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We present a new algorithm to compute stable discrete minimal
surfaces bounded by a number of fixed or free boundary curves
in R3, 83 and H3. The algorithm makes no restriction on the
genus and can handle singular triangulations.

Additionally, we present an algorithm that, starting from a dis-
crete harmonic map, gives a conjugate harmonic map. This
can be applied to the identity map on a'minimal surface to
produce its conjugate minimal surface, a procedure that often
yields unstable solutions to a free boundary value problem for
minimal surfaces. Symmetry properties of boundary curves are
respected during conjugation.

1. INTRODUCTION

Platesu’s Problem was long an open problem of
minimal surface theory. It asks for the existence
of a disk-type minimal surface spanning a given
closed ‘boundary curve I in R™. The name honors
the Belgian physicist J. A. Plateau, who did exten-
sive experimental studiesin the nineteenth century
[Plateau 1873], convincing mathematicians of an
affirmative solution to-the question. But it was not
until 1930 that a theoretical proof was found; ear-
lier- approaches had failed, including the use of the
WeierstraB representation formulas and attempts
to'minimize the area functional

A(f) = A'J&éObia.n(f)

in the class of parametric maps f : Q@ — R" with
f(6Q) = T, where @ C R? is a fixed disk-type
domain.

Douglas [1931] and Radé [1930] at the same time
had the ingenious idea to minimize not the area
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functional directly but rather, in the later refor-
mulation by Courant [1950], the Dirichlet integral

Eo(f) =5 [ IVfP,

where the gradient operator V and the norm are

taken with respect to the standard metrics in R?.

and R", respectively. (In coordinates, |Vf|? =
tr(t8f 8f), where 8f is the matrix of partial deriva-
tives of f in an orthonormal basis.) This drasti-
cally reduced the scope of the problem from the
class of all parametrizations to the class of all con-
formal parametrizations.

From the numerical point of view there exist
a number of methods to compute minimal sur-
faces: see, for example, [Wilson 1961, Concus- 1967,
Wohlrab 1985, Sullivan 1990, Dziuk 1991, Brakke
1992). In this paper we present.a new algorithm
that splits the minimization process into a sequence
of steps that mvolve computing harmonic maps on
surfaces, without reference to.any two-dimensional
para.meter domain. We also minimize with respect
to variations of boundary points lying on straight
boundary lines, and of points lying on free bound-
ary curves restricted to planes. Therefore the re-

sulting discrete minimal surfaces may be extended

across boundary symmetry lines as dxscrete mini-
mal surfaces. ~
- 'We also present for discrete harmonic maps an
algorithm computing. a conjugate harmonic map
(Section 5), which, as far as we know, is the only
method that gives reasonable results. Instead of
trying.to simulate the continuous case, we use the
discrete data of our minimization process directly
to compute a discrete conjugate surface. There-
fore, there is no loss of accuracy during the conju-
gation process. Additionally, our conjugation pro-
cess respects symmetries of the discrete surfaces: if
the image of a harmonic map has symmetry lines,
the conjugate image will have the corresponding
symmetry properties (Section 2). Since for a min-
imal surface the identity map is harmonic, we can
compute the conjugate m1mmal surface using the
same algorithm. o :

We mention in more detail two major approaches
for computing minimal surfaces, since our mini-
mization algorithm is in some sense a mixture of
both.

The first approach has its origin in the theo-
retical existence proofs of Douglas and Radé, as
later reformulated by Courant, and tries to imitate
them numerically. It works with discrete surfaces
parametrized over the triangulated unit ‘disk B.
For a given curve I' C R3, one starts with an initial
parametrization f : B — R3 with f(B) =T, and
successively repeats a two-part minimization step:

¢ minimize the Dirichlet energy Ep(f) by varying
points in image space, and

e minimize Ep(f) by varying points of the dis-
cretization in the planar domain B.

We will call the first step the Dirichlet step and
the second the conformal step, since it is used to
make the map f conformal: see Section 2 for more
details. During the Dirichlet step a fixed parameter
domain is assumed. The numerical minimization of
the Dirichlet integral is then a linear problem, and
is straightforward. But for the conformal step the
different algorithms vary; see [Wohlrab 1985] and
[Hutchinson 1991], for example.

Varying points in the domain may be interpreted
as varying the metric to make the map conformal.
In the continuous case this would be accomplished
by taking the induced metric, and the map would
be immediately an isometry and therefore confor-
mal. In the discrete case even defining conformal-
ity presents a problem. For example, it is usually
not possible to get a conformal map in the sense
that angles in corresponding domain and image tri-
angles are the same, since the domain is flat. The
best one can do is minimize the so-called conformal
energy Ep(f) — A(f), but without hope of getting
it to vanish.

