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Let � be a unit of degree d in an algebraic number field,

and assume that � is not a root of unity. We conduct a nu-

merical investigation that suggests that if � has small Mahler

measure, there are many values of n for which 1 � �n is a

unit and also many values of m for which �m(�) is a unit,

where �m is the m-th cyclotomic polynomial. We prove that

the number of such values of n and m is bounded above byO(d1+0:7= log log d), and we describe a construction of Boyd

that gives a lower bound of 
(d0:6= log log d).
INTRODUCTIONAn algebraic number a is an exceptional unit ifboth a and 1�a are algebraic units. Siegel provedthat there are only �nitely many exceptional unitsin any number �eld, and there is a large litera-ture devoted to proving quantitative and e�ectivebounds for the set of exceptional units. For exam-ple, Evertse [1984] has proved that a number �eldof degree d has at most 3 � 73d exceptional units.Let � be an algebraic unit of degree d that is nota root of unity. In this article we investigate howmany powers of � can be exceptional units. Thuswe will be looking at solutions of the unit equationu+ v = 1 (u and v units) (0.1)in which the variable u is chosen from a cyclic sub-group of the group of units.Let E(�) be the number of values of n � 1 suchthat �n is an exceptional unit. Our main theoret-ical result will imply that there is an absolute ande�ectively computable constant c such thatE(�) � cd1+0:7= log log d: (0.2)
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So in this special situation we are able to reduceEvertse's exponential bound to a bound that growsonly a little faster than linearly.A power �n is an exceptional unit if and only if1� �n is a unit. Now 1� �n factors as1� �n =Ymjn�m(�); (0.3)

where �m is them-th cyclotomic polynomial. Thus1� �n is an exceptional unit if and only if �m(�)is a unit for all mjn. Let U(�) denote the num-ber of values of m � 1 such that �m(�) is a unit.Stewart [1977] has shown that, if �m(�) is a unit,then m � e452d67. This clearly gives O(d67) as anupper bound for U(�). The following result givesa bound of the form O(d1+o(1)) (see Theorem 4.1for something stronger).
Theorem 0.1. Let � be an algebraic unit of degreed � 2 that is not a root of unity . There is anabsolute and e�ectively computable constant c suchthat U(�) � cd1+0:7= log log d:We now briey describe the contents of this arti-cle. We begin in Section 1 with some motivationfor why one might be interested in studying the setof n such that �n is an exceptional unit and theset of m such that �m(�) is a unit. We also use amethod from [Blanksby and Montgomery 1971] toshow heuristically why one might expect these setsto be large if � is a number of small Mahler mea-sure. We follow up this observation in Section 2with a numerical investigation of some speci�c �'scatalogued by David Boyd [1977; 1978; 1990]. Forexample, we will exhibit an � of degree 18 such thatE(�) � 25, an � of degree 28 such that U(�) � 77,and an � of degree 26 such that �n is an exceptionalunit for all n = 1; : : : ; 10.The data we collect will suggest a possible gen-eral upper bound of the formU(�) � A log dlogM(�) +B;

where A and B are absolute constants and M(�)is the Mahler measure of �. Unfortunately, thisguess turns out to be much too ambitious. DavidBoyd (in a private communication) has pointed outthat U(�) can grow more rapidly than any powerof log d, and further that no upper bound of theform o(d)= logM(�) + O(1) is possible. We willdescribe Boyd's constructions in Section 5.After the numerical results of Section 2, we turnin Section 3 to some preliminary inequalities thatare needed for the proof of our main result. InSection 4 we prove something stronger than The-orem 0.1. The proof uses an upper bound for messentially found in [Stewart 1977], a lower boundfor the Mahler measure [Dobrowolski 1979], an el-ementary but involved estimate for values of cy-clotomic polynomials (Proposition 3.3), and a sortof \supergap principle" (Lemma 4.3) that may beof some independent interest. Finally, in Section 5we present Boyd's results.We close this introduction with two remarks.First, our estimate (0.2) is really a bound for thenumber of solutions of (0.1) in which the variable uis chosen from a group � � C � of rank 1. More gen-erally, one can ask for a bound for the number ofsolutions of (0.1) with u 2 �1 and v 2 �2, where�1;�2 � C � are groups of ranks r1 and r2. See,for example, the recent work [Bombieri et al. 1994]in which the authors use a supergap (or cluster)principle to prove their bounds. If r1 = 1 and �2is the full unit group, (0.2) gives a bound that isalmost linear in r2. However, if r1 � 2, the bestknown bounds are exponential in r2. One possibleexplanation for this di�erence is the existence ofthe factorization (0.3) of 1��n in the rank-1 case.Unfortunately, there is no analogous factorizationof 1� �n11 �n22 .Second, there are natural elliptic analogues tothe questions studied in this article. The analogueof an exceptional unit is an integral point on anelliptic curve. Thus let E=K be an elliptic curvede�ned over a number �eld, and let P 2 E( �K) bea nontorsion point of degree d. One can ask foran upper bound for the number of integers n such
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that nP is an integral point on E, and similarlyone can ask for the number of values of m suchthat �E;m(P ) is an S-unit, where �E;m is the m-division polynomial of E and S is the set of primesof bad reduction for E. There are bounds knownin terms of various quantities associated to K, E,and d (see [Hindry and Silverman 1988], for ex-ample), but all of them are worse than polynomialin d. It seems likely that the methods of this articlewill give a bound of the form c(E=K)d3+o(1). Theexponent 3 reects the best result currently knownfor the elliptic Lehmer conjecture [Masser 1989].For elliptic curves with nonintegral j-invariant, theimproved estimate in [Hindry and Silverman 1990]would probably yield an upper bound of the formc(E=K)d2+o(1). Similarly, for elliptic curves withcomplex multiplication, [Laurent 1983] could prob-ably be used to reduce this to c(E=K)d1+o(1). Wewill not deal with the elliptic case in this article.
1. Exceptional units in cyclic groupsThe Mahler measure M(�) of an algebraic integer� is de�ned by

