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The Weierstrass data are derived—from geometric
assumptions—for a family of screw-motion-invariant min-
imal surfaces asymptotic to the helicoid. The period problem
for these data is solved numerically and the the surfaces are
approximated using adaptive mesh methods. These simulations
give strong evidence that the family exists, is continuous,
consists of embedded surfaces, and limits to the genus-one
helicoid.

1. INTRODUCTION

The helicoid, H, is a ruled surface that is generated by
a horizontal line (the x1-axis, for example) sliding ver-

tically at a constant speed up the x3-axis, while rotat-

ing around that axis at the same constant rate. It was

proved to be a minimal surface by Meusnier in the mid-

1770s. By its very definition, H is embedded and singly

periodic, being invariant under vertical screw motions:

For any real number, k, the vertical screw motion, σk,

is defined to be rotation by 2πk around the vertical axis

followed by a vertical translation by 2πk.

The quotient of H by σk: (1-1)

(i) has genus zero and two ends;

(ii) is a portion of the helicoid that has twisted through

an angle of 2πk, with top and bottom edges identi-

fied;

(iii) contains a vertical axis and is fibred by horizontal

lines.

We will show strong evidence for the existence

of analogs, Hk , of the helicoid. These surfaces are

singly periodic, embedded minimal surfaces, varying

smoothly in k, whose quotients by σk have genus

one. Animations of this family can be found at

www.msri.org/publications/sgp/jim/geom/minimal/ in

library/helicoidg1/indexc.html and in supplement/

helicg1plimit/ indexc.html .
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FIGURE 1. Left: The singly periodic genus one helicoid
H1 . Two fundamental domains (copies of H1 modulo σ1)
are illustrated here. Right: the screw-motion invariant

surface Hk , for k = 1.66. Illustrated here is one copy of
Hk modulo σ1 . See also Figure 6.

The quotient of H
k
by σk: (1-2)

(i) has genus one and two ends;

(ii) is asymptotic to a portion of the helicoid that has

twisted through an angle of 2πk;

(iii) contains both a vertical axis, and two horizontal

lines making an angle of πk with one another.

While for the helicoid any value of k W= 0 is valid in (1-1),
our computations indicate that the condition k > 1/2 is

necessary for (1-2).

The ideas in this paper and the first computations date

back several years. In [Hoffman et al. 99], the authors

and Hermann Karcher established the existence of H
1 ,

a translation-invariant minimal surface, and were able to

prove that it is embedded. We were interested in deciding

whether H1 could be perturbed. The construction and

computations described in this paper show, rather con-

vincingly, that H1 sits in a one-parameter family, Hk , of

minimal surfaces. (However, our construction and com-

putations are not sufficient to prove that these surfaces

actually exist and depend smoothly on the parameter

k.) We were motivated to do this because we felt that

the family was intrinsically important to the study of

embedded minimal surfaces. Moreover, from the struc-

ture of the Weierstrass representations of the Hk family,

from the numerical behavior of the internal parameters

as k → ∞, and, most important, from the animations

we made of the deformation, we were convinced that the

H
k family had as its limit He1 , the genus one helicoid.

This surface is asymptotic to the helicoid, has infinite to-

tal curvature and (of course) genus one. Together with

Hermann Karcher, we proved in [Hoffman et al. 93] that

He1 exists and was almost certainly embedded. There is,
however, a big difference between “almost certainly” and

“certainly.” Efforts to give a direct proof of the embed-

dedness of He1 were not successful, even though many
mathematicians have attempted to do so.

We knew that H
1 was embedded. If the Hk

defor-

mation family existed and if we were correct in asserting

that the family had as its limit He1 , then a relatively
straightforward argument shows that the embeddedness

of H
1 is inherited by all the Hk and passes on to He1 , the

genus-one helicoid. Because of the difficulty of finding a

direct proof of the embeddedness of He
1 , understanding

this family became increasingly important.

Very recently, Matthias Weber, Mike Wolf, and one of

the authors gave a proof of the existence and continuity

of the H
k
family and a limit argument that establishes

the embeddedness of an He1 [Weber et al. 02]. The

methods are different from those described in this paper.

We believe it is fair to say that the work in [Weber et al.

02] proceeds on the conviction that the H
k
family exists

and depends continuously on k, a conviction based on

the work presented in this paper.

2. THE WEIERSTRASS REPRESENTATION
ON A QUOTIENT SURFACE

We present a brief overview of the Weierstrass represen-

tation, tailored to the construction of minimal surfaces

invariant under screw motions. For more details, see

[Hoffman and Karcher 97].

