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We describe an algorithm to compute subfields of an algebraic
number field as block systems of its Galois group. It relies only
on symbolic computations and avoids numerical approxima-
tions.

1. INTRODUCTION

We are given an irreducible polynomial f € K|[x]
(where K is perfect), with root a. We describe
an algorithm for finding all subfields of K («) that
contain K.

By the main theorem of Galois theory, the sub-
fields of K (a) correspond to the subgroups of the
Galois group G of f that contain the stabilizer
Stabg «, and thus to the block systems of the op-
eration of G on the cosets of Stabg . Let o be a
primitive element of a subfield S. We find polyno-
mials g, h € K[z] such that ¢ = h(«) and g(o) = 0.
Accordingly, we have a “decomposition” f|(g o h),
sometimes called an ideal decomposition [Casper-
son et al.]; here o denotes composition of functions.

Applications of this procedure include construc-
tive Galois theory, the denesting of radical expres-
sions [Zippel 1985], algebraic geometry [Lazard and
Valibouze 1993], and the expression of the roots of
solvable polynomials in terms of radicals [Landau
and Miller 1985].

There have been other approaches to this prob-
lem [Casperson and McKay 1992; Casperson et
al.; Dixon 1990; Landau 1993; Lazard and Vali-
bouze 1993]. However, the algorithm presented
here has some advantages over others in the liter-
ature. It avoids unnecessarily hard computations
(even though its worst case complexity may be the
same) by embedding the algebraic extension in an
appropriate p-adic field and building blocks from
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stabilizer orbits as suggested in [Schonert and Ser-
ess 1994]. It also avoids numerical approximations
and relies on exact algebraic computations only.
Section 6 below compares the performance of
previous algorithms with the one introduced here.
The comparison includes a polynomial reduction
algorithm [Cohen and Diaz y Diaz 1991] that runs
very fast in general and sometimes, but not always,

yields subfields.

2. A THEOREM ABOUT BLOCKS

In the sequel, G will always denote a group operat-
ing transitively on a set 2. A G-invariant partition
B={B,...,B,} of Q with 1 <m < |G| is called
a (nontrivial) block system for G. Since G oper-
ates transitively, every block system B is already
determined uniquely by one block B € B.

Our first aim is to give a different characteriza-
tion for a partition B to be a block system, based
on one set in B. We show that orbits and coset
representatives of a point stabilizer determine all
block systems.

If B is a block system, B € B and 8 € B, then
Stabg 8 must fix B setwise. Therefore B is the
union of orbits of Stabg .

We shall construct all blocks B containing 3 by
examining unions of orbits of Stabg 8. If I' C Q is
such an union of orbits, the following lemma gives
a sufficient condition for I'? to be a block system.
By the above remarks, this condition is necessary
as well.

Lemma 2.1. Let ' C Q and B € T be such that, for
all g € G, the condition B9 € T’ implies T'Y = T
that is, g € Stabg ', where

StabgI'={g e G |IY =T}

denotes the setwise stabilizer. Then the orbit of I’
under the operation of G is a block system for G.

Proof. We show first that we may replace 3 by
an arbitrary point in I'. Let v € " and g € G,
with 49 € I'. Since G operates transitively, there
is an element h € G with " = v € I'. We thus

also have 8" ¢ I'. By the hypothesis this implies
h,hg € Stabg I', and accordingly also g € Stabg I

Now assume that there is z € G with I'NI'* # @.
Then there is v € T with v* € I'. Accordingly we
have z € Stabg I' and I'®* = I'. This finally implies
that two images I'* and I'Y of ' either intersect
trivially or are identical. Therefore the set of im-
ages I'C is a G-invariant partition of Q, that is, a
block system for G. O

We now apply this lemma to the situation that
interests us, using the fact that the Galois group
of an irreducible polynomial operates transitively
on its roots.