M(�) =Ymax�j�j; 1	;
where the product is over all embeddings of Q (�)into C . Clearly M(�) � 1 for all �. An elemen-tary result of Kronecker [Kronecker 1857] says thatM(�) = 1 if and only if � is a root of unity. Equiv-alently, if � is not a root of unity, at least one ofits conjugates must lie outside the unit circle.Now consider the following dubious piece of logicsuggested by Kronecker's theorem.
1. If M(�) is close to 1, then � should look like aroot of unity.
2. If � is a root of unity, 1� �n tends to be a unit(or at least a p-unit, if � is a pk-th root of unity).
3. Ergo, if M(�) is close to 1, then 1� �n shouldbe a unit for many values of n.

This suspicious reasoning will be numerically vin-dicated in the next section. For example, a root 1of the polynomialx18 + x17 + x16 + x15 � x12 � x11 � x10� x9 � x8 � x7 � x6 + x3 + x2 + x+ 1 (1.1)

has Mahler measure approximately 1:188368147,and there are at least 25 values of n for which 1�n1is a unit.A famous question of Lehmer [1933] is whetherthere exists an absolute constant " > 0 such that� is a root of unity whenever M(�) < 1 + ". Forpartial results on this problem, see [Blanksby andMontgomery 1971; Dobrowolski 1979; Mignotte1977; Silverman 1994; Smyth 1971; Stewart 1978].In particular, [Blanksby and Montgomery 1971]can be used to establish a connection betweenLehmer's question and the powers of � that areexceptional units. This was our original motiva-tion for studying this question. We briey sketchthe argument.Let � be an algebraic unit of degree d with con-jugates �1; : : : ; �d. For each 1 � i � d, let �i =�i if j�ij � 1, and let �i = ��1i otherwise. LetN : Q (�) ! Q denote the norm. For each inte-ger K � 1 we consider the sum
S(�;K) := KXk=1�1� kK + 1� log��N(1� �k)��

= KXk=1�1� kK + 1� dXj=1 log j1� �kj j
= KXk=1�1� kK + 1�
� � dXj=1 logmax�j�kj j; 1	+ log j1� �kj j�= K2 logM(�)+ dXj=1 KXk=1�1� kK + 1� log j1� �kj j:
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The �nal inner sums can be bounded using theFourier averaging technique described in [Blanksbyand Montgomery 1971]. One ends up with an esti-mate of the formlogM(�) � 1K2 �S(�;K)� 12d(log(K + 1) + 1)�
(1.2)[Silverman 1994, Proposition 2.3].Thus one approach to answering Lehmer's ques-tion is to �nd a (small) value of K with the prop-erty that S(�;K) is large [Silverman 1994]. ButS(�;K) will be large precisely when N(1 � �k) islarge for many values of 1 � k � K, so the worstpossible case is when many of the �k are excep-tional units. Conversely, inequality (1.2) says thatS(�;K) cannot be too large if M(�) is close to 1,and this in turn suggests that many of the �k areexceptional units. So (1.2) helps to justify our ear-lier piece of dubious logic. Unfortunately, it doesnot appear that (1.2) by itself is strong enough toactually prove the existence of many exceptionalunits.As mentioned in the introduction, the factoriza-tion of 1�xn as a product of cyclotomic polynomi-als means that it is more natural to look at valuesof m for which �m(�) is a unit. Thus, if 1 � � isnot a unit, 1 � �n will never be a unit. But onemight hope that the chances of the �m(�) beingunits are independent events in some (admittedlyvague) probabilistic sense. As a numerical exam-ple, consider a root 2 of the polynomialx18 � x12 � x11 � x10 � x9 � x8 � x7 � x6 + 1:The Mahler measure of 2 is 1:2527759374, approx-imately. Evaluating the polynomial at x = 1 showsthat N(1�2) = �5, so 1�n2 is never a unit. Onthe other hand, there are at least 58 values of mfor which �m(2) is a unit.We also note that rearranging the sum de�ningS(�;K) gives