The Gauss map of a minimal surface in R3 is an an-

tiholomorphic map to S2, and the coordinate functions

are harmonic with respect to the Laplace-Beltrami op-

erator of the metric induced from R3. Either of these

properties can be used as a definition of minimality. The

metric induced from the R3 is analytic and therefore, the

underlying surface has a natural Riemann surface struc-

ture. We will refer to this Riemann surface as M .

Let g be the stereographic projection from (0, 0, 1) ∈
S2 of its Gaussian image. Let x3 be the coordinate

function of the surface in the vertical direction, and x∗3
its (locally defined) harmonic conjugate. Define dh :=

d(x3 + ix
∗
3). Using g and dh, it is possible to represent

the minimal surface by a conformal parameterization of

the form X : M → R3, where M is a Riemann surface

and

X(p) = Re
p

p0
Φ, (2—1)

where Φ = (12 (1/g − g), i2 (1/g + g), 1)dh, p, p0 ∈M.
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This is one form of the Weierstrass representation of a

minimal surface. One of the most important uses of (2—1)

is to construct minimal surfaces from analytic data on a

Riemann surface. Given an analytic function g (possibly

with poles) and a holomorphic one-form dh (not nec-

essarily closed), the immersion (2—1) is minimal with a

Gauss map given by the inverse stereographic projection

of g and a third coordinate given by x3 = Re dh. The

immersion (2—1) will be regular, provided the induced

metric is nonsingular:

ds =
1

2
|dh|(|g|+ |g|−1) W= 0. (2—2)

This requires the zeros of dh to coincide with (and have

the same order as) the zeros and poles of g. The poles

and zeros of g correspond to points where the Gauss map

is vertical.

The Weierstrass representation (2—1) is, in general,

multivalued. In order for (2—1) to be single-valued on

M , it is necessary and sufficient that Re αΦ = 0 for all

closed cycles α on M . We write this as

Re
α

(1/g − g)dh = Re
α

i(1/g + g)dh = 0

(Horizontal Period Condition) (2—3)

Re
α

dh = 0 (Vertical Period Condition) (2—4)

In dealing with periodic minimal surfaces, it is often

necessary to work with g and dh on M I, the Riemann
surface of the quotient by translations or screw motions.

We will be dealing with singly periodic surfaces invariant

under screw motions; without loss of generality, we may

assume that the translational part of the screw motion

is a vertical translation and that the axis of the screw

motion is the x3-axis. IfM
I is the Riemann surface of the

quotient surface under screw motions, we still want the

horizontal-period condition (2—3) to hold for all cycles,

and we can choose a basis of cycles on M I for which
the vertical-period condition (2—4) holds holds only on

specified cycles.

When the screw motion is not a translation (i.e., when

k is not an integer), we must deal with the fact that

the Gauss map–and therefore g–is not in general well-

defined on the quotient surface. In fact, g is defined only

up to a power of e2πik. However, the one-form dg/g does

descend to the quotient, and we can recover g on M I by
integration:

g = e dg/g. (2—5)

Remark 2.1. Note that dg/g will have a simple pole

wherever g has either a zero or a pole (corresponding to

points where the Gauss map is vertical, i.e., points where

dh = 0), and a simple zero wherever g has a branch point.

Remark 2.2. Even though g is, in general, not well-

defined on the quotient, the horizontal period condition

(2—3) still makes sense. To see this, rewrite (2—3) as

α

gdh =
α

1/gdh.

Here, g is a branch of the Gauss map. In this form, it is

clear that substitution of eiθg for g multiplies both sides

by eiθ.

In practice, the cycles are divided into two classes, de-

pending on whether or not the vertical period condition

(2—4) is satisfied or not. If it is, we expect that the hor-

izontal period condition (2—3) holds, too. If it does not,

then we must have Re
α
dh = 2πk and

α
dg
g = 2πik

according to (2—5).

We note that the Gauss curvature and the second fun-

damental form of a minimal surface can be expressed in

terms of the Weierstrass data g and dh. (See [Hoffman

and Karcher 97, Section 2.]) :

K =
−16

(|g|+ |g|−1)4
|dg/g|2
|dh|2 . (2—6)

For a tangent vector ċ to a curve c(t), the second fun-

damental form can be expressed as the real part of a

holomorphic quadratic differential:

B(ċ, ċ) = Re(
dg

g
(ċ) · dh(ċ)). (2—7)

3. WEIERSTRASS DATA FOR THE HELICOID AS A
SCREW-MOTION-INVARIANT SURFACE

As preparation for our construction of the surfaces H
k ,

we will show that the Weierstrass data,

g = zk, dh = iλ
dz

z
, λ real, k > 0, (3—1)

onM I = C−{0}, when used in the Weierstrass represen-
tation (2—1), produce a minimal immersion that satisfies

the conditions of (1-1).

