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The radical rad n of an integer n # 0 is the product of the
primes dividing n. The abc-conjecture and the Szpiro conjec-
ture imply that, for any positive relatively prime integers a, b,
and c¢ such that a + b = ¢, the expressions

logc and log abc
log rad(abc) log rad(abc)

are bounded. We give an algorithm for finding triples (a, b, ¢)
for which these ratios are high with respect to their conjectured
asymptotic values. The algorithm is based on approximation
methods for solving the equation Az™ — By™ = C'z in integers
z, y, and z with small |z|.

Additionally, we employ these triples to obtain semistable el-
liptic curves over Q with high Szpiro ratio
log |A|
o =
logN '’

where A is the discriminant and IV is the conductor.

1. INTRODUCTION

An abc-example is a triple (a, b, c) of positive rel-
atively prime integers such that a + b = ¢ and
a < b. The abc-conjecture of Masser and Oesterlé
[Oesterlé 1988] implies that the expression

log c
= b = — 1.1
o= afa,bc) log rad(abc) a.n

is bounded, where rad(abc) is the radical of abc
(the product of all distinct primes dividing abc).
The conjectured asymptotic value of a(a, b, c) is 1,
so the more « exceeds 1, the more an abc-example
is interesting from the point of view of the abc-
conjecture.
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Let E be a semistable elliptic curve over Q with
minimal discriminant A and conductor N. The
original Szpiro conjecture says that, for any € > 0,
there exists c(e) such that

|A] < c(e)NO*e.
This inequality implies that the Szpiro ratio

> log |A| 1.2)
log N ’

is bounded. Applied to the elliptic curve given by
b—a—-1, ab

2 _ .3 _

Yy +ry ="+ 1 T 16$’
where a and b are relatively prime integers with
a = —1 mod 4 and b = 0 mod 16, the Szpiro

conjecture implies that the ratio

log |abc|
p = pla,b,c)= m (1.3)
is bounded [Oesterlé 1988], where ¢ = a + b. The
conjectured asymptotic value of p(a,b,c) is 3; the
more p exceeds 3, the more an abc-example is in-
teresting from this point of view.

This paper gives an algorithm that yields many
abc-examples with high o or p. Section 2 moti-
vates the algorithm, Section 3 gives it in its sim-
plest form, and Sections 4 and 5 indicate how to
make it more efficient.

Section 6 describes our experiments, which con-
sisted in running the algorithm for various set-
tings of the bounds and collecting the resulting
abc-examples with o > 1.4 or p > 3.8. Note that,
while the algorithm does not allow an exhaustive
search for ¢ in a given range, it can, with relative
ease, find examples with ¢ quite large. The largest
one we have found is

109% 2383° 4 2°° 72 1719 31 = 3'" 53° 193,

with o = 1.37839 and p = 3.83622, for which ¢ >
269,

Section 7 is an application of the abc-examples
to the construction of two families of elliptic curves
with high Szpiro ratio.

2. ON A DIOPHANTINE EQUATION

Let n > 2 be an integer, and let A, B, C be rel-
atively prime integers with A,C > 0 and B # 0.
Our search for good abc-examples will be based on
the study of the diophantine equation

Az"™ — By" = Cz, (2.1

where we require that ged(y,C) = 1. (Note that
this implies  # 0.) This equation has a solution
satisfying this condition if and only if the congru-
ence

At" = Bmod C (2.2)

can be solved for ¢. Indeed, saying that At™ — B
divides C is saying that (z,y,2) = (¢,1,z) is a
solution of (2.1) for some integer z. Conversely, if
Az™ = By"™ mod C and gecd(C,y) = 1, any integer
representative ¢ of zy~' mod C satisfies (2.2). In
this case we can also write x = ty — Cu, for some
integer w.

We will be primarily interested in finding solu-
tions of (2.1) such that |z| = 1. We distinguish two
cases, depending on the values of B and n.

Theorem 2.1. Suppose B < 0 andn even. If (z,y,1)
is a solution of (2.1) withy > 0 and gcd(C,y) =1,
there exists a solution t of (2.2) with 0 <t < C
and such that u/y is a convergent of t/C, where u
is defined by x = ty — Cu.