S(�;K) = MXm=1�[M=m]Xk=1 �1� kmM + 1�� log��N�m(�)��;

where the inner sum is approximately K=2m. So(1.2) also suggests that many values of �m(�) willbe units if M(�) is close to 1.As a �nal motivation for studying the question ofhow many values of m give units �m(�), we men-tion the recent article [Cohen et al. 1992], wherethe authors consider the largest real root 3 of thepolynomialx10 + x9 � x7 � x6 � x5 � x4 � x3 + x+ 1: (1.3)(This 3 has the smallest known Mahler measuregreater than 1|approximately 1:1762808.) They�nd that there are 66 values of m < 1000 forwhich �m(3) is a unit. They use these values,together with a few additional multiplicative re-lations among the other �m(3)'s, as the startingpoint in climbing a polylogarithm ladder. The exis-tence of so many units allows them to discover andnumerically verify several relations among polylog-arithms of order sixteen. They suggest that this\is quite possibly the highest order occurring forany algebraic number" because 3 probably has thesmallest Mahler measure strictly greater than 1.However, we observe that for a root 1 of (1.1),there are at least 75 values of m for which �m(1)is a unit, so it might be worthwhile investigatingpolylogarithm ladders for 1.
2. NUMERICAL RESULTSIn this section we investigate some speci�c numbersof small Mahler measure. David Boyd [1977; 1978;1990] has computed tables of such numbers. Webegin with his list of small Salem numbers [Boyd1977; 1978]. (A number � is a Salem number ifM(�) = � and if some conjugate of � lies on theunit circle.) The relevant data are given in Table 1.Boyd [1990] gives for each even degree 4 � d �40 the number with smallest known Mahler mea-sure. (For d � 20, he veri�es that the number listedis actually the smallest.) In Table 2 we reproduceBoyd's list, together with the largest value of mand the number of values of m such that �m(�) isa unit, where we check all m � 500.
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k d � =M(�) A B C D1 10 1.176281 74 22 286 652 18 1.188368 74 25 210 723 14 1.200027 74 20 260 684 14 1.202617 74 20 300 645 10 1.216392 43 16 294 536 18 1.219721 91 19 294 647 10 1.230391 39 11 186 488 20 1.232614 73 13 300 649 22 1.235665 91 22 240 6310 16 1.236318 67 14 210 5611 26 1.237505 98 17 290 6612 12 1.240726 47 11 240 4913 18 1.252776 | | 228 5814 20 1.253331 | | 252 5615 14 1.255094 41 16 192 5016 18 1.256221 47 15 294 5417 24 1.260104 27 9 204 5618 22 1.260284 61 16 270 5719 10 1.261231 46 13 156 3920 26 1.263038 74 19 250 5921 14 1.267296 59 13 264 4722 8 1.280638 23 8 140 3523 26 1.281691 | | 300 5724 20 1.282496 41 10 210 5525 18 1.284617 | | 248 5026 26 1.284747 91 16 280 5427 30 1.285099 | | 280 5528 30 1.285122 85 12 266 6229 30 1.285186 | | 252 5930 26 1.285197 46 14 294 5831 44 1.285199 127 11 300 6232 30 1.285235 83 16 264 5733 34 1.285409 98 16 246 5434 18 1.286396 73 14 180 4735 26 1.286730 74 14 234 5436 24 1.291741 | | 162 4637 20 1.292039 | | 300 4938 10 1.293486 39 11 210 3639 18 1.295675 61 13 240 4640 22 1.296421 61 13 210 4941 28 1.296821 | | 276 5242 26 1.299745 53 16 168 52
TABLE 1. Small Salem numbers and their degreesd, from [Boyd 1977; 1978]. For each number wehave also computed the largest n � 300 with 1��na unit (column A), the number of n � 300 with1��n a unit (a lower bound for E(�); column B),the largest m � 300 with �m(�) a unit (columnC), and the number of m � 300 with �m(�) a unit(a lower bound for U(�); column D).

d M(�) A B4 1.722084 22 66 1.401268 84 188 1.280638 210 3510 1.176281 360 6612 1.227786 170 4914 1.200027 260 6816 1.224279 420 5718 1.188368 290 7520 1.212824 396 6722 1.205020 390 7024 1.218855 408 7026 1.223777 280 6728 1.207950 330 7730 1.225620 450 7132 1.236198 480 6534 1.229999 280 7336 1.229483 462 7338 1.223447 360 7640 1.236250 360 70
TABLE 2. Small reciprocal numbers and their de-grees d, from [Boyd 1980]. For each number wehave computed the largest m � 500 with �m(�) aunit (column A) and the number of m � 500 with�m(�) a unit (a lower bound for U(�); column B).The data in columns A{D of Tables 1 and 2were calculated using PARI [Batut et al. 1993].Note that 1� �n and �m(�) are units if and onlyif their norms equal �1. If f(X) is the minimalpolynomial of � over Q , these norms can be com-puted as the resultants Res(f(X); 1 � Xn) andRes(f(X); �m(X)). PARI is well suited to per-form these computations, although for large valuesof m it turns out to be slightly quicker to computeRes(f(X); �m(X)) =YnjmRes(f(X); 1�Xn)�(m=n);

