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We present empirical results that suggest that there are real
quadratic fields with properties similar to imaginary quadratic
fields in terms of size and structure of the class group. Therefore,
these class groups can also be used for encryption schemes such
as the ElGamal scheme, where up to now, only class groups of
imaginary quadratic fields have been considered. Some security
aspects are also addressed.

1. INTRODUCTION

The ElGamal Encryption (see [ElGamal 85]) is a public
key encryption scheme that needs an abelian group G

with the following properties:

(i) In G, the Discrete Logarithm Problem (DLP) is
not efficiently solvable, i.e., �G is the product of
a small integer, say less than 10, and a big prime
number.

(ii) Computations in G are efficient.

In this paper, we show that class groups of special real
quadratic number fields (fields of Degert type) satisfy
both properties.

The ElGamal scheme evolved from the Diffie-Hellman
key exchange protocol:

(i) Setup

(a) Let Cq be the big cyclic factor of G.

(b) Randomly choose γ ∈ Cq of order q.

(c) Randomly choose a ∈ IN, a < q and com-
pute α := γa.

(d) Public Key: (G, γ, α, q).

(e) Secret Key: (G, a).

c© A K Peters, Ltd.
1058-6458/2005$ 0.50 per page

Experimental Mathematics 14:2, page 189



190 Experimental Mathematics, Vol. 14 (2005), No. 2

(ii) Encryption

(a) Let m ∈ G be the message.

(b) Randomly choose b ∈ IN, b < q.

(c) Compute m1 := γb.

(d) Compute m2 := m · αb = m · γab.

(e) Send (m1,m2).

(iii) Decryption

(a) Receive (m1,m2).

(b) Compute m̃ = m2 · m−a
1 = m2 ·

(
γab

)−1.

Usually, one uses a finite group of the form (ZZ∗
q , ·).

It can be replaced by any other group which satisfies
the properties mentioned above, for example, the group
of points of an elliptic curve over a finite field. In this
paper, we present numerical evidence that class groups of
special real quadratic number fields also could be used.

Of course, the choice of (the structure of) that class
group is crucial in order to avoid known attacks. We
refer the reader to the papers [Boneh 98] and [Boneh
et al. 00] in which the weaknesses of standard ElGamal
encryption are analyzed. Even if the DLP is hard, break-
ing the weaker Decision Diffie-Hellman problem (DDH)
is enough to make such a system insecure. The DDH is
believed to be intractable in the group of a sufficiently
general elliptic curve of prime order, and, to the best of
our knowledge, the same also holds for a class group of
prime order. In Section 3.2, we give heuristic reason-
ing for the frequency of this occurring in specially chosen
Degert fields. In practice, it is always advisable to add
padding to strengthen the security of the scheme.

2. MAPPING OF MESSAGES INTO CLASS GROUPS

In this paper, we consider quadratic number fields of dis-
criminant ∆. We use the following notation:

O∆ = maximal order of the quadratic field
with discriminant ∆,

(a, b) = aZZ + b+
√

∆
2 ZZ ideal in O∆,

Cl (∆) = class group of O∆,
h (∆) = class number of O∆,
Reg (∆) = regulator of O∆.

For an abbreviation we also let, as usual,

Lx[u, v] = exp
(
(v + o (1)) (lnx)u (ln lnx)1−u

)
,

X = average of X.

We denote the largest prime number below
√

|∆|
2 by P .

Then we can map integer messages a ≤ P onto reduced
ideals (a, b) if we choose b as the square root of ∆ mod-
ulo 4a. Since the computation of such roots is rather te-
dious when a is not a prime number, we will choose the
so-called distance embedding which determines a closest
prime number ã for a, compute b̃ accordingly, and store
(ã, b̃) along with the distance d := a − ã. This leads to
Algorithm 2.1.

Algorithm 2.1. (NumberToIdeal.)

Input: A discriminant ∆ and a natural number n ≤
√

|∆|
2 .