The second major approach to computing min-
imal surfaces is via mean curvature flow. Numer-
ically this is the most natural approach, since the
area is directly minimized by letting the surface
flow in the normal direction, with speed equal to
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the mean curvature. This is equivalent to mov-
ing along the direction of the area gradient in the
space of surfaces. In contrast with the former ap-
proach, here everything happens in image space,
without the need for a two-dimensional parameter
domain. Two drawbacks of this approach are that
boundary points may only vary orthogonally to the
curve, and that singularities develop in general at
thin necks, even if the boundary curve is planar.
For implementations of algorithms based on this
idea, see [Dziuk 1991] and [Brakke 1992].

Our minimization algorithm combines aspects of
both methods. It uses as the fundamental mini-
mization step the Dirichlet step from'the first al-
gorithm, with the following modification: for a
given boundary I' and metrical surface M; we com-
pute the next surface M, as the minimizer of the
Dlnchlet functional

1
M, = nﬁni‘/;!‘ V(f: M; — M)|2

Note that we do not use a planar two-dimensional
domain, but instead the most recently computed
surface M;. Such a trick was also applied in com-
puting the mean curvature flow in [Dziuk 1991] to
mitigate numencal difficulties with the Laplace op-
erator. B

Numerically we are left within each step with
a linear problem of computing the surface M,
where the minimum of the quadratic function is
attained. This new minimization method is faster
than in the first algorithm, since the nonlinear con-
formal step is completely skipped. It is no longer
necessary to adapt the conformal structure of the
parameter domain because at each step we start
with the conformal identity map. This also avoids
numerical inaccuracies arising from maccura.te con-
formal structures in the domain.

Since we always step to the absolute minimum
of the Dirichlet integral in each iteration, and since
we do not move along the area gradient, we pro-
ceed discretely also in the time direction. Com-
pared to the mean curvature flow we therefore have
fewer problems with singularities of mean curva-

ture type arising, for example, at thin handles (see
Figure 12), and we have more flexibility in mov-
ing points tangentially to the boundary. Our algo-
rithm also handles situations where lines are shared
by multiple surfaces (see Figure 18). Figures 10~20
at the end of this article illustrate several surfaces
generated by the algorithm.

The algorithms and the graphics output were im-
plemented using the mathematical programming
environment Grape. (Grape is an object-oriented
graphics system with special applications to prob-
lems from differential geometry and continuum me-
chanics, developed at the Sonderforschungsbereich
256 at the University of Bonn, from which it may
be obtained on request: see the second author’s
address.)

2. GENERAL SETUP

Before starting with the discrete case, we review
a few definitions and results from the continuous
case.

Let T' = {I4,...,T.} be a collection of sim-
ple closed curves and M s surface with boundary
OM =T.

Definition 1. M is a minimal surface if and only
if for each point p € M one can choose a small
neighborhood U(p) that has minimal area among
other patches V having the same boundary as U.

By this definition, minimal surfaces are character-
ized by having locally least area compa.red to small
variations of the surface.

Let (N, g) and (M, h) be Riemannian manifolds
with metrics g and h, andlet f : Q C N — M be a
parametrization of a surface f(2) C M over a two-
dimensional domain submanifold 2 C N. Then the
area of f(2) is given by

A(f)=/nJa.cobia.n(f)

and the Dirichlet energy of the map f is defined as

Eo(f) =5 [ 14T
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where V, is the gradient operator with respect to
the metric g and | - |, is the norm in image space
with respect to the metric h. (In coordinates, we
have |V, f|? = tr(*8f 8f), where 8f is the matrix
of partial derivatives expressed in bases orthonor-
mal with respect to g and h.) We will use the
subscripts g and h as need, to indicate the metric
under consideration.

~It.is:well known that A(f(M)) < ED(f), with
equality if and only if f is a conformal map. Fol-
lowing [Hutchinson. 1991] we will call the difference

Eo(f) = Bo(f) - A(f(M))  (21)

the conformal energy of the map f. This is justi-
fied by the observation that for Euclidean (z,y)-
domains the quantity

Be(f) =5 [ 1D 41,

where D™/2 is the 90° rotation in the oriented tan-
gent plane, is a natural measure of a map’s devia,-
tion from conformality.

Let M be a three-dimensional space form (that
is, a complete three-manifold of constant curva-

ture). Minimal surfaces in M come in families.

More precisely, let f : € — M be a minimal im-
mersion of.a simply connected domain §2. Then f
has an associated family

fo 0O M
of 1sometnc mmmal immersions, .deﬁned as fol-
lows: Associate with f the data (g, S), where g is
the metric induced by f on £, and S is the Wein-

ga.rten ‘map, defined by Vf.-S8.= VN with N the
normal map of the surface. The maps f? are those

whose associated geometric data (g°, S°) are given

by’
# =9  S:=D°S, (2.2)

where DY is the rotation about the angle 6 in the
oriented tangent planes of 2. We call f™/? the
conjugate immersion of f. The maps f° are deter-
mined up to isometries of M by these conditions.
See [Lawson 1970] for more details.

