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We construct by computer all W-graphs corresponding to ir-

reducible representations of Hecke algebras H(q; n) for n up

to 15, using a modification of a method proposed by Lascoux

and Schützenberger (which fails for n > 13).

1. INTRODUCTIONV. Jones [1985] discovered a polynomial invariantin one variable for oriented knots and links, latergeneralized into the Homy invariants in two vari-ables [Freyd et al. 1985]. Jones [1987] also de�nedanother two-variable invariant XL(q; �) of an ori-ented link L, given byXL(q; �) = �� 1� �qp�(1� q)�n�1 (p�)e tr�(�);where � is any element of the braid group Bn with�̂ = L, e is the exponent sum of �, and � is therepresentation of Bn in the Hecke algebra H(q; n)sending the standard generators of Bn to those ofH(q; n).Ocneanu's trace tr gi for each generator gi is de-�ned by tr gi =XY WY (q; z) trY gi;where Y is a Young diagram associated with a par-tition of n, and trY is the trace on the Hecke alge-bra obtained by evaluating the sum of the diagonalentries on the image of gi in the matrix representa-tion �Y (see the precise de�nition in [Jones 1987]).Two ways to compute tr gi are known. One isdue to P. Hoefsmit [1974] and H. Wenzl [1985],and is not well adapted to computer calculations,
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because it involves square roots of certain polyno-mials. The other, introduced by A. Lascoux andM. Sch�utzenberger [1981], is combinatorial in na-ture and uses the W-graphs de�ned by Kazhdanand Lusztig [1979] for irreducible representationsof the symmetric group Sn. Its explicit formula isgiven in [Gyoja 1986; 1987].The di�culty with the Lascoux{Sch�utzenbergermethod is the construction of the W-graphs. Thoseauthors proposed an algorithm for this construc-tion (Section 2), but did not give a proof of its va-lidity. In an earlier version of the present article,we veri�ed the validity of the Lascoux{Sch�utzen-berger algorithm for n � 12. However, after sub-mission, the referee informed us that Tim Maclar-nan had found, years before, an example with n =14 where the W-graph is not correctly generated;in other words, the representation matrix obtainedby the Lascoux{Sch�utzenberger algorithm did notsatisfy the de�ning relations of H(q; 14) in thatcase.We therefore extended our computations, andcon�rmed that the method fails for n = 14 and15. By introducing certain modi�cations, we wereable to overcome the incompleteness of the algo-rithm for these values of n, and constructed allW-graphs for irreducible representations of HeckealgebrasH(q; n) for n up to 15. This is described inSection 3, where we also give a table of cases wherethe original Lascoux{Sch�utzenberger method fails.The situation for n � 16 remains open.
2. THE METHOD OF LASCOUX AND

SCHÜTZENBERGERLet �(n) be the set of partitions of a positive inte-ger n, a partition being a sequence (�1; �2; : : : ; �k)of positive integers such that Pi �i = n and �1 ��2 � � � � � �k. For example, �(6) has 11 elements:f(6); (5; 1); (4; 2); (4; 1; 1); (3; 3); (3; 2; 1); (3; 1; 1; 1);(2; 2; 2); (2; 2; 1; 1); (2; 1; 1; 1; 1); (1; 1; 1; 1; 1; 1)g:An element of �(n) can be pictorially expressed asa Young diagram, where the row lengths indicate

the elements of the partition. Therefore a Youngdiagram is characterized by row lengths that arenonincreasing as we go down, and column lengthsthat are nonincreasing from left to right:(3; 2; 1) (4; 1; 1)
A standard Young tableau associated with a par-tition in �(n) is an assignment of distinct integers1; : : : ; n to the boxes in the Young diagram of thepartition, in such a way that numbers within eachrow increase left to right, and numbers within eachcolumn increase top to bottom. For example, thepartition (3; 2; 1) 2 �(6) admits the following stan-dard Young tableaux:
1 4 62 53 1 3 62 54 1 2 63 54 1 3 62 45 1 2 63 45 1 4 52 631 3 52 64 1 2 53 64 1 3 42 65 1 2 43 65 1 2 34 65 1 3 52 461 2 53 46 1 3 42 56 1 2 43 56 1 2 34 56

