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A proof that the three-dimensional Gauss algorithm is strongly
convergent almost everywhere is given. This algorithm is equiv-
alent to Brun’s algorithm and to the modified Jacobi-Perron al-
gorithm considered by Podsypanin and Schweiger. The proof
involves the rigorous computer assisted estimation of the largest
Lyapunov exponent of a cocycle associated to the algorithm. To
the best of my knowledge, this is the first proof of almost every-
where strong convergence of a Jacobi-Perron type algorithm in
dimension greater than two.

1. INTRODUCTION

Multidimensional continued fraction algorithms have

been widely studied since the nineteenth century. They

were first introduced by Jacobi who considered a general-

isation of the famous one-dimensional continued fraction

algorithm to two dimensions [Jacobi 1868]. Jacobi’s al-

gorithm is now known as the Jacobi-Perron algorithm

(JPA), in recognition of the fundamental work of Perron

who defined the algorithm in arbitrary dimension and

proved its convergence [Perron 1907]. Other famous al-

gorithms include Brun’s [Brun 57], Selmer’s [Selmer 61]

and the modified Jacobi-Perron algorithm considered by

Podsypanin [Podsypanin 77] and Schweiger [Schweiger

79].

For a given irrational vector, (ω1, . . . ,ωd) ∈
[0, 1]d \ Qd, all multidimensional continued frac-

tion algorithms produce a sequence of rational vec-

tors (p1(n)/q(n), . . . , pd(n)/q(n)) which converges to

(ω1, . . . ,ωd). The algorithms mentioned above are known

to be convergent in the weak sense, i.e.

lim
n→∞

°°°°(ω1, . . . ,ωd)− µp1(n)q(n)
, . . . ,

pd(n)

q(n)

¶°°°° = 0.
The approximations are said to be strongly convergent if

lim
n→∞ kq(n)(ω1, . . . ,ωd)− (p1(n), . . . , pd(n))k = 0. (1—1)

c° A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 11:1, page 131



132 Experimental Mathematics, Vol. 11 (2002), No. 1

It is believed that the JPA, the modified JPA and the

algorithms of Brun and Selmer are strongly conver-

gent almost everywhere, i.e. for Lebesgue almost all

(ω1, . . . ,ωd) ∈ [0, 1]d \ Qd equation (1—1) holds. How-
ever, at the present time, the only rigorous proofs of

strong convergence are for two-dimensional algorithms.

In fact, strong convergence of the two-dimensional JPA

is a consequence of the results of Paley and Ursell [Paley,

Ursell 30]. This observation was first made by K. Khanin

[Khanin 92] (see also [Schweiger 96]). The modified

JPA and Brun’s algorithm have also been proven to be

strongly convergent almost everywhere in two dimensions

(see [Meester 98] and [Schratzberger 98]).

In the early 1990s the significance of the Lyapunov

exponents for the convergence properties of multidimen-

sional continued fraction algorithms was noted, inde-

pendently, by D. Kosygin [Kosygin 91] and P. Baldwin

[Baldwin 92a, Baldwin 92b]. A d-dimensional contin-

ued fraction algorithm has d + 1 Lyapunov exponents

λ1 ≥ λ2 ≥ · · · ≥ λd+1. The approximations produced by

an algorithm are exponentially strongly convergent al-

most everywhere if and only if λ2 < 0. In [Ito et al. 93],

Ito, Keane and Ohtsuki introduced a cocycle with largest

Lyapunov exponent λ2. They used this cocycle to give a

computer assisted proof of almost everywhere exponen-

tial strong convergence of the two-dimensional modified

JPA.

In [Hardcastle, Khanin 00], K. Khanin and I intro-

duced a method which, in principle, can be used to prove

almost everywhere strong convergence in arbitrary di-

mension. This scheme requires a good knowledge of the

invariant measure of the endomorphism associated to the

algorithm. The method was applied to the ordered JPA

which is equivalent to the modified JPA and Brun’s algo-

rithm. The ordered JPA is particularly suitable for study

by this scheme because the invariant density is known ex-

plicitly.

In [Hardcastle, Khanin 02] the method of Ito et al.

was discussed in arbitrary dimension. In particular it

was explained how the problem of proving almost every-

where exponential strong convergence of the ordered JPA

can be reduced to a finite number of calculations. In this

paper, these calculations are carried out for the three-

dimensional ordered JPA. This results in a computer as-

sisted proof of almost everywhere strong convergence of

the three-dimensional ordered JPA.

