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This article presents an algorithm to compute Hilbert modular
forms on the quadratic field Q(

√
5). It also provides a list of all

modular abelian varieties defined over Q(
√

5) with prime level
of norm less than 100 (up to Q-isogeny).

1. INTRODUCTION

In this paper, we present an algorithm that allows one
to compute Hilbert modular forms of parallel weight 2
and level c on GL2(F ), where F = Q(

√
5) is the real

quadratic field of smallest discriminant. Though our
calculations have mainly focused on forms of parallel
weight 2, we have included some examples of forms of
weight (2, 4) in order to show that this algorithm can eas-
ily be generalized to compute forms of arbitrary weights.
Our presentation also indicates that there should be no
major problem in generalizing our algorithm to compute
forms of arbitrary weight and level over any totally real
field of narrow class number 1. However, we have concen-
trated on the simplest case of forms of parallel weight 2,
the main reason being that, in this case, one knows where
to look for some of the corresponding geometric objects
(such as elliptic curves or hypergeometric abelian vari-
eties studied in [Darmon 00] in connection with the equa-
tion xn + yn = z5), at least conjecturally.

Our method of computation draws on the Jacquet-
Langlands correspondence like others (see, for example,
[Pizer 80, Consani and Scholten 01, Socrates and White-
house 05]). To briefly explain it, let f be a normalized
eigenform of parallel weight 2 and level c (see [van der
Geer 88, Chapter I, Section 6] and [Shimura 78, Sections
1 and 2] for the precise definitions; see also Sections 2
and 3 in this paper for further definitions) and let B be
the Hamilton quaternion algebra on F . Then, B has
class number 1. We consider its maximal order R con-
sisting of the icosians; we fix an Eichler order Rc of level
c in R. By the Jacquet-Langlands correspondence, there
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is a eigenform on B×\B×
A /R

×
c,A, which shares the same

eigenvalues as f (here, for any F -algebra R, we denote its
adelization by RA). So, it is enough to compute the lat-
ter space. However, this computation requires an explicit
description of the double coset space B×\B×

A /R
×
c,A. The

most natural approach would be to view B×\B×
A /R

×
c,A

as parameterizing (right) ideal classes of Rc and find rep-
resentatives for those classes. This is what is done in
Pizer’s algorithm in [Pizer 80], which is the most used one
when it comes to computing forms on fields bigger than
Q (see, for example, [Consani and Scholten 01, Socrates
and Whitehouse 05]). Unfortunately, this has the draw-
back that, from the start, the algorithm depends on the
choice of the Eichler order Rc, which itself depends on
the level c. Therefore, it is very slow, since one has to
start all over again every time that the level changes.

By observing that there is a natural bijection between
B×\B×

A /R
×
c,A and R×\R̂×/R×

c,A, we are able to give a
much nicer description of this double coset space that
is independent of the explicit knowledge of an Eichler
order Rc. One then gets a description of the Hecke ac-
tion in terms of invariants of the maximal order R (or
equivalently of B). We can then precompute those in-
variants and store them. This gives an algorithm that is
more efficient, especially for the systematic computation
of Hilbert modular forms.

Section 2 recalls preliminary results about automor-
phic forms on definite quaternion algebras together with
the Jacquet-Langlands correspondence. In Section 3, we
describe our algorithm. By direct investigations, we ob-
tain a few of the elliptic curves corresponding to some of
the forms we have computed. Their modularity is studied
in Section 4.

2. AUTOMORPHIC FORMS ON DEFINITE
QUATERNION ALGEBRAS AND THE
JACQUET-LANGLANDS CORRESPONDENCE

We fix a totally real number field F of degree g. We
assume that the narrow class number of F is 1. We let
I be the set of all real embeddings of F and, for each
τ ∈ I, we denote the corresponding embedding by
a �→ aτ . Also, we let OF be the ring of integers of F , A
its adèle ring, and Af the ring of finite adèles. We fix an
integral ideal c of F . We let B be a totally definite quater-
nion algebra of center F . We fix a maximal order R in B.
We fix a Galois extension K of F contained in C, which
splits B. We also fix an isomorphism B⊗F K ∼= M2(K)I

and let j : B× ↪→ GL2(C)I be the resulting embed-
ding. We assume that (c, disc(B)) = 1. For any prime

p� |disc(B), we fix a local isomorphism Bp
∼= M2(Fp) such

that Rp
∼= M2(Op). Then, we define U = U0(c) =

∏
p Up,

with

Up =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

GL2(Op), p � | disc(B)c,

{(
a b
πepc d

)
∈ GL2(Op) | c ∈ Op; e ≥ 1

}
,

p | c,

R×
p , p |disc(B),

where we let Rp be the (unique) maximal order in Bp

when p |disc(B). We then let Rc be an Eichler order of
level c contained in R such that R̂×

c = U , where R̂c =
Rc ⊗ ÔF .