Proof. The only thing we have not shown is that u/y
is a convergent of ¢/C (recall that this means that
no other integer fraction with denominator < y is
closer to t/C'). Since A > 0 and B < 0, we have

2|z|y <z +y? <z +y" < Azx" — By" =c.
This implies that

t‘t u‘
PC Y

_ el _ 1

= < ,
Cy 2y?

from which the desired result follows easily (see,
for example, [Niven et al. 1991]). O
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To treat the complementary case, we set

(8"
Yo = (%)1/@2) if n > 3.

Theorem 2.2. Assume that B > 0 or that n is odd.
Let (z,y, 2) be a solution of (2.1) with y > 0 rela-
tively prime to C' and with z = £1, and set

1 if x6 > 0,

cos(2wM> if x6 < 0.

n

E =

Ifn=2and AB >4, orifn > 3 and y > y,, there
exists a solution t of (2.2) with 0 <t < C and such
that u/y is a convergent of the continued-fraction
expansion of (t — €6)/C (assuming t — €6 # 0),
where u is defined by x = ty — Cu.

Here the notation |w| represents the greatest inte-
ger not exceeding w, so that ¢, in the case z6 < 0,
is simply the real part of the n-th root of unity
nearest —1.

Proof. Let 6, = 6?7/ for 0 < k < n, and choose
ko such that

x
20,
)

= min

0<k<n ’

X
\;“’kv

then Re 6y, = €6. We have

T 1 T
110> 5 L1 -5 )
Y 2nt y
k+#ko k#£ko
1 né" 1
> gor 11 160 =600 = o
kKo
At the same time,
n—1
n C
1[5 -a=|(5) — o= 2
Lhly y y

Dividing by the previous inequality we get

2n-1C

|56,
ko | = Anén—1yn’

Yy

and therefore

t—ed wu 1l |z 1|z
——l==|——¢€b| < = |- — bk
C yl Cly Cly
gn—1 1
<= < =
~ andnlym T 292

where the last inequality depends on the fact that
AB > 4ifn=2ory >y, ifn > 3. Asin the proof
of the preceding theorem, this implies that u/y is
a convergent of (¢t —e6)/C. O

3. THE BASIC ALGORITHM

We now apply these ideas to create an algorithm
that tends to give good abc-examples. The basic
idea is to use for a, b, ¢ the three terms of (2.1),
with A and |B| small and C' a small multiple of a
prime power, and hope to solve the equation with
|z| = 1. The fact that all three terms are small
multiples of a power then causes rad(ABC) to be
much smaller than |ABC|, and this tends to in-
crease the ratios o and p.

For simplicity, take first the case n even, B < 0.
By Theorem 2.1, a solution of (2.1) with z = 1
leads to a convergent of t/C, where ¢ is a solution
of (2.2). Thus, by taking all the solutions ¢ of (2.2)
and examining the convergents of ¢/C, we will find
the solutions of (2.1) with z = 1 (if any exist).

Formally, we have the following algorithm:

Algorithm 3.1. Given an even integer n > 2 and
relatively prime integers A > 0, B <0, C > 0:
e find all solutions of At™ = B mod C with 0 <
t < C; for each solution t:
e compute the convergents u/y of t/C'; for each
such convergent:
e set ag = A(ty — Cu)™, by = —By™, ¢co = ap +
bo;
e divide ag, bp and cy by their gcd;
e set a = min(|aol, |bo, |co]),
¢ = max(|aol, |bol, |co|), and b= ¢ — a;
e compute the ratios @ and p using (1.1) and
(1.3); record (a,b,c) if either ratio exceeds
the desired cutoff.
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The procedure for n odd or B > 0 is similar, but
is complicated by our not knowing in advance the
value of € in Theorem 2.2. Thus we have to loop
over its two possible values:

Algorithm 3.2. Given an integer n > 2 and relatively
prime integers A > 0, B, and C > 0, with n odd
or B> 0:
e set 6 = (B/A)Y™,
e find all solutions of At™ = B mod C with 0 <
t < C; for each solution ¢:
(0= 1)/2),

efore=1ande = cos(27r
n

e unless t — €6 = O:

e compute the convergents u/y of (t—¢é)/C,
for y up to some fixed bound; for each such
convergent, proceed as in the inner loop of
Algorithm 3.1.