Note that I use the term “proof” here, despite the fact

that I do not attempt to control round-off errors. I will

leave the issue of whether the term “proof” is appropriate

to the individual reader.

Both in [Hardcastle, Khanin 02] and in this paper the

ordered JPA is called the d-dimensional Gauss algorithm.

This name was introduced in [Hardcastle, Khanin 01]

where it was suggested that the ordered JPA should be

considered to be the most natural generalisation of the

one-dimensional Gauss transformation.

2. THE THREE-DIMENSIONAL GAUSS
TRANSFORMATION

This section begins with a description of the three-

dimensional Gauss algorithm. The ergodic properties of

the algorithm are then discussed and we explain the sig-

nificance of the Lyapunov exponents for the convergence

properties of the algorithm.

Let ∆3 = {(ω1,ω2,ω3) ∈ [0, 1]3 : ω1 ≥ ω2 ≥ ω3}.
Define T : ∆3 → ∆3 by

T (ω1,ω2,ω3)

=



µ½
1

ω1

¾
,
ω2
ω1
,
ω3
ω1

¶
if

½
1

ω1

¾
>
ω2
ω1
;µ

ω2
ω1
,

½
1

ω1

¾
,
ω3
ω1

¶
if
ω2
ω1
>

½
1

ω1

¾
>
ω3
ω1
;µ

ω2
ω1
,
ω3
ω1
,

½
1

ω1

¾¶
if
ω3
ω1
>

½
1

ω1

¾
.

(2—1)

In this formula, {x} denotes the fractional part of a real
number x, i.e. {x} = x−[x] where [x] denotes the integer
part of x.

Definition 2.1. The transformation T : ∆3 → ∆3 is

called the three-dimensional Gauss transformation.

Two numbers are naturally associated to the process of

calculating T (ω) = T (ω1,ω2,ω3): the integer part of

1/ω1 which we denote by m(ω), i.e. m(ω) = [1/ω1], and

the position in which {1/ω1} = 1/ω1 −m(ω) is placed,
which we denote by j(ω), i.e. the j(ω)th coordinate of

T (ω) is {1/ω1}.
Define ∆(m,j) = {ω ∈ ∆3 : m(ω) = m, j(ω) = j}. It

is easy to check that T |∆(m,j)
is injective and the image

of ∆(m,j) under T is the whole of ∆3. The inverse of

T |∆(m,j)
, which we denote T−1(m,j), is given by

T−1(m,j)(ω1,ω2,ω3)

=



µ
1

m+ ω1
,

ω2
m+ ω1

,
ω3

m+ ω1

¶
if j = 1;µ

1

m+ ω2
,

ω1
m+ ω2

,
ω3

m+ ω2

¶
if j = 2;µ

1

m+ ω3
,

ω1
m+ ω3

,
ω2

m+ ω3

¶
if j = 3.
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For each (m, j) ∈ N × {1, 2, 3} we define a matrixeA(m,j) ∈ GL(4,Z):
eA(m,1) =


m 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ; eA(m,2) =

m 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 ;

eA(m,3) =

m 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .
The matrices eA(m,j) give the action of T−1(m,j) on rational
vectors:

T−1(m,j)

µ
p1
q
,
p2
q
,
p3
q

¶
=

µep1eq , ep2eq , ep3eq
¶

if and only if


eqep1ep2ep3
 = eA(m,j)


q
p1
p2
p3

.
To form simultaneous rational approximations to a vector

ω ∈ ∆3 we consider the orbit of ω under T :

ω
T7→ Tω

T7→ · · · T7→ Tn−1ω.

To this trajectory we associate the sequence

(m1, j1), . . . , (mn, jn) where

mi = m(T
i−1ω), ji = j(T

i−1ω).

Define

eCn(ω) = eA(m1,j1)
eA(m2,j2) · · · eA(mn,jn). (2—2)

The matrix eCn(ω) gives the nth approximation to ω.
More precisely, let

eCn(ω) =

q(n, 0) q(n, 1) q(n, 2) q(n, 3)
p1(n, 0) p1(n, 1) p1(n, 2) p1(n, 3)
p2(n, 0) p2(n, 1) p2(n, 2) p2(n, 3)
p3(n, 0) p3(n, 1) p3(n, 2) p3(n, 3)

 .
Denote

p(n, i)

q(n, i)
=

µ
p1(n, i)

q(n, i)
,
p2(n, i)

q(n, i)
,
p3(n, i)

q(n, i)

¶
, 0 ≤ i ≤ 3.