where � is the M�obius function. The advantage ofthis formula is that one can computeXnmod f(X)quite rapidly by using successive squaring.Before we begin analyzing the data in our ta-bles, we want to point out a few individual entries.The most famous, of course, is the �rst entry inTable 1, which also appears as the degree-10 entry
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in Table 2. It is widely believed that this numberhas the smallest Mahler measure strictly greaterthan 1. For this number there are at least 66 val-ues of m for which �m(�) is a unit. (Note thatTable 1, which only refers to values ofm up to 300,missed the value m = 360 included in Table 2.)The large number of units �m(�) for this partic-ular � was exploited in [Cohen et al. 1992] to pro-duce relations between polylogarithms of order 16.It might be interesting to perform similar compu-tations using entry k = 2 in Table 1 with its 72 unitvalues, or using the entries of degrees 18 and 28 inTable 2, which have 75 and 77 unit values. These�'s might allow the construction of polylogarithmrelations of even higher order.Another interesting entry is k = 20 in Table 1,which has the property that 1 � �n is a unit forall 1 � n � 10. This is currently the longestknown string of consecutive powers being excep-tional units.We are now going to try to interpret the datain our tables, especially the question of how thelast column is related to the degree and Mahlermeasure of the number. For any number �, we willdenote by d(�) = [Q (�) : Q ] the degree of �. In thecourse of proving our main theorem in Section 4,we will prove an inequality slightly weaker than
U(�) � c1d(�) + c2 d(�)logM(�) + c3; (2.1)

and it seems possible that our method is capableof producing exactly this estimate. See the proofof Theorem 4.1, especially (4.9).At �rst glance this inequality seems reasonablefor the data in Tables 1 and 2, since increasingthe degree leads to additional units, and increasingthe Mahler measure leads to fewer units. However,a second look makes it clear that a linear depen-dence in d(�) grows much too rapidly. In fact,the growth levels out quickly enough to suggestthat log d(�) might be more appropriate. Unfor-tunately, as shown by the constructions of Boyddescribed in Section 5, our data for �'s of small

Mahler measure turns out to be misleading. Theredo not exist bounds for U(�) of the formU(�) � c4(log d(�))Nor of the formU(�) � c5 d(�) �d(�)�logM(�)for any exponent N and function  (d) that tendsto 0 as d!1.On the other hand, we would certainly expectthat, for a �xed degree, the size of U(�) shoulddecrease as the Mahler measure M(�) increases.This leads us to ask the following question.
Question 2.1. Are there absolute constants A and Bsuch that U(�) � A dlogM(�) +Bfor all d � 1 and all algebraic units � of degree dthat are not roots of unity?Notice that one consequence of the inequality inthis question is that, if M(�) � ed, there is abound C for U(�) that is completely independentof �. But for any given d, there are only �nitelymany �'s of degree d and M(�) � ed, so for anygiven d there would be only �nitely many �'s withU(�) > C.
3. PRELIMINARY ESTIMATESIn this section we will prove some preliminary es-timates needed for the proof of our main theorem.We set the following (mostly) standard notation.See [Apostol 1976] for further details.�(n) M�obius � function, equal to (�1)k if n isa product of k distinct primes, otherwiseequal to 0.�0(m) the number of divisors of m.I(n) the identity function for Dirichlet multipli-cation, equal to 1 if n = 1, otherwise equalto 0.�n the set of n-th roots of unity.
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��m the set of primitive m-th roots of unity.�m(z) the m-th cyclotomic polynomial, equal toQ�2��m(z � �) =Qnjm(zn � 1)�(m=n).'(m) Euler's totient function, equal to deg �m.
Lemma 3.1. Let n � 1 be an integer , and let w; � 2C satisfy jwj � 1 and j�j = 1. Thenjw � �j � 12 ���� wjwj � ����� :
Proof. Replacing w by �w and canceling j�j = 1, wemay assume that � = 1. Write z = x + iy = rei�with j�j � �. If j�j � �=2, then x < 0, so jz � 1j �jx� 1j � 1. Since we always have���� zjzj � 1���� = jei� � 1j � 2;this gives the desired result in this case.Next suppose that j�j � �=2. Then jw � 1j �j sin �j, since j sin �j is the distance from 1 to theray determined by w. Hencejw � 1j � j sin �j = 12 jei� � e�i�j= 12 je2i� � 1j = 12 jei� � 1j jei� + 1j� 12 jei� � 1j = ���� wjwj � 1���� : �
Lemma 3.2. Let � 2 C with j�j � 1 and � not aroot of unity . Then, for all n � 1,1+ j�jnr(1�j�j)2+4 j�jsin2 �2n � j�n�1jmin�2�n j���j � n�1Xj=0 j�jj:

(3.1)In particular , 310 � j�n � 1jmin�2�n j�� �j � n: (3.2)

Remark. If we put j�j = 1 in (3.1) and use theestimate j sinxj � 2x=�, we obtain the followinginteresting inequality:2n� � j�n � 1jmin�2�n j�� �j � n

for all � 2 C with j�j = 1. It is not hard to seethat this is best possible.
Proof of Lemma 3.2. Replacing � by �� for some� 2 �n, we may assume thatj�� 1j = min�2�n j�� �j:This means that we can write � = re2�� with r � 1and j�j � 1=2n.The upper bound in (3.1) follows trivially fromthe triangle inequality:����n � 1�� 1 ��� = ����n�1Xj=0 �j���� � n�1Xj=0 j�jj:Then the upper bound in (3.2) is immediate fromthe assumption that j�j � 1.To prove the lower bounds, we de�ne

