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We study the bifurcation set in (b, ¢, a)-space of the equa-
tion z = €'z + €%z |z|2 + b33, This Zy-equivariant planar
vector field is equivalent to the model equation that has been
considered in the study of the 1:4 resonance problem.

We present a three-dimensional mode| of the bifurcation set
that describes the known properties of the system in a con-
densed way, and, under certain assumptions for which there is
strong numerical evidence, is topologically correct and com-
plete. In this model, the bifurcation set consists of surfaces of
codimension-one bifurcations that divide (b, @, a)-space into
fifteen regions of generic phase portraits. The model also of-
fers further insight into the question of versality of the sys-
tem. All bifurcation phenomena seem to unfold generically for
w#n/2 3n/2.

1. INTRODUCTION

The problem of 1:q resonance of a closed orbit of
a vector field in R® has been solved except for the
case ¢ = 4 [Arnol’d 1977; 1988; Arnol'd et al. 1994;
Carr 1981; Takens 1974]. This paper is concerned
with the open case of 1:4 resonance. The Poincaré
map on a section transversal to the closed orbit
can be approximated by the time-one map of a
Z,-equivariant planar vector field composed with
the rotation by a quarter-turn. From now on we
stay in the context of planar vector fields. A Z-
equivariant planar vector field can be brought to

‘the normal form

t=¢ez+4 Az|z|* + Bz* + O()z}®),

where €, A, B € C. The idea of solving the problem
is to consider the principal part

t=¢€z+ Az|z|* + BZ® (1.1)

and answer the following interdependent questions:
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1. What kinds of bifurcation phenomena can occur
in the principal part, and for what values of the
parameters do they occur?

2. Is the principal part a versal unfolding?

(Roughly speaking, the second question asks if the
family (1.1) is big enough that all bifurcation phe-
nomena in it are generic.)

The idea of the study is to address the first ques-
tion in order to show that all-occurring bifurcation
phenomena are robust under perturbations caused
by the higher-order terms, thus solving also the
second question. This has led to solving the prob-
lem of 1:¢ resonance for ¢ # 4. In the 1:4 case it is
conjectured that (1.1) is indeed a versal unfolding
[Arnol’d 1977; 1988; Arnol’d et al. 1994; Takens
1974).

The classic approach of the analysis of (1.1) is as
follows [Arnol'd 1988; Arnol’d et al. 1994, pp. 57-
60; Berezovskaia and Khibnik 1980; Chow 1994;
Krauskopf 1994]. By scaling, the number of real
parameters in (1.1) can be reduced to three, as
explained in Section 2. We use the reduction

3 =€z +e¥z|z)* + b2, (1.2)

which assumes A # 0. Here b € R, ¢ € (-, 7]
and a € (—m,w]. Due to reflectional symmetries,
it is sufficient to consider the case ¢ € [m, 37/2]. -

For fixed (b,¢) one considers the dynamics of
(1.2) as € = e'* varies along the unit circle. The bi-
Jurcation sequence for this (b, ) is the sequence of
topologically different phase portraits as o varies.
We call two bifurcation sequences equivalent if the
same types of bifurcations occur in the same order
and ‘the respective phase plane pictures are topo-
logically equivalent. Thus the unfolding in £ = &*
for a given (b, @) is determined by its bifurcation
sequence. -

By dividing the (b, ¢)-plane into regions of equiv-
alent bifurcation sequences, we get a catalogue of
bifurcation sequences, or a parametrization of the
unfoldings in €:.= €'* of the.singularity at ¢ =
0. Crossing from one region to another changes
the equivalence'type of the bifurcation sequences.
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FIGURE1. The third quadrant of the (b, p)-plane

of the compact equation (1.2), showing the regions
of different bifurcation sequences (roman numer-
als). The regions are labeled as in [Krauskopf
1994]; the corresponding bifurcation sequences are
also given there, but will be clear from the present
discussion. For the curve labels, see Section 2. The
solid curves are known analytically; the dashed
ones are not, but are adapted from the numerical
results in [Berezovskaia and Khibnik 1978; 1980].

The partition of the (b, p)-plane for this problem
is shown in Figure 1.
Equivalence of bifurcation sequences is a fairly

difficult notion to study. Instead of dividing the

(b, p)-plane into regions of equivalent bifurcation
sequences, a more natural approach, traditionally
used in bifurcation theory, is to divide the full pa-
rameter space, or (b,,a)-space, into regions of
topologically equivalent phase portraits, and try to
study the boundaries between these regions. This
is the approach taken in this paper.

Thus our goal is to analyze the bifurcation set
in (b, p, @)-space for the system (1.2). All the in-
teresting behavior for this system occurs in a com-
pact subset of parameter space, namely b € [0, 1],
as shown in Figure 1. We call (1.2) the compact
equation, and we call the region a € (—m,7), ¢ €
[w,3m/2], b € [0,1] the cube of interest.
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The bifurcation set consists of surfaces of bi-
furcations of codimension one, typically meeting
in curves of codimension-two bifurcations. As we
shall see, it divides (b, ¢, @)-space into fifteen re-
gions of generic phase portraits. Since the region
of interest is compact, it is relatively easy to il-
lustrate the bifurcation set: this will be done in
Figures 9 and 10. This three-dimensional set, plus
the fifteen types of generic phase portraits, account
for the known properties of the compact equation
(1.2) in a condensed way in the spirit of bifurcation
theory.

All the information about the (b, p)-plane and
the bifurcation sequences can be extracted from
the bifurcation set. In order to construct a bifur-
cation sequence for a given (b, ), all one has to do
is collect the equivalence types of phase portraits
that occur as a varies, say, from —x to 7, much
as one drills into glacial ice to learn about the cli-
mate of previous ages. The transition from one
generic phase portrait to the next goes via a generic
codimension-one bifurcation if the drilling only in-
tersects codimension-one parts of the bifurcation
set (surfaces), and then only transversely. This
happens when (b, ) is not on one of the bound-
ary curves of Figure 1. In other words, the curves
shown in Figure 1 are projections in the (b, )-
plane of the locus of higher-codimension bifurca-
tion in (b, ¢, @)-space.

Actually, the bifurcation set in (b, p, a)-space
contains more information than the division of the
(b, ¢)-plane combined with the knowledge of the bi-
furcation sequences. This is because it also shows
what happens above the boundary curves in the
(5, ¢)-plane.