Using (2—2), we can write the metric of this surface as

ds =
|λ|
2
(|z|k + |z|−k) |dz||z| . (3—2)

Let l(t) = teiθ, t > 0, be a ray emanating from 0. The

metric (3—2) is invariant under reflection through l (i.e.,
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FIGURE 2. The Helicoid H. On the right, the fundamen-
tal domain of H modulo σk, for k = 1.25, is illustrated.

through z → e2iθz̄), so its fixed-point set, which contains

l, is a geodesic. Along l, dzz (l̇) = 1/t; hence dh(l̇) = iλ/t

is imaginary, while dgg (l̇) = k
dz
z (l) = k/t is real. From (2—

1), we can conclude that the image of l lies in a horizontal

plane, while from (2—7), it follows that the image of l is

an asymptotic curve. Since it is a geodesic, it must be a

horizontal straight line. Along l(t), the metric (3—2) may

be expressed as

ds =
|λ|
2
(tk−1 + tk+1)|dt,

from which it follows that the length of l(t) diverges as

t→∞ or t→ 0. Therefore, this is a complete metric on

the punctured plane.

Remark 3.1. The form dg/g = kdz/z is well-defined on

C − {0} and has simple poles at the end E0 := 0 and

E∞ := ∞. Also, dh has simple poles at the ends. See
(3—2) and Figure 3.

Inversion, z → 1
z̄ , is also an isometry of (3—2), so its

fixed-point set, |z| = 1, maps into a geodesic. Parame-

terizing |z| = 1 by α(t) = eit, it is clear that dz
z
(α̇) = i.

Hence dh(α̇) = −λ and dg
g (α̇) = ki. It follows from

Equation (2—7) that the image of |z| = 1 is a straight

E0 E∞
z 0 ∞
g 0k ∞k

dh ∞ ∞
dg
g ∞ ∞

FIGURE 3. Divisors of the Weierstrass data for the Heli-
coid H, modulo σk. The points E0 and E∞ correspond

to the ends of the quotient surface.

line. Since |z| = 1 is orthogonal to a ray at every point,
its image is orthogonal to a horizontal line at every point;

it is a vertical line that we refer to as the axis.

For any angle θ, rotation by θ around 0, z → eiθz is an

isometry of (3—2). Hence, the angles that the horizontal

lines on the surface make with the axis rotate at a con-

stant speed. We are indeed looking at a helicoid. There

is only one homotopy class on M I, whose representative
we may take to be the unit circle, |z| = 1, on which

dh has a nonzero real period of −2πλ. The one-form

dg/g = kdz/z satisfies |z|=1 dg/g = 2πik. Therefore,

the surface is invariant under a screw motion generated

by a vertical translation by −2πλ and a rotation about
the axis by 2πik. We are free to scale the surface by vary-

ing the choice of the real number λ. To make the helicoid

invariant under the screw motion σk defined in Section 1,

we need to match the vertical translation, −2πλ, with the
horizontal rotation 2πk: We do this by choosing λ = ±k
so that the vertical displacement,

Re
|z|=1

dh = −2πλ,

in one period is equal to ±2πk.

Remark 3.2. It is useful to note that we achieve the

same choice of scaling, i.e., λ = ±k, by requiring that
the curvature of the helicoid be equal to −1 along the
vertical axis. Indeed, from (2—6), when |z| = 1,

K =
−16

(|z|k + |z|−k)4
|kdz/z|2
|iλdz/z|2 = −

k2

λ2
.

In the next section, we will use this method of normal-

ization.

4. WEIERSTRASS DATA FOR Hk/σk

4.1 The Underlying Riemann Surface of Hk/σk

Consider the torus represented by the equation,

w2 = P (z) := z(z − eiθ)(z − e−iθ)(z − d), (4—1)

where 0 < θ < π, and d < 0. The cross ratio of the

roots of P (z) is unitary. This property characterizes

rhombic tori, the ones that are conformally equivalent

to C /{1, τ} with |τ | = 1. The orientation-reversing in-

volutions (z,w) → (z, w) and (z, w) → (z,−w) have the
property that their fixed-point sets are closed curves that

are the lifts of intervals on the extended real axis in the

z-plane: the lift of [d, 0] for (z, w) → (z,−w); the lift of
[∞, d]∪ [0,∞] for (z, w)→ (z, w). These fixed-point sets
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β
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FIGURE 4. The geometric construction of the Weierstrass data for Hk . Left: A sketch of a quarter of the desired surface

Hk . Top right: The z plane, over which Equation (4-1) defines a double covering branched at the points 0, d and e
±iθ.