Usually we denote a standard Young tableau by theassociated word, which is the sequence of integersobtained by reading the entries row by row, fromleft to right, from bottom to top. Thus the wordsassociated with the tableaux above are325146 425136 435126 524136 534126 326145426135 436125 526134 536124 546123 624135634125 625134 635124 645123:Let X = fx1; x2; : : : ; xsg be the collection ofwords associated with a Young diagram (or par-tition) Y . The following procedure associates withY a graph G(Y ) with vertex set X (see also [Gyoja1986; 1987]).
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Algorithm [Lascoux and Schützenberger 1981]

1. Let x = w1iw2jw3 and x0 = w1jw2iw3 be ver-tices in G(Y ), where w1; w2 and w3 are subwordsthat may be empty and w2 does not contain anynumber in the range [i; j]. Then x is adjacent to x0in G(Y ). In the example above, this makes 325146and 425136 adjacent, but not 425136 and 625134.
2. Let x be a vertex in G(Y ). For each i with1 � i � n� 2, de�ne a vertex x(i) as follows:pattern matched by x value of x(i)w1iw2(i+ 1)w3(i+ 2)w4 unde�nedw1(i+ 2)w2(i+ 1)w3iw4 unde�nedw1iw2(i+ 2)w3(i+ 1)w4 w1(i+ 1)w2(i+ 2)w3iw4w1(i+ 1)w2iw3(i+ 2)w4 w1(i+ 2)w2iw3(i+ 1)w4w1(i+ 1)w2(i+ 2)w3iw4 w1iw2(i+ 2)w3(i+ 1)w4w1(i+ 2)w2iw3(i+ 1)w4 w1(i+ 1)w2iw3(i+ 2)w4(Here w1, w2, w3 and w4 are subwords of x, whichmay be empty.) Then, for any pair of vertices xand x0 that are adjacent by the preceding step, wemake x(i) and x0(i) adjacent as well. For example,x2 = 425136 and x4 = 524136 are adjacent in G(Y )by step 1, so x(2)2 = 325146 and x(2)4 = 534126 areadjacent in G(Y ).
3. Apply step 2 repeatedly until no more adjacentpairs appear.
3. IRREDUCIBLE REPRESENTATIONS OF

HECKE ALGEBRAS H(q; n)Let H(q; n) be the C-algebra on the generatorsg1; g2; : : : ; gn�1 de�ned by the relationsg2i = (q � 1)gi + q;gigi+1gi = gi+1gigi+1;gigj = gjgi if ji� jj = 2:ThenH(q; n) is called a Hecke algebra of type An�1,and the gi are its standard generators.Let Y be a Young diagram for a partition in�(n), and let X = fx1; x2; : : : ; xsg be the collec-tion of words associated with Y . For each elementx of X, de�ne I(x) as the set of i 2 f1; : : : ; n� 1g