(2—3)

We will consider p(n, 0)/q(n, 0) as the nth approximation

to ω. Denote

τn =
p(n, 0)

q(n, 0)
=

µ
p1(n)

q(n)
, . . . ,

pd(n)

q(n)

¶
. (2—4)

Definition 2.2. A sequence of rational vectors τn =

(p1(n)/q(n), . . . , pd(n)/q(n)) is exponentially strongly

convergent to ω if there exist constants k > 0, α > 0

such that

kq(n)ω − (p1(n), . . . , pd(n))k ≤ kq(n)−α.

The purpose of this paper is to prove that the three-

dimensional Gauss algorithm is exponentially strongly

convergent almost everywhere, i.e. for almost all ω ∈
∆3, the sequence τn defined by (2—4) is exponentially

strongly convergent to ω.

It will be convenient to present (2—2) in a slightly dif-

ferent fashion. Let A(m,j) = ( eA(m,j))t where At denotes
the transpose of a matrix A. Define a matrix-valued func-

tion on ∆3 by

A(ω) = A(m(ω),j(ω)).

Denote

Cn(ω) = A(T
n−1ω) · · ·A(Tω)A(ω).

Then

Cn(ω) = ( eCn(ω))t = A(mn,jn) · · ·A(m2,j2)A(m1,j1).

We now discuss the ergodic properties of the map T .

Define

ρ(ω) =
X
π∈S3

1

1 + ωπ(1)

1

1 + ωπ(1) + ωπ(2)

× 1

1 + ωπ(1) + ωπ(2) + ωπ(3)

=
1

1 + ω1 + ω2 + ω3

µ
1

(1 + ω1)(1 + ω1 + ω2)

+
1

(1 + ω1)(1 + ω1 + ω3)
+

1

(1 + ω2)(1 + ω2 + ω1)

+
1

(1 + ω2)(1 + ω2 + ω3)
+

1

(1 + ω3)(1 + ω3 + ω1)

+
1

(1 + ω3)(1 + ω3 + ω2)

¶
(2—5)

where S3 is the group of permutations of {1, 2, 3}. Let
K =

R
∆3 ρ(ω) dω. It is easy to check that the probability

measure µ defined by

µ(X) =
1

K

Z
X

ρ(ω) dω, X a Borel subset of ∆d,

is T -invariant and ergodic (see [Schweiger 79]). This

measure is the unique absolutely continuous T -invariant

probability measure.
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The endomorphism T , the matrix-valued function A

and the invariant measure µ together form a cocycle

which we denote (T,A, µ). This cocycle is integrable,

i.e. Z
∆3

log(max(kA(ω)k, 1))µ(dω) <∞.

Let λ1 ≥ λ2 ≥ λ3 ≥ λ4 be the Lyapunov exponents of

the cocycle (T,A, µ) (see [Oseledets 68]).

The following result relates the convergence properties

of the algorithm to its Lyapunov exponents.

Theorem 2.3.

(i) The largest Lyapunov exponent λ1 is strictly positive

and simple.

(ii) For almost all ω ∈ ∆3

lim
n→∞

1

n
log q(n) = λ1.

(iii) The sequence τn is exponentially strongly convergent

to ω for almost all ω if and only if λ2 < 0.

This theorem, which is based on the work of Lagarias

[Lagarias 93], was proved in [Hardcastle, Khanin 00].

3. STRATEGY OF THE PROOF

By Theorem 2.3, in order to prove almost everywhere

strong convergence, it is enough to show that λ2 < 0.

It is difficult to estimate the exponent λ2 directly, so we

consider a new cocycle (T,D, µ) whose largest Lyapunov

exponent λ1(D) is λ2. Our strategy will be to estimate

λ1(D) by use of the Subadditive Ergodic Theorem.

Define

D1 =

−ω1 −ω2 −ω3
0 1 0
0 0 1

 ; D2 =

 0 1 0
−ω1 −ω2 −ω3
0 0 1

 ;
and

D3 =

 0 1 0
0 0 1
−ω1 −ω2 −ω3

 .
Let D(ω) = Dj(ω). Also define

Dn(ω) = D(T
n−1ω) · · ·D(Tω)D(ω).

Let λ1(D) denote the largest Lyapunov exponent of the

cocycle (T,D, µ).

Lemma 3.1. λ1(D) = λ2.

In [Hardcastle, Khanin 02] we gave a proof of this

lemma and a description of the construction of the matri-

ces D(ω). Our construction was based on an observation

made by Lagarias [Lagarias 93], but matrices similar to

D(ω) have also been considered by Ito, Keane and Oht-

suki [Ito et al. 93, Ito et al. 96].