Fix a vector k ∈ ZI such that kτ ≥ 2 for all τ ,
with all the components having the same parity. Set
t = (1, . . . , 1) and m = k − 2t, then choose v ∈ ZI such
that each vτ ≥ 0, vτ = 0 for some τ and m+ 2v = µt for
some nonnegative µ ∈ Z.

For every nonnegative integer a, b ∈ Z, we let Sa, b(C)
denote the right M2(C)-module Syma(C2) (the ath sym-
metric power of the standard right M2(C)-module C2)
with the M2(C)-action

x ·m := (detm)bxSyma(m).

Then, we define

Lk =
⊗
τ∈I

Smτ , vτ
(C).

We let G = ResF/Q(B×) be the algebraic group obtained
by restriction of scalars à la Weil. Via the obvious ex-
tension of the embedding j, G(R) acts on Lk. On the
complex space of functions f : G(Q)\G(A) → Lk, we
define an action of G(A) by

(f ||ku)(g) := f(gu)u−1
∞ , g, u ∈ G(A).

Similarly, on the space of functions f : G(Af )/R̂×
c → Lk,

we define an action of G(Q) by

(f ||kγ)(g) := f(γg)γ, g ∈ G(Af ), γ ∈ G(Q).

The following definition is from Hida (see [Taylor 88, Sec-
tion 1]).

Definition 2.1. The space of automorphic forms of level
c and weight k on B is

SB
k (c) :=

{
f : G(Q)\G(A)→ Lk : f ||ku = f, u ∈ G(R)× R̂×

c

}
.
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Take f ∈ SB
k (c) and let

f̃(g) = f(g)g−1
∞ , g ∈ G(A).

We see, by the left G(Q)-invariance of f , that

f̃(γg) = f(γg)(γg)−1
∞ = f(γg)g−1

∞ γ−1

= f(g)g−1
∞ γ−1 = f̃(g)γ−1,

for all γ ∈ G(Q) and g ∈ G(A); and by the G(R) × R̂×
c -

equivariance, we see that

f̃(gu) = f(gu)(gu)−1
∞ = f(gu)u−1

∞ g−1
∞ = f(g)g−1

∞
= f̃(g),

for all g ∈ G(A) and u ∈ G(R)× R̂×
c . So, we can equiva-

lently define the space of automorphic forms as

SB
k (c) =

{
f : G(Af )/R̂×

c → Lk : f ||kγ = f, γ ∈ G(Q)
}
.

We will use both definitions with no distinction.

Definition 2.2. (Hecke operators.) Let p be a prime
ideal of F and πp a uniformizer of p. When p� |disc(B),
we write the disjoint union

R̂×
c

(
1 0
0 πp

)
R̂×

c =
∐

uiR̂×
c , with ui ∈ R̂ = R⊗ÔF ,

and define the Hecke operator Tp on SB
k (c) by

f ||Tp =
∑

f ||kui.

If, further, p� | c, we define the Hecke operator Sp by

f ||Sp = f ||k
(
πp 0
0 πp

)
.

When p |disc(B), we define

f ||Sp = f ||k�p,

where �p is a prime in Rp. We denote by TB
k (c) the

(commutative) Z-subalgebra of End(SB
k (c)) generated by

the T ′
ps and S′

ps, (p, c) = 1.

Let f ∈ Sk(c) be a cusp form, where Sk(c) is the space
of cusp forms and πf the cuspidal automorphic represen-
tation associated to f . (For the definitions, we refer to
[van der Geer 88, Chapter I, Section 6] and [Shimura 78,
Sections 1 and 2]). By [Flath 79, Thereom 4], πf factors
into a restricted tensor product of unitary representations
πf = ⊗vπv. We let Ak(c) (respectively, AB

k (c)) be the set

of all cuspidal representations that arise from forms in
Sk(c) (respectively, SB

k (c)).

Theorem 2.3. (Jacquet-Langlands.) There is an injection

JL : AB
k (c) → Ak(c)

π �→ π′ := JL(π).