The dominant step in these algorithms is the com-
putation of the radical of abc, which involves the
factorization of large numbers.

Note that there is no guarantee that a given abc-
example will appear only once. It is of course de-
sirable to minimize such redundancies. In the next
two sections, we prove two results that decrease
the amount of redundancy when n is even (Section
4) or when ¢ has a special form (Section 5).

4. SHORTCUT FOR n EVEN

For n > 2 even, if ¢t is a solution of (2.2), so is
C —t. We now show that, for the purposes of
Algorithms 3.1 and 3.2, we only need to examine
one of the two values. In other words, the outer
loop of the algorithms needs to be executed only
for0<t< %C when n is even.

Let ¢ be a solution of (2.2) with 0 <¢ < 1C. If
B < 0let & =t/C (case of Algorithm 3.1), and if
B > 0set & = (t+¢e6)/C = (t+(B/A)/™)/C (case
of Algorithm 3.2). Moreover, let v = & — [¢].

Theorem 4.1. Let the notation be as above.

() If € # 0 and v < %, every abc-ezample arising

from a convergent of & also arises from a con-
vergent of 1 — €.

(i) If¢€ #A0 and v > %, every abc-example arising
from a convergent of 1 — & also arises from a

convergent of €.

Proof. Assume that & # 0, and let [ag,a,,...] be
the continued-fraction expansion of £&. We have
ap = |£] and a; = [1/v]. To show (i), assume
that v < % Then a; > 2 and

1- § = [_aoalaal - 1,a2,a3,...].

Let w;/y; and u}/y!, for i = —2,—1,..., be the
convergents of the continued fraction expansion of
& and 1 — € respectively. Then, for all ¢ > 1, u} =
Yi-1 — Uiy and y; = y;_1. Let y =y, and z =
ty;_1 — Cu;_,. Since n is even, we have

Az"™ — By™ = A(ty;—1 — Cu;—1)" — By
=A((C—t)yi-1 — C(yi—1 —ui—1))" — Byj" ;
= A((C - t)y; — Cuy)" — By';.

Hence, for i > 1, every convergent u;_1/y;—1 of &
gives the same abc-example as the convergent u!/y!
of 1 — ¢£. This completes the proof of (i).

Part (ii) follows by replacing £ with 1 — ¢ and
applying (i). O

5. SHORTCUT FOR SPECIAL VALUES OF c

As remarked in the beginning of Section 3, it is
reasonable to run the algorithm with C a prime
power, because this makes rad C small compared
with C. In fact, it is even more efficient to consider
in sequence values of C' of the form p¢, for succes-
sive values of e, for two reasons, the first being that
if the congruence At™ = B has already been solved
mod p°, it is very easy to solve it mod p°*!. The
second reason is given by Theorem 5.1 below: some
convergents can be ignored.

For the sake of generality, the theorem will in
fact be stated for C = p*C,, were C, may be
greater than one (and p is prime, gcd(Cy,p) = 1,
and e > 0.) We fix A >0, B # 0, and n > 2, and
vary only C.

Theorem 5.1. Let the notation be as above, and con-
sider an abc-example obtained by an application of
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Algorithm 3.1 or 3.2 with C = p°Cy. If the conver-
gentu/y from which it arises satisfies y = 0 mod p,
the same example can be obtained by an application
of the algorithm with C = p?Cy for some j < e.

In other words, if we have already run the algo-
rithm for C = p?Cy, with j < e, we can ignore con-
vergents whose denominators divide p when run-
ning it for C = p°Cy.

Proof. Set C; = p’Cy for 0 < j < e, so C = C..
Suppose for concreteness that we are in the situa-
tion of Algorithm 3.2 (the reasoning would in any
case apply without changes to Algorithm 3.1 if we
set 6 = =0).