The study of the bifurcation set allows conclu-
sions about the versality of the system. For ¢ #
37 /2, that is, in the interior of the cube of interest,
all known bifurcation phenomena seem to unfold
generically. In particular, there do not seem to be
singularities of codimension higher than two.

More precisely, it is conjectured that (1.2) is a
versal unfolding in the regions of the (b, p)-plane
corresponding to the known bifurcation sequences,

and that there are no bifurcation sequences other
than the known ones.

The first issue that must be addressed in order
to verify this conjecture concerns the nature of the
surfaces of codimension-one bifurcations. Numer-
ical experiments consisting of phase plane studies
with the program package DsTool [Back et al. 1992]
and the computation of two-dimensional cross sec-
tions of the model with the continuation package
Auto [Doedel 1986) suggest that the surfaces do
not intersect in curves of codimension-two bifurca-
tions other than the known ones, and do not have
folds with respect to . Assuming this is true (As-
sumption 3.10), we can give a topologically correct
description of the bifurcation set.

The second issue is the nature of the curves of
codimension-two bifurcations. Are they generic or
are there points of higher codimension on them
that give rise to yet unknown surfaces of codi-
mension-one bifurcation? The study of the bifur-
cation set shows that the curves do not intersect
in the interior of the cube of interest. Further-
more, numerical evidence indicates that the curves
of codimension-two bifurcations are generic inside
the cube. By this we mean that a transversal sec-
tion of such a curve shows locally, around the point
of intersection, the two-dimensional bifurcation di-
agram that is to be expected for the generic co-
dimension-two bifurcation in question. In short,
there do not seem to be points of higher codimen-
sion on the curves.

The third issue concerns the nature of the bi-
furcations for ¢ = 37/2, on the boundary of the
cube of interest. These bifurcations can give rise to
surfaces of codimension-one bifurcations inside the
cube. The best example of this is the study of the
Hamiltonian cases for a = +w/2 [Neishtadt 1978).
They are of infinite codimension and organize the
surfaces of codimension-one bifurcations. The line
b=1, ¢ =3n/2, a € (—m, 7| plays a similar role.
The study of the bifurcation set shows that the
surfaces of codimension-one bifurcations accumu-
late on this line, and that the singularities for pa-
rameter values on this line are of codimension at
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least two, and of higher codimension fora = —n/2,
0, m/2, m. The study of these bifurcations is in
progress and will be the topic of a later paper.

This article is organized as follows. Section 2 ex-
plains how the family (1.1) is reduced to (1.2) or
to the model equation found in the literature, and
how the two reductions are related; it also describes
the boundary curves in the (b, ¢)-plane. Section 3
is devoted to the bifurcation set in (b, ¢, a)-space,
which consists of local surfaces and nonlocal sur-
faces. Local surfaces are those characterized by
local bifurcations, namely, Hopf and saddle-node
bifurcations. Their parametrizations and intersec-
tion curves can be calculated analytically from con-
ditions on equilibria. This is done in Section 3.1
for the case b < 1. Nonlocal surfaces are character-
ized by the relative positions of stable and unstable
manifolds, and have no known parametrizations.
In Section 3.2 we “model” these surfaces for the
case b < 1, that is, we study their position relative
to one another and to the local surfaces. This leads
to the three-dimensional illustrations of the bifur-
cation set in Figures 9 and 10. Section 3.3 deals
with the simple case b > 1, giving the bifurcation
set for region I. Section 4 returns to the question of
genericity of the bifurcations of codimensions one
and two, discussed in the preceding paragraphs.

2. BACKGROUND

This section discusses what is known about the
(b, »)-plane of the compact equation (1.2).

In the literature of the 1:4 resonance problem
[Arnol'd 1988; Arnol’d et al. 1994; Berezovskaia
and Khibnik 1980; Chow 1994; Krauskopf 1994
the reader will find the reduction of (1.1) to the
model equation

t=e€"2+ Az|z|* + 23, (2.1)

which assumes B # 0. Due to reflectional symme-
tries in the phase plane it is sufficient to consider
the case ReA < 0,ImA < 0.

The equivalent of the (b, ¢)-plane of the compact
(1.2) is the A-plane of the model equation (2.1)
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FIGURE 2. The well-known A-plane of the model
equation (2.1). Each region corresponds to one
equivalence class of bifurcation sequences for the
system. The dashed curves were calculated by
continuation in (Berezovskaia and Khibnik 1978,
1980]. This 1s an image of Figure 1 under the
transformation (2.2).

shown in Figure 2. The two equations are related
by

Re A = %cosgp. ImA = %simp. (2.2
We now give a geometrical explanation of the con-
nection between the two different reductions.

The idea of the reduction of (1.1) is to quotient
parameter space by the equivalence relations in-
duced by rescaling space and time. Rescaling z by
¢ € C shows that the triple (¢, A, B) is equivalent
to (e, |c|2A, ¢*/|c|*B).

Next, rescaling time by r € R* gives the equiv-
alences (¢, A, B) ~ (re, rA, rB) ~ (re, A, B). This
means that the bifurcation curves in the e-plane
are straight lines starting at the origin, and we can
replace € by e'®, where a € (-, n|. It follows
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FIGURE3. Tllustrating the compactification. Left:
The half-cylinder (b, @), for ¢ € [0,2n] and b€ Ry,
is compactified by a point b = oo to give a surface
shaped like a goblet. The lightly shaded region
is the third quadrant of the (b, p)-plane, shown in
Figure 1. Right: Looking into the goblet shows
the compactification of the A-plane by a circle.

that (1.1) can be reduced to the compact equation
(1.2), with loss of the case A = 0. This missing case
corresponds to b = 00, 50 we could compactify the
(b, @)-plane by adjoining this point (Figure 3, left).
Analogously, (1.1) can be reduced to the model
equation (2.1), with loss of the case B = 0. We
cotld think of B = 0 as corresponding to a circle
of points with A = oo in (2.1), thus compactifying
the parameter space into a disk (Figure 3, right).
" Finally, we do not wish to distinguish between
phase portraits that can be transformed into each

other by the transformations (z,t) ~ (Z,t) and

(z,t) — (z, —t). This gives the equivalences
(51 A, B) ~ (E-, A? B) ~ (_g’“—’a’ '—B)i

so we can assume ¢ € [m, 37/2] and Red < 0,
Im A < 0 respectively.