Minimal surfaces in M have useful symmetry
properties. If a minimal surface contains a straight
line (geodesic) of M, it is invariant under a 180°
rotation around this line. A minimal surface that
meets a totally geodesic plane in M orthogonally
along an arc is invariant under reflection in this
plane. These properties allow the construction of
complete surfaces from fundamental pleces that are
bounded by symmetry lines.

The symmetry properties are also an essential
tool for the existence proof called conjugate sur-
face construction. This construction, originally in-
vented by Smyth [1984] to prove the existence of
three minimal patches in a given Euclidean tetra-
hedron, is based on the fact that a straight line
on a minimal surface corresponds to a planar line
of symmetry on the conjugate surface, and vice
versa. A minimal surface that is cut by its sym-
metry planes into simply connected domains has
therefore a conjugate domain bounded by straight
lines. To prove the existence of the original piece
one can often reconstruct the conjugate polygonal
contour using only knowledge about the symmetry
planes. Then-the Morrey solution (for example)
to the Plateau problem for the polygonal contour
proves the existence of the conjugate patch and,
by conjugation, also of the desired patch bounded
by symmetry planes. See [Karcher 1989) for conju-
gate constructions in R?, [Karcher et al. 1988].in
S® and [Polthier 1991] in H3.

3. DISCRETE MINIMAL SURFACES - -

In this section we define discrete surfaces and other
analogs of terms known from the continuous case.
We will see especially that the energy of a discrete
map and its derivative can be expressed in geomet-
ric terms.

Defimtlon 2. A discrete surface in a three-dimen-
sional space form is a topologlcal 31mp11c1a.l com-
plex consisting of triangles. The tnangl% may de-
generate to lines or points.
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Definition 3. A discrete minimal surface is a dis-
crete surface such that small perturbations of ver-
tices do not decrease the total area.:

In the following we assume that each discrete sur-
face lies in a vector space endowed ‘with a constant
metric. Let T} a.nd T, be two tnangulatlons in vec-
tor spaces, i.e., two discrete surfaces in the sense
of Definition 2, with induced metrics g and h. If
the abstract simplicial complexes of T; and T3 are
identical, we can define a simplicial map

f : (Thg) -

between the two triangulations by mapping each
vertex of T to the corresponding vertex on T3, and
extending f linearly (affinely) to each triangle. The
metric on each triangle of T; and T} is induced by
the metric of the ambient vect_or' space.

(T2 ’ h)

Definition 4. The energy of a simplicial map be-
tween discrete surfaces is the sum of the energres
of the restrictions

fi . (Al,h g) -

where A, ; and A, ; are corresponding triangles in
T; and T3, and the energies of the atomic maps f;
are defined as in .the continuous case. More pre-
cisely, the energy Ep( f‘) of the atomic linear map

fiis

(A2,ia h)1

" Ep(fi) ='§/ |V, fz
o (Ahg
with the same notation as in Section 2 (see top of
page 18).

Tt turns out that for a linear map f : A — A,
between trlanglw A, and A, there is an explicit
representation of Ep(f) in terms of the angles (the

“conformal structure”) of Al and the side lengths
of Ag . :

I.emma 5. Let f be a 7znear map bet'ween two trian-
gles A ‘and Ay, in two vector spaces with constant
metmcs g.and h. Then the Dmchlet energy of f 18

ED(f) = z(cota |a1h +'»cot-ﬂ |b|,, + cot 7y |¢|?),

where o, 3, v are the angles of A, with respect to
the metric g, and |aln, |b», |c|n are the correspond-
ing side lengths of Ay with respect to the metric h.

Proof. Let the linear map be defined by f(v) = a
and f(w) = b (see Figure 1 for the notation). Let
{e1, €2} be the canonical basis of R? and A, the
triangle built thereon. Then we can write f =
Yop!, where p: A, — A, and ¢ : A, — A,
are the linear maps taking {81,62} to {v w} and
{a, b}, respectively. .

S linear
—

FIGURE 1, Atomic linear map between two triangles

In the rest of this proof we omit the subscript
indicating the metric with respect to which scalar
products and norms are taken.

Denoting by 8f, 0y and 8¢ the matrices of par-
tial derivatives with respect to {e;, e} in the do-
main and arbitrary orthonormal bases in the range,

we have
t (a,a) (a,b)
wov= ({3 )
and

—1tq,-1_ 1 (w,w) —(v,w)
o 20 = 5 (o) o).

where D := det 8. We also have 8f = 0y 8p~1.
Therefore

tr(*0f 8f) = tr(t8yp~" toy Ay Bp~!)
= tr(*Oy 61,0 8y~ *9p7)
L= sz((a, a) {w,w)
- 2(a b)Y (v,w) + (v,v) (b b)).

Now ¢ = b — a, 50 —2(a, b) = |c|? — |a|? — |b]?, and

we. get successively for tr(tdf 8f): -
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D3(((w, w)— (v, W))lal*+({v, v) — (v, ) bl +(v, w)|cf*)
= D7%({~w,v — w)la|* + (w — v, ~v) bl + (v, w)|c]*)
= D™ Y(cot a|a|? + cot ﬂ.lbl2 +"cot'y |ef?).