such that the row containing i is above the one con-taining i+1 in x (where x is regarded as a standardYoung tableau). For instance, if x = 645123 in ourrunning example, we have I(x) = f3; 5g.Given a triple fX; I; �g, where I is the functionof x just introduced and � is an arbitrary functionX � X ! f0; 1g, we de�ne square matrices Tj ofsize s, for j = 1; : : : ; n� 1. The (l;m)-entry of Tjis, by de�nition,8><>:�1 if l=m and j2 I(xl);q if l=m and j =2 I(xl);pq if l 6=m, j2 I(xl)nI(xm), and �(xl;xm)=1;0 otherwise.We call fX; I; �g a W-graph corresponding to Yif the matrices Tj satisfy the de�ning relations ofHecke algebras H(q; n) under the representation�Y with �Y (gj) � Tj , for j = 1; : : : ; n � 1 [Gyoja1984; Kazdan and Lusztig 1979].It was conjectured in [Lascoux and Sch�utzen-berger 1981] and [Gyoja 1986; 1987] that, if � isthe adjacency relation of the graph G(Y ) de�nedby the algorithm in Section 2, then fX; I; �g is aW-graph. As detailed below, we have checked thatthis conjecture is true for n up to 13, but false forn = 14 and 15.Moreover, we have introduced a modi�cation inthe de�nition of G(Y ) so that the conjecture forthe modi�ed G(Y ) remains valid for n = 14; 15.To test the conjecture, we wrote software to con-struct the sets I(x) and the graph G(Y ) for anyYoung diagram Y with n � 15. We performeddirect matrix calculations to check whether the re-sulting matrices satisfy the de�ning relations ofHecke algebras H(q; n), and we found that three ofthe 135 representations for n = 14 and twenty-oneof the 176 representations for n = 15 do not satisfythe necessary relations (more speci�cally, they failthe conjugacy and commutation relations). This issummarized in Table 1.(As mentioned in Section 1, it has been knownfor years that the algorithm of Section 2 sometimesfails, but to our knowledge the cases of failure havenot previously been recorded in the literature.)
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n s Y e14 48048 f5; 4; 3; 2g 6868640 f5; 4; 2; 2; 1g 5048048 f4; 4; 3; 2; 1g 6815 30030 f6; 5; 4g 8128700 f6; 5; 3; 1g 68100100 f6; 5; 2; 2g 48175175 f6; 4; 3; 2g 322243243 f6; 4; 2; 2; 1g 25054054 f5; 5; 4; 1g 4896525 f5; 5; 3; 2g 232125125 f5; 5; 2; 2; 1g 11081081 f5; 4; 4; 2g 8075075 f5; 4; 3; 3g 100292864 f5; 4; 3; 2; 1g 1720125125 f5; 4; 2; 2; 2g 110243243 f5; 4; 2; 2; 1; 1g 25075075 f4; 4; 4; 2; 1g 10081081 f4; 4; 3; 3; 1g 8096525 f4; 4; 3; 2; 2g 232175175 f4; 4; 3; 2; 1; 1g 322100100 f4; 4; 2; 2; 2; 1g 4854054 f4; 3; 3; 3; 2g 48128700 f4; 3; 3; 2; 2; 1g 6830030 f3; 3; 3; 3; 2; 1g 8
TABLE 1. Representations not accounted for bythe Lascoux{Sch�utzenberger method. The secondcolumn gives the size of the representation matri-ces Tj , and the last gives the number of edges miss-ing from G(Y ) (see Table 2).Very recently, Naruse [1994] found the W-graphassociated with the Young diagram f4; 4; 3; 2; 1gusing Kazhdan{Lusztig polynomials and a com-putational construction. We compared his resultswith ours and found that there are 68 edges thatthe algorithm of Section 2 fails to detect. Theseedges can be generated from the following eight byrepeated application of step 2 of the algorithm:87C36B25AE149D{C8A36E25BD147987C36B25AE149D{C8E6AB279D1345C4837B26AE159D{C8E4AB267D1359C7B36A259E148D{CAE6BD2789134576B5AE249D138C{EAB67C248D1359B6A59E248D137C{EAB68C249D1357D6A59E248C137B{DAE68C249B1357A6E59D248C137B{EAC68D249B1357

Here A stands for 10, B for 11, and so on.One may ask whether the Lascoux{Sch�utzen-berger algorithm can be salvaged so as to alwaysyield a W-graph. This turns out to be possible, atleast for n = 14 and 15, by adding to the graphG(Y ) edges suggested by failures in the commu-tation relations. The modi�ed algorithm below al-lowed us to �nd the correct W-graphs for all Youngdiagrams with n = 14 and 15. (Unfortunately wedo not have a proof that it works for higher valuesof n.)
Algorithm (modified Lascoux–Schützenberger)