R(m) = m�1Xj=0 r2j =
( 1� r2m1� r2 if r < 1,m if r = 1.We expand and regroup:����n � 1�� 1 ���2 = ����n�1Xj=0 rke2�ij�����2= n�1Xj=0 n�1Xk=0 rj+ke2�i(j�k)�= �1Xu=�(n�1) n�1+uXj=0 r�u+2je2�iu�

+ n�1Xj=0 r2j + n�1Xu=1 n�1�uXk=0 ru+2ke2�iu�
= R(n) + n�1Xu=1R(n� u)(e2�iu� + e�2�iu�)
= R(n) + 2 n�1Xu=1R(n� u) cos(2�u�):

Now we need only observe that if 1 � u � n�1, thefunction cos(2�u�) on the interval j�j � 1=2n at-tains its absolute minimum at the endpoints. This
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means that, for a �xed modulus j�j = r, the mini-mum value occurs at � = 1=2n, soj�n � 1jmin�2�n j�� �j � j(re2�i=2n)n � 1jjre2�i=2n � 1j= 1 + rnp1 + r2 � 2r cos(�=n)= 1 + rnp(1� r)2 + 4r sin2(�=2n) :This completes the proof of (3.1).In order to prove the lower bound in (3.2), weconsider two cases, the �rst being n � 1=(1 � r).Then(1� r)2 + 4r sin2(�=2n) � (1� r)2 + r�2=n2� (1� r)2(1 + r�2)� (1� r)2(1 + �2)(the �rst inequality because j sinxj � x, the sec-ond because of the assumption on n, and the lastbecause r � 1). Substituting this into the lowerbound in (3.1), we get1 + rn(1� r)p1 + �2 � 310(1� r) � 310since r � 0. This proves the desired lower boundin this case. If, on the other hand, n � 1=(1� r),we have(1� r)2 + 4r sin2(�=2n) � 1=n2 + 4r sin2(�=2n)� (1 + �2)=n2(the �rst inequality because r � 1 � 1=n, and thesecond because r � 1 and j sinxj � x). Substitut-ing this into the lower bound in (3.1), we get1 + rnn�1p1 + �2 � 310n � 310 ;which completes the proof of the lemma. �
Proposition 3.3. For all � 2 C not a root of unityand satisfying j�j � 1, and for all integers m � 1,j�m(�)jmin�2��m j�� �j � (118m)�3�0(m)=2 : (3.3)

Proof. Write � = re2�i� and choose an integer asatisfying ���� � am ��� � 12m:Setting �a = e2�ia=m, we havemin�2�m j�� �j = j�� �aj:Note, however, that this is the minimum over allm-th roots of unity, not just the primitive ones,since gcd(a;m) may be greater than one. So wewrite a=m = A=M with gcd(A;M) = 1, and thenwe have �a 2 ��M .From [Apostol 1976, Theorem 2.1] we haveXnjmn�0modM ��mn � = Xkj(m=M)��m=Mk � = I �mM � :
This allows us to writej�m(�)jmin�2��m j�� �j = 1min�2��m j�� �jYnjm j�n � 1j�(m=n)

= P1 P2 P3;where P1 = j�� �ajI(m=M)min�2��m j�� �j ;P2 = Ynjmn�0modM
����n � 1�� �a ����(m=n);

P3 = Ynjmn6�0modM j�n � 1j�(m=n):
We will treat each factor individually.The �rst factor is easy. Ifm =M , then �a 2 ��m,so P1 = 1; and if m 6= M , we can use the trivialestimate j�� �j � 2 to get P1 � 12 .Next consider P2. In this product every n � 0modM , so we have �a 2 �n. Further, our choiceof a ensures that this is the n-th root of unity clos-est to �, so (3.2) gives the upper and lower boundsn � ����n � 1�� �a ��� � 310 :
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Substituting these bounds into the de�nition of P2giveslogP2 = Xnjmn�0modM ��mn � log����n � 1�� �a ���
� Xnjm; �(m=n)=1n�0modM log 310 � Xnjm;�(m=n)=�1n�0modM log n
�Xnjm(� log 103 � log n)
= ��0(m) log�10pm3 �:Exponentiating givesP2 � �10pm�3���0(m) : (3.4)It remains to deal with P3. Let njm be an integerwith n 6� 0modM , and choose � 2 �n so thatmin�2�n j�� �j = j�� �j:Then, by Lemma 3.1, we havemin�2�n j�� �j � 12 je2�i� � �j = ���sin��� � bn����� 2���� � bn ���; (3.5)where b is de�ned by � = e2�ib=n and where the lastinequality used the fact that j sin(t)j � (2=�) jtj forjtj � �=2.Now we note that � 6= �a, since �a is a primi-tive M -th root of unity and M -n. This trivial butcrucial observation implies that b=n 6= a=m, so��� bn � am ��� = ���bm=n� am ��� � 1m:We also note that���� � am ��� � 12m;since �a is the closest m-th root of unity to � =re2�i�. These two estimates, combined with (3.5),yieldmin�2�n j�� �j � 2���� bn � am ���� ��� am � ����� � 1m:

Hence, using the fact that j�j � 1 and Lemma 3.2,we get2 � j�n � 1j = j�n � 1jmin�2�n j�� �j � min�2�n j�� �j
� 310m:Using this, we are �nally able to estimate P3 asP3 = Ynjmn6�0modM j�n � 1j�(m=n) � Ynjmn6�0modM 310m