In the last step we used the identities

(v, w)

sin
ol o]’ *7

cosy = = —,
: o] |w]
and correspondingly for a and S.

The Dirichlet energy is then
T
Bo(f) = 5 [ IVfPr = u(fof)

_1 / 4x(0f Bf) det D!
2 Ja,
= Y(cot [af® + cot B1b]* + cot ¥ [c]?),

the additional factor ; being the area of A.. O

This representation is so natural that it should
have appeared somewhere in the literature, but we
have not found it. Compare Wilson [1951] for a dif-
ferent and less clear examination of the triangular
Dirichlet energy. Our representation immediately
shows the conformal invariance of the Dirichlet en-
ergy with respect to conformal changes of the do-
main metric, and the quadratic dependence on the
side lengths in image space.

As an immediate consequence we can now de-
fine the Dirichlet energy of a map f between two
discrete surfaces as the sum of all energies on tri-
angles:

Ex(H= Y En(f)

triangles i

=1 Z (cot a; + cot B;)|a;f?.

edges 1

@)

In the last representation we merged the two terms
corresponding to each edge; a; and (; are the an-
gles opposite to a; in the two adjacent triangles.
For boundary edges one term is taken to be zero.
Heuristically the representation may be considered
as the weighted sum of all edge lengths, where the

Q1

weights depend only on the domain. In this inter-
pretation the energy is concentrated on the edges
as tension; but note that the tension may be neg-
ative, meaning that the edge acts with a repelling
force on its end points.

. We will prove some further useful identities for
planar triangles. In the notation of Figure 2, we

p
P
b h a
o i) ,
atr e e . c g ¢
FIGURE 2. Notation for triangles. In both cases

we let r be the orthogonal projection of p on the
opposite side, and set ¢; =1 —qy, c2’'=1—¢2 and
c=ca+c2=¢—q. '

have cotah = —D"™/2¢,, cot Bh = —~D™/?¢c,, and
a=h+cz, b= h—c;. It follows immediately that
cota + cot B = |c|/|h|, and further that

cotaa+cot Bb=—D"c.

Computing formally the energy for the identity
map on a triangle A with angles a, 3, v and sides
a, b, ¢, we obtain twice the area:

1(cot a|af?® + cot B]b|* + cot v [c[*) = 2 area A.

We are now ready to define a discrete harmonic
map, by analogy with the continuous case:

Definition 6. A discrete harmonic map is a critical
point for the Dirichlet energy functional with re-
spect to variations of interior surface vertices in im-
age space. To take into account symmetry proper-
ties we also allow boundary points to vary in some
cases:

e If an arc in the domain boundary is straight,
and likewise its image, it is a line of symmetry
and the interior points of the image boundary
arc may vary along the line.

e If an arc in the domain boundary lies in a plane,
and is a symmetry curve, the interior points
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of the image boundary may vary in the image
plane. (This allows the modeling of free bound-
ary problems.)

In all other cases the image boundary points re-
main fixed.

The condition for local harmonicity is explicitly
given by differéntiating expression (3.1):

(7]
a—ED(f) =3 Z (cot a; + cot B;)(p — @) = 0,
4 vertices ¢; :
adjacent to p (32)

or, equivalently,

_ > i(cot a; + cot.Bi)a;
© Y,cota;+cotf;

If this condition is true for all interior points p,
then f is a critical point for the discrete energy
functional. The condition for points on boundary
symmetry lines is the same except that the full
vertex star around a point p has to be constructed
according to the symmetry properties.

We will now have a closer look at the numerical
procedure to compute a harmonic map. For sim-
plicity we do not allow boundary points to move in
the following, i.e., we assume we have a Dirichlet
problem: given a triangulated domain {2 and a map
f:09 > T, where T is a fixed polygonal contour,
we seek a harmonic extension of f to the interior
of 2. In general, if the problem involves symme-
tries (Definition 6), the corresponding boundary
points are allowed to move, subject to the relevant
boundary conditions.

Remarks. (a) In the continuous case the extension
is unique in Euclidean space.

(b) In practice our algorithm uses 0N =T.

Let the triangulation have I interior vertices and
B boundary vertices, and let P = (p1,...,DB41)
be a representation of f(€2), the p; being interior
vertices for ¢ > B and boundary vertices for i < B.
Minimizing Ep(f) is a quadratic problem and has

a unique solution. We therefore write it using a
quadratic form:

Ep(f)=} Y (eotay +cot f)lasf
edges i
=1y (cot o + cot By;)Ip: — pyI?

pairs (i,5)
of adjacent vertices

= P'SP,

where S, analogous to the well-known stiffness ma-~
trix from finite element theory, has the following
entries (where 7 # j and id is the identity map on
the ambient vector space):

S = { —%(cotai; + cot B;;)id  for ps, p; adjacent,
Y 0 otherwise,
Si= Y -5

p; adjacent

to py

S is symmetric, and is positive definite on all trian-
gulations P having positive area: indeed, we have
tPSP = Ep(f) > areaP > 0.