Output: A reduced ideal (a, b) belonging to n of
distance d.

a := max{2, n − 1}
repeat

a := NextPrime(a)
until

(
∆
a

)
= 1 ∧ a ≡ 3, 5, 7 mod 8

if a ≡ 3 mod 4 then
b := ∆

a+1
4 mod a

else
if ∆

a−1
4 ≡ 1 mod a then
b := ∆

a+3
8 mod a

else
b := 2∆(4∆)

a−5
8 mod a

end if
end if
if D �≡ b mod 2 then

b := a − b

end if
return a = (∆, (a, b)), d := n − a

For details and the complexity of the necessary com-
putations refer to [Schielzeth 03].

The inverse of Algorithm 2.1 is obvious.
We note, that in imaginary quadratic fields every ideal

class contains exactly one reduced ideal. This is not true
for real quadratic fields in which every ideal class con-
tains a finite set (cycle) of reduced ideals. We therefore
define a unique representative in each cycle. We empha-
size that the special choice of our fields (to be of Degert
type) enforces those cycles to be of small length so that
computations are efficient.

Definition 2.2. A reduced ideal a = (a, b) is called mini-
mal in its cycle if

∀ b = (ã, b̃) ∼ a reduced =⇒ ã < a or (ã = a and b̃ < b) .
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Since the cycles in our fields are small, the determi-
nation of a minimum ideal in a cycle is straightforward.
Going through all elements of a cycle is canonical.

The encryption and decryption in real quadratic fields
is therefore not essentially more difficult than for imagi-
nary fields. Additionally, we compute the distance of the
message ideal from the minimal ideal in its cycle and send
it. This is done in an efficient way via the correspond-
ing reduced quadratic forms. We omit several auxiliary
algorithms that can be found in [Schielzeth 03].

Algorithm 2.3. (IdealPosInCycle.)

Input: A reduced ideal a.
Output: The distance pos of a to the minimal ideal in
its cycle.

f := IdealToForm(a)
g := f = (a, b, c)
mina := |a|, minb := b, pos := 0, k := 0
repeat

g := FormReductionStep(g) = (a, b, c)
if |a| < mina or (|a| = mina ∧b ≤ minb) then

mina := |a|, minb := b, pos := −k

fi
k := k + 1

until g = f

if pos < 0 then pos := pos +k − 1 fi
return pos

Finally, the recovery of the message ideal from the
recepted ideal and position is again straightforward. For
estimates on the computation time, refer to [Schielzeth
03].

3. ELGAMAL IN IMAGINARY QUADRATIC FIELDS

Imaginary quadratic fields have been used for many cryp-
tographic protocols (see [Buchmann and Hamdy 01] and
[Hamdy 02]), since they are fairly easy to handle. Using a
reduction algorithm developed for binary quadratic forms
(see [Biehl and Buchmann 97]) we can find a unique re-
duced ideal in every class (see [Cohen 95]) and multiply
efficiently (see [Buchmann and Hamdy 01]). Therefore,
the representation of an ideal class requires a memory of
log2 |∆| bits.

There are essentially three different ways to attack this
encryption scheme, i.e., solving the DLP in Cl (∆) (see
[Hamdy and Möller 00]):

(i) It has been proved that Index-Calculus-
Algorithms (see [Cohen 95, 5.5]) have an
expected subexponential running time of
L|∆|

[
1
2 , 3

4

√
2
]

(see also [Vollmer 00]), whereas it
is suspected (see [Jacobson 99]), that for a Multi
Polynomial Quadratic Sieve (MPQS) a running
time of L|∆|

[
1
2 , 1

]
is sufficient.

(ii) Shanks’ Babystep-Giantstep-Algorithm (deter-
ministic) and Pollard’s ρ- and λ-method (proba-
bilistic) have an (expected) exponential running
time proportional to the order of γ, as in Sec-
tion 1 (see [Menezes et al. 97]).