The image of JL consists of all representations π′ such
that π′

v is special or supercuspidal for all v | disc(B).

Proof: See [Jacquet and Langlands 70, Section 16] and
[Gelbart 75, Chapter X].

As a consequence of Theorem 2.3, we see that for any
eigenform in SB

k (c), there is a form in Sk(c) that has the
same eigenvalues.

3. COMPUTING HILBERT MODULAR FORMS
ON Q(

√
5)

For an eigenform f , we denote by ap, f the eigenvalue of
the Hecke operator Tp. We would like to write a computer
program that returns enough eigenvalues ap, f to deter-
mine all the normalized Hecke eigenforms f for a level c

of reasonable norm and parallel weight 2 or weight (2, 4)
on F = Q(

√
5). To this end, let us consider the (unique,

up to isomorphism) totally definite quaternion algebra
B over F that is unramified at all finite places. The al-
gebra B can be identified with the standard Hamilton
quaternion algebra, since 2 is inert in F :

B = {x+ yi+ zj + wk, x, y, z, w ∈ F} .

By [Körner 87, Theorem 2] or [Socrates and Whitehouse
05, Theorem 6.2], the class number of B is 1. Every
maximal order in B is then conjugate to the icosian ring

R = Z[ω][e1, e2, e3, e4],

with

e1 =
1
2

(1− ω̄i+ ωj),

e2 =
1
2

(−ω̄i+ j + ωk),

e3 =
1
2

(ωi− ω̄j + k),

e4 =
1
2

(i+ ωj − ω̄k),

and ω = (1+
√

5)/2. The group of units R× is the semidi-
rect product of R×

1 with Z, where R×
1 the subgroup of
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norm 1 elements is isomorphic to the binary icosahedral
group of order 120 (see [Conway and Sloane 93, Chapter
8, Section 2.1]). Since B ramifies only at the two infinite
places, by Theorem 2.3,

AB
k (c) = Ak(c).

Therefore, the computation of Sk(c) amounts to the one
of SB

k (c).
Now turning to the explicit computation of SB

k (c), we
first recall that B×\B̂×/R̂× parameterizes the set of right
ideal classes of R. Thus, since B has class number 1,

B×\B̂×/R̂× = {B×R̂×}, and B×\B̂× = R×\R̂×.

Hence, we have the following bijections:

B×\B̂×/R̂×
c = R×\R̂×/R̂×

c = R×\
⎛
⎝∏

q|c
R×

q /R
×
c, q

⎞
⎠

= R×\
⎛
⎝∏

q|c
P1(OF,q/qeq)

⎞
⎠

= R×\P1(OF /c),

where c =
∏

q|c qeq , and

P1(A) =
{

(a, b) ∈ A2 : αa+ βb = 1

for some (α, β) ∈ A2
}
/A×,

for any ring A. We now recall the action of GL2(A) on
P1(A):

m · (x : y) := (ax+ by : cx+ dy), m =
(
a b
c d

)
.

Now, let us define

SR
k (c) =

{
f : R×\G(R)× R̂× → Lk :

f ||ku = f, u ∈ G(R)× R̂×
c

}
.

As in Definition 2.1, we can equivalently define SR
k (c) by

SR
k (c) =

{
f : P1(OF /c)→ Lk : f ||kγ = f, γ ∈ R×} ,

where f ||kγ(x) := f(γx)γ; and again, we will not make
any distinction between the two definitions.

We will now define a Hecke action on the space SR
k (c).

To this end, take u ∈ R̂, u �= 0, and write the finite
disjoint union

R̂×
c uR̂×

c =
∐
i

uiR̂×
c , ui ∈ R̂.

Take f ∈ SR
k (c) and for each x ∈ G(R)× R̂×, let

f ||k[R̂×
c uR̂×

c ](x) :=
∑
ui

f ||kui(x),

where, for any u′ ∈ B̂×, we choose γu′ ∈ B× and xu′ ∈
R̂× such that xu′ = γu′xu′ , and set

f ||ku′(x) := f(xu′).

It is not hard to verify that f ||ku′ is well defined and that
f ||k[R̂×

c uR̂×
c ] ∈ SR

k (c). We thus obtain a linear map

[R̂×
c uR̂×

c ] : SR
k (c)→ SR

k (c),

which we call the Hecke operator [R̂×
c uR̂×

c ]. We can now
state the following proposition.

Proposition 3.1. The map

SB
k (c) → SR

k (c),

f �→ f̃ ,

where f̃ is the restriction of f to R̂×/R̂×
c , is an isomor-

phism of Hecke modules.