As a prerequisite for further considerations we
discuss the characterizing properties of the bound-

ary curves in the (b, p)-plane. This is simply re- -

calling what is known about the A-plane (see ref-
erences at the. beginning, of this séction). For ease
of reference, Table 1 summarizes the notation, and
Figures 4 and 5 show the fifteen generic phase por-
traits that can occur in (1.2). The sketches in the
middle of these figures are cross sections of the bi-
furcation set that will be explained in Section 3.

Curve Characterizing property
®S Hopf bifurcation at 0 coincides with L
second saddle-node bifurcation
BT Bogdanov-Takens bifurcation L
3T | Clover connection with zero trace NL
Clover connection coincides with
838 first saddle-node bifurcation NL
0s Square connection coincides with NL
1 first saddle-node bifurcation
0s Square connection coincides with NL
2 second saddle-node bifurcation

TABLE 1. Symbols for curves of codimension-two
bifurcations. ‘The notation reflects the characteri-
zation of each curve as the intersection of two sur-
faces (see Table 2). Local and nonlocal curves (see
text) are marked L and NL. We use the same syni-
bol for a curve in (b, ¢, a)-space and for its projec-
tion in the (b, p)-plane.

The solid curves in Figure 1 have analytic param-
etrizations, being characterized by local conditions.
We will call them local curves. They are:

e The line b = 1. For b > 1 there are four saddle
points for any value of a (region I in Figure 1);
see phase portraits 11-15 in Figure 5. For b < 1
there is an interval of o-values where there ex-
ist eight secondary equilibria (that is, equilibria
other than the origin): see phase portraits 3, 5—
8 in Figure 4. Exactly four of these equilibria
are saddle points; the others may be sources or
‘sinks, and we refer to them as nodes.

e The curve ©S, with equation ¢ = 7 + arccosb,
where for some o a saddle-node ‘bifurcation of
secondary equilibria coincides with a Hopf bi-
furcation at the origin. Thus, on one side of
this curve we have a sequence of phase portraits
looking like 9 — 10 —-1 in Figure 4 (for increas-
ing a), and on the other side like 9 — 11 — 1.

e The curve BT where for some « the system
has four Bogdanov-Takens points, correspond-
ing to a saddle-node bifurcation with trace zero

~ (thus both eigenvalues are zero at the bifurcat-
ing equilibrium). On one side we have a simple
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FIGURE 4. All eleven open regions in (b, ¢, a)-space and the corresponding different types of generic phase
portraits for b € (0,1). In panel 8, there are two limit cycles close together, the inner one being where one leaf
of the saddles’ stable manifold accumulates. The sketch in the middle is a cross section of the bifurcation set
for b =~ 0.8 (Section 3; see also Figure 14).
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FIGURE 5. The four open regions in (b, ¢, a)-space and tne corresponding different types of generic phase
portraits for 5 > 1. On the left is the sketch of a cross section of the bifurcation set for b > 1 (Section 3.3; see

also Figure 15).

saddle-node bifurcation, such as 2 — 5 in Fig-
ure 4, while on the other side we have the se-
quence 2 — 6 — 7 — 5, going through a homo-
clinic connection and a Hopf bifurcation at the
secondary equilibria.

The dashed curves in Figure 1 have no known an-
alytic parametrizations: they can only be deter-
mined by numerical methods. We refer to them as
nonlocal curves since they are characterized by the
relative positions of the stable and unstable mani-
folds of saddles depicted in Figure 6. Due to their
shapes we call the heteroclinic connection in the
second panel of Figure 6 a square connection and
the one in the fourth panel a clover connection.

For b € (0,1) there are two saddle-node bifurca-
tions, labeled first and second in order of increas-
ing o € (—m, w]. Here is a list of the dashed curves
in Figure 1:

e On [0S, there is a square connection at the mo-
ment of the first saddle-node bifurcation. Thus
on one side we might have the sequence of phase
portraits 2 — 3, on the other 2 — 4 — 3.

e On (IS, there is a square connection at the mo-
ment of the second saddle-node bifurcation. For
example, 3 — 10 versus 3 — 9 — 10.

e On 38, there is a clover connection at the mo-
ment of the first saddle-node bifurcation. For
example, 2 — 3 versus 2 — 5 — 3.

\ =

FIGURE 6. Possible relative positions:of the stable and unstable manifolds of the saddles: the extreme and
middle situations are generic, while the second and fourth are saddle connections of codimension one, called a

square connection and a clover connection, respectively.



114  Experimental Mathematics, Vol. 3 (1994), No. 2

e On 3T there is a clover connection at the mo-
ment when the trace at the saddle points is zero.
This leads to the birth of two limit cycles. For
example, 5 — 3 versus 5 — 8 — 3.

We did not recalculate these curves in order to plot
Figure 1, but used transformation (2.2) together
with the data and asymptotic expressions given in
[Berezovskaia and Khibnik 1978; 1980].

3. THE BIFURCATION SET

This section’s aim is to give a complete descrip-
tion of the bifurcation set of the compact equation
(1.2). We first look at the situation inside the cube
of interest b € [0,1], ¢ € [7,37/2], @ € [-m,7].
Section 3.1 gives the parametrizations of the local
surfaces, and in Section 3.2 we model the nonlocal
surfaces. Section 3.3 deals with the bifurcation set
for b > 1, that is, outside the cube.

3.1. The Local Surfaces for b € [0, 1]

We derive the parametrizations for all local sur-
faces of codimension-one bifurcations and for their
curves of intersection. This constitutes the frame-
work for the modeling of the surfaces of nonlocal
codimension-one bifurcations in the next section.

Theorem 3.1. The following local surfaces are in the
bifurcation set (see Figure 9, top left, and Fig-
ure 11).

(a) Two planes of Hopf bifurcations of the origin,
denoted ® and having equation o = +7/2. The
limit cycles occur for o € (-7 /2, 7/2) and are
attracting.

(b) The plane b = 1, characterized as follows. For
b > 1 there are four secondary equilibria, which
are saddle points, for any a. For b < 1 there
i3 an interval of a-values where there exist eight
secondary equilibria.