A lift of the upper halfplane corresponds to the quarter of the surface on the left. The segment [0, d] corresponds to the
vertical axis, the lift of the slit from 0 to eiθ to the loop through corresponding points on in the sketch. Bottom right:

The Riemann surface of (4-1) is a rhombic torus. Here that torus is illustrated as a planar domain. In all three diagrams,

corresponding points are labelled by their z values in (4-1). The branch points of the covering (4—1) correspond to the
fixed points of 180-degree rotation about the center of the rhombus on the lower right. These correspond in the sketch

on the lefthand side to the fixed points of 180-degree rotation around the horizontal line through 0 and eiθ. The points
on the right labelled v are positions of vertical points. The points labelled α and β correspond to the branch points. The
relationship illustrated here of the branch points to the points corresponding to v and d is not forced on the computation.
For k = 1, this is the correct relationship [Hoffman et al. 99]. Our computations indicate that these relations hold for

k > 1, the regime of interest in this study. However, they do not hold for k near 1/2.

can be considered to be the diagonals of a rhombus. (See

Figure 4.) They cross at the points (d, 0) and (0, 0). The

involutions above correspond to reflections across the di-

agonals. Without loss of generality, we will make the

vertical diagonal correspond to the lift of [d, 0].

We want to satisfy the conditions in (1-2), the charac-

terization of H
k . Condition (1-2(i)) requires the quotient

of H
k
by σk to be a torus, and that torus will be the one

described by (4—1). The vertical axis–required by condi-

tion (1-2 (iii)–will correspond to the vertical diagonal of

the rhombus. The horizontal lines will correspond to the

horizontal axis, which will be punctured twice at points

corresponding to the ends of H
k/σk. They will be placed

symmetrically with respect to the center of the rhombus,

a condition forced by the existence of a rotational sym-

metry around the vertical axis. This means that one of

the horizontal lines crosses the axis at the point on H
k/

σk corresponding to the center, while the other horizon-

tal line crosses at the point corresponding to the vertex

of the rhombus. Weierstrass data that produces these

geometric conditions must also satisfy (1-2(ii)). Namely,

the argument of the horizontal projection of the image of

a closed curve around an end must increase by 2πk.

4.2 Weierstrass Data in Terms of the Function
z and w on the Torus

We develop candidate Weierstrass data in terms of the

meromorphic functions z and w in (4—1). The function

z on the torus is branched at the points (0, 0), (d, 0),

(eiθ, 0) and (e−iθ, 0). (These points correspond to the
center, the vertex, and the other two half-period points

of the rhombus in Figure 4. They are in one setting the

fixed points of the involution (z, w)→ (z,−w), and in the
other the fixed points of a 180-degree rotation about the

center of the rhombus.) The one-form dz/w has no zeros

or poles; it is equivalent, up to scaling, to the coordinate

differential in the plane of the rhombus.

We will place the ends at the two points on the torus

where z = ∞. Our construction of the torus w2 = P (z)
in (4—1) with parameters d and eiθ gives us a two-

parameter family of tori, all rhombic. In fact, (d, θ) pa-

rameterizes the moduli space of symmetrically marked
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FIGURE 5. Tabulation of the Weierstrass data for Hk .

rhombic tori. Our choice of representation, (4—1), also

places the ends. (Each unmarked rhombus is represented

by a one parameter family of pairs (d, θ). It is straightfor-

ward to show that all rhombi with arbitrary placement

of symmetric endpoints on the horizontal diagonal can

be achieved by suitable choice of d and θ.) The pair of

points on the horizontal diagonal where z = ∞ change

with the choice of representation.

The function g on H
k
is the stereographic projection

of the unit normal of H
k . As observed before, unless

k is an integer, g is not well-defined on H
k modulo σk.

However, dg/g does descend to the quotient. The Gauss

map is vertical at the two ends, and–as on the helicoid–

g has a simple zero at one end and a simple pole at the

other. This forces dg/g to have a simple pole at the ends.