- The condition for a surface to attain the min-
imum of the Dirichlet energy while keeping the
boundary points fixed is as follows: Let

X= (ph «+yPByTB41y - 1$B+1)
be an admissible surface with fixed boundary points
p; and free interior points z;, and let
X = (0, . .,0,:L‘B+1,. .o ,.’L‘3+1)

be an admissible variation direction. Then
_OEp(f) | _ A(X'SX)

6)? X=P 65( X=P
= 2(0,...,0,id,...,id) SX.

0

We denote this last matrix by @, with entries

0 : ifi < B,
Q= {2(2,‘;1 Siipi + Yopa i Sijzs) ifi> B,
Thus the interior points z; can be computed by

solving the linear system of equations Q; = 0, for
B<i<B+l1.
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Smooth harmonic maps defined on a planar do-
main are characterized by their mean value prop-
erty: the center of a small circle is mapped to the
center of mass of the circle’s image. This has the
consequence that the image of a harmonic map lies
inside the convex hull of its boundary. For discrete
harmonic maps a corresponding mean value prop-
erty follows immediately from the local harmonic-
ity condition (3.2) [Wilson 1961}:

Lemma?7. Let f be a discrete harmonic map defined
on the points {g;} around a point p. If the points
{a:} form a regular planar polyhedron with- center
p, then f(p) is the center of mass of the {f(g:)}.

But this result does not hold in general for other
planar or. spatial domains. Nevertheless we have
a convex hull property for discrete harmonic maps
as long as the spatial domain consists only of acute

triangles.

Lemma 8. Let f be a discrete harmonic map de-
fined on a spatial domain formed by the points {¢;}
around a point p. If the triangles around p are all
acute, then f(p) lies in the convez hull of {f(g:)}.

Y
Proof. From the local .harmonicity condition (3.2)

we see that p can be repr%ented as a linear combi-
nation of the points {g;}. Since all angles are acute,
the welghts of the ¢; are in the interval (0,1),s0p
is a convex combination. _ O

Lemma 9. Discrete minimal surfaces have the con-
vez hull property, since they are critical points of
the area.functional.

4. THE MINIMIZATION ALGORITHM

In Section 3 we explained a method to compute
a discrete harmonic map for a given triangulated
domain and:a given boundary configuration I'.in
image space. We allowed I" to consist of a collec-
tion of curves, each marked as being a fixed curve,
a symmetry straight line or a planar symmetry arc;
when. there. are symmetry lines or arcs the bound-
ary points thereon are allowed .to vary, as stated.in
Definition 6.

We call two collections I' and I equivalent, and
write I’ ~ I, if the vertices of I" and I'” are identical
along fixed arcs and are in one-to-one correspon-
dence along each symmetry line and each planar
symmetry arc.

Our algorithm attacks the following problem:

Problem. Given a boundary configuration I" and an
initial discrete surface M, with OM, ~ T, find a
locally area-minimizing discrete surface M in the
class M of all discrete surfaces with simplicial com-
plex homeomorphic to that of My, with boundary
equivalent to I', and that can be extended across
symmetry lines and arcs of M as a local mini-
mizer. '

To simplify the description of the algorithm, we
have formulated the problem in a very restrictive
way; for example, we do not allow adaptive changes
of the triangulation and topology changes for the
moment. Section 6 contains a discussion of topol-
ogy changes. (Our implementation uses an adap-
tive refinement procedure depending on discrete
curvature, which we will not discuss i in this paper;
but see Figure 16.)

Algorithm. 1. Take the initial surface My 'as the
first approximation of M; set ¢ to 0.

2. Compute the next surface M;,, as the minimum
of the Dirichlet energy

Fy(X) = Ep(f : M; = X)

among all permissible data f : M; — X. This

is a linear problem. The condition for the min-

imum is given by (3.2). o
3. Set i to ¢ + 1 and repeat Step 2.

In practice, we use the termination criterion
|area M; — area M;,;| < €.

Proposition 10. The aléorithiﬁ converges to a_solu-
tion of the problem if no triangles degenerate.

