mod 73
[-1/2, 1/2, -1, 1]
[7, 43, 84, -40, -4, -6], [11, 28, 80, 28, 4, 8], [15, 39, 40, 20, 8, 2], [20, 31, 44, -28, -4, -12]

79Ar [1, 1, 1, -2, 0] 11.9016007052 15008174 40
3, 6, 7, 12, 14, 15, 17, 24, 27, 28, 29, 30, 33, 34, 35, 37, 39, 41,
43, 47, 48, 53, 54, 56, 57, 58, 59, 60, 61, 63, 66, 68, 69, 70, 71, 74,
75, 77, 78 mod 79
[-1/2, -1/2, 1/2, 1/2, -1/2, -1/2, -1/2, 1/2, -1/2, -1/2, -1/2, 1/2,
1/2, -1/2, 1/2, 1/2, 1/2, -1/2, 1/2, -1/2, -1/2, -1/2, -1/2, -1/2,
1/2, 1/2, 1/2, 1/2, -1/2, 1/2, 1/2, -1/2, 1/2, 1/2, 1/2, -1/2, -1/2,
1/2, -1/2, 1/2]

TABLE 3. (continued) Some of the ternary forms from [Rodriquez-Villegas and Tornaria 04].
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89Bi [1, 1, 0, 4, 5] 2.18489393577 15029294 7
[12, 369, 449, 54, 8, 4], [17, 133, 896, -12, -16, -14], [17, 224, 521, 20, 6, 8], [17, 264, 449, -12, -14,
-16], [24, 185, 461, 106, 4, 8], [28, 192, 385, -112, -12, -4], [29, 33, 2088, -8, -28, -6], [33, 116, 544,
92, 32, 12], [37, 153, 376, 8, 36, 34], [41, 56, 1044, 4, 24, 40], [41, 116, 425, -4, -38, -8], [41, 185,
265, -38, -22, -2], [41, 185, 276, -84, -32, -2], [41, 216, 236, 20, 28, 36], [41, 217, 229, -18, -30, -14],
[48, 112, 377, 28, 40, 4], [48, 193, 224, -32, -36, -20], [53, 201, 233, -182, -10, -30], [56, 96, 377,
-44, -32, -4], [60, 157, 216, -20, -4, -32], [61, 96, 372, -4, -32, -44], [68, 113, 284, 104, 12, 20], [68,
172, 185, -92, -32, -4], [69, 137, 217, 10, 22, 34], [69, 161, 193, -74, -38, -14], [77, 113, 249, -62, -46,
-26], [77, 137, 201, -38, -50, -22], [85, 113, 233, 82, 46, 42], [93, 145, 161, 70, 22, 46], [96, 136, 197,
-132, -60, -20], [96, 140, 185, -128, -16, -44], [108, 120, 161, -52, -36, -4], [108, 145, 161, 70, 36,
104], [112, 116, 185, 100, 76, 12], [113, 116, 185, -100, -14, -56], [113, 161, 165, 138, 2, 110], [116,
137, 185, 134, 100, 96], [132, 137, 149, 98, 64, 108], [132, 153, 156, -44, -124, -100], [140, 145, 153,
134, 132, 64]

3, 6, 7, 12, 13, 14, 15, 19, 23, 24, 26, 27, 28, 29, 30, 31, 33, 35, 37, 38, 41, 43, 46, 48, 51, 52, 54,
56, 58, 59, 60, 61, 62, 63, 65, 66, 70, 74, 75, 76, 77, 82, 83, 86 mod 89
[1/2, -1/2, 1/2, 1/2, 1/2, -1/2, -1]
[3, 119, 119, -118, -2, -2], [7, 51, 103, -50, -6, -2], [12, 31, 92, 4, 12, 8], [15, 24, 95, 24, 2, 4], [15,
27, 96, -20, -8, -14], [19, 23, 95, -14, -10, -18], [23, 31, 48, 16, 12, 2]

109Ai [1, -1, 0, -8, -7] 5.94280424076 15060017 3
2, 6, 8, 10, 11, 13, 14, 17, 18, 19, 23, 24, 30, 32, 33, 37, 39, 40,
41, 42, 44, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 62, 65, 67, 68,
69, 70, 72, 76, 77, 79, 85, 86, 90, 91, 92, 95, 96, 98, 99, 101, 103,
107 mod 109
[1/2, 1/2, -1]
[11, 40, 119, 40, 2, 4], [19, 23, 119, -22, -18, -2], [24, 39, 56, 4, 12, 16]