(iii) If h (∆) is very smooth with a largest prime
factor q, one can compute h (∆) with a
(p − 1)-method with running time in O (q)
(see [Hamdy and Möller 00] and [Hamdy
02, Algorithm 5.1]). Then it is possible
to solve the DLP with the Pohlig-Hellman-
Algorithm efficiently with running time in
O

(∑k
i=1 ei

(
ln n +

√
pi

))
where n =

∏k
i=1 pei

i

(see [Menezes et al. 97]).

One can show that, eventually, the Index-Calculus-
Algorithm is the most dangerous. A large discriminant
providing sufficient safety against attacks on this algo-
rithm also protects messages from attacks when the other
methods mentioned are used (see [Hamdy and Möller 00]
and [Hamdy 02]).

In Table 1, all class numbers with prime discriminant
∆ with 1048 < |∆| < 1048 − 47523087 and ∆ ≡ 1 mod 8
were computed and factored. In this range, there are
107,374 such discriminants. Since the class number is,
on average,

√|∆|, we compared this with the probability

Number of Portion of
u class numbers class numbers ϑ (u)

1.5 63089 0.58756 0.59453
2.0 32047 0.29846 0.30685
2.5 13380 0.12461 0.13033
3.0 4879 0.04544 0.04861
3.5 1580 0.01472 0.01623
4.0 472 0.00440 0.00491
4.5 120 0.00112 0.00137
5.0 30 0.00028 0.00035
5.5 5 0.00005 0.00009
6.0 1 0.00001 0.00002
6.5 1 0.00001 0.00000

TABLE 1. Discriminants with
�|∆|

1
u -smooth class number.
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q = h(∆)
ord[a]

a = (2, 1) a = (3, 1)

Number Portion Number Portion

q = 1 86599 0.7537 38857 0.7551

100 < q < 101 22718 0.1977 10073 0.1957

101 ≤ q < 102 5007 0.0436 2268 0.0441

102 ≤ q < 103 522 0.0045 245 0.0048

103 ≤ q < 104 50 0.0004 17 0.0003

104 ≤ q < 105 6 0.0000 2 0.0000

Total 114902 1.0000 51462 1.0000

TABLE 2. Order of subgroups generated by [a], where
|∆| ≈ 1032.

ϑ(u) that an integer ≤ √|∆| is
√|∆|

1
u -smooth. Table 1

suggests that these probabilities are about the same.
We want to consider discriminants as used in Table 1,

since for those, (a, b) = (2, 1) is an ideal. Table 2 shows
that the ideal class [(2, 1)] has a large order with high
probability. Further computations for other ideals (Ta-
ble 3) and other discriminants (Table 4) show that, in
general, a randomly chosen ideal class has a large order.
Tables 1–4 are found in [Hamdy 02].

q = h(∆)
ord[a]

a = (1009, 1) a = (1000003, 1)

Number Portion Number Portion

q = 1 43562 0.7535 53013 0.7555

100 < q < 101 11481 0.1986 13784 0.1964

101 ≤ q < 102 2475 0.0428 3043 0.0434

102 ≤ q < 103 263 0.0045 288 0.0041

103 ≤ q < 104 27 0.0005 43 0.0006

104 ≤ q < 105 2 0.0000 2 0.0000

Total 57810 1.0000 70173 1.0000

TABLE 3. Order of subgroups generated by [a], where
|∆| ≈ 1032.

q = h(∆)
ord[a]

a = (2, 1) a = (3, 1)

Number Portion Number Portion

q = 1 81093 0.7552 29256 0.7530

100 < q < 101 21667 0.1971 7678 0.1976

101 ≤ q < 102 4621 0.0430 1701 0.0438

102 ≤ q < 103 445 0.0041 196 0.0050

103 ≤ q < 104 41 0.0004 19 0.0005

104 ≤ q < 105 7 0.0000 1 0.0000

Total 107374 1.0000 38851 1.0000

TABLE 4. Order of subgroups generated by [a], where
|∆| ≈ 1048.

4. ELGAMAL IN REAL QUADRATIC FIELDS

We studied the possibilities of employing real quadratic
fields for the ElGamal scheme and encountered two prob-
lems:

(i) The class number is usually small; in more than
95 percent of the cases it is less than ten (see
[Cohen and Martinet 87]).