(c) For 0 < b < 1 there are two surfaces of saddle-
node bifurcations a = ¢ — w F arcsin b, denoted
S: and S, in order of increasing a. For

a € (p — m — arcsin b, p — w + arcsin b)

Surface Characterizing property
® Hopf bifurcation at the origin L
S First saddle-node bifurcation L
S, Second saddle-node bifurcation L
T_ Trace is zero at the saddles L
T, Trace is zero at the nodes (Hopf L

bifurcation of secondary equilibria)

O Square connection (Figure 6) NL
8 Clover connection (Figure 6) NL
Homoclinic loops of secondary
¥ equilibria NL
o Saddle-node bifurcation of limit NL
cycles
TABLE2. Symbols for surfaces of codimension-one

bifurcations. The last column indicates whether
the surface is local or not.

there are eight secondary equilibria: the four
closest to the origin are saddles, and the other
four are nodes.

(d) The trace-zero surface of the nodes, where the
sum of the eigenvalues al a node is zero. This
surface is denoted T, and has equation

(singp — 1/b% — cos? )

tana =

2cosyp

7r+ 08 b2(.—1__._b2)< <.3_7r
ety B 1 Y2

It is also characterized as the surface of Hopf
bifurcations of the secondary equilibria. The bi-
furcating limit cycles are repelling. This sur-
face contains the line segment b= 1, ¢ = 37/2,
a€ (0, n/2)].

for

Proof. We will work sometimes with the complex
form of (1.2),

z = f(z,%) = €%z + €22 + bZ°,
with derivatives

fz=%(fz—ify)’ fi=%(fz+7'fy)’
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FIGURE 7.
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Consider how the circle with center '¥ and radius b, representing the right-hand side of (3.1), and

the ray from the origin through —e**, representing the left-hand side, intersect. Left: for b > 1 there is exactly
one intersection, and thus four secondary equilibria, for any a. Right: for 0 < b < 1 there is an interval of
values of « for which there are two intersections, giving eight secondary equilibria. For values of a at both ends
of this interval, there is one intersection (tangency); these values correspond to the saddle-node bifurcations Sy

and S;.
and sometimes with the real form,
z z
(y) = (igm’,zg)’
where
g(z,y) = zcosa — ysina + b(z® — 3zy?)
+cos ¢(z® + zy”) — sin p(z’y + 4%),

h(z,y) = ycos'a + zsina + b(y® — 3z%y)
+ cos p(a?y + %) + sin p(z® + zy?).

(a) Since for a € (—m/2, v/2) the linear part is
unstable ‘at the origin we ‘only need to show that
the Hopf bifurcation is supercritical. Using the real
notation one gets for the linearization at the Hopf
bifurcations of the origin

= (5, T

We now use the stability formula in [Wang 1990j.
Here it reduces to

K(£7/2) = (9zze + hazy) + (9zyy + hyyy) = 16cosp < 0

for p € [7r, 37/2). Consequently the Hopf bifurca-
tions are supercritical.

(b) Let vVRe* be an equilibrium. Substituting in
(1.2) gives
i

- % = €' + be~ 4. (3.1

Interpreting this equation geometrically (Figure 7),
it is easy to see that there are four secondary equi-
libria for b > 1, and either zero, four or eight for
b < 1. (Compare the circle construction in [Arnol’d
1988].)

(c) Saddle-node bifurcations occur for such values of
a that the ray and the circle of Figure 7 are tangent
(see the right-hand part of the figure). It is easy
to see that these values are @ = ¢ — m F arcsinb.
To calculate the equilibria VR e, write (3.1) as

—aio _ —€° — Re'
= 3.2
¥7) ) (3.2)
and obtain two equivalent equations for 6:
cosdf=— 5% S8 Ginag=22 +__sm¢p' (3.3)

bR b’ bR b
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Taking the absolute value of (3.2) and using simple
trigonometric equalities gives
1+ 2Rcos(a — ) + (1 - b¥*)R? =0, (3.4)
or, equivalently,
_ /b2 — sin*(a — p) — cos(a — @)
B 1-p2 ‘
The determinant of the system is
lDf(Z, 2)‘ = fzz - fiﬁ
=1+ 3|z|* + 4cos(a — ¢)|z|?
— 6b(cos ¢ Re 2* — sin pIm z%)
— 9b% |z[*.

R

(3.5)

At the secondary equilibria, using (3.3) and later
(3.4), this gives after simplification:

|IDf(VR e, vVRe )| = —8(1 + cos(a: — ) R).
For the equilibria closer to the origin, we have:
1+ cos(a—p)R
- VP s p) - cos(a—¢)

1-b2

_1-b%—cos?(a— ) — 4/b% —sin?(a — ) cos(a — )
- b2

-

_ b2+sm2(a—¢)+ﬁ-sinz(a—tp)ﬁ—sinz(a—cp)
- 1-b2

=1+ cos(a~y)

>0;

here the first equality comes from (3.5), the third
is true because cos(a — ¢) < 0 for

a € (¢ — m — arcsinb, ¢ — 7 + arcsind),

and the inequality is true because 0 < b < 1. This
shows the equilibria are saddles.

(d) The trace of thelinear .part is
tr(Df(2,2)) = fo+f. = 2cosa+4cosp|z|%. (3.6)

At an equilibrium 2z = vRe¥, the condition that
the trace be zero becomes

_ —cosa

" 2cosp’

Plugging this into (3.2) and taking the absolute
value gives

cos? p 2cosp sin ¢ 2
- = (G wae-50)

or

tana =

(sinp £ ¥ =cos?Tp). (3.7)

A straightforward calculation, which we will do ex-
plicitly in the proof of Lemma 3.6(b), allows us to
select the sign and the values of ¢ that lead to a
saddle rather than a node (see Remark 3.7). Since
the determinant at a node is positive, we do indeed
have a Hopf bifurcation of secondary equilibria for
such points. It is shown in [Wang 1990] that the
bifurcating limit cycles are repelling. 0O

2cosp

Remark 3.2. The surface of trace zero at saddles,
that is, the complement of T, in the locus of (3.7),
is denoted T_. It intersects the plane b =1 in the
lines = 0 and a@ = ¢ — 7. It is not part of the
bifurcation set, but it is nonetheless relevant to us
because its intersection with {3 is a codimension-
two bifurcation curve, giving rise to a surface © of
saddle-nodes of limit cycles (see Section 3.2).

T_ has a fold with respect to a where the radical
in (3.7) vanishes, that is, for 2 = cos? y; this gives

2b
Vb2 +1

as the equation of the fold. The projection of this
curve in the (b, @)-plane coincides with the curve
©S of Figure 1 (see also Figure 9, top left). As
b — 1—, the fold degenerates to the corner (¢, a) =
(m,0), and T_ becomes vertical.