(See Figure 3.) By Remark 2.1, dg/g will have additional

poles at vertical points of g. But according to Remark

3.1 and Figure 3, if we want helicoidal ends, we must

require dh to have a simple pole at the the ends. The

zeros of dh correspond to vertical points, and since dh

has no poles away from the ends and we are on a torus,

this means there are precisely two vertical points on the

surface. They can’t be on the vertical axis (where the

Gauss map is horizontal). By symmetry, there must be

two simple vertical points that lie symmetrically on the

horizontal diagonal. (If there is a vertical point off the

diagonal, there would have to be at least four such points,

an impossibility.) Again, since we are on a torus, dg/g

must have four zeros corresponding to the branch points

of g.

The helicoid has neither vertical points nor branch

points, so we seek guidance for the placement of these

points on H
k from the singly periodic genus-one helicoid,

H1 . This is natural enough, since we want the family Hk

to include H1 when k = 1. We place two vertical points

on the horizontal diagonal between the two ends, sym-

metrically placed on the segment that passes through the

center. By the symmetry of rotation about the vertical

diagonal, g = 0 at one vertical point and ∞ at the other.

As on the singly periodic genus-one helicoid, the value of

g coincides with the value of g at the end on the same

side and the vertical point comes before any branch point

as one travels from the center toward the end along the

horizontal diagonal. This forces the existence of branch

points between each vertical point and the end with the

same value of g. We expect that (but do not require), as

on H
1
, the other two branch points will be symmetrically

placed on the vertical axis.

The positioning of these points in the rhombus, and

their correspondence with points on the surface (4—1) is

given in Figure 4, and a tabulation of the divisor of dg/g

based on the discussion in the previous paragraph is avail-

able in Figure 5. The lifts of the positive real axis form

a curve on the surface through (0, 0),which joins one end

to the other. Therefore, the vertical points are placed at

the two points on the surface where z = v for some real

v > 0. Similarly, the branch points on the horizontal line

are located at the two points on the surface where z = α,

for α real. The two other branch points are located at

the two points on the surface where z = β < 0, for β

real. If d < β < 0, these points will be on the vertical

axis; otherwise, they lie on a horizontal line.

Remark 4.1. In our calculation, we place the vertical

points as described above and let that choice determine

the location of the branch points. In fact, for k ≥ 1,

the branch points occur in the locations described above.

However, for k near 1/2, our computation indicates that

the branch points leave the vertical axis and are located

on the second horizontal line.

With this information, we are able to write dg/g:

dg

g
= c

(z − α)(z − β)
z − v

dz

w
(4—2)

Given a choice of α, β, and v, the value of c is de-

termined by the requirement that g be well-defined in a

neighborhood of a point where z = v, i.e., the residue of
dg
g
is equal to 2πi at those points.

We will find it useful to express dg/g in a different

form. Expanding (z − α)(z − β) in powers of (z − v), we
can write,

dg

g
= (X + Y (z − v) + w(v)

z − v )
dz

w
, (4—3)
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FIGURE 6. The surfaces Hk . Left Column: The surface H1 ; on top, one quarter of the fundamental domain of H1

modulo σ1, corresponding to Figure 4, left; in the middle, one full fundamental domain containing four copies of the
region above; on the bottom, two fundamental domains. Middle column: The surface Hk for k ∼ 1.25, with images that
correspond to those in the first column. Right column: The surface Hk for k ∼ 2.5, with images corresponding to the
top and middle images of the other two columns.

where X and Y are constants to be determined. The

value w(v) in the expression is again determined by the

condition that g be well-defined in a neighborhood of a

point where z = v, i.e., the residue of dg/g at z = v equals

1. This form of dg/g will simplify the computation.

Remark 4.2. As for the helicoid in Section 3, the residue
of dg/g determines the twist angle. From (4—3), the twist

angle must be equal to 2πY .

The complex height differential dh must have a simple

pole at the ends where z = ∞ and a simple zero at the

vertical points where z = v,

dh = iλ(z − v)dz
w
, (4—4)

where λ is a nonzero real constant to be determined.

We know that λ is real because dh must be imaginary

along the positive real axis. (These points correspond to

a horizontal line along which x3 = Re dh is constant.)

Our desire to get a smooth deformation family of sur-

faces that behave like the helicoid leads us to our choice

of the scaling factor λ. The vertical displacement of H
k

is given by the change in the x3 coordinate at a cycle

centered at an end, where z =∞. From (4—4), it follows

that the residue of dh at z = ∞ is equal to −λ. Hence,
it is natural to choose λ = ±k.
Remark 4.3. It is not possible to choose λ so that the
curvature of H

k is equal to −1 along the vertical axis. As
noted in Remark 3.2, this scaling for the helicoid made

it invariant under a screw motion.