We denote the Galois group of f over K by
G, its splitting field by L and the roots of f by
a = Qi,Qs,...,0,. By the Galois correspondence,
the field K(«) corresponds to the point stabilizer
Stabg a. Each irreducible factor of f over K(«)is a
polynomial whose roots form one orbit of Stabg a.
To search for blocks containing «, we form sets F'
of irreducible factors f; of f over K(«), such that
r — «a € F, the latter obviously being a factor of
f over K(a). We denote by Bp the set of roots
of polynomials in F', and by G the set of auto-
morphisms ¢ € G for which a¥ € Bp. Instead of
applying the automorphisms ¢ € G to the roots a;
of each K(a)-irreducible polynomial f;, we apply
them (formally, their extension to the polynomial
ring L[x] by action on the coefficients) to the poly-
nomials f;. The situation of the preceding lemma
then becomes:

Theorem 2.2. Let F' be a set of factors f; of f over
K(«), such that t—a € F. Then the corresponding
root set Br is a block of G if and only if , for every
automorphism ¢ € Gp and every f; € F, the set
of roots of ff remains in Bp.

Proof. If B is a block, every automorphism ¢ € Gg
is contained in the block stabilizer. Consequently,
every f; in F' (which is a product of linear factors
corresponding to roots in Bp) is mapped by ¢ to
a product of linear factors corresponding to roots
in BF.



To see the converse, take ¢ € Gp. By the as-
sumption, ¢ maps each root in Br to another root
in Br. Thus ¢ is in the stabilizer of Br. By the
preceding lemma, B is a block. O

Remark. To apply an automorphism ¢ € G to one
of the factors f; whose coeflicients are polynomials
in a, we need to know only the image of o under
©, not the operation of G' on the other roots of f.

If we regard h(z,a) = [[; .p fi as a polynomial in
two indeterminates = and «, the condition given in
the theorem is equivalent to

h(z,a) — h(z,y) =0 mod h(y, a). (2.1)

Testing for this condition involves computations in
the polynomial ring K («)[z,y]. Experiments (Sec-
tion 6) show that these computations tend to be
significantly harder than those in our approach.

3. AMODULAR APPROACH

From now on, for concreteness, we will take K = Q.
We will use p-adic approximations to compute with
the roots of f. Any approximation susceptible to
computation could be used instead, so the same
basic method is applicable to any field for which
methods for factoring polynomials and approxi-
mating roots exist.

Theorem 3.1 [Tschebotareff 1925]. Let f € Q[z] be
an irreducible polynomial with integer coefficients,
and let p be a prime that divides neither the dis-
criminant of f nor the leading coefficient of f.
Then the distribution of the degrees of the irre-
ducible factors of f modulo p corresponds to the
cycle structure (the set of cycle lengths) of the ac-
tion of an element of Gal f on the roots of f. If the
frequency of these distributions is averaged over all
primes p < P, this converges, as P tends to infin-
ity, to the frequency of cycle structures in Gal f.

Since Gal f contains the identity, we can choose a
prime p such that f splits into different linear fac-
tors modulo p (there are infinitely many such p).
By Hensel’s lemma, f splits over the corresponding
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p-adic field Q, in linear factors corresponding to
roots g; € (Q,. We thus obtain n different embed-
dings p;: Q(a) — Q,p, with p;(a) = p;. Denoting
the splitting field of f over Q by L, we may extend
i1 to a mapping p: L — Q,. Without loss of gen-
erality we may suppose that y maps a; to ;. If ¢;
is an automorphism that maps « to «;, we obtain
the following commutative diagram:

Qo) —— Q)

wN
Q

For every polynomial e € Q[z] we have e(a)¥* =
e(a®#) = e(a?). Application of automorphisms
can thus be replaced by selection of the appropriate
embedding ;.

To test whether the roots of the polynomials of a
set F' form a block, we take the roots of all the im-
ages F*. Taking the embeddings u; corresponding
to these roots, we check whether the images F*
preserve the roots. (This is exactly the criterion of
the preceding section.)

We suppose also that f is an irreducible monic
integer polynomial. Thus all its roots are algebraic
integers, and so lie in the valuation ring R = Z,
(every valuation ring will contain the algebraic in-
teger elements of its quotient field). Accordingly,
the images f!* (which are products of linear factors
corresponding to the roots) are contained in R[z].
The test for blocks thus takes place in R.