(ii) There is a large number of reduced ideals in every
class, arranged in a cycle (see [Ince 34]). If k is
the number of reduced ideals in an ideal class
we have 2Reg(∆)

ln ∆ ≤ k ≤ 2Reg(∆)
ln 2 (see [Buchmann

et al. 95]).

The Brauer-Siegel-Theorem (see [Lang 91]) states that

ln
√

∆ ∼ ln (h (∆) Reg (∆))

and empirical data even suggest
√

∆ ∼ h (∆) Reg (∆).

This means that these two problems are actually only
one.

Now we introduce a family of real quadratic fields with
small regulator.

Definition 4.1. Let N ∈ IN and D = N2 + 1 be square-
free. Then K = Q

(√
D

)
is called a Degert field.

Theorem 4.2. For a Degert field Q
(√

N2 + 1
)

with N �= 2
the number k of reduced ideals in an ideal class satisfies
k = O (ln ∆).

Proof: From the fundamental unit N +
√

N2 + 1 it is
obvious that Reg (∆) = O (ln ∆). Using k ≤ 2Reg(∆)

ln 2

from [Buchmann et al. 95] gives the result.

So, for Degert fields we can expect a large class number
and a cycle of reduced ideals that is small and can be
computed efficiently. In this cycle, there are different
possibilities to define a unique ideal which can be found
in polynomial time O(ln(∆)3).

In order to study the quality of Degert fields, we com-
puted the Degert fields for 3 ≤ N ≤ 104 and N2 + 1
square-free. There are 8,950 such fields. In Tables 5–7,
we present the results.

First, we want to find out whether Degert fields satisfy

Reg (∆)h (∆) ∼
√

∆,
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Range Number min µ (N) max µ (N) µ (N)

2 < N ≤ 1000 893 0.121 2.607 0.815

1000 < N ≤ 2000 897 0.138 2.642 0.817

2000 < N ≤ 3000 895 0.118 3.246 0.819

3000 < N ≤ 4000 896 0.121 2.874 0.816

4000 < N ≤ 5000 892 0.121 3.046 0.815

5000 < N ≤ 6000 896 0.129 2.812 0.814

6000 < N ≤ 7000 890 0.134 2.858 0.816

7000 < N ≤ 8000 899 0.136 3.375 0.822

8000 < N ≤ 9000 894 0.116 2.809 0.814

9000 < N ≤ 10000 898 0.124 2.986 0.817

Total 8950 0.116 3.375 0.817

TABLE 5. Behaviour of µ (N) with increasing N .

Divisors of N Number min µ (N) max µ (N) µ (N)

1 8950 0.116 3.096 0.571

2 4475 0.116 3.096 0.652

22 2231 0.344 3.096 0.980

23 1116 0.376 2.874 0.979

3 2987 0.216 3.096 0.857

32 997 0.247 3.096 0.858

5 1945 0.185 3.096 0.727

7 1280 0.158 2.741 0.668

22 · 3 744 0.712 3.096 1.469

22 · 3 · 5 163 1.109 3.096 1.866

22 · 3 · 5 · 7 23 1.519 2.741 2.136

TABLE 6. Influence of prime divisors.

like imaginary fields do. We define

µ (N) :=
Reg (∆)h (∆)√

∆

where ∆ is the discriminant of Q
(√

N2 + 1
)
.

Table 5 shows that in fact, µ (N) is a good measure
for the size of the class group with respect to the size
of ∆. It seems that Degert fields have properties simi-
lar to imaginary quadratic fields, in terms of the size of
Cl (∆). Now, we want to study how different properties
of N influence µ (N).

In Table 6, we see that µ (N) is large when N is divis-
ible by 4 and many small prime numbers. This prop-
erty does not depend on the size of N . Having seen
that we can produce real quadratic fields with arbitrarily
large class numbers, we will now study the cyclic part of
Cl (∆).