However, we do not expect that the surfaces H
k
have

constant curvature along the vertical axis; in fact, we

expect branch points on this axis (where, by (2—6), K =

0). As a next-best choice, we could require K = −1 at
the center point where z = 0.

Since the Gauss map is horizontal along the vertical

axis, |g(0)| = 1. Using (2—6), we can compute K as we

did in Remark 3.2:
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K(0) = − (X − Y v + w(v)
−v )

dz
w

−iλv dzw
2

.

If K(0) = −1,

λ = |(X − vY − w(v)
v
)/v|.

This does not give λ = k, but it turns out to be relatively

close. Because, as will be made clear in the next section,

we solve for our surfaces as function of d and not of k, it

is more practical to use this normalization for animations

and images such as those in Figure 6.

4.3 Period Conditions

We can assume, without loss of generality, that the half-

period points on the rhombus, which are fixed points of

the normal involution corresponding to 180-degree ro-

tation about its center, are mapped to points in R3 at

the same height as the image of the center point. Since

the center point corresponding to the point where z = 0

and these fixed points correspond to the points where

z = ±eiθ, Re
γ
dh = 0, where γ is the homological cycle

lifted from the slit from 0 to eiθ. Using the expression

for dh in (4—4), this condition determines the parameter

v. Namely, Re
γ dh = −λ Im γ (z − v)dzw = 0, or

v =
Im γ

z dz
w

Im γ
dz
w

. (4—5)

Since the image points of z = eiθ and z = 0 are on the

same x3 level, we can calculate v via the integrals along

the unit arc from z = 0. to z = eiθ. That is, v can be

determined by the following condition:

Re
θ

0

(eiφ − v)dφ√
cosφ− cos θ√eiφ − d = 0.

We may assume (after a rotation, if necessary) that

g(0) = 1. For the Gauss map to be well-defined by (2—5),

we require that

γ

dg

g
= 2πi.

Using (4—3)(and simplifying using (4—5)), this condition

produces a nondegenerate linear system that determines

X and Y :

Im
γ

dz

w
X = − Imw(v)

γ

dz

(z − v)w + 2π

Re
γ

(z − v)dz
w

Y +Re
γ

dz

w
X = −Rew(v)

γ

dz

(z − v)w .

At this point, we are assured that the Gauss map is

well-defined. We turn our attention to the remaining

period problems for the Weierstrass integrals. Here the

symmetry forced by the lines on the surface is of critical

use. In (4—5), we have already killed the period for dh

around the cycle corresponding to γ. We cannot and do

not want to kill the period around the cycle correspond-

ing to the vertical diagonal since this gives the transla-

tional part of the screw motion. So the vertical period

problem (2—4) is solved. We now address the horizontal-

period problem (2—3).

Our decision to rotate the surface so that g(0) = 1

forces the horizontal line through X(0) to be mapped to

a line parallel to the x2 axis. This means that the x1-

period in (2—3) is automatically solved. There is only

one period left to be killed in (2—3), and that is the x2
displacement along the cycle γ:

Im
γ

(
1

g
+ g) dh = 0. (4—6)

If we choose d to be the free parameter in the represen-

tation of the torus in (4—1), the period condition (4—6)

will determine the correct value of θ as a function of d.

Therefore, we expect to have a one-parameter family of

singly periodic minimal surfaces. The twist angle of the

screw motion symmetry is determined by the residue of
dg
g at the end z = ∞, and we have noted in Remark 4.2
that its value is 2πY = 2πY (d).

5. NUMERICAL DATA AND FURTHER RESULTS

Numerical computation shows that for d ranging from -

0.15 to large negative values, the value of θ decreases from

∼ 2.29956 to ∼ 1.25962, and k grows without bound from
an initial value close to 1/2. (Recall that the twist angle

equals 2πk.)

In the cases of H
1 and He1 , there are independent ex-

istence results ([Hoffman et al. 93, Hoffman et al. 99])

that also allow us to compute the rhombic invariants.

The values we produce here are in accord with those in-

dependent computations.

When d ∼ 1.293, the value of θ is approximately

1.48666 and we get k = 1. These are the parameters in

(4—1) of the rhombus for H
1 , the singly periodic genus-

one helicoid of [Hoffman et al. 99]. In this case, the

cross ratio of the roots of (4—1) is eiτ , with τ ∼ 1.7205.
This, in turn, corresponds to a rhombus with a vertex

angle of approximately 70.7083 degrees. As d→ ∞, the
cross ratio of the roots of (4—1), using the limiting value
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FIGURE 7. The twist angle k and the parameter X as functions of d. In these graphs the signs of d and k have been
changed from negative to positive.