Proof: Since every element in SB
k (c) is completely deter-

mined by its values on a complete set of representatives
of the double coset space B×\B̂×/R̂×

c , and we have a
bijection B×\B̂×/R̂×

c
∼= R×\P1(OF /c), we see that the

map f �→ f̃ is an isomorphism of complex spaces. So, we
only have to show that the Hecke action is compatible
with this isomorphism. However, for all x ∈ R̂×, we have
by definition,

˜f ||k[R̂×
c uR̂×

c ](x) =
∑
ui

f ||kui(x) =
∑
ui

f(xui)

=
∑

xui=γixi

f(xi) =
∑

xui=γixi

f̃(xi)

=
∑
ui

f̃ ||kui(x) = f̃ ||k[R̂×
c uR̂×

c ](x).

This completes the proof.

Let p be a prime of F and πp ∈ OF , a totally positive
generator of p (such a choice is possible, since F = Q(

√
5)

has narrow class number 1). Let

Θ(p) := {u ∈ R such that N(u) = πp}/R×,

where we let R× act by multiplication on the left. Then,
the action of Hecke in terms of global elements is given
by

f ||kTp =
∑

u∈Θ(p)

f ||ku.
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When acting on elements in P1(OF /c), one must restrict
the summation to the u whose action is nondegenerate.

The best analogy for Proposition 3.1 when B = M2(F )
is the passage from the adelic definition of Hilbert modu-
lar forms to tuples of classical Hilbert modular forms (see,
for example, [Shimura 78, Section 1]). By further exploit-
ing this analogy, there should be no major difficulty in
generalizing our algorithm to totally definite quaternion
algebras with class number greater than 1. The main
advantage of this approach, from a computational point
of view, is that it does not require an explicit knowledge
of the Eichler order Rc as in [Pizer 80]. This dramati-
cally cuts down the amount of computation needed for
each level. This will become clearer after we give our
definition of the Brandt matrices.

Definition 3.2. (Brandt matrices.) Now, let S =
{x1, . . . , xs} be a fundamental domain for the action of
R× on P1(OF /c) and, for each i = 1, . . . , s, let Γi be the
stabilizer of xi in R×

1 /{±1}. Since any element f ∈ SR
k (c)

is completely determined by its values on S, we have the
following standard isomorphism of complex spaces:

SR
k (c) →

s⊕
i=1

LΓi

k ,

f �→ (f(xi))1≤i≤s,

where LΓi

k is the subspace of Γi-invariants.
For each x, y ∈ P1(OF /c), let

Θ(x, y, p) =
{
u ∈ Θ(p) : ux = γuy, for some γu ∈ R×} .

Then, we have

(f ||Tp)(xi) =
∑

u∈Θ(p)

(f ||ku)(xi) =
∑

u∈Θ(p)

f(uxi)u

=
s∑
j=1

∑
u∈Θ(xi, xj , p)

f(uxi)u

=
s∑
j=1

∑
u∈Θ(xi, xj , p)

f(γuxj)u

=
s∑
j=1

f(xj)

⎛
⎝ ∑
u∈Θ(xi, xj , p)

γ−1
u u

⎞
⎠ .

So, we can define the Brandt matrix Bp = (bij) of the
operator Tp, with bij ∈ Hom(LΓi

k , L
Γj

k ), by

bji : LΓj

k → LΓi

k ,

v �→ v ·
⎛
⎝ ∑
u∈Θ(xi, xj , p)

γ−1
u u

⎞
⎠ .

It is not hard to verify that these matrices do not depend
on the choice of the fundamental domain S.

Remark 3.3. Our definition of the Brandt matrices dif-
fers from the standard one in that it only uses invariants
of the quaternion algebra B, and no explicit knowledge
of representatives of ideal classes of an Eichler order is
required (compare with [Pizer 80, Khuri-Makdisi 01]).

3.1 Algorithm and Implementation

Generating the icosian group. We do this by finding all
4-tuples (x1, . . . , x4) ∈ Z[ω]4 such that the quaternion
q = x1e1 + x2e2 + x3e3 + x4e4 has reduced norm 1. We
could have used a set of generators for the icosian group
and their relations (see [Conway and Sloane 93, Chapter
8, Section 2.1]) to generate this group instead.

Finding a fundamental domain. We first find a set of
representatives of the space P1(OF /c). We have chosen
to work with the product

P1(OF /c) =
∏
p|c

P1(OF /pep).