1. Using the algorithm of Section 2, calculate theadjacency matrix and I(x) for each word x.
2. Calculate Tj, for j = 1; : : : ; n� 1.
3. Form the commutator matrices Ci;j = TiTj �TjTi for i = 1; : : : ; n� 3 and j = i+ 2; : : : ; n� 1.If there is a nonvanishing Ci;j, tentatively add anedge to the graph G(Y ) as follows. If the (l;m)-entry of Ci;j is non zero, add to G(Y ) a pair (xl; xk)such that the (l; k)-entry of Ti or Tj is nonzero, ora pair (xk; xm) such that the (k;m)-entry of Ti orTj is nonzero. After such an edge has been tenta-tively added, carry out step 2 of the algorithm ofSection 2 and recompute the matrices Tj and theircommutators. If the total number of nonzero en-tries in the commutators has decreased, accept theadditional edge permanently; otherwise, discard it.
4. Repeat the preceding step as long as there arenonzero commutator matrices and it is possible to�nd acceptable edges.The algorithm is successful if eventually all thecommutator matrices are zero. In this case thematrices Tj obviously satisfy the de�ning relationsof the Hecke algebras H(q; n).It is well known that the representation given bya W-graph corresponding to a Young diagram is ir-reducible [Gyoja 1984; Kazdan and Lusztig 1979].Hence the matrices Tj give, in fact, irreducible rep-resentations of the Hecke algebras H(q; n).The results of our calculations are given in Ta-bles 1 and 2. Table 1, as already mentioned, shows



Ochiai and Kako: Computational Construction of W-graphs of Hecke algebras H(q; n) for n up to 15 65n = 14 Y = f5; 4; 3; 2g7B59D348C126AE{BC78D349E1256A7D59C348B126AE{CD78E349A1256B9D58C347B126AE{CD89E34AB125677B59C348E126AD{BC78E349A1256D5948D37BE126AC{DE89A456B1237C5D49B37AE1268C{DE9AB456C123789D57B36AE1248C{DE9AB56781234C9D7BE456A1238C{DE9AB456C12378n = 14 Y = f5; 4; 2; 2; 1gB6A59248D137CE{B9D5A24CE1367887C6B35AE1249D{CBE78359A1246Dn = 15 Y = f6; 5; 4g47AD369CE1258BF{ACDE4678F12359B58BE47ADF12369C{BDEF5789A12346Cn = 15 Y = f6; 5; 3; 1g847B26ADF1359CE{B7DF289AC13456E76AD459CF1238BE{D79F45ABC12368EB7AE4569D1238CF{EABC456DF123789C58B347AE1269DF{C8AE34BDF125679958D347CF126ABE{D89F34ABC12567EA59D348CF1267BE{D9AF34BCE125678n = 15 Y = f6; 5; 2; 2g7D6A459CF1238BE{DF7945ABC12368E8C5B347AE1269DF{CE8A34BDF1256799D58347CF126ABE{DF8934ABC12567EAD59348CF1267BE{DF9A34BCE125678n = 15 Y = f6; 4; 3; 2g5948C37BE126ADF{CE89A456B1237DF8C47B36AE1259DF{CE8AB46791235DF5C48B37AE1269DF{CE8AB456D12379F7B6AE459D1238CF{BD79E45AF12368C7B6AD459F1238CE{BD79F45AC12368E7E6AD459C1238BF{DE79F45AB12368CAE69D348C1257BF{DE9AF34BC1256789D58C347B126AEF{CD89E34AB12567F8C7BE346A1259DF{CE8AB346D12579F9E58D347C126ABF{DE89F34AB12567C6A59D48CF1237BE{DF9AB567C12348E9D58C47BF1236AE{DF9BC578A12346E6D59C48BF1237AE{DF9BC567E12348A5A49D38CF1267BE{DF9AB456C12378E5D49C38BF1267AE{DF9BC456E12378A9D8CF346B1257AE{DF9BC346E12578A6A59D348C127BEF{AC68D349E1257BF6A59C348E127BDF{AC68E349B1257DF6D59C348B127AEF{CD68E349A1257BF6E59D348C127ABF{DE68F349A1257BCn = 15 Y = f6; 4; 2; 2; 1gB6A49258D137CEF{B9D4A25CE13678F87C6B45AE1239DF{CBE78459A1236DFC7B5A269E1348DF{CAE5B26DF13478998D7C34BF1256AE{DCF8934AB12567E