4.1 The Cyclic Part of a Degert Class Group

If Cl (∆) is not cyclic, in more than 99 percent of cases,
the additional factors of the class group have even order.
It has been proved (see [Hasse 63]) that we can avoid

these cases by choosing N2 + 1 ∈ IP. For practical ap-
plications, this is a necessary choice, since it is hard to
prove that a number is square-free unless it is a prime.

Now, we want to study the probability of choosing an
ideal class with large order. From [Lang 68, IV.3], we
cite the lemma below.

Lemma 4.3. Let D = N2+1 ≡ 1 mod 4, i.e. N = 2·N0.
Then a = h (N, p) := (p, 1) is an ideal ∀ p | N0 with
ordCl(∆) ([a]) > 1.

Similar to what we did in Tables 2–4, we now want
to study the probability of randomly choosing an ideal
class with large order. We will consider ideals of the
form h (N, p) with p minimal (pmin), with pbest where
ord (h (N, p)) is largest, and finally p = 2 when N ≡
0 mod 4. We did this for all N (Table 8), N2 + 1 ∈ IP
(Table 9), and N2 + 1 ∈ IP, 12 | N (Table 10).

As we can see, these ratios improve significantly if we
chose N2 +1 ∈ IP since, in this case, we cannot have any
even factors of Cl (∆). It also decreases the possibility
of an ideal class having an order other than h (∆). It
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q :=
h(∆)

hcycl(∆)
N2 + 1 ∈ IP 12 | N, N2 + 1 ∈ IP

Number Portion Even Number Portion Number Portion

q = 1 3618 0.4042 0 831 0.9905 142 0.9793

q ≤ 2 6560 0.7330 2942 831 0.9905 142 0.9793

q ≤ 3 6598 0.7372 2942 837 0.9976 144 0.9931

q ≤ 4 8410 0.9397 4754 837 0.9976 144 0.9931

q ≤ 10 8857 0.9896 5193 838 0.9988 144 0.9931

q ≤ 28 8946 0.9996 5281 839 1.0000 145 1.0000

q ≤ 64 8950 1.0000 5285 839 1.0000 145 1.0000

Total 8950 1.0000 5285 839 1.0000 145 1.0000

TABLE 7. Behaviour of h (∆) /hcycl (∆).

q :=
ord[a]
h(∆)

a := h(N, pmin) a := h(N, pbest) a := h(N, 2)

Number Portion Number Portion Number Portion

q = 1 839 0.1875 1723 0.3851 835 0.3744

q ≤ 5 1832 0.4095 2372 0.5302 1813 0.8130

q ≤ 10 2105 0.4705 2497 0.5581 2061 0.9242

q ≤ 20 2294 0.5127 2577 0.5760 2185 0.9798

q ≤ 50 2549 0.5697 2778 0.6209 2225 0.9978

q ≤ 100 2959 0.6614 3041 0.6797 2230 1.0000

Total 4474 1.0000 4474 1.0000 2230 1.0000

TABLE 8. Order of[a] ∈ Cl (∆) where N is even.

q :=
ord[a]
h(∆)

a := h(N, pmin) a := h(N, pbest) a := h(N, 2)

Number Portion Number Portion Number Portion

q = 1 325 0.3874 653 0.7783 321 0.7589

q ≤ 5 387 0.4613 707 0.8427 380 0.8983

q ≤ 10 428 0.5101 738 0.8796 412 0.9740

q ≤ 20 451 0.5375 752 0.8963 420 0.9929

q ≤ 50 498 0.5936 771 0.9190 422 0.9976

q ≤ 100 588 0.7008 805 0.9595 423 1.0000

Total 839 1.0000 839 1.0000 423 1.0000

TABLE 9. Order of [a] ∈ Cl (∆) where N is even and N2 + 1 prime.

q :=
ord[a]
h(∆)

a := h(N, pmin) a := h(N, pbest) a := h(N, 2)