Proof., Saying that no triangles degenerate. means,
by definition, that the angles of all the triangles
in all the M; are uniformly bounded away from 0
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and 7. Thus we are dealing with a compact set
of surfaces. From the construction, the areas of
the M; and the energies of the minimizing maps
fi : My — M;,, are monotonically decreasing;:
area M; = Ep(id|a,)

> Ep(fi) = area M1 + Ec(f:)

> Ep(id|am,,,) = area M; .
Therefore a subsequence of the M; converges uni-
formly to a limit surface M, that is, |M; ~ M| — 0.
(Here the norm may be taken, for instance, as
the maximum distance between correspondmg ver-
tices.) We must show that M is minimal. Now F,,
the Dirichlet energy function for maps f: M; = X,
is a quadratic function with mlmmum at M‘+1 in
symbols,

VFHMHA =0

Because of the nondegeneracy condition we have a
uniform bound s,s, 0N the norm of V2F;, indepen-
dent of i. Using the mean-value theorem we can
write
VE|M4 = VEIM( _VEIM(«H
for some £ € M, so that
lVF‘th‘l S Smax 'M‘l -
Since M; — M it follows that

VFi|m = VFuM|lm =0,

= sz'ile (Mi —M,~+1)

Ml

where F).is the Dirichlet energy function for maps
f: M — X. Thus M is a critical point for Fjy,
and so also for the area ﬁmctxona.l O

The nondegeneracy condition is in genera.l not a
priori verifiable. See, for example, Figures 13-15,
where no minimizer in the class of triangulations

with the same topology as the initial triangulations:

exist.

Our algonthm is different from the mean cur-
vature ﬁow algonthm and may lead to different
results. For example, consider the initial triangu-
lation in Figure 12. :Mean curvature flow type al-

gorithms  would lead to a singularity at the small:

waist. Our algorithm proceeds discretely also in
time direction; in this example it reaches a min-
imal configuration in one minimization step, and
without passing through a singular situation.

5. THE CON]UCATION ALGORITHM

One of the main problems that conjugation algo-
rithms have to deal with is the need to use inac-
curate discrete data out of a minimization process
as an approxlmatlon to a smooth surface, since all
known approaches try to simulate the procedure
implicit in (2.2) for the smooth case.

The advantage of our method for discrete mini-
mal surfaces—which, as far as we know, is the only
method that gives reasonable results—is that we
use the discrete data of the minimization process
directly to compute a discrete conjugate surface.
As we will see (Theorem 11), the discrete mini-
mality condition (3.2) is simultaneously the inte-
grability condition for the discrete conjugate sur-
face, which means that we lose no accuracy during
the conjugation process.

The algorithm is defined for a triangular graph
M that is a critical point for the area functional,
but it may also be applied to harmonic maps be-
tween two discrete surfaces. M may have been
obtained, for example, by the minimization proce-
dure described in the previous sections. For each
vertex p, the minimality’cdndit‘ion '

Z (cotoy +cot B} p = q:) =

vertlces qi
adjacent to p
means geometrically that the weighted edges em-
anating from p add up to zero, .and so can be ar-
ranged-as a closed polygon.  This closed polygon is
defined as the dual cell of the point p. This works
perfectly for interior points. For points along the
boundary we distinguish two cases:

o If the point belongs to a planar or straight sym-
metry arc, the whole néighborhood is uniquely
determined by the symmetry properties,: and
the algorithm 'works as for interior points.
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e If a point p is not on a symmetry arc, the con-
struction of a neighborhood is usually not pos-
sible. We then assume the existence of a neigh-
borhood such that.all weighted edges add.up to
zero. It is of no further relevance how this strip
around the boundary curve is defined, since the
conjugation algorithm only requires knowledge
of the two boundary vertices adjacent to p and

-of an edge from p into the interior.

So, how does the cbnjugation process work? Con-
sider a neighborhood of a point p on the discrete
minimal surface, as in Figure 3. The identity map f

Q1

94
FIGURE 3. Neighborhood around a point

from the discrete surface to itself is a discrete har-
monic map by assumption. Its restriction to a sin-
gle triangle is a smooth linear map. Conjugation in
the smooth case means rotating the one-form df of
the map f in each tangent space. Here this opera-
tion is only defined on the smooth linear triangles,
but along the edges it results in discontinuities of
the atomic one-forms. In spite of these discontinu-
ities, we can give a definition that makes sense.

' We define- a global star operator acting on the
differential df of f by

*df =df - J,

where J is the well-defined 90° rotation on the in-
terior of each triangle. The form *df is not-closed
globally, but it turns out that it can be integrated
along very special paths. Consider two adjacent

p

FIGURE 4. Path between two adjacent triangles.
M, and M, are the centers of the triangle’s circum-
circles, while w, and ws lie along the perpendicular
bisector of edge pq. . v

triangles, not necessarily coplanar, as in Figure 4.
An elementary calculation shows that

w, =cotaJv, we=cotfJv,

where J is taken with respect to the appropriate
triangle, and further that

*df (w)) = —cotav, xdf(w;)=—cotBuv.

This means that *df is continuous across triangle
edges when applied to vectors orthogonal to the
edges.

We now integrate the one-form *df along the
path v formed by the perpendicular bisectors of the
edges incident on p. This is equivalent to adding
up the corresponding weighted vectors. Now we
arrived at the most important point: the resulting
expression vanishes,

/*df =— Z (cot o; + cot Bi)v; = 0,

v neighbors of p

precisely because the initial triangulation satisfies
the minimality condition (3.2). Thus:

Theorem 11. The closedness condition for the dual
one-form *df is equivalent to the minimality con-
dition for the initial triangulation f.