Since we cannot compute exactly with p-adic
numbers, we have to rely on approximations mod-
ulo a chosen prime power. Restricted to R, the
approximation is a homomorphism. Since the test
for blocks (checking whether a given set of num-
bers form the roots of given polynomials) consists
only of ring operations, this test may take place
just as well in the homomorphic image. The only
condition this image has to fulfil is that roots can
be distinguished. Since f is square-free modulo
p, the coarsest approximation—computing in the
field F,—is sufficient.
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4. THE ALGORITHM

Using the ideas from the preceding sections, the
computation proceeds as follows:

1. If f is not a monic integer polynomial, replace it
by a monic polynomial defining the same field:
for example, a?8f f(x/a), with a a sufficiently
large divisor of the lowest common multiple of
the denominators of the coefficients of f.

2. Factorize f modulo different primes to check
which block sizes are possible, as described in
[Dixon 1990].

3. Take the quotient field Q[z]|/(f), which is iso-
morphic to the extension of (Q defined by a root
of f. This root is represented by the coset (f)+
x, which is denoted by «.

4. Factorize f over () to obtain the factors f;.

5. Select the combinations of the f; that include
fi = © — a such that the sum of the degrees
corresponds to a possible nontrivial block size.

6. Search for a prime p that does not divide the
discriminant of f and such that f splits into lin-
ear factors modulo p. This prime has probably
already been found in step 2.

7. For each combination obtained in step 5, check
whether it corresponds to a block, using the cri-
terion from Section 3.

8. Finally, compute ideal decompositions f|(go h)
for all blocks found (see below). In these decom-
positions, g is a minimal polynomial for the cor-
responding subfield. If f was modified in step
1, the reverse transformation h(az) has to be
applied to h to obtain a decomposition of the
original polynomial.

We now comment on the individual steps of the
algorithm. Step 1 is trivial.

Possible block sizes (Step 2)

In step 2 we factor f modulo different primes to
obtain cycle structures of elements in G. This will
restrict the possible sizes of blocks. For example,
if an n-cycle and an (n — 1)-cycle are found, the
group is doubly transitive and thus primitive, and

we can stop. If we know the transitive permutation
groups of appropriate degree, we can even, as al-
ready suggested in [Soicher and McKay 1985], use
this knowledge for partial identification of the Ga-
lois group. Using this information we can check
the list of groups for possible block system sizes.

We would like to obtain cycle structures of all
elements in G this way. However, Tschebotareff’s
theorem only guarantees this in the limit, though
[Lagarias and Odlyzko 1977] gives error estimates.

On the other hand, factoring modulo a prime is
extremely fast. We thus factor modulo different
primes, until we have found a prime modulo which
f splits into linear factors. We would have to find
a prime with this property in step 6 anyhow, so
nothing is wasted. On the other hand, Tscheb-
otareff’s theorem (only the identity element has
the corresponding cycle structure) asserts that this
happens, on average, only every |G| primes. Thus
this is the earliest point where one might hope to
have found all cycle structures.

Algebraic factorization (Step 4)

Factoring f over Q(«) is by far the hardest part of
the algorithm. Experiments show that the running
time is completely determined by this factoriza-
tion. A thorough discussion of the factoring pro-
cess can be found in [Abbott 1989]; we will just
comment briefly on the routines used.

For the actual factorization, basically three algo-
rithms are known. The first [Trager 1976] factors
the norm of the polynomial over the base field and
takes gcd’s with these factors. This is only feasible
for comparatively small problems; a typical limit
would be deg(norm) < 20.

The algorithm of [Weinberger and Rothschild
1976] uses Hensel lifting as in the ordinary case.
If the selected prime p has the property that the
minimal polynomial of the extension splits over IF,
(by Tschebotareft’s theorem, this will happen for
all primes in many cases of Galois groups with non-
trivial block systems), factorizations corresponding
to all the factors of the minimal polynomial must
be lifted. They can be recombined to search for



factors in characteristic zero by using the Chinese
Remainder Theorem, but during this process all
possible combinations of factors corresponding to
different factors of the minimal polynomial have
to be combined (if, for example, the minimal poly-
nomial has two factors modulo p and yields two
liftings with 5 factors of the same degree each,
5 2

> (5> = 251

i1\
combinations have to be tested in total). This gives
an even worse performance than the typical expo-
nential factor search.