Number Portion Number Portion Number Portion

q = 1 107 0.7379 136 0.9379 107 0.7379

q ≤ 5 128 0.8828 144 0.9931 128 0.8828

q ≤ 10 139 0.9586 144 0.9931 139 0.9586

q ≤ 20 144 0.9931 145 1.0000 144 0.9931

q ≤ 50 144 0.9931 145 1.0000 144 0.9931

q ≤ 100 145 1.0000 145 1.0000 145 1.0000

Total 145 1.0000 145 1.0000 145 1.0000

TABLE 10. Order of [a] ∈ Cl (∆) for 12 | N and N2 + 1 prime.

is interesting that these ratios improve even more when
considering only smooth N (Table 10). Table 10 shows
that p = 2 is not always the best choice, but is still
amazingly good. In Tables 8 and 9, the results for p = 2
are the best because there we consider slightly smoother

N , since 4 divides N . It is not possible to determine pbest

efficiently. Comparing the results with Tables 2 and 4 we
see that the order of the ideal class chosen of [h(N, 2)]
for N2 +1 ∈ IP shows a similar behaviour as the order in
imaginary quadratic fields.
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N2 + 1 ∈ IP 12 | N, N2 + 1 ∈ IP

u Number Portion Number Portion Number Portion ϑ (u)

1.0 8945 1.0000 834 1.0000 145 1.0000 1.00000

1.5 7675 0.8580 479 0.5743 58 0.4000 0.59453

2.0 5686 0.6357 261 0.3129 28 0.1931 0.30685

2.5 4163 0.4654 128 0.1535 16 0.1103 0.13033

3.0 2933 0.3279 63 0.0755 7 0.0483 0.04861

3.5 2195 0.2454 31 0.0372 3 0.0207 0.01623

4.0 1584 0.1771 15 0.0180 3 0.0207 0.00491

4.5 1135 0.1269 7 0.0084 2 0.0138 0.00137

5.0 889 0.0994 5 0.0060 2 0.0138 0.00035

5.5 743 0.0831 2 0.0024 1 0.0069 0.00009

6.0 549 0.0614 0 0.0000 0 0.0000 0.00002

6.5 350 0.0391 0 0.0000 0 0.0000 0.00000

7.0 207 0.0231 0 0.0000 0 0.0000 0.00000

10.0 34 0.0038 0 0.0000 0 0.0000 0.00000

15.0 0 0.0000 0 0.0000 0 0.0000 0.00000

TABLE 11. Discriminants with (
√

∆/Reg (∆))
1
u -smooth class number.

4.2 The Smoothness of a Degert Class Number

To prevent attacks on the Pohlig-Hellman-Algorithm,
h (∆) must not be very smooth, since the running time
of this algorithm essentially depends on the size of the
largest prime factor of h (∆). A class number that is not
smooth also increases the probability that a randomly
chosen class in Cl (∆) has a large order, which prevents
attacks by other methods.

For arbitrary N the number of (not necessarily dif-
ferent) prime factors of h (∆) is, on average, 4.36. We
can push this number down to 2.03 by also choosing
N2 +1 ∈ IP, because this prevents even factors of Cl (∆).
Further, choosing 12 | N we get down to 2.28 prime fac-
tors on average. This is slightly larger, but with increas-
ing N this value gets closer to the case N2 + 1 ∈ IP.

Now, we want to compare the smoothness of Degert
class numbers with the smoothness of class numbers of
imaginary quadratic fields. From Table 1, we conclude
that the smoothness is about the same as the smoothness
of a randomly picked integer. Table 11 shows that for
arbitrary N there are many more smooth class numbers
than for imaginary quadratic fields, unless we chose N2+
1 ∈ IP (compare with Table 1). If N is smooth we get
even fewer smooth class numbers.

4.3 Summary

Assuming that our results are representative of the be-
haviour of Degert fields, we conclude:

(i) h (∆) is large if ∆ is large. For a sufficiently
smooth N we get

h (∆) ≥
√

∆
Reg (∆)

≈ 2
√

∆
ln ∆

.

(ii) With high probability, Cl (∆) contains a big
cyclic factor. The probability that the order of
a randomly chosen ideal class is close to h (∆) is
also high. For ∆ ∈ IP, the results are similar to
those of imaginary quadratic fields.