Then, the coset representatives for each local factor
P1(OF /pep) are taken to be all pairs

(1, a), a ∈ p/pep , and (a, 1), a ∈ (OF /pep).

Let the group R×
1 /{±1} act on the projective space

P1(OF /pep) via the local isomorphism Rp = M2(OF, p),
which reduces to

R⊗ (OF /pep) = M2(OF /pep).

Note that by Hensel’s lemma, we only need to find the
reduced isomorphism. This amounts to finding a set of
generators for M2(OF /pep) that satisfies the appropriate
relations corresponding to the basis we have chosen for
R. By putting these local actions together, we get the
action of R×

1 /{±1} on P1(OF /c). This allows us to find
a fundamental domain.

Generating the Hecke operators. Let p be a prime in
F = Q(

√
5) and πp a totally positive generator at p. To

compute Tp, we need to find representatives for Θ(p).
This amounts to finding quaternions

q = xe1 + ye2 + ze3 + we4 with x, y, z, w ∈ Z[ω],

which represent πp under the quadratic form, which gives
the norm map of B. We find all such elements up to
equivalence by a unit. This part of the algorithm is iden-
tical to the one in [Pizer 80], since F is Euclidean. We
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p 2
√

5 3 (4 − ω) (4 + ω) (5 − ω)

ap(f) 4ω − 12 −10ω 12ω − 6 30ω + 2 −88ω − 16 −30ω + 70

TABLE 1.

p 2
√

5 3 (3 + ω) (4 − ω)

ap(f1) −14 −ω − 17 24ω − 21 14ω − 23 −53ω + 28

ap(f2) 4ω −4ω + 2 −12ω + 30 −12ω + 4 16ω + 4

ap(f3) −4ω + 6 3ω + 11 12ω − 45 30ω + 1 −21ω − 30

TABLE 2.

refer to [Pizer 80, Section 6] and [Consani and Scholten
01, Section 7] for more details.

The implementation of the algorithm is as follows:

1. Compute and store, once and for all, the icosian
group and a collection of Θ(p) of global elements
depending on a chosen bound on N(p). In our com-
putations, we chose that bound to be 100, and this
was enough to discriminate between all forms of level
of norm up to 1000.

2. For each level c, compute P1(OF /c).

3. Compute the local factors of the isomorphism R ⊗
(OF /c) ∼= M2(OF /c) at primes p | c.

4. Compute the orbits of the action of the icosian group
on P1(OF /c), together with a fundamental domain,
and create look up (or hashing) tables for these or-
bits (the latter is only necessary when the dimension
of the space of cusp forms is big). For forms of non-
parallel weight 2 we need the following: for each
element, we store an icosian which sends it to the
unique element of the fundamental domain which
belongs to the same orbit.

5. For forms of non-parallel weight 2, compute the sta-
bilizer of each element in the fundamental domain
and the corresponding invariant space.

6. Compute the Brandt matrices Bp.

Example 3.4. c = (5 + 2ω), so that N(c) = 31. This is
the smallest norm for which there exist Hilbert modular
cusp forms of parallel weight (2, 2) on F = Q(

√
5). A

fundamental domain for the action of the icosian group
on P1(OF /c) is S = {(1 : 0), (1 : 10)}. This means
that dimSk(c) = 2, and the space Sk(c) is generated by
a Eisenstein series and a new form that corresponds to

a modular elliptic curve of conductor (5 + 2ω) (see Sec-
tion 4). Here is the list of the first few Brandt matrices:

B2 =
(

2 3
5 0

)
, B√5 =

(
3 3
5 1

)
,

and B3 =
(

7 3
5 5

)
.

Example 3.5. c = (3 + ω), k = (2, 4); here N(c) = 11.
For our computations, m = (0, 2), v = (1, 0),

Lk = S0, 1(C)⊗ S2, 0(C),

and j is the standard embedding of the Hamilton quater-
nion algebra over the reals into GL2(C). The representa-
tion Lk has dimension 3. Here again, this is the smallest
norm for which there is a Hilbert modular cusp form of
weight (2, 4). A fundamental domain for the action of the
icosian group on P1(OF /c) is S = {(1 : 0)}. Its stabilizer
Γ1 has cardinality 5, and we compute that Sk(c) = LΓ1

k

has dimension 1. The first few coefficients of the corre-
sponding form (ω = (1 +

√
5)/2) are given in Table 1.