Lastly, [Lenstra 1982] tries to avoid these expen-
sive recombinations. A final lattice reduction en-
ables one to obtain algebraic numbers from a fac-
torization corresponding to one factor of the min-
imal polynomial that had been lifted to a higher
accuracy. (This just avoids the Chinese Remain-
der part. The usual combination of factors at the
end of the lifting process could also be avoided by
another lattice reduction, but in practice this is in-
feasible [Lenstra 1983].) In many cases this lattice
reduction greatly speeds up the factoring process.
However, if the coefficients and degrees involved
become bigger, it seems that the lattice reduction
and the additional lift to the higher accuracy are
too expensive, and the method of [Weinberger and
Rothschild 1976] should be used again.

Combining the factors (Step 7)

In general, the polynomial splits into few factors,
and any naive algorithm can be used to obtain the
combinations.

The hardest case is when the Galois group is in
its regular representation. Then the degrees of the
fi are all one and a maximal number of combina-
tions has to be tested. In this case, however, we can
obtain the Galois group from the factorization of f
over K(a), where f must split into linear factors.
The Galois group consists of all those mappings
that map « to another root, extended to polyno-
mials in «. As the image of o is again a poly-
nomial in «, multiplication in this group can be

Hulpke: Block Systems of a Galois Group 5

computed. Thus one could even compute the cor-
responding permutation representation for which
efficient block finding algorithms are available.

Computing the ideal decomposition (Step 8)

Without loss of generality, we can suppose that the
set of factors {fi,..., fs} corresponds to a block.
We form the product

Its coefficients are the elementary symmetric func-
tions of the roots in the block and therefore in-
variant under all automorphisms in the block sta-
bilizer. Thus e is a polynomial defined over the
intermediate field L corresponding to the block sta-
bilizer. Since « is a root of e and the degree of e
is equal to the size of the block, e is not defined
over any proper subfield of L and L is the field de-
fined by the coefficients e; of e. By the primitive
element theorem there is a positive Z-linear combi-
nation ) z;je; that serves as a primitive element for
L. We will find this element by examining Z-linear
combinations of the e; until a primitive element
has been found.

If v = ) zje; is a linear combination, v is a poly-
nomial in «, say 7 = h(a). We then compute the
minimal polynomial g of v by solving the system
of linear equations

{h*=0 (mod f)|k=0,...}.

If degg - dege = deg f, then v defines the correct
subfield, g is a minimal polynomial of this subfield,
and we obtain in addition the ideal decomposition
f|(g o h). Otherwise we select another linear com-
bination of the e;.

In practice it appears that the first combination
almost always defines the correct field already.

5. AN EXAMPLE

To illustrate this algorithm we apply it to the poly-
nomial f = 2% + 4z° + 10z* + 122% + 7 (see entry
4 in Table 1). This group has two block systems,
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of sizes 2 and 4. Factorization f over Q(«) yields
the factors

h=z—a

fo=1z+a,

fs =2 —a® —3a* — 6a® — 3,
fi=2? +a® 4 3a* +6a° + 5,
fs =x® +a® + 2.

The prime p = 641 fulfills all the necessary condi-
tions. We will denote cosets modulo 641 by their
representative.

We have f(35) = 0 (mod p). Taking o = 35
(mod p) one obtains the zeros for the factors as
follows:

hLi  fe fs fa fs
35 606 295,346 174,467 170, 471

The combination F; = {fi, f>} has roots Bp, =
{35, 606}. To check whether this set forms a block,
we set @ = 606 (mod p). Then f; has root 606 and
fa2 root 35, so Bp, remains invariant. Therefore we
have found a block.

To obtain the ideal decomposition we form the
product f; fo = 2 — a?. We take h;(a) = o?, from
which the minimal polynomial g, = z* + 423 +
1022 + 12z + 7 is obtained as described in the dis-
cussion of Step 8 in the previous section. (This
decomposition could have been found trivially by
looking at the polynomial.)

The combination F» = {f1, f2, fs} has roots

Br, = {35, 606, 295, 346}.

Taking o = 295 (mod p) we get for f3 a root 471,
which is not in Bp,. This combination cannot cor-
respond to a block. Similarly, F3 = {fi, fo, fa}
includes the root 174 € Bp,, but setting o = 174
(mod p) yields for f4 the root 471 ¢ Bp,.

Finally, Fy = {f1, fo, fs} has roots

Bp, = {35, 606, 471, 170}.