�Ynjm 310m = �10m3 ���0(m):
Combining this with the trivial estimate P1 � 12and with (3.4), we get���m(�)��min�2��m j�� �j = P1 � P2 � P3 � 12 �100m3=29 ���0(m) :

Since �0(m) � 2 for allm � 2, this is stronger than(3.3). This completes the proof of Proposition 3.3.�
4. UPPER BOUNDS FOR UNITS �m(�)In this section we will prove the following bound:
Theorem 4.1. Let " > 0 and � � 1. There is ane�ectively computable constant c = c("; �), depend-ing only on " and �, such that any algebraic unit� of degree d that is not a root of unity satis�es#�m � 1 : jN�m(�)j � �d	 � cd1+(1+") log 2log logm :

(4.1)Note that �m(�) is a unit if and only if the normof �m(�) has absolute value 1, so this theorem isstronger than Theorem 0.1.We begin with some preliminary calculations.The following result, which is essentially due toStewart [1977], says that the largest m appearingin (4.1) satis�es m � maxfd265; log5=3 �g. Thusthe main feature of interest in Theorem 4.1 is the
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fact that the exponent of d in the upper bound isonly slightly larger than 1.
Proposition 4.2 (after [Stewart 1977]). Let � be analgebraic integer of degree d � 2 that is not a rootof unity . If m � (1000d)265, thenlog j�m(�)j > (1000d)50m3=5: (4.2)

Proof. This result is contained in the proof of The-orem 1 of [Stewart 1977], so we just give a briefsketch. We begin with [Stewart 1977, eq. (12)],which in our notation says thatd log j�m(�)j > '(m) logM(�)� Cd�d+ logM(�)�q(m) logm;where C = 2436(3d)49 and log2 q(m) is the num-ber of distinct prime divisors of m. Next, [Stewart1977, eq. (15)] giveslogM(�) � 11 + 52d log 6d � 1100d2 :Combining these two estimates and doing a littlealgebra we get something stronger thanlog���m(�)�� > 1100d3 '(m)q(m) logm � 10155d50:Next we use the fact that'(m)q(m) logm > m4=5
[Stewart 1977, p. 88] to get
log���m(�)�� > m4=5100d3 � 2437349d50= (1000d)50m3=5� m1=510153d53 � 105m3=5�:Finally, our assumption that m > (1000d)265 givessomething stronger than the desired result. �

Proof of Theorem 4.1. Unless otherwise indicated, theconstants ci appearing in this proof are e�ectivelycomputable constants that depend only on " and �.

We denote the conjugates of � by �1; : : : ; �d 2 Cand de�ne �1; : : : ; �d to be�i = ��i if j�ij � 1,��1i if j�ij > 1.Thus j�ij � 1 for all i. We will need the estimates
�0(m) � c6m (1+") log 2log logm (4.3)and '(m) � c7mlog logm (4.4)[Apostol 1976, Theorems 13.12(a) and 13.14(a)].As we will see below, our argument hinges on thefact that '(m) grows much faster than �0(m).We take m to be in the set on the left-hand sideof (4.1), so we can writec8d � log jN�m(�)j:This gives

c8d � dXi=1 log j�m(�i)j
= dXi=1j�ij�1 log j�'(m)i j+ dXi=1 log j�m(�i)j;

since �m(x) = �x'(m)�m(x�1). By the de�nitionof the Mahler measure, the �rst sum on the right-hand side is '(m) logM(�), so Proposition 3.3 nowgivesc8d � '(m) logM(�)+ dXi=1�log min�2��m j�i � �j � 32�0(m) log(118pm)�� c7mlog logm logM(�)
�d � c6m (1+") log 2log logm � 32 log(118pm)+ dXi=1 log min�2��m j�i � �j
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by (4.3) and (4.4). Rearranging the terms and ad-justing the constants as necessary, we �nd
� dXi=1 log min�2��m j�i � �j � c9m logM(�)log logm� c10dm (1+") log 2log logm ;and hence�d log min1�i�d�2��m j�i � �j � c9m logM(�)log logm

� c10dm (1+") log 2log logm : (4.5)We are now going to assume that m satis�esm1� (1+") log 2log logm � dlogM(�) and m > d: (4.6)This means that at the end of the proof we willhave to include all smaller values of m as possibleelements of the set (4.1) whose size we are esti-mating. Now divide both sides of (4.5) by d andsubstitute in (4.6) to obtain
� log min1�i�d�2��m j�i��j � c11m(1+2") log 2log logmlog logm �c12m (1+") log 2log logm :
The function m" log 2= log logm grows faster than anypower of logm, so if we assume that m > c13, weobtain the fundamental estimate� log min1�i�d�2��m j�i � �j � c14m (1+") log 2log logm :
Multiplying both sides by �1 and exponentiatingyields the equivalent estimatemin1�i�d�2��m j�i � �j � exp��c14m (1+") log 2log logm �: (4.7)