Example 3.6. c = (7 + 2ω), k = (2, 4); here N(c) = 59. A
fundamental domain for the action of the icosian group
on P1(OF /c) is S = {(1 : 0)}, and its stabilizer Γ1 is
trivial. So, Sk(c) = LΓ1

k is three-dimensional. The first
few eigenvalues of these forms (ω = (1+

√
5)/2) are given

in Table 2.
We remark in passing that, since R×\P1(OF /c) con-

sists of one element, the only cusp form of weight (2, 2)
is the Eisenstein series. Therefore, there is no modular
elliptic curve defined over Q(

√
5) whose conductor has

norm 59.

Example 3.7. c = (30), k = (2, 4); here N(c) = 900.
A fundamental domain S for the action of the icosian
group on P1(OF /c) contains 26 elements, with two of



Dembélé: Explicit Computations of Hilbert Modular Forms on Q(
√

5) 463

N(c) 31 36 41 45 49 55 61 64 71 76 79 80 81

N(p) p ap, f ap, f ap, f ap, f ap, f ap, f ap, f ap, f ap, f ap, f1 ap, f2 ap, f ap, f ap, f

4 2 −3 −1 −2 −3 0 −1 2ω5 − 2 0 −1 −1 1 1 0 −1

5 ω5 + 2 −2 −4 −1 1 −4 −1 −3ω5 + 1 −2 0 1 −3 −2 −1 0

9 3 2 −1 −4 1 5 −2 −ω5 − 2 2 −2 −5 1 −2 −2 0

11 ω5 + 3 −4 2 −2 −4 −3 −1 4ω5 − 2 −4 0 −3 3 −4 0 0

−ω5 + 4 4 2 5 −4 −3 0 −ω5 −4 0 2 −6 0 0 0

19 ω5 + 4 4 0 −1 4 0 8 3ω5 − 6 4 −4 −1 1 4 −4 −4

−ω5 + 5 −4 0 6 4 0 −4 ω5 + 1 4 2 5 −7 8 −4 −4

29 ω5 + 5 −2 0 9 −2 5 −6 −2ω5 + 6 −2 −6 −10 −6 6 6 0

−ω5 + 6 −2 0 2 −2 5 6 −5ω5 + 1 −2 6 5 3 −2 6 0

31 2ω5 + 5 −1 −8 4 0 2 8 5ω5 − 1 0 8 −3 5 −8 −4 8

−2ω5 + 7 8 −8 −10 0 2 −4 −2ω5 + 8 0 2 7 5 0 −4 8

41 ω5 + 6 −6 2 −1 10 2 −6 −4ω5 − 6 2 12 2 6 2 6 0

−ω5 + 7 −6 2 0 10 2 6 2ω5 + 4 2 6 2 6 −2 6 0

49 7 2 10 −6 −14 −1 14 −4ω5 + 2 10 −4 0 −4 −2 −10 14

59 2ω5 + 7 12 −10 4 −4 −10 −12 10ω5 − 6 12 6 10 6 −4 12 0

−2ω5 + 9 −4 −10 −3 −4 −10 0 −7ω5 + 7 12 −12 0 −12 4 12 0

61 3ω5 + 7 6 2 −8 −2 −8 −10 −1 −10 −10 12 8 14 2 2

−3ω5 + 10 −2 2 6 −2 −8 2 0 −10 −4 −8 8 10 2 2

71 ω5 + 8 −8 12 9 −8 −8 0 4ω5 − 4 8 −1 7 −9 −16 −12 0

−ω5 + 9 0 12 −12 −8 −8 0 −3ω5 + 5 8 6 −8 0 12 −12 0

79 3ω5 + 8 16 0 −11 0 5 8 4ω5 + 4 −16 14 5 −1 8 8 −16

−3ω5 + 11 0 0 −4 0 5 −4 −2ω5 − 6 −16 −4 15 −1 −1 8 −16

89 ω5 + 9 10 10 −8 −6 0 −18 −3ω5 − 8 −6 18 −15 9 −14 −6 0

−ω5 + 10 −6 10 −1 −6 0 6 −2ω5 + 4 −6 6 0 0 18 −6 0

TABLE 3. Modular forms.

them having a stabilizer with cardinality 2 and the rest
of them having trivial stabilizers. The spaces of invari-
ants of both elements with stabilizer of cardinality 2
are one-dimensional. As a result, Sk(c) has dimension
24·3+1+1 = 74. We checked that the first few coefficients
of one of the forms defined over Q(

√
5) match the coef-

ficients of the form computed by Consani and Scholten
in [Consani and Scholten 01]. One advantage in favor of
our algorithm is that the computations in [Consani and
Scholten 01] required a careful study of an Eichler order
of level 30 in the totally definite quaternion algebra over
Q(
√

5), which is ramified at both infinite places and at 2
and 3. In fact, a variant of our algorithm applied to the
definite quaternion algebra they chose could have worked
as well. This has the additional advantage of reducing the
dimension of the space we need to compute.