Replacing o with each of these values fixes Bp,;
we have found another block. The product f;fsfs
has only one coefficient that is not rational. It

yields hy = z* + 2% (as the block contains the
one previously found, hs can be selected to be a
polynomial on h;). Accordingly, g, = z® + 6z + 7.

Any remaining combinations would be of the
wrong degree, so we have found all block systems.

6. COMPARISON WITH OTHER ALGORITHMS

The major advantage of the algorithm introduced
here is that the hard computation (the factoriza-
tion) has to be performed only once, and testing a
combination for being a block is extremely cheap
afterwards. This should be an advantage over al-
gorithms such as the ones in [Casperson et al.] or
[Dixon 1990], where each test of a set of roots form-
ing a block is expensive. The lattice reduction that
these algorithms rely on to search for relations be-
tween the roots or minimal polynomials are, like
the L*-algorithm [Lenstra et al. 1982], of polyno-
mial complexity. In practice, however, the matrix
coeflicients are quite big, and larger examples take
a significant amount of time.

The Polred reduction algorithm [Cohen and Diaz
y Diaz 1991], originally intended to compute small
polynomials for number fields, can also find poly-
nomials for subfields, but it is not guaranteed to
find all subfields. As we obtain the decomposing
polynomials via symmetric functions of the roots,
however, they tend to have larger coeflicients than
the polynomials obtained by Polred. Moreover,
Polred returns only polynomials for the subfields.
The connection with the original polynomial—that
is, the h in the decomposition f|(g o h)—has to
be computed separately. As the algorithm might
return several polynomials for the same field, this
also implies that conjugate subfields cannot be rec-
ognized and distinguished without further tests.

As observed in [Lazard and Valibouze 1993], ev-
ery subfield can be found via symmetric functions
of the roots of the corresponding block. These au-
thors suggest factoring of symmetric resolvents as
a way to obtain all subfields. If the degree of f is
n, this amounts to factoring polynomials of degree

up to (Ln72 J)’ with relatively large roots. While the
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Key
1 8 + 108
2 x® — 1220 + 232% — 1222 + 1
3 z® — 10z* + 1
4 x® + 428 + 102* + 1222 + 7
5 2% — 1828 + 11727 — 34825 + 39625 + 288z* + 301222 + 57622 + 5762 — 512
6 210 + 382 — 9928 + 133427 — 427226 4 924425 — 8297x* + 122223 4+ 102322 — T4z + 1
7 z'0 — 2029 + 8028 + 200z7 — 377028 + 872x® + 29080z* + 36280x3 — 4566152 + 541260z — 517448
8 z'0 — 102® + 2027 + 2352° + 6062° + 800z* + 600z> + 270z2 + 70z + 16
9 212 4 62 + 428 + 82% — 42° — 122* + 8% — 8z + 8
10 212 4 921 4 3210 — 732° — 17728 — 26727 — 31528 — 267x% — 1772* — 7323 + 322 + 9z + 1
11 see [Casperson et al.]
12 x1® 4+ 20212 4 125211 + 503210 4 16502 4 343028 + 4690z7 + 433525 + 290425 + 1400z + 48523 4 10022 + 15z + 1
algorithm — | A B C D
G |G| deg blocks shape t tres teac t  Ftdec | tiac tquot fmod
1 Ss3 6 16 233 2/3 12 2/4 4/8 05 3 12 64 13
2 C3 8 18 2747 2/4 21 4/8 10/276 0.2 224 | 85 313 86
3| 2xDy 16 1422 2343 2/4 0.6 5/9 5/74 0.4 234 30 72 33
41 [2%4 64 1223 2/4 2/4 518 5/759 7/1.9k 0.2 2/4 | 288 305 295
5 322 18 1224 34 3 234 102 494 3 32 577 599 582
6| 245 80 1224 2 2/5 13k 10/735 13/x 4 mone | 578 811 600
7| 2%:Ds 160 1242 2 2/5 | 2.9k 9/1.0k 12/ 9 none | 2.3k 2.4k 2.3k
8 | (5%:4):2 200 1/4/5 5 5 9.7k 1.3k * 3 5 356 391 381
9| S3 xSy 144 1623 3/4  3/4/6 | 2.4k | 837/7.1k/x  387/13k/x 2 3/4 ] 94 106 100
10| 3xDy 24 1/2/3/6 2/3/4/6 2/3/4/6 | 4.0k | 16/462/7.2k/+ 20/454/+/x | 9 4 | 500 1.8k 507
11 Ay 12 12 233%4 2/3/4/6 | #x | 51/2.1k/55k/x 126/25k/x/* | 550 2/3% | 17k =+ 17k
12 | (5%:4)S; 600 1/4/10 5 5 ok * /% % [ x * % )% % 65 none | 10k 10k 10k