The content of this inequality is that, if m is largeand in the set (4.1), one of the �i must be extremelyclose to some primitive m-th root of unity. In fact,the estimate (4.7) is so good that it implies that

the m's in the set (4.1) satisfy a sort of \supergapprinciple", as described in the following result.
Lemma 4.3 (supergap principle). Let s > 0 and t � 1be �xed constants. There is a number X0(s; t) suchthat , for all � 2 C and all X � X0(s; t), there isat most one m such that X � m � Xt andmin�2��m j� � �j � exp(�ms= log logm):
Proof. Letm1 < m2 both satisfy this last inequality,and let �1 2 ��m1 and �2 2 ��m2 be the correspond-ing roots of unity closest to �. Thenj�1��2j � j���1j+ j���2j� exp(�ms= log logm11 )+exp(�ms= log logm22 ):On the other hand, we know that �1 6= �2, andclearly �1��12 is an m1m2-th root of unity, so wehave the trivial lower boundj�1 � �2j = j�1��12 � 1j � je2�i=m1m2 � 1j= 2 j sin(�=m1m2)j � 4=m1m2:Combining the upper and lower bounds and usingthe assumption that m1 < m2, we �nd that4=m22 � 2 exp(�ms= log logm11 ):If we further assume that m1 is larger than someconstant depending only on s, we �nd thatlog logm2 � s2 logm1log logm1 :But if X � m1 < m2 � Xt, this giveslog(t logX) � s2 logXlog logX ;which is a contradiction as soon as X > X0(s; t).�We resume the proof of Theorem 4.1. It clearlysu�ces to bound the size of the set�m � d : jN�m(�)j � �d	: (4.8)Further, Stewart's result (4.2) says that any m in(4.8) satis�es m � c15d265:
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It thus su�ces to prove Theorem 4.1 under theassumption that d > c16, since the constant c in(4.1) can be adjusted to account for small valuesof d.Now let m1 < m2 < � � � < mN be the distinctelements in (4.8) that also satisfy the inequality(4.6). According to (4.7), we can assign to each1 � j � N an index i(j) so thatmin�2��mj j�i(j) � �j � exp(�c14m(1+") log 2= log logmjj ):Since we are further assuming that m � d > c16,we can absorb the constant into the power of m,so min�2��mj j�i(j) � �j � exp(�mc17= log logmjj ):On the other hand, Stewart's result (4.2) says thatmj � dc18 :Using the last two equations in the supergap prin-ciple (Lemma 4.3), we see that, for each �i, thereis at most one mj with i(j) = i.To summarize, we have shown that the set (4.8)contains no more than d elements satisfying theinequality (4.6). Hence (4.8) contains at most
d+ d+ c19� dlogM(�)�1+(1+2") log 2log logm

(4.9)elements.To complete the proof of the theorem, we applyDobrowolski's theorem [1979], which says thatlogM(�) � c20� log log dlog d �3: (4.10)Substituting this into (4.9) and usingdlogM(�) � c21� log dlog log d�3 � c22d1+"= log log dgives the desired result after adjusting the valueof ". This completes the proof of Theorem 4.1. �
Remark. Before Dobrowolski proved the estimate(4.10), Blanksby and Montgomery [1971] and Stew-art [1978] had proved the weaker result

logM(�) � c23d log d: (4.11)This estimate su�ced for Stewart [1977] to provehis polynomial upper bound for the largest valueof m, but if we use (4.11) in place of (4.10), ourupper bound (4.1) for the number of m's wouldlook like d2+o(1) instead of d1+o(1). On the otherhand, even if we knew Lehmer's conjecture thatlogM(�) � c27, we would not be able to improvethe upper bound in Theorem 4.1 unless we couldalso improve the lower bound in Proposition 3.3.
5. LOWER BOUNDS FOR UNITS �m(�)In this section we describe David Boyd's proof thatthe set E(�) of values of n � 1 such that 1 � �nis a unit can be fairly large. We continue withthe notations d(�) and M(�) for the degree andthe Mahler measure of �. Further, we denote byU(�) the set of m � 1 such that �m(�) is a unit.Notice that a lower bound for E(�) is automati-cally a lower bound for U(�). We begin with twoelementary results.
Proposition 5.1. Let p be a prime, and let � = �1=pbe any p-th root of �.
(a) (after Rausch [1985]) Let K=Q be a number �eldcontaining �. If � is not a p-th power in K�,then [K(�) : K] = p.
(b) (Boyd) If [Q (�) : Q (�)] = p, thenE(�) = pE(�) [ (E(�) n pZ);U(�) = pU(�) [ (U(�) n pZ):In particular , E(�) = 2E(�) if every n 2 E(�)is prime to p, and U(()�) = 2U(()�) if everyn 2 U(�) is prime to p.
Proof. (a) If [K(�) : K] < p, the polynomial Xp��is reducible in K[X], since it has a root X = � ofdegree less than p. Factor Xp � � = g(X)h(X)with g(X); h(X) 2 K[X] monic polynomials andt = deg g satisfying 1 � t < p. The polynomialXp � � factors over �K asg(X)h(X) = Xp � � = Xp � �p = Y�2�p(X � ��):
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Comparing constant terms, we see thatg(0) = (�1)t�1�2 � � � �t�twith �1; : : : ; �t 2 �p. But g(0) 2 K, so there is� 2 �p such that ��t 2 K. Further, �p = � 2 Kand gcd(t; p) = 1, so taking appropriate powers(��t)i(�p)j we �nd that there is a �0 2 �p suchthat �0� 2 K. Then � = (�0�)p, contradicting theassumption that � is not a p-th power in K. HenceXp � � is irreducible in K[X], which proves that[K(�) : K] = p.
(b) We prove the result for E(�) and leave the sim-ilar proof for U(�) to the reader. The assumptionthat [Q (�) : Q (�)] = p means that the conjugatesof � over Q (�) are exactly the numbers �� with� 2 �p. So if we write NK for the K=Q norm, wecan compute