¢ = ® + arccos b, Q = arccos

Remark 3.3. For b = 0 there is a neutral cycle for
a = ¢ — 7. For b =1 the two surfaces of saddle-
node bifurcations have the folds o = ¢ — 7 F /2.
There is a node moving to oo for b — 1—, as can
be seen from the expression

— —eia .
" ei® + be— %0’
compare (3.1).
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Proposition 3.4. The system is Hamiltonian if and
only if o = 31/2, a = /2, and b € R*.

‘We call these two line segments in parameter space
the Hamiltonian lines; Figure 8 shows the generic
Hamiltonian phase portraits. The proposition fol-
lows immediately from (3.6).

Remark 3.5. The perturbations rom the Hamilto-
nian cases have been studied in [Neishtadt 1978],
where it is shown that there is a special value v =
1/4.1100 with the following property. No limit cy-
cles bifurcate from the point (b, 37/2, 7/2) if b <
7, and two limit cycles bifurcate when b € (v, 1);
see phase portrait 8 in Figure 4.

Lemma 3.6. The local surfaces of Theorem 3.1 in-
tersect in the following curves of local codimension-
two bifurcations (compare the first list of curves in
Section 2; we use the same notation for the lifted
curves as for their projections).

(@) A curve ©S, with equation ¢ = w+arccosb, o =
7 /2, where the second saddle-node bifurcation
coincides with the second Hopf bifurcation at the
origin.

(b) A curve BT of Bogdanov-Takens points on the
second saddle-node bifurcation:

p=r V3241
a = ¢ —m — arcsin .

Proof. (a) This is clear from the formulas in parts (a)
and (c) of Theorem 3.1.

(b) A Bogdanov-Takens point requires the trace to
be zero at the time of a saddle-node bifurcation.

Using the formulas a = ¢ — 7 Farcsin b for S, and
S,, we get
cosa = —V1—b%cosy F bsinp,
R=1/v1-¥,
where we have used (3.5) and basic trigonometry.

From (3.6), the condition that the trace be zero is
then

—v1—b%cosp Fbsingp + 2 T cosp =0,
or
1+ 0?
tanp = r———.
L=

Inside the region of interest tan ¢ is positive, so we
must be on S;. The desired formulas follow readily.
O

Remark 3.7. Note that T_ and T, meet one another
and S, along the curve BT. This allows us to dif-
ferentiate between T_ and T, in the locus of (3.7),
completing the proof of Theorem 3.1(d). The sur-
faces T_ and T, also meet along the Hamiltonian
line b € [0,1}, ¢ = 37/2, a =7/2.

We show in the top left panel of Figure 9 all the
local surfaces of codimension-one bifurcations of
Theorem 3.1, plus the surface T_ of trace zero at
the saddles (Remark 3.2). To help interpret this
figure, Figure 11 shows cross sections of the same
surfaces for various values of b. Note that the line
segment b = 1, ¢ = 37/2, a € [0, /2] is part of
T,, the surface of Hopf bifurcations of secondary
equilibria.

0
@
e

i

FIGURE 8.
0 < b < 1. Center left: a =7/2 and 0 < b < 1. Center right: « = —x/2 and 4 > 1. Right: a=x/2and b > 1.

Generic phase portraits along the Hamiltonian lines (see Proposition 3.4). Left: o = —x/2 and
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FIGURE 9. Surfaces in (b, ¢, a)-space and their shadows (projections) in the (b, ¢)-plane. Top left: The local
surfaces ®, Sy, So, T4 of Theorem 3.1 and the surface T_ of trace zero at the saddles (Remark 3.2) contain all
known curves of codimension-two bifurcations. The Hopf and saddle-node surfaces are repeated in the other
three panels, which also show the nonlocal surfaces of Theorem 3.12. Top right: the two surfaces O of square
connections. Bottom left: the surfaces £3 of clover connections and © of saddle-node bifurcations of limit
cycles. Bottom right: the surface & of homoclinic connections of secondary equilibria, and T, again. See also
Figures 11 and 12.
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FIGURE 10. Left: Two views of the full bifurcation set in the cube of interest. Right: Same views, but some
of the surfaces have been cut open so that all the surfaces can be seen. See Table 2 for symbols.
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b~0.2

ar BT

2

3

@

b~03  gT b~ 0.38

b= 0.99 C}T BT b=1

FIGURE 11. Sketches of cross sections of Figure 9 (top left) for various values of b. The horizontal lines are
the cross sections of the Hopf bifurcation surfaces ®. The diagonal lines come from S; and S;. The solid arc
comes from T, where the secondary equilibria undergo a Hopf bifurcation, and the dashed arc comes from
T_, which is not in the bifurcation set. The region bounded by the two arcs is shaded for clarity. The features
mentioned in Remark 3.2 are visible here. Note the presence, for b > v & 1/4.11, of the point 3T for which
there is a clover connection with trace zero. As b increases further, this point crosses over the fold of T_.

(e 4 .
IV I II(a) V() VI VIIi

P e 0s; 3

IV I II(a) V(a) VI VIII IV I II(a) V(a) VI VIII

. - . : . : : P
: - : : . . R
- - . . : : -

3s: QT BT

FIGURE 12. Sketches of cross sections of the last three panels in Figure 9, for b =~ 0.8. The dashed curves come
from ®, S; and S;. The solid lines come from O (left), from £3 and © (middle), and from T, and & (right).
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3.2. The Nonlocal Surfaces for b € [0, 1]

This section presents the model of the bifurcation
set in the cube of interest. The dashed boundary
curves in the (b, p)-plane lift to nonlocal curves in
(b, , @)-space, and the lifts lie on local surfaces.
This is no contradiction. The fact that we do not
have a parametrization for a nonlocal curve means
that its exact position on the local surface is-’known
by numerical methods only.

Proposition 3.8. (a) The curve US; lifts to a curve
on Sy; the lft is th?; intersection of S, with a
surface O of square connections.

(b) The curve OS, lifts to So; the lift is the inter-
section of S, with (1.

(¢) The curve €3S, lifts to Sy; the lift is the inter-
section of Sy with a surface £3 of clover connec-
tions.