Since *df .is closed along the path formed by the
perpendicular bisectors, we obtain a dual cell for
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v1{cot oy + cot By)

5
conjugation
— -

vs(cot as + cot Bs)

FIGURE 5. Action of conjugation on the star of a vertex. Integrating the atomic one form *df along the path
7 consisting of all mid perpendiculars around a vertex p gives cell dual to p in the conjugate triangulation. For

clarity, we have rotated the right-hand side by —90°.

each vertex p, as in Figure 5. Continuing we get
a well-defined dual graph to the given minimizing
triangulation. To each triangle of the original tri-
angulation there is an associated vertex of the dual
graph, with three adjacent vertices. Every such set
of four vertices lies in a plane, since the three edges
of the triangle are coplanar.

We are further interested in finding a triangula-
tion of the dual surface that has the same under-
lying simplicial complex as the original triangula-
tion, because then the associated family of the min-
imizing triangulation is also defined. As remarked
above, this same-topology triangulation cannot be
canonically defined since the one-form *df is not
globally closed. But we can still integrate the form
canonically in the interior of each triangle. This

gives a dual complex of triangles that match at
the common base points of their perpendicular bi-
sectors. A good approximation now for the center
of each dual cell is the mean of all triangle vertices
lying inside the dual cell (Figure 6).

In the case of a vertex ¢ lying on a fixed bound-
ary arc, a whole neighborhood is usually not con-
structible. To conjugate such points we use infor-
mation available from the dual cell of an adjacent
interior point. Look at Figure 6 and assume g; lies
on & fixed boundary arc, p being an adjacent inte-
rior point. By conjugating a neighborhood of p, we
automatically obtain f7(g;), which is an ideal can-
didate for the dual point of g;. Compared to the
conjugation of interior points, this method differs
only in that a final averaging is not possible.

Ji(giq1)

FIGURE 6. ‘Actvion of conjugatibh on a cell. Integrating the atomic one form *df inside the triangle (p, gi, gi+1)
leads to a well-defined triangle, whose perpendicular bisectors are part of the dual graph. The image f*(p) is

defined as the mean of the f7(p).
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QA

l U1 (]

FIGURE 7.

In the continuous case, the conjugate of a planar

surface is the same surface rotated by 90°. We now
prove that applying our conjugation algorithm to
a discrete planar surface also gives a rotated copy.

Lemma 12 _For a planar initial triangulation, the
algorithm just described yields ezactly the conju-
gate minimal surface.

Proof. 'In the planar case the operator J is con-
stant on the triangulation. Therefore *df is glob-
ally closed on the triangulation T, and is the dif-
ferential of

fr=—Jf:T—T,

which maps T to its conjugate triangulation T",
namely, T rotated by 90° O

Here isa further property of the discrete conjuga-
tion method:

Lemma 13. Straight lines of a minimizing triangula-
tion are mapped to planar symmetry curves of the
conjugate triangulation. Conversely, planar sym-
metry curves are taken to straight lines.

Proof. Let p be a boundary point lying in the in-
terior of a straight line I, and having as neighbors
along the boundary g, and g.. The vertex star of p
consists of ¢; and ¢;, plus points in the interior of
‘the surface and their reflected images: see Figure 7.

To construct the dual cell, we add the weighted

edges emanating from p in a circular sequence. Let
v be a vector emanating from p. It can be written

base of v} we place the tip of ¥*.

A straight line in the original surface gives a planar symmetry curve in the conjugate.

as the sum of a component parallel to [ and -one
orthogonal:
v=uv+ v,

The vector ¥ symmetric to v with respect to [
equals

7 =u — v}

We now start building the dual cell with the vector
v} parallel to I. Without loss of generality we can
place the midpoint of v at the origin. At the tip of
v} we place the base of the next vector v*, and at
The two endpoint
of the polygonal lines, denoted e and f in Figure 7,
can thus be written

_ 1, L
e= zut+u+v,..
= —Lv} —u + vt

It follows by induction that the dual cell is sym-
metric with respect to the plane orthogonal to [
and going through the center of v; and v3.

In the same manner one proves that planar sym-
metry lines are mapped to straight lines in the con-
jugate surface. O

6. TOPOLOGY CHANGES

In this section we discuss ongoing experiments with
changes in the topology (connectivity) of a dis-
crete surface during the minimization process. The
aim of these experiments is to be able to com-
pute beyond singular situations, when the triangu-
lation becomes degenerate, and thereby compact-
ify the class of discrete surfaces.occurring during
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C
7/2—

B 1 A
FIGURES8. A triangle about to degenerate.

the minimization process. “Degenerate triangula-
tion” means that triangle angles become 0 or .
This happens when a triangle’s vertices become
collinear, or when two or three vertices merge into
a point. From the theoretical point of view these
situations are not dangerous, since the energy and
its derivative of a map taking such a’'degenerate
triangle to a non-degenerate one would be infinite.
Thus the triangle would remain unchanged when
continuing the iteration. The problems-that might
occur are purely numerical.