3.2 Table 3

The first row of Table 3 contains the norms of the levels
listed in increasing order from 31 to 100. The tables start
at 31 because it is the smallest norm for which there is a

Hilbert cusp form of parallel weight 2. The first and sec-
ond columns contain, respectively, the norms N(p) and
the primes p for which the eigenvalues ap, f have been
computed. For each level c, the corresponding rows con-
tain all the normalized eigenforms (up to Galois conju-
gation). For quadratic fields, we use the notation

ωD =

{ √
D, if D �= 1 mod 4,

1+
√
D

2 , if D = 1 mod 4.

The listing of the levels is done up to Galois conjugation.
For more forms, see [Dembélé 02].

4. MOTIVES

Using a Pari-GP search, we made a list of all modular
elliptic curves of prime conductor of norm less than 100
(see Table 4). We would like to thank N. Elkies for his
valuable help in implementing this search. We have only
listed one curve for each prime as one gets the other curve
by Galois conjugation. For each curve E/Q(

√
5) of con-

ductor c, we have checked that all the ap(E) match up
with the Fourier coefficients of a modular form of level c
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N(c) 89 95 99 100

N(p) p ap, f ap, f ap, f ap, f1 ap, f2

4 2 −1 −1 1 −1 1

5 ω5 + 2 0 1 −2 0 0

9 3 4 −2 1 5 −5

11 ω5 + 3 0 0 1 −3 −3

−ω5 + 4 −6 0 −4 −3 −3

19 ω5 + 4 −4 1 4 −5 5

−ω5 + 5 2 −4 −4 −5 5

29 ω5 + 5 6 6 6 0 0

−ω5 + 6 6 −6 −2 0 0

31 2ω5 + 5 −4 8 −8 2 2

−2ω5 + 7 −4 −4 8 2 2

41 ω5 + 6 0 −6 −6 −3 −3

−ω5 + 7 6 −6 2 −3 −3

49 7 −4 2 2 10 −10

59 2ω5 + 7 12 12 12 0 0

−2ω5 + 9 0 12 12 0 0

61 3ω5 + 7 14 14 −2 2 2

−3ω5 + 10 −4 −10 −2 2 2

71 ω5 + 8 0 0 8 12 12

−ω5 + 9 12 12 −8 12 12

79 3ω5 + 8 2 −16 8 10 −10

−3ω5 + 11 −16 8 16 10 −10

89 ω5 + 9 −1 −6 2 −15 15

−ω5 + 10 6 6 −14 −15 15

TABLE 3. (continued) Modular forms.

given in the table, where ap(E) = N(p)+1−#E(Fp). We
are able to show their modularity by combining Lemma
4.1 with results in [Wiles 95, Skinner and Wiles 99, Skin-
ner and Wiles 01]. We are currently working on an al-
gorithm based on a conjecture of Oda [Oda 82], which
parallels the Eichler-Shimura construction for modular
forms over Q. We hope to be able to extend this list by
including all elliptic curves and abelian surfaces corre-
sponding to forms whose level have a reasonable norm.
By the conjectures in [Darmon 00], those abelian surfaces
with multiplication by Q(

√
5) should be hypergeometric,

and their modularity has some interesting consequences
for the generalized Fermat equation xn + yn = z5.

Let E be an elliptic curve defined over F = Q(
√

5).
For any prime 	 ≥ 3, let

ρE, � : Gal(F̄ /F )→ GL2(Q�)

be the 	-adic representation attached to E and

ρ̄E, � : Gal(F̄ /F )→ GL2(F�)

its mod 	 reduction. The proof of Serre [Serre 96, Propo-
sition 1] carries over to give the following lemma.

Lemma 4.1. The image of ρ̄E, 3 is either GL2(F3) or is
contained in a Borel subgroup; the latter case happens if
and only if E or a 3-isogenous curve E′/F to it has a
3-torsion point defined over F .