By the theorem’s assumptions, we have a solu-
tion t of At" = B mod C., a convergent u/y of
(t — €6)/C., and integers z = ty — Cu # 0 and z
such that

Ax™ — By" = z2C.,.

Let ¢ = (At" — B)/C,, and write y = p®y' with
e’ > 0 and ged(p,y’) = 1. Then

A(tpy' — p*Cou)” — B(p*'y')" = p°Coz,  (5.1)
so that
z=aqp™y"

+ Au Z} (—1)¢ (’;) P e (g (4 0 )it
Let j = e — min(e,€’) and k = €' — min(e, e’). Di-
viding (5.1) by p@in(nene) " we get

A(tp"y' — ! Cou)" — B(p"y')* = 0 mod p?Cy. (5.2)

Write t as t = p?Cyr +t', with 0 < t' < p?C,. Since
At™ = B mod p°Cj, the same congruence holds
mod p’Cy. Rewrite (5.2) as

A(t'pky'—ijO(u—rpky'))"—Bpky'n = 0 mod p’C,.

t—ed
Since u/y is a convergent of , we have

p°Cy
‘t—eé u‘ 1

p°Co - 5 E’

that is,
pCor +t' — b u | 1
p°Cy eyl (py)?
Then
t'—eb  u—rpty 1 < 1
piCy PRy’ pe Ry T 2y

which implies that (u — rp*y’)/(p*y') is a conver-
gent of (t' — e8)/(p’Cy), concluding the proof. O

6. THE EXPERIMENTS

We have applied the algorithm in the following
cases.

Hn=21<a < b <300 with b < 0, and
¢ = p°, where p is a prime < 31 and e is such
that p® < 290 [Nitaj 1992].

(ihn=2,1<a<b< 300, and c = p°, where p is
a prime < 31 and e is such that p® < 2%° [Nitaj
1992].

(iim=3,5,1<a<b< 200, and ¢ = p°®, where p
is a prime < 31 and e is such that p¢ < 24°.

We have found 103 examples with p > 3.8 and 86
examples with @ > 1.4. The left half of Table 1
lists the examples that we believe were previously
unknown and that have the largest a. The right
half is similar, and lists the examples with largest
p-

We remark that in these runs we recovered all
the triples found by N. Elkies and J. Kanapka in
their recent tabulation of all abc-examples with ¢ <
2°2 and o > 1.2 [Elkies and Kanapka].

See also the section on software availability at
the end of this article.

7. APPLICATION TO THE SZPIRO RATIO

Our goal in this section is to find examples of ellip-
tic curves for which the Szpiro ratio (1.2) exceeds
significantly the conjectural asymptotic value 6.
To do this, we define two families of elliptic curves.
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a b c o a b c P
283 511 132 28 38 173 1.58076* | 13 196 230 5 31311231 4.41901
13195 2305 31311231 1.52700 | 32! 72116 199 213817 4.20094
239 58 178 210 374 1.50284* | 2164171 315 72 197 4.09655
2211 32131017151 4423 5° 1396 1.49243 | 31256 7% 312 29 11% 571 4.09647
73 213 77 9412 3161033 127 1.49159 | 7819 215 52 372 3177 4.09080
1 3167 23112353% 1.47445 | 2% 3° 5 19° 592 710 167 4.07114
72 210 11 532 3% 58 1.47414* | 36 157° 283 2310 230 5211213  4.05990*
34199 118 28 57 78 1.47130* | 218313118 1329436673 52017 4.04710
32 52 24173 314 710 257 1.45707 | 5313 217193 23 317 283 4.04498
357 56 67 220 1.45134* | 325779 22913 117 192 4.02943
1 33537723 2131141341 1.45003 | 25° 34 75 11 47 4.01342
11243 597213497 2% 3737 1.44798 | 2101910 56 134 295 320 4425749  4.00292
89 7118 220 33 53 1.44774 | 53114312 317 72 225 241 4.00087
325779 22913 117 192 1.44625 | 2872196 591132193  323° 3.99793
2132 58 3194 1.44506* | 77 113 218 34103 59 412 3.99129
32192 U 217 373 1.44328* | 198 317 211 749049  3.97796
313 217415 357 7° 1.44144 | 2'° 319292 510 74 132 236 3.97457
34232 315 215 53 7 1.44097* | 31074112 176 31 2141038 3.96813
213% 761732 313 472 1.43618 | 218478 39173 23 72137 3.96555
25318 56710 932 11° 990203  1.43346 | 72174856897 241 32 1312 3.96025
312 3% 5° 2523453 1.43304* | 225342910753 741512181% 5% 3.95603
221 76 17 82092 512 7432 1.43290 | 61% 313 53 213 574 3.95432
29192 59673 335772318  1.43109 | 3319 7534 210 174 3.95368
193 25519211932 39138 1.43042 | 2193678 517197281 1322516 3.94750
3929 76 432 22413 1.42955 | 211174 31473 56 23 712 3.94732
TABLE 1. Previously unknown highest-a and highest-p examples obtained in the experiments described in