But it turns out that one can go around these
difficulties with a more careful analysis. We con-
sider the case where a vertex falls onto the opposite
edge as a special case of the situation where two
points merge, by dividing the triangle along the
short altitude and applying the analysis separately
to the two resulting right triangles.

Let A, B, C be the vertices of a right triangle
(Figure 8), where the length BA is normalized to

K~X

one. Consider how the energy changes as C varies,
for a small. The energy is

E = Ycota|B — C|? + cot(r/2 — a)),

S0
6E_1 _ C-B
%— 2C0ta(C—B)———"—2IC_B|
2 ' :
g—ci:écotaid.

We conclude that moving C a little bit while o
is very small would cost a very large amount of
energy. So once a triangle degenerates, it remains
degenerate during further minimizations. The con-
sequence for the numerical algorithm is that we can
compute beyond singular situations: once such a
situation occurs we can simply remove the singu-
lar triangle using the rules shown in Figure 9. The
total number of triangles is less or equal than be-
fore.
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FIGURE 10. Constructing Karcher’s Scherk surface with handle [Karcher 1988]. Top left: Initial triangulation
with one planar and four straight boundary arcs. Boundary points may vary along the straight arcs and within
the planes of the planar arcs. Top right: Triangulation after some minimization steps. Bottom left: The result of
the conjugation algorithm has one straight and four planar symmetry arcs. Bottom right: Successive reflection
along symmetry lines leads to a fundamental domain for the translation group of the complete minimal surface
of Karcher. Refining was controlled by using discrete curvature information of the discrete surface.
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FIGURE11. Minimal surface with ends. Each of the surfaces in this sequence has cubical symmetry, and is made
up of 48 copies of a four-sided fundamental domain, three of whose sides are planar symmetry curves meeting
at 60° and 90° angles; the fourth side meets at 90° angles, and is not a symmetry curve. The fundamental
domains are obtained by minimizing and conjugating an initial surface (not shown) bounded by three straight
lines and a helicoidal arc, also meeting at 60°, 90°, 90° and 90° angles. As the helicoidal arc is translated to

infinity, the conjugate grows a flare, or catenoidal end, and becomes an infinite discrete minimal surface in the
limit.
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e
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FIGURE 12. Minimizing a drop-like surface, bounded by a planar curve. One minimization step leads directly
to a planar surface, and therefore avoids-a singularity at the thin neck, expected under mean curvature flow
algorithms. This illustrates that the minimization algorithm proceeds discretely also in the time direction.

TN
AN
PSS

FIGURE 13. The Goldschmidt solution. Three minimization steps are sufficient to transform the initial surface
(far left) into the so-called Goldschmidt solution (middle right). Between this and the final figure an additional
algorithm was applied to remove degenerate triangles.
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FIGURE 14, Minimizing the instable trinoid. An example similar to Figure 13, but with higher genus. An
instable part of the trinoid minimal: surface of Jorge and: Meeks [1983]) was computed using the Weierstraf§
representation formula and was then -used as an initial surface for the minimization algorithm. The same
Goldschmidt type solution appears as in Figure 13. i ‘ ,
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Left: A one-parameter family of initial surfaces with the topology of the twice-punctured torus, and

varying height (distance between the figure-eight boundary curves). Right: Minimal surfaces after minimization.

one singularity pinching together two opposite points on a cylinder (bottom); or a stable discrete minimal
surfaces is obtained in the limit, for special values of the height (middle).: The initial surfaces were generated

Depending on the height, three outcomes are possible: two thin necks, with singularities, joining flat pieces
using the surface builder module of Grape.

FIGURE15.
(top);
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FIGURE 16. Growing Karcher handles. This example illustrates the time-dependent process of growing addi-
tional handles out of existing minimal surfaces. For the O,C-TO surface of A. Schoen no representation formula
is known; its existence was proved by Karcher {1989] by means of an intermediate-value argument using the
conjugate surface construction: roughly, during the process of growing handles there is one value for which the
handles meet the existing symmetry planes of the cube. The occurring extreme situations made it necessary
to refine adaptively during the deformation. Refining was controlled by using discrete curvature information
about the surface.

33
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- FIGURE 19. Examples showing the first usage of the conjugate surface construction by B. Smyth [1984]. A
discrete minimal surface in a quadrilateral is-conjugated to a patch bounded by the four faces of a tetrahedron
along planar symmetry lines. But this patch is not a stable discrete minimal surface. Further minimization of
this patch while keeping the boundary curves restricted to the faces makes the patch degenerate to an edge of
the tetrahedron.
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FIGURE 20. A minimal configuration bounded by the edges of a cube. The interior of the surface contains
triple lines where surface patches meet at 120° angles.
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