n = 15 Y = f5; 5; 4; 1gA369D258CF147BE{A6CDF289BE13457B47AF369CE1258D{FABCD4678E12359837BE26ADF1459C{B7DEF289AC13456968CF257BE134AD{F9BCD5678E1234An = 15 Y = f5; 5; 3; 2g5C48B37AEF1269D{CE8AB456DF123797B6AD459CF1238E{BD79F45ACE123687E6AD459CF1238B{DE79F45ABC123685A49D368CF127BE{DF9AB456CE123786A59D248CF137BE{DF9AB567CE123486D59C248BF137AE{DF9BC5678E1234A9D58C347BF126AE{CD89E34ABF125678C7BE346AF1259D{CE8AB346DF125797B46A359DF128CE{BD79F34ACE125689E58D347CF126AB{DE89F34ABC125678C7BF256AE1349D{CF8AB256DE134796A59D248CF137BE{AC68D249EF1357B6D59C248BF137AE{CD68E249AF1357B9D58C247BF136AE{DF9BC578AE12346n = 15 Y = f5; 5; 2; 2; 1gB6A49258DF137CE{B9D4A25CEF13678D6A49258CF137BE{D9F4A25BCE1367898D7C246BF135AE{DCF8926ABE1345798D5C247BF136AE{DCF8924ABE13567n = 15 Y = f5; 4; 4; 2g7B36AE259D148CF{BD79EF356A1248C5948CF37BE126AD{CE89AF456B1237D8C47BF36AE1259D{CE8ABF46791235D5C48BF37AE1269D{CE8ABF456D123797E36AD259C148BF{DE79AF356B1248CAE369D258C147BF{DE9ABF356C124786A59DF248C137BE{DF9ABC56781234E6D59CF248B137AE{DF9BCE56781234A9D58CF347B126AE{CD89EF34AB125676A59CF248E137BD{AC68EF249B1357D6D59CF248B137AE{CD68EF249A1357B9D38CF257B146AE{DF9BCE35781246An = 15 Y = f5; 4; 3; 3g7BE36A259D148CF{BDE79A356F1248C7BD36A259F148CE{BDF79A356C1248E59F48C37BE126AD{CEF89A456B1237D8CF47B36AE1259D{CEF8AB46791235D5CF48B37AE1269D{CEF8AB456D123797AE36D259C148BF{DEF79A356B1248C59D48C27BF136AE{9DF5BC278A1346E8CF7BE346A1259D{CEF8AB346D125796AE59D248C137BF{ACE68D249F1357B6AE39D258C147BF{DEF9AB356C12478