(d) The curve (3T lifts to the surface T_ where the
trace is zero at the saddles; the lift is the inter-
section of T_ with 3, and crosses the fold of
T_.

This follows from the definitions. As with the local
curves, we denote the lifts in (b, ¢, a)-space by the
same symbols as the projections in the (b, ¢)-plane.

Remark 3.9. The curves ClSl and OS, extend to the
adjoining cube ¢ € [w/2, 7], and are exchanged by
the symmetry (p, ) +— (—p, —a): see Figure 13.

The curves of Proposition 3.8 are shown in Fig-
ure 9 (top left) on the saddle-node surfaces and
the trace-zero surface. See also Figure 11.

We know what codimension-one bifurcations oc-
cur in what regions from the inventory of the bifur-
cation sequences [Krauskopf 1994]. Furthermore,
we have some information on the boundaries of the
surfaces because of the knowledge of the nonlocal
curves. This allows us to mode! the remaining sur-
faces, by which we mean to determine topologically
where they lie in the bifurcation set, even though
we cannot explicitly write their values of a as a
function of b and . The modeled surfaces will
then describe the topology of the bifurcation set
even though their exact shapes are unknown. It is

0 ™ 2n
FIGURE13. A sketch of the torus (p, ) for b =~ 0.8,
showing how the picture for all ¢ can be con-
structed from the portion ¢ € [r,37/2] by 180°
rotations around the points (,0).and (37/2,7/2).
The figure also shows how the surfaces of square

connections are mapped to each other; see also Fig-
ure 14.

also possible to calculate cross sections of the non-
local surfaces by continuation, to determine their
shape.

For the modeling we need the following assump-
tion:

Assumption 3.10. There are no intersections of non-
local surfaces with other surfaces apart from the
known curves of codimension-two bifurcations. In
addition, the nonlocal surfaces do not have folds
with respect to a. ‘

Remark 3.11. The validity of this assumption is part
of the conjecture that (1.2) is a versal unfolding in
the open regions of the (b, y)-plane. It has been
checked numerically by calculating cross sections
of the nonlocal surfaces with the program Auto.
See Section 4 for more details.

A nonlocal surface of codimension-one bifurcations
is determined by its boundary. In the boundary
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we have typically a certain nonlocal curve of bi-
furcations of codimension two, and a segment of
a Hamiltonian line. We may, however, be lacking
some knowledge of how exactly the surface inter-
sects the boundary of the cube. Then we are left
with a piece of the boundary of the surface that is
not closed. Under Assumption 3.10 we can model
the surface if we know its shadow in the (b, p)-
plane. This question can be settled by showing
that the codimension-one bifurcation in question
is in the bifurcation sequence for some (b,¢) in a
given region. This can be checked by perturbation
methods around the boundary, or simply by inves-
tigating bifurcation sequences by computer. We
refer to [Krauskopf 1994] for an inventory of all
bifurcation sequences.

Under Assumption 3.10 we can prove this result:

Theorem 3.12. The following nonlocal surfaces are
in the bifurcation set (see Figure 9, top right and
bottom, and Figure 12).

(@) Two surfaces of square connections, denoted 0.
The upper surface extends from the curve OOS,
on Sz to the Hamiltonian line ¢ = 37/2, a =
m/2, b € (0,1]. The lower surface extends from
the curve OS, on S; to the line p = 7/2, a =
—m/2. (The two surfaces are exchanged by the
symmetry (p,a) — (—¢,—a) when extended
to the adjoining cube: see Remark 3.9 and Fig-
ure 13.)

(b) The surface of clover connections, denoted 3.
It extends from the curve {3S; on S, to the line
p=3r/2, p=7/2,be[0,1]

(c) The surface of saddle-node bifurcations of limit
cycles, denoted ©. It lies above the surface of
clover connections, and extends from the curve
£3T on T_ to the Hamiltonian line ¢ = 37/2,
a=m/2,be€ [y,1]

(d) The surface of homoclinic connections of sec-
‘ondary equilibria, denoted & . It lies above the
surface T, of Hopf bifurcations of secondary
equilibria, emerging from the curve BT on S,
and extending to the line ¢ = 37/2, a = /2,
b€ [0,1].

Proof. (a) The curve [0S, and the Hamiltonian line
¢ =3n/2, o = 7/2, b € [0,1] are in the bound-
ary of the upper surface. Square connections can
be found in all regions except II. The curve OIS,
and the Hamiltonian line ¢ = 37/2, a = —7/2,
b € [0,1], where the phase portrait is equivalent to
the one in Figure 8 (center left) with the arrows
reversed, are in the boundary of the lower surface.
Square connections, with the reversed direction of
arrows, can only be found in region IV. We remark
that both surfaces extend into region I (b > 1), as
will be discussed in Section 3.3.

(b) The curve £3S; and the Hamiltonian line ¢ =
37/2, a = /2, b € [0,1] are in the boundary of
this surface. Clover connections can be found in
regions V, VI, VII and VIII.

(c) The curve {3T and the Hamiltonian line ¢ =
37/2, @ = m/2, b € [v,1] are in the boundary of
this surface. The' point of intersection v of £3T
with the Hamiltonian line has been calculated in
[Neishtadt 1978]. The existence of the surface fol-
lows from the perturbation results there. It is also
possible, but difficult, to find the two limit cy-
cles numerically in regions VI and VIII [Krauskopf
1994; Malo 1994}; see Figure 4, panel 8.

(d) The curve BT and the Hamiltonian line ¢ =
37/2,a = 7/2,b € [0,1] are in the boundary of this
surface. Homoclinic connections of the secondary
equilibria can be found in regions VII and VIII, as
is to be expected close to the line BT. O

Remark 3.13. By the nature of the boundary curves,
the line segment b = 1, ¢ = 37/2, a € [0,7/2]
is part of the surfaces {3, © and & . It is also
part of T,, as can be seen from the formula in
Theorem 3.1(d).

Theorem 3.12 is illustrated in Figure 9. The top
right panel shows the upper and lower surfaces O of
square connections. The bottom left panel shows
the surface £3 of clover connections, and above it
the surface O of saddle-nodes of limit cycles. The
bottom right panel shows the surface & of homo-
clinic connections of secondary equilibria, above
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FIGURE 14,

Cross sections of the bifurcation set of Figure 10 for various b < 1, calculated with Auto. The

dashed lines are as in Figure 12, the solid lines at b = 0.8 connecting to the point ¢ = 37/2, a = 7/2 are, from
the bottom up: T4, & £3, 0 (O could not be calculated). Note how T_, & and33 (and O) accumulate on the

line segment b= 1, ¢ = 37 /2, a € [0, 7/2].

the surface T, of Hopf bifurcations of secondary
equilibria. The shadow of each surface is shown at
the top or bottom.