TABLE 1. Example polynomials with imprimitive Galois group, and running times of several algorithms. For
each polynomial we give information on the Galois group, the lengths of the point stabilizer orbits (“deg”), the
block sizes of actual block systems of the Galois group (“blocks”), and possible block sizes after application
of Step 2 of the algorithm of Section 4 (“shape”). This information on possible block sizes was given to the
algorithms when possible. Exponents indicate the existence of several block systems with the same block size.
Polynomial 1 is taken from [Soicher and McKay 1985], 2-4 from [Mattman and McKay], 5 from [Geyer 1993],
9 from [Dixon 1990], 10 from [Lazard and Valibouze 1993], and 11 deduced from a polynomial in [Ash et al.
1991].

Algorithm A is an implementation of [Casperson et al.] in Maple [Char et al. 1991]; it only searches for one
decomposition, and finishes very fast for decompositions of the form f(z) = g(z™).

Algorithm B is an implementation of [Lazard and Valibouze 1993] in GAP [Schonert et al. 1994]; t,s is the
time needed to find the resultant, and t¢,. is the time spent in polynomial factorization (which we list separately
to indicate potential improvements arising from better factoring routines). Multiple times correspond to the
possibilities for block sizes.

Algorithm C is an implementation of [Cohen and Diaz y Diaz 1991] in Pari-GP [Batut et al. 1993], version
1.38.71 (which performs significantly better than older versions for this purpose). It is not guaranteed to find
all decompositions; we give the number found in each case.

Algorithm D is the one described in this paper, implemented in GAP 3.4; t¢,. is the time spent in factorization,
tmoa is total time spent by the full modular algorithm, and tq,0t total time spent for the quotient test in (2.1).

Running times are in seconds; “k” stands for 10%. Stars * indicate that computation is not possible in
reasonable time (in the case of **, the run was aborted after 50k seconds). All runs took place on an HP730
workstation, and the programs were given sufficient memory to minimize the influence of garbage collection.
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factorization time could be reduced significantly by
searching only for factors of appropriate degree,
even the computation of those polynomials is in-
feasible for larger degrees.

The algorithm of Landau and Miller [Landau
1993; Landau and Miller 1985] also exploits fac-
torization over the point stabilizer, but uses multi-
ple algebraic extensions, which tend to be compu-
tationally hard. From the point of view of com-
putational group theory, this algorithm also re-
lies on Atkinson’s block algorithm [Atkinson 1975],
while our approach resembles newer developments
like [Schonert and Seress 1994], which build blocks
from stabilizer orbits.

For illustration, we applied some of the algo-
rithms mentioned (as far as implementations were
available) to a number of test polynomials. The
results are shown in Table 1, where a key to the
polynomials and to the algorithm codes A, B, C,
D is given.

The use of different underlying languages ren-
ders a comparison difficult, but was unavoidable
in view of the need for specific routines available
only under one or another system. Algorithms A
and C were used in their inventors’ implementa-
tion, so it is hoped that they were treated fairly.
Implementations of B and D are due to the author.

The following observations can be made:

e Algorithm A runs quite fast for smaller cases,
but becomes significantly slower if the degree is
larger than 11.

e Algorithm B performs reasonably well for small
degree n. However, since a search for blocks of
size m involves construction and factorization
of a polynomial of degree d = (::L), the running
time increases significantly if n becomes bigger
then 11 or m bigger than 3. Also, algorithm B
would benefit from a special factoring algorithm
to search only for factors of given size. A routine
of this kind was not available.

e Algorithm C is by far the fastest but usually
fails to give some (and sometimes all) of the
decompositions.

e The experiments show that the running time
of the modular version of algorithm D is dom-
inated completely by factorization, even when
the polynomial splits completely into linear fac-
tors. Also, usage of the modular method turns
out to be significantly faster than the quotient
test if a lot of combinations have to be checked.
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