FIGURE 8. The conformal parameter θ and the parameter v that locates the vertical points. In these graphs, the sign
of d has been changed from negative to positive. As d grows from 0.15 the value of θ decreases from 2.29956 to 1.25962,

the latter value corresponding to the correct conformal parameter for He1 , the genus one helicoid of [Hoffman et al. 93].
It is evident from the graphs that the values of θ and v rapidly stabilize.

θ ∼ 1.25962, gives the appropriate value for the rhombic
torus of He

1 , the genus-one helicoid.

Images of three H
k
for three values of k are shown in

Figure 6. Graphs of θ and v as functions of d are shown

in Figure 7. Graphs of the twist angle k and the internal

variable X are presented in Figure 8.

5.1 Computational Methods

It seems appropriate to say a few words about how these

numerical values are computed. Reading Section 4 back-

wards, it is evident that for a fixed value of d > 0, a

choice of θ determines w by (4—1), from which v is deter-

mined by the ratio in (4—5). Knowing v and w, we can

compute the coefficients of the linear system for X and

Y that precedes the displayed equation (4—6). Solving

that system for X and Y , we can then use (4—3) to find

g, and compute the integral in (4—6).

We want that integral to vanish, and we vary θ in order

to achieve that numerically. The twist angle parameter k

is determined, as explained in Remark 4.2, by the residue

of dg/g at an end, which is simply Y . It is worth empha-

sizing that, while it is natural to think of the twist angle

k as the natural parameter, our method required us to

look at the conformal type of the underlying rhombus as

the variable. From the forms of the integrals and equa-

tions we were solving, it was very reasonable to expect

that the twist angle would be a continuous function of

the conformal type.

The contour integrals were approximated by Gaussian

quadrature, allowing us to avoid evaluation of the inte-

grands at the endpoints of the paths, where they may be

singular. As mentioned in the previous paragraph, we

knew an accurate numerical value for θ when d = d1 ∼
1.293, the value for the singly periodic genus-one heli-
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coid (k = 1). Varying d from this value, we used the

previously computed value of θ as an initial approxima-

tion; the process converged rapidly for values of d greater

than d1. However, for decreasing values, the process was

less stable and reliable, as shown in Figure 7. It is worth

noticing that we did not get much below d1. In fact, with

more careful numerics, we could get fairly close to, but

not below, a twist angle of k = 1
2 .

The images were made using MESH, a suite of pro-

grams written by James T. Hoffman (MSRI), which

among other things provides automatic and tunable mesh

generation for discretizing the surfaces under investiga-

tion. (See www.msri.org/publications/sgp/SGP/ .)

5.2 The Limit as k→ 1
2

A referee asked us to discuss the behavior of the fam-

ily when the screw motion approaches the least possible

value and wondered “Can the numerical approach give

the answer?” The quoted question is one whose meaning

is not as easy to grasp as it might seem at first glance.

Depending on what is meant, the answer is either a muted

“no” or a resounding “yes.”

At the time the computation was originally done, the

authors clearly had in mind the idea that the family, if it

existed, had as its limit as k →∞ a nonperiodic surface

asymptotic to a helicoid and of genus one. That the com-

putation gave screw-motion-invariant solutions for twist

angles 2πk, for values of k less than 1 was noted, as was

the fact that the computation began to behave poorly as

d approached values for which k was close to (but always

greater than) 1/2, and could not be pushed below 1/2.

For values of near 1/2, the program MESH that does

an automatic triangulation of the surface as it is being

computed, slowed down significantly. We thought that it

was likely that there was a numerical problem, that some-

where in the code we had implicitly assumed that k ≥ 1
and that this contributed to the error. In retrospect,

this was not very likely since–as explained above–k is

an output of the computation. Still, some sort of poor

parameterization could lead to errors like this, and we

had seen behavior like this before. For example, at these

extreme values, perhaps a branch point moved outside

of a small circle used to compute a period. Also, the

images of the surfaces for k near 1/2 did not have any

evident errors or telltale signs of impending degeneracy.

The holes were not getting smaller, nor were they drift-

ing away from the central axis. We were not prepared

by any previous experience to take seriously the possibil-

ity that the family would stop at some surface that did

not appear to be degenerate. In fact, we hypothesized

that it was possible for the twist angle to go to zero and

imagined the holes getting smaller and smaller, closer to-

gether and clustering around the axis of the surface. The

normalization of the surfaces in Remark 4.3 does not im-

ply that the Gauss curvature is bounded as k goes to

0. The limit would have the handles lining up along the

axis and shrinking down to zero to give, in the limit, the

helicoid. This turned out not to be justified on the basis

of what we saw and, from this point of view, the answer

to the question, “Can the numerical approach give the

answer?” is “No.”