Section 6. Those marked with an asterisk were found at the same time by Browkin and Brzezinski [1992]. The
top example on the right has the highest p currently known.

Let a and b be relatively prime integers. Define

an elliptic curve E over Q by

y*+(b*+ab—a?)zy+a®b® (b—a)y = *+a’b(b—a)z?,

(7.1)

The quantities ¢, and A [Silverman 1986] are

ca= (a® —ab+b%) x
(a® —11a°b+30a"b* — 15ab* — 10a®b* + 5ab° +b°),
A=a"b"(a—b)"(a® —8a®b+5ab® +b°).

Define also the isogenous elliptic curve E' over Q

y2 + a1y + azy = %+ a2x2 + asx + ag,

(7.2)

where
a; =b*> +ab—a® as=a®(b—a), az=a?*(b—a),
ag = 5ab(b — a)(a® — ab + b*)(a® + 2a®b — 5ab® + b®),
ag = ab(b—a)
x (a® + 9a®b — 37a"b% + 70a°b — 1324°b*
+ 211a*b° — 182a3% + 76ab” — 18ab® + b%).
The quantities ¢;, and A’ are
¢, = (a* — ab+ b%)
x (a® + 229a°b + 270a"b?
—1695a°b” + 1430a°b* — 235ab® + b°),
A’ = ab(a — b)(a® — 8a®b + 5ab® + b*)".
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a b o
215 13 31259 7.36246
26 72 47 3583 7.10618
198 211749049  6.80043
384079 3253779 6.76452
313 51129137  6.69128
149 1423 5243113 6.66500
11 32 6 61959

TABLE 2. Some curves E with equation (7.1) and
high Szpiro ratio ¢ > 6.6.

The next result follows from [Silverman 1986],
after some calculations:

Proposition 7.1. Let a and b be relatively prime in-
tegers, and set g = gcd(A,cq). Then

g = ged(a® — ab + b%, a® — 8a’b + bab® + b%),

and, if g does not divide 7,

(i) the equations (7.1) and (7.2) are minimal;

(i) the elliptic curves E and E' are semistable;

(iii) the conductors of E and E' are the radicals of
A and A'.

We return to the Szpiro ratio (1.2). We see that
the product ab(a — b) appears in both A and A'.
Hence, for every abc-example X +Y = Z, we can
derive two elliptic curves £ and E’ by setting a =
Z and b= X in (7.1) and (7.2), and another two
by settinga =Z and b=Y.

The examples so found for E with the highest
Szpiro ratio are given in Table 2, and those for £’
in Table 3.
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a b o

11 32 8.75732
487 23° 7.44460
2419 283 7.32780
54 2517 7.20525
172 229 292 7.16913
21513 312 59 7.13801
5 563 23337 7.10156

TABLE3. Some curves E' with equation (7.2) and
high Szpiro ratio o > 7.

SOFTWARE AVAILABILITY

The author will provide, upon request, a listing of
the abc-examples known to him with @ > 1.4 or
p > 3.8.
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