Proof: Going through the proof of Proposition 1 in [Serre
96], one sees that the only thing we need to check is that
there can not be a Galois extension K of F = Q(

√
5) such

that Gal(K/F ) = D4 or a subgroup of index 2 in D4 and
K ramifies only at 3. We recall that D4/Z2

∼= (Z/2Z)2.
But, there can not be an abelian extension of F of degree
4 that is only ramified at 3.

We have the following result.

Proposition 4.2. All the curves listed is Table 4 are mod-
ular, and each of them (up to Galois conjugation) cor-
responds to a modular form of prime conductor listed in
Table 3.

Proof: (a) We first consider the curve E/Q(
√

5) whose
conductor has norm 31. By an easy computation in
Magma, we find that, for the reduction Ē of E modulo
the prime p = 3, #Ē(F9) = 8. Therefore, the curve E
cannot have an F -rational 3-torsion point, since E(F )tors
embeds into Ē(F9). The same argument also shows that
E cannot be 3-isogenous to any curve E′/F with an
F -rational 3-torsion point. Therefore, by Lemma 4.1,
the representation ρ̄E, 3 is irreducible. It is also mod-
ular by [Serre 87, Langlands 80, Tunnell 81], since its
image is GL2(F3), which is solvable. The representation
ρE, 3 is ordinary, since E has good reduction at 3 and
a3(E) = 32 + 1−8 = 2 is not divisible by 3; and it is also
absolutely irreducible by [Serre 97, Chapter IV]. There-
fore, we can apply [Skinner and Wiles 01, Theorem 5.1]
to obtain the modularity of E. Except for the curves of
conductor of norm 71 and 89, the same argument yields
the modularity of each of the curves listed in Table 4.

N(c) a1 a2 a3 a4 a6

31 1 −1− ω5 ω5 0 0
41 0 −ω5 ω5 0 0
49 0 ω5 1 1 0
71 1 + ω5 −1 + ω5 1 0 0
79 1 + ω5 −1 + ω5 ω5 0 0
89 ω5 −ω5 1 −1 0

TABLE 4. Elliptic curves.
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(b) Now, let E/Q(
√

5) be one of the curves whose
conductor has norm 71 or 89. An easy computation in
Magma shows that E(F )tors ∼= Z/6Z and that a3(E) =
−2 or a3(E) = 4. Hence, E has good ordinary re-
duction at p = 3, with a reducible mod 3 representa-
tion ρ̄E, 3. Therefore, there exist two distinct characters
χ, χ′ : Gal(Q̄/Q(

√
5)) → F×

3 such that ρ̄ssE, 3 = χ ⊕ χ′,
with χ′ unramified at 3 and det ρ̄E, 3 = χχ′ = ε3, where ε3
is the mod 3 cyclotomic character. The splitting field of
χ/χ′ is Q(

√
5, ζ3), which is clearly abelian. All five con-

ditions in [Skinner and Wiles 99, Theorem A] are clearly
satisfied, which implies that E is modular.

Remark 4.3. Knowing that ρ̄E, 5 is irreducible (as one
can easily see), it is tempting to try to combine an ar-
gument of switching the prime (à la Wiles) from 3 to 5,
using [Shepherd-Barron and Taylor 97, Theorem 1.2] and
[Skinner and Wiles 01, Theorem 5.1] to obtain the mod-
ularity of the curves whose conductors have norm 71 or
89. Unfortunately, both curves have supersingular reduc-
tion at

√
5 and ordinariness is essential in order to apply

Theorem 5.1 in [Skinner and Wiles 01]. One can avoid
all that heavy machinery by adapting the Faltings-Serre
argument to obtain the modularity of all these curves, as
is done in [Socrates and Whitehouse 05]. However, this
requires computing a large number of ap(E).

Remark 4.4. Let p = 7 + 3ω5. Then, N(p) = 61 is
the smallest norm for which there is a form with coeffi-
cients in a field bigger than Q. Let D be the (unique, up
to isomorphism) quaternion algebra of center F that is
ramified at only one of the real places of F and at p and
unramified everywhere else. We choose an Eichler order
of reduced discriminant p in D and let XD

0 (p) be the cor-
responding Shimura curve. From the Jacquet-Langlands
correspondence and the results in our tables, one deduces
that XD

0 (p) is a curve of genus 2. Therefore, its Jaco-
bian Jac(XD

0 (p)) is a modular abelian surface with real
multiplication by Q(

√
5). This completes the list of all

modular abelian varieties defined over Q(
√

5) with prime
conductor of norm less than 100 (up to Q-isogeny).
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