113Ai [1, 1, 1, 3, -4] 2.85781203904 15064917 7
3, 5, 6, 10, 12, 17, 19, 20, 21, 23, 24, 27, 29, 33, 34, 35, 37, 38, 39, 40, 42, 43, 45, 46, 47, 48, 54,
55, 58, 59, 65, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 84, 86, 89, 90, 92, 93, 94, 96, 101, 103,
107, 108, 110 mod 113
[-1/2, 1/2, -1/2, -1, -1/2, 1, 1]
[3, 151, 151, -150, -2, -2], [12, 39, 116, 4, 12, 8], [19, 24, 119, 24, 2, 4], [20, 47, 68, -44, -4, -12], [23,
24, 119, 24, 10, 20], [23, 40, 59, 20, 2, 8], [35, 39, 47, -10, -34, -6]

139Ai [1, 1, 0, -3, -4] 5.80133204474 15089693 5
1, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 25, 28, 29, 30, 31, 34, 35, 36,
37, 38, 41, 42, 44, 45, 46, 47, 49, 51, 52, 54, 55, 57, 63, 64, 65, 66,
67, 69, 71, 77, 78, 79, 80, 81, 83, 86, 89, 91, 96, 99, 100, 106, 107,
112, 113, 116, 117, 118, 120, 121, 122, 124, 125, 127, 129, 131,
136, 137 mod 139
[-1/2, 1/2, 1/2, 1/2, -1]
[7, 80, 159, 80, 2, 4], [11, 52, 152, 52, 4, 8], [20, 28, 139, 0, 0, -4], [20, 31, 144, 8, 20, 16], [24, 47,
71, 2, 12, 8]

179Ai [0, 0, 1, -1, -1] 5.10909732904 15113724 7
1, 3, 4, 5, 9, 12, 13, 14, 15, 16, 17, 19, 20, 22, 25, 27, 29, 31, 36, 39, 42, 43, 45, 46, 47, 48, 49, 51,
52, 56, 57, 59, 60, 61, 64, 65, 66, 67, 68, 70, 74, 75, 76, 77, 80, 81, 82, 83, 85, 87, 88, 89, 93, 95,
100, 101, 106, 107, 108, 110, 116, 117, 121, 124, 125, 126, 129, 135, 138, 139, 141, 142, 144, 145,
146, 147, 149, 151, 153, 155, 156, 158, 161, 168, 169, 171, 172, 173, 177 mod 179
[1/2, 1/2, 1/2, 1/2, -1/2, -1/2, -1]
[4, 179, 180, 0, -4, 0], [15, 48, 191, 48, 2, 4], [15, 51, 192, -44, -8, -14], [16, 47, 183, 6, 16, 12], [19,
39, 191, -34, -14, -10], [20, 39, 184, 8, 20, 16], [39, 56, 76, -52, -20, -12]

233Ai [1, 0, 1, 0, 11] 1.63933561519 15133226 13
3, 5, 6, 10, 11, 12, 17, 20, 21, 22, 24, 27, 34, 35, 39, 40, 41, 42,
43, 44, 45, 47, 48, 53, 54, 57, 59, 61, 65, 67, 68, 69, 70, 73, 75, 77,
78, 79, 80, 82, 83, 84, 86, 87, 88, 90, 93, 94, 95, 96, 97, 99, 103,
106, 108, 111, 114, 115, 118, 119, 122, 125, 127, 130, 134, 136,
137, 138, 139, 140, 143, 145, 146, 147, 149, 150, 151, 153, 154,
155, 156, 158, 160, 163, 164, 165, 166, 168, 172, 174, 176, 179,
180, 185, 186, 188, 189, 190, 191, 192, 193, 194, 198, 199, 206,
209, 211, 212, 213, 216, 221, 222, 223, 227, 228, 230 mod 233
[1/2, -1/2, 1/2, 1, 1/2, 3/2, -3/2, 1, -1, -3, 1, 1, -1]
[3, 311, 311, -310, -2, -2], [11, 87, 255, -82, -6, -10], [12, 79, 236, 4, 12, 8], [20, 95, 140, -92, -4, -12],
[24, 39, 239, 2, 24, 4], [24, 43, 239, 10, 24, 20], [27, 39, 244, -28, -16, -22], [35, 80, 84, 28, 24, 4],
[39, 80, 96, -68, -8, -36], [40, 47, 119, 2, 20, 8], [44, 68, 87, -36, -20, -28], [47, 68, 87, 36, 38, 40],
[48, 59, 79, 2, 16, 12]

TABLE 3. (continued) Some of the ternary forms from [Rodriquez-Villegas and Tornaria 04].
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