NQ(�)(1� �n) = NQ(�)�Y�2�p(1� (��)n)�
= NQ(�)�Y�2�p Y�2�n(1� ���)�
= NQ(�)�Y�2�n(1� �p�p)�
= NQ(�)�Y�2�n(1� �p�)�
= �NQ(�)(1� �n) if p-n,NQ(�)(1� �n=p)p if pjn.It follows that n is in E(�) if and only if n=gcd(n; p)is in E(�), which is just another way to state theassertion in part (b) of the proposition. �As Boyd points out, Proposition 5.1 can be used to�nd speci�c values of � for which E(�) and U(�) arelarge. For example, let � = 3, a root of (1.3), bethe number with smallest known Mahler measuregreater than 1. One can check that the number ofm 2 U(�) for which p divides m is44; 29; 19; 11; 8; 6; 3; 3; 3; 1; 1; 2; 0; 1; 1; 0; 1

for p = 2; 3; 5; : : : ; 59, and is 0 for all other primes.It follows from Proposition 5.1 thatU(�1=2) = 132� 44 = 88;and that U(�1=3) = 132 � 29 = 103. Notice thatthese values are larger than the corresponding val-ues in Table 2, column B, for degrees 20 and 30.Proposition 5.1 can also be used to show thatE(�) and U(�) may grow quite rapidly.
Corollary 5.2 (Boyd). (a) Suppose that E(�) � 1, and�x " > 0. For every k � 1, let �k = �1=k be ak-th root of �. Then there exists a sequence ofnumbers k !1 such that M(�k) =M(�) andE(�k) > d(�k)(1�") log 2= log log d(�k):A similar result holds for U(�k).
(b) Let  (d) be any function such that  (d)! 0 asd!1. Then, for every d � 1 and every C � 1,there exists � satisfying d(�) � d, E(�) � C,and E(�) � d(�) (d(�))logM(�) :In particular , it is not possible to �nd absoluteconstants A and B such thatE(�) � A+ B'(d(�))logM(�)for all �.
Proof. (a) Let k be the product of all primes p � tsuch that p does not divide any element of E(�) andsuch that � is not a p-th power in Q (�)� . Noticewe have eliminated only �nitely many primes, sok �� et.Proposition 5.1(a) says that [Q (�1=p) : Q (�)] = pif p divides k. These degrees are relatively primefor di�erent values of p, and Q (�k) is the com-positum of Q (�1=p)'s for pjk, so it follows that[Q (�k) : Q (�)] = k. In particular, this impliesthat M(�k) =M(�).Suppose p divides k. Proposition 5.2(b) tells usthat E(�)1=p = 2E(�). But it tells us even more,since it says that E(�1=p) is the union of E(�) andpE(�). Thus, if q is another prime dividing k, none
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of of the numbers in E(�1=p) is divisible by q, sowe can apply Proposition 5.2(b) to �1=p and q todeduce thatE(�1=pq) = 2E(�)1=p = 4E(�):Continuing in this fashion, we �nd thatE(�k) = E(�1=k) � 2rE(�) � 2r;where r is the number of primes dividing k. Inparticular, r � �(t) + O(1) � (1 � ")t= log t forall su�ciently large t. Combining the estimatesE(�k) � 2r, r � (1� ") tlog tand k �� et, we obtainE(�k) � 2(1�") log k= log log k:This gives the desired result, sincek = [Q (�k) : Q (�)] = d(�k)=d(�):
(b) We give only a sketch of the proof. Supposethat the assertion is false. For each n � 1, let �nbe a root of fn(x) = (x � 1)2n + xn. Assumingthat fn is irreducible, it follows from [Boyd 1980]that M(�n) � cn28, where c28 = 1:90814 : : : . Onecan show that, if n is a power of 2, then fn(xk) isirreducible for all k � 1, so we restrict attention tovalues of n that are powers of 2. We also note thatN(1 � �n) = �fn(1) = �1, so 1 2 E(�n). Just asin the proof of part (a), we now take k to be theproduct of the �rst t primes and consider �n;k =�1=kn . Again as in (a), Proposition 5.1 and our as-sumptions give E(�n;k) � 2(1�")t= log t, d(�n;k) =kd(�n) = kn, and M(�n;k) = M(�n) � cn28. Wecan thus �x a value for t such that E(�n;k) � Cand d(�n;k) � d.We are assuming that the assertion in (b) is false,so for every � we haveE(�) � d(�) (d(�))logM(�) :

Using our estimates from above, we obtainE(�n;k) � d(�n;k) (d(�n;k))logM(�n;k) � kn (kn)log cn28= c29k (kn):Here the left-hand side goes to 0 as n!1, whilethe right-hand side is greater than C. This contra-diction completes the proof. �
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