n = 15 Y = f5; 4; 3; 2; 1gC7B36A259E148DF{CAE3BD267F14589A5948D37CF126BE{D9F4AB357C1268E98D67C25BF134AE{D9F6BC278A1345E98D57C46BF123AE{DCF89A456B1237ED5948C37BF126AE{D9F4BC357E1268A76B5AE249D138CF{B7D59E24AF1368CB6A59E248D137CF{B9D5AE24CF1367876B5AD249F138CE{B7D59F24AC1368EB6A59F248D137CE{B9D5AF24CE1367887C6BF34AE1259D{CBE78F349A1256D87C36B25AE149DF{C8A36E25BD1479FD8C7BF456A1239E{DCF8AB456E12379C4837B26AE159DF{C8E4AB267D1359F87C36B25AE149DF{C8E6AB279D1345FC7B36A259E148DF{CAE6BD27891345F76B5AE349D128CF{EAB67C348D1259F76B5AE349D128CF{BAD67E348F1259CC4B37A269E158DF{CAE4BD267F1358976E5AD349C128BF{EAC67D348F1259BA9E58D347C126BF{EAC89D34BF12567B6A59E348D127CF{BAE68D349C1257FB6A59E348D127CF{EAB68C349D1257FA6E59D348C127BF{EAC68D349B1257FB6A59E348D127CF{BAD68E349F1257C76E5AD249C138BF{D7E59F24AB1368CE6A59D348C127BF{EAC68D349F1257BB6A59D348F127CE{BAD68F349C1257EA9E58D347C126BF{D9E8AF34BC12567D6E59C348B127AF{DCE68F349A1257BA6E59D248C137BF{D9E5AF24BC13678C7B6AF349E1258D{CBF79E34AD12568D8C37B26AF1459E{DBF3CE27891456A87C6BF34AE1259D{FBC78D349E1256AC7B6AF349E1258D{FBC79D34AE1256887F6BE34AD1259C{FBD78E349A1256CB7F6AE349D1258C{FBD79E34AC12568D9E58C347B126AF{DCE89F34AB12567E9D58C347B126AF{ECD89F34AB12567A5948D37CF126BE{D9F8AB456C1237ED5948C37BF126AE{DCF89A456B1237E98D47C36BF125AE{DCF89A467B1235ED8C47B36AF1259E{DCF8AB46791235ED5C48B37AF1269E{DCF8AB456E12379D7C36B25AF1489E{DBF6CE27891345AA9E46D358C127BF{EAC46D358F1279BE6D59C348B127AF{ECD68F349A1257B76C5BF34AE1289D{FBC67D348E1259A65A49D28CF137BE{D9F5AB267C1348E65D49C28BF137AE{D9F5BC267E1348A98D47C26BF135AE{D9F7BC28AE13456D8C47B26AF1359E{DBF7CE289A13456A5948D27CF136BE{A9D5CF278B1346E98D57C46BF123AE{D9B57F46CE1238AA5948D27CF136BE{D9F5AB278C1346ED5C48B27AF1369E{DBF5CE27891346A95D48C27BF136AE{D9F5BC278A1346E98D4CF257B136AE{D9F4BC257E1368AD5948C27BF136AE{D9F5BC278E1346A
TABLE 2. Additional edges needed to complete the graphs obtained by the Lascoux{Sch�utzenberger methodinto W-graphs, in the cases n = 14 and 15. We use A for 10, B for 11, etc. See also text on next page.
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the Young diagrams for which the original Las-coux{Sch�utzenberger method fails to yield a W-graph. It also shows the number of additionaledges needed. Table 2 lists some of the additionaledges; the remaining ones are obtained by apply-ing step 2 of the Lascoux{Sch�utzenberger method.We take advantage of adjointness to omit certainYoung diagrams: for instance, the Young diagramf4; 4; 3; 2; 1g is adjoint to the diagram f5; 4; 3; 2g,so the auxiliary edges necessary for f4; 4; 3; 2; 1gare easily obtained from those of f5; 4; 3; 2g.On a Sun SPARCserver 1000 with 160 megabytesof main memory, our program HeckeRep.c neededabout a week to compute all the G(Y ) for Youngdiagrams Y associated with �(n), with n � 15, andthe corresponding Tj. For n = 15 only, the calcu-lations took about 137 hours of CPU time and 87megabytes of main memory.
4. FINAL REMARKSThe �rst author and J. Murakami have establishedthe three-parallel version of polynomial invariantsof closed three- and four-braids associated with cer-tain subspaces of representation matrices of the ir-reducible representation of H(q; n), for n = 9 andn = 12. See [Ochiai and Murakami 1994].We are now calculating three-parallel version ofpolynomial invariants of closed �ve-braids using ir-reducible representations of H(q; 15). The resultswill be published in a forthcoming article.There is still no known e�ective algorithm toconstruct irreducible representations of H(q; n) forlarge n.
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ELECTRONIC AVAILABILITYThe program HeckeRep.c described in Section 3 canbe obtained by anonymous ftp from geom.umn.edu, indirectory pub/contrib/expmath/ochiai.
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