(iii) The probability that h (∆) is B-smooth, becomes
arbitrarily small when ∆ becomes large. If N is
smooth and N2 + 1 ∈ IP, the class numbers are
less smooth than the class numbers of imaginary
quadratic fields. The even part of h (∆) can be
controlled.

These results suggest that solving the DLP in Degert
class groups with N2 + 1 ∈ IP and N divisible by 4
and other small prime numbers is about as hard as solv-
ing the DLP in a class group of an imaginary quadratic
field with a discriminant of the same magnitude. This
means, that Degert fields provide safety similar to imagi-
nary quadratic fields, if used for the ElGamal encryption
scheme.

5. PERFORMANCE

In this section, we will focus on the practical side, i.e., the
running times of some examples. The algorithms were
implemented in KASH and run on a AMD Athlon 1800+
Processor. The sizes of the modules and the discrim-
inants were chosen to provide approximately the same
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RSA ZZq ∆ < 0 ∆ > 0

Setup in ms 21 000 800 000 52 710 6 840

Encryption in ms 1 91 2 640 2 890

Decryption in ms 38 43 3 320 4 280

Encryptable bitlength 1024 1024 340 340

Effectively encryptable bitlength 1023 1024 331 331

Memory for encryption party in bit 1 050 2 080 459 000 464 000

Size of sent message in bit 1 023 2 060 1 360 1 380

Memory for decryption party in bit 2 050 2 060 1 020 1 020

TABLE 12. Comparison of performance.

RSA ZZq ∆ < 0 ∆ > 0

Setup in ms 21 000 800 000 52 710 6 840

Encryption in ms 1 91 7 940 8 710

Decryption in ms 38 43 10 000 12 900

Size of sent message in Bit 1 023 2 060 4 100 4 160

TABLE 13. Running times needed for processing one 1024-bit-message.

RSA ZZq ∆ < 0 ∆ > 0

Setup O �
ln(n)7+ε

� O �
ln(q)7+ε

� O �
ln(∆)7+ε

� O �
ln(∆)7+ε

�

Encryption O �
ln(n)3

� O �
ln(q)3

� O �
ln(∆)7+ε

� O �
ln(∆)7+ε

�

Decryption O �
ln(n)3

� O �
ln(q)3

� O �
ln(∆)3

� O �
ln(∆)3

�

TABLE 14. Comparison of the magnitude of running times.

amount of safety according to [Hühnlein 00]:

n ≈ 21024 for RSA
q ≈ 2823 for ElGamal in ZZq

∆ ≈ −2686 for ElGamal in Cl (∆) ,∆ < 0
∆ ≈ 2686 for ElGamal in Cl (∆) ,∆ > 0.

In each case, we chose 10 different modules and discrim-
inants, for each of these structures 10 different keys, and
again for each key 10 different messages. Altogether we
encrypted 1,000 messages in each case.

In order to choose a good ∆ > 0 we multiplied

n = π (10)5 · π (30) · π (60) · π (150)

where
π (n) :=

∏
p∈IP,p≤n

p

by random 12-bit-numbers f until ∆ = (f · n)2 + 1 ∈ IP.
Surprisingly, this was much faster than finding arbitrary
prime numbers of the same size for imaginary quadratic
discriminants.

Remark 5.1. Refer to Table 12. We cannot encrypt every
number, since we cannot map every number efficiently to
an ideal. If n is the number of encryptable numbers then
we call log2 (n) the effectively encryptable bitlength. The
memory for the encryption and for the decryption party,

is the number of bits this party has to memorize. Memory
needed for computations is not included. To save time,
we worked with precomputed lists of powers of ideals,
explaining the large memory needed for encrypting in
class groups.

The algorithms for using the ElGamal scheme with
class groups are much more complicated than those used
for modules (RSA and ElGamal in ZZq). Therefore, a
more efficient and direct implementation of these algo-
rithms will significantly improve their performance with
respect to the module algorithms.
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