To give a better idea of the nonlocal surfaces,
Figure 10 shows perspectives of the whole model
in the cube of interest with the surfaces partially
cut open, and Figure 12 shows sketches of their
cross sections for b ~ 0.8.

While Figure 12 is a qualitative sketch, Figure 14
shows actual cross sections, for various b < 1, cal-
culated with Auto. The cross sections show all
surfaces except for the surface © of saddle-node
bifurcations of limit cycles, which is very difficult
to continue numerically due to the proximity of the
cycles to the saddle points. In any case O would

be indistinguishable from 3 in this figure: for ex-
ample, for b = 0.8 and ¢ = 4.6 the clover connec-
tion occurs at a = .99957, while the bifurcation of
saddle-node limit cycles occurs at o ~ 1.00145.
There are eleven regions of generic phase por-
traits in the cube of interest. They were shown in
Figure 4 grouped around a sketch of the cross sec-
tion of the bifurcation set for b ~ 0.8. We remark
that the surfaces of codimension-one bifurcations
are divided into different parts by the curves of
codimension-two bifurcations on them. For exam-
ple, the saddle-node bifurcation one gets by mov-
ing from region 2 to region 3 has a different global
structure from the saddle-node bifurcation one gets
by moving from region 2 to region 4. We do not
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b=1.01

FIGURE 15.

Cross sections of the bifurcation set for various values of b > 1, calculated with Auto. The dashed

lines are the surfaces of Hopf bifurcations, the solid lines are the surfaces of square connections. The latter do
not intersect other surfaces other than in the known curves, and appear to be without folds with respect to a.
The lower surface accumulates on the line segment b=1, ¢ = 37/2, a € [-—1r/2, 0.

give pictures of the different cases of codimension-
one bifurcations since they can be constructed from
the generic phase portraits of Figure 4. They can
also be found as parts of the bifurcation sequences
in [Krauskopf 1994].

3.3. The Bifurcation Set for b > 1

We now discuss the bifurcation set for region I,
that is, b > 1. As mentioned earlier, there are four
secondary equilibria for any value of ‘o, and they
are saddles. The surfaces that extend out of the
cube into region I are ©® and O:

Theorem 3.14. For b > 1 the following surfaces of
codimension-one bifurcations are in the bifurcation
set.

(a) Two planes © of Hopf bifurcations of the origin,
‘unth equation o = *x /2. The limit cycles occur
for —1r/2 < a < /2 and are attracting.

(b) Two surfaces 0 of square connections. . The up-
per surface extends from the line ¢ = /2 a=
7 /2 to-the line ¢ = 37 /2, a = 7 /2. The lower
sur;face extends from the line ¢ = 7/2, a =
-7 /2 to the line p = 3n/2, @ = —7/2. (The
two surfaces are exchanged by the symmetry
(p,@) — (—p,—a) when extended to the ad-
joining cube: see Remark 3.9 and Figure 13.)

Proof. (a) See the proof of Theorem 3.1 (a).

(b) The boundary lines of the surfaces are the lines
where the system is Hamiltonian, as shown in Fig-
ure 8 (center right and far right). The two square
connections can both be found in region I O

The situation is depicted in Figure 15 by a series
of cross sections calculated with Auto for different
values of b > 1. Since Figure 15 makes it quite
clear what happens in this simple case, we have
not included a three-dimensional picture. The four
generic phase portraits for b > 1 were shown in
Figure 5, together with a typical cross section.

Remark 3.15. For b = 1 the lower surface of square
connections contains the line segment b = 1, p =
37/2, a € [-7/2, 0], since OIS, lies on S;; see Fig-
ure 15 (left).

4. ON THE GENERICITY OF THE BIFURCATIONS

The compact equation (1.2) is conjectured to be a
versal unfolding in the open regions of the (b, )-
plane. Furthermore, it is conjectured that there
are no bifurcation sequences other than the known
ones. One possibility to deal with these conjectures
is to prove statements on the number of limit cycles
that can occur in a particular region of the (b, )-

plane. This allows conclusions about the bifurca-
tion sequence that can occur in the region.. For
results of this kind we refer to [Cheng 1990; Cheng
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and Sun 1992; Wan 1978; Zegeling 1993]. We take
a geometrical approach and try to extract as'much
information as possible from the knowledge of the
bifurcation set about the question of versality. This
allows tentative conclusions supported by numer-
ical evidence, and indicates directions for further
research and towards rigorous proofs.

The first issue is whether the codimension-one
bifurcations are generic. We have modeled the
nonlocal surfaces under Assumption 3.10 that they
intersect other surfaces only in the known curves
of codimension-two bifurcations and do not have
folds with respect to a. Even though we cannot
prove Assumption 3.10, there is strong numerical
evidence for it. The first indication for its validity
is the fact that no unknown bifurcation sequences
have been found, either by theoretical work or by
numerical studies. The author has done a thorough
study of the bifurcation sequences in [Krauskopf
1994] with the program DsTool. However, it is not
possible to study the whole parameter space in this
fashion, so there is the possibility that phenomena
have been overlooked that are very small in pa-
rameter space or phase space. See the discussion
in [Krauskopf 1994; Malo 1994] about finding the
two limit cycles in regions VI and VIII.

The strongest support for Assumption 3.10 is
from the calculation of cross sections of the bifur-
cation set by continuation with Auto. We briefly
indicate how the continuation has been carried out.
It is straightforward to calculate and continue lo-
cal bifurcations: The homoclinic connections of
secondary equilibria have been approximated by
limit cycles of very high period in the continua-
tion. -A boundary value approach has been used to
calculate and continue the square and clover con-
nections. We have not succeeded yet in continuing
the saddle-nodes of limit cycles. Since the limit
cycles are extremely close to the saddle points in
this case, there are problems with the convergence
of the continuation algorithms.