It turns out that the numerics and the graphics were

correct as far as they went, but this took additional devel-

opment that was decidedly noncomputational in nature.

Martin Traizet was a visitor to the GANG Laboratory

in Amherst at the time we were doing these computa-

tions beginning in 1993. He was aware of the phenom-

ena described in the previous paragraph. Some six years

later, he developed a method of construction of mini-

mal surfaces by a singular perturbation method, in which

the Weierstrass representation and the implicit function

theorem are used to solve the period problem. His first

success in this area was to prove the existence of higher-

genus Riemann examples, the originals of which had been

computed by Wei [Traizet 02a]. He then extended this

to construction of embedded minimal surfaces of finite

total curvature. The idea was to consider the degenerate

limit of known (computationally or theoretically) defor-

mation families as an algebraic object that contained in-

formation about the position of degenerating catenoids

in the family. He then showed that one could perturb

slightly off the singular limit to produce Weierstrass rep-

resentations, which–using an implicit-function theoret-

ical argument–had all periods equal to zero ([Traizet

02b, Traizet 01]).

Traizet visited MSRI in the fall of 2000. Matthias We-

ber was at MSRI during that period and we discussed the

possible limits of this family for small k. Weber noted

that there were some reasons to expect that his alter-

nate construction of the deformation family might fail

at k = 1/2, and they discussed the possibility of ex-

tending Traizet’s ideas to this case. However, there were

no degenerating catenoids in sight. Using Weber’s theta-

function parametrization of these surfaces they were able

to compute surfaces with a twist angle closer to π than

we were. That made the difference. The images pro-

duced by MESH were quite revealing and unanticipated.

With the aid of images like that of Figure 9, Traizet and

Weber had the startling insight that this limit could be
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FIGURE 9. Near the limit value k = 1/2. Screw-motion-invariant genus one helicoid with twist angle just slightly

greater than π. The images here were produced with MESH using a representation of the surfaces under consideration

that involves theta functions. This method was found by Weber [Weber 00] and implemented for use here by Traizet.

Introduced for theoretical reasons, it also has computational advantages; it allows one to get much closer to k = 1/2.
The surfaces shown here have k = 0.501.

considered to be degenerating into properly placed “half

helicoids.”

This was, at first hard to credit but in fact, you can

sort of “see” it in the pictures. Armed with this insight,

they have been able to prove the existence near a singu-

lar limit (i.e., for k near 1/2) of screw-motion-invariant

helicoids of arbitrary genus [Traizet and Weber 02]. The

images were crucial in obtaining this insight. In that

sense, the answer to the question, “Can the numerical

approach give the answer?” is certainly “Yes,” at least if

one is in the right state of preparation to understand ”the

answer.” It took major theoretical advances of Traizet

and Weber to get to that state (They were originally mo-

tivated by the numerical deformation experiments and

then provided a better means of computing these sur-

faces very close to the critical twist angle of π. )

It is important to note, however, that Weber and

Traizet do not show that there is degeneration as k(d)

approaches 1/2. They show that there is a family with

the same properties as the ones constructed here that

does degenerate to a foliation by horizontal planes with

three vertical lines of singularity. After rescaling, neigh-

borhoods around these lines are close to helicoids. There

is no uniqueness result: In particular, we do not know

whether or not there is a family that extends past the

value d 1
2
for which k(d) approaches 1/2. What happens,

if anything, on the other side of d 1
2
is not known. The

“numerical approach” used here is not going to tell us

much about uniqueness.

In our opinion, the question, ”Can the numerical ap-

proach give the answer?” is not well posed. The phrase

“the numerical approach” is misleading. In this investi-

gation a fair amount of theory is embedded in any compu-

tation. A picture of a computed minimal surface contains

not only a visual means of understanding the computa-

tion, but also concealed theoretical information. It is not

possible to understand what that picture means without

a knowledge not only of how it was computed but why it

was computed, and under what theoretical assumptions.

The “experiment” described in this paper is neither nu-

merical nor theoretical, but mathematical.

The authors are to be faulted for not publishing this

paper earlier; for waiting until there existed a fuller the-

oretical justification for their investigations. They, too,

did not see clearly enough through the misleading and

limiting dichotomy of numerical vs. theoretical.
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