The cross sections not only provide evidence for
Assumption 3.10, but also give a clear picture of
the actual shape of the surfaces, as seen in Figures

14 and 15. In principle it is possible to calculate the
entire bifurcation set by continuation techniques,
for example by calculating a sufficient number of
cross sections. Further work on continuation, in-
cluding the calculation of the surface of saddle-
nodes of limit. cycles and the nonlocal curves of
bifurcations of codimension two, is in progress.

- It is possible that there are yet unknown curves
of codimension-two bifurcations on the surfaces of
codimension-one bifurcations. However, we have
not found any evidence for that in the experiments.
Unless such a curve is a closed loop, which seems
unlikely, it will have to intersect another curve of
codimension-two bifurcations, and thus should be
detectable by continuation. _

This leads to the next issue, the discussion of the
curves of codimension-two bifurcations. Are there
points of higher codimension on them from which
yet unknown surfaces of codimension-one bifurca-
tions emerge?

First we show that the known curves of bifurca-
tions of codimension two in (b, ¢, @)-space do not
intersect for ¢ # 37 /2. This is not apparent if one
only looks at the (b, ¢)-plane, as in Figure 1. Four
questions arise: Does BT intersect {3T? Does ©S
intersect £35S, and 0S,? Do 0S; and OS, meet for
¢ =7 Is there a tangency of {3T with ©S?

It follows easily by considering the respective
curves in (b, ¢, @)-space that the answer to the first
two questions is no. Next, 00S; and [0S, lie respec-
tively on S; and S,, and are interchanged by the
symmetry (¢, @) — (—¢, —a). Therefore they do
not intersect in (b, ¢, a)-space, but their projec-
tions meet for ¢ = 7; compare Figure 9 (top left).

We now address the fourth question. Note that
it is not clear by just looking at the (b, ¢)-plane if
there really is a tangency of the curve £3T, since
this curve is known by continuation only. However,
considering the bifurcation set we conclude this:

Lemma 4.1. There is a tangency of the curve 3T
with ©S in the (b, )-plane. The respective curves
of codimension-two bifurcations in (b, p, a)-space
do not have a tangency.
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Proof. Even though the nonlocal curve £3T is known
by continuation only, it lifts to a curve on T_,
which is known to start at (b, p,a) = (1, 37/2, 0)
and end at (v, 37/2, m/2); see Proposition 3.8(d).
It follows that the lift has to go over the fold of
T_, even if we do not know exactly where, a re-
mark due to A. I. Khibnik. Since this fold has the
same projection ¢ = arccosb as the intersection
®©S of the second Hopf and saddle-node surfaces,
we have shown that there is indeed a tangency in
the (b,)-plane. However, for the fold curve we
have

Q = arccos <m/2

2b
V3 +1
for b € (0,1); see Lemma 3.6(b). Consequently,
£3T lies well below the plane o = /2 of Hopf bifur-
cations and there cannot be a tangency in (b, ¢, )-
space. O

The argument of the proof becomes very clear in
Figure 9, where £3T can be seen going over the fold
of T_. See also the cross sections in Figure 11.

Corollary 4.2. There is no difference between the
bifurcation sequences in regions V(a) and V(b).
Hence there are eleven bifurcation sequences, as
opposed to the twelve regions into which the (b, p)-
plane is divided.

The next question is whether the codimension-two
bifurcations are generic—that is, whether a trans-
versal section of such a curve shows locally, around
the point of intersection, the two-dimensional bi-
furcation diagram expected for the generic codi-
mension two bifurcation in question. There are
three cases:

(a) Bogdanov-Takens points on BT;
(b) saddle-node separatrix loops on 0JS,, 0S, and
£3S;; and

(c) separatrix loops with trace zero on £3T.

Transversal sections to the curves do indeed show
the bifurcation diagrams expected for the respec-
tive generic cases. See Figure 12 and compare the
right panel with [Bogdanov 1976; Takens 1974],

the left and middle panels with [Schecter 1987],
and the middle panel with [Chow et al. 1990; Noz~
dracheva 1982]. Note that in the last two cases it is
necessary to divide out the Z,;-symmetry to reduce
the heteroclinic connections to separatrix loops in
order to apply the results from the literature. A
complete proof would consist of showing that cer-
tain normal form coefficients are nonzero along the
curves of codimension-two bifurcations. This is be-
yond the scope of this paper. We summarize the
discussion as follows:

Claim. For ¢ # 37n/2 the known bifurcations of
codimension one and two of (1.2) unfold generi-
cally in the given parameters b, ¢ and . There
are no points of codimension higher than two on
the curves of codimension-two bifurcations.

The last issue we address concerns the bifurcations
at the boundary of the cube of interest (¢ = 37/2),
which can give rise to surfaces of codimension-one
bifurcations for ¢ # 37/2. The classic example
for this phenomenon is the study of the Hamilto-
nian cases for & = +m/2 [Neishtadt 1978]. The
knowledge of what can bifurcate from the different
Hamiltonian cases played an important role in find-
ing the list of known bifurcation sequences. The
Hamiltonian cases organize the codimension-one
bifurcation surfaces. This can be seen in the three-
dimensional view in Figure 10 and in the cross sec-
tions in Figures 13 and 14.

An open problem is the role played by the bi-
furcations for (b, ¢) = (1, 37/2), corresponding to
A = —i in the model equation (2.1). With the
knowledge of the bifurcation set we can say the fol-
lowing. The surfaces ® of Hopf bifurcations and
% of homoclinic loops of the secondary equilibria,
the surface £3 of clover connections and the sur-
face © of saddle-nodes of limit cycles accumulate
on the line segment b =1, ¢ = 37/2, a € [0, 7/2].
This is visible in Figures 10 and Figure 14. Due to
symmetry the same types of surfaces accumulate
on the line segment b =1, ¢ = 37/2, a € [7/2,7);
compare Figure 13. The lower surface of square
connections accumulates on the line segment b = 1,
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¢ = 31/2, a € [-7/2,0], as shown in Figure 15.
Again due to symmetry the same type of surface
accumulates on the line segment b =1, ¢ = 37/2,
a€[-m-n/2]. . '

This means that the line b= 1, ¢ = 37/2, a €
(—m, m] is of codimension at least two, with points
of higher codimension at a« = —7/2, 0, /2, =.
The study of these bifurcations turns out to be the
study of the bifurcations at infinity of (1.2). They
organize the bifurcation set in much the same way
as the Hamiltonian cases. Further work on the
bifurcations at infinity is in progress and will be
the topic of a later publication.
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