The following lemma is an immediate consequence of

the Subadditive Ergodic Theorem [Kingman 68].

Lemma 3.2. λ1(D) = infn∈N 1
n

R
∆3 log kDn(ω)kµ(dω).

Combining Lemmas 3.1 and 3.2, and Theorem 2.3 we

have:

Theorem 3.3. The three-dimensional Gauss algorithm

is exponentially strongly convergent almost everywhere if

and only if there exists n ∈ N such that
1

n

Z
∆3

log kDn(ω)kµ(dω) < 0. (3—1)

We will give a computer assisted proof that condition

(3—1) holds for n = 8. The following results, which were

proved in [Hardcastle, Khanin 02], will be useful when

we estimate the integral in (3—1).

We first show that the matrix Dn(ω) can be expressed

in terms of ω and its approximations.

Proposition 3.4. For all n ∈ N

Dn(ω) =

−
q(n, 1)ω1 − p1(n, 1) q(n, 1)ω2 − p2(n, 1) q(n, 1)ω3 − p3(n, 1)q(n, 2)ω1 − p1(n, 2) q(n, 2)ω2 − p2(n, 2) q(n, 2)ω3 − p3(n, 2)
q(n, 3)ω1 − p1(n, 3) q(n, 3)ω2 − p2(n, 3) q(n, 3)ω3 − p3(n, 3)

 .

Recall that in Section 2 we defined

∆(m,j) = {ω ∈ ∆3 : m(ω) = m, j(ω) = j}.

These sets form a Markov partition for T . Let

∆(m1,j1),...,(mn,jn) denote an element of the n
th level of

the Markov partition:

∆(m1,j1),...,(mn,jn) = {ω ∈ ∆3 : m(T i−1ω)
= mi, j(T

i−1ω) = ji for 1 ≤ i ≤ n}.

The following proposition describes how the vertices of

the simplex ∆(m1,j1),...,(mn,jn) can be calculated.
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Proposition 3.5. Let

V(m1,j1),...,(mn,jn) = (vil)1≤i,l≤4

= eA(m1,j1)
eA(m2,j2) · · · eA(mn,jn)V0

where

V0 =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 .
Then the vertices of ∆(m1,j1),...,(mn,jn) are

vi =

µ
v2i
v1i
,
v3i
v1i
,
v4i
v1i

¶
, 1 ≤ i ≤ 4.

The next result explains how the maximum value of

kDn(ω)k over a simplex can be calculated. Let k·k denote
an arbitrary norm on R3. Then the corresponding norm
of a linear operator D : R3 → R3 is given by

kDk = sup
v∈R3\{0}

kDvk
kvk .

Proposition 3.6. The maximum value of log kDn(ω)k
over a simplex ∆ ⊆ ∆(m1,j1),...,(mn,jn) occurs at a ver-

tex of ∆, i.e.

max
ω∈∆

log kDn(ω)k = max
1≤i≤4

log kDn(vi)k

where v1, . . . ,v4 are the vertices of ∆.

Proof: See Corollary 4.7 of [Hardcastle, Khanin 02].

We now consider how we can calculate an upper and

a lower bound for the density ρ over a simplex.

Proposition 3.7. The maximum value of ρ over a simplex
∆ ⊆ ∆3 occurs at one of the vertices of ∆, i.e.

max
ω∈∆

ρ(ω) = ρ(v)

where v is a vertex of ∆.

Proof: See Corollary 4.11 of [Hardcastle, Khanin 02].

Corollary 3.8. If ∆ ⊆ ∆3 is a simplex then

µ(∆) ≤ 1

K

µ
max
1≤i≤4

ρ(vi)

¶
vol(∆)

where v1, . . . ,v4 are the vertices of ∆ and vol denotes

three-dimensional Lebesgue measure.

Define functions s1, s2, s3, s12, s13, s23, s123 : ∆
3 → R

by

s1(ω) = ω1, s2(ω) = ω2, s3(ω) = ω3,

s12(ω) = ω1 + ω2, s13(ω) = ω1 + ω3,

s23(ω) = ω2 + ω3, s123(ω) = ω1 + ω2 + ω3.

Then

ρ(ω) =
1

1 + s123(ω)

×
µ

1

1 + s1(ω)

µ
1

1 + s12(ω)
+

1

1 + s13(ω)

¶
+

1

1 + s2(ω)

µ
1

1 + s12(ω)
+

1

1 + s23(ω)

¶
+

1

1 + s3(ω)

µ
1

1 + s13(ω)
+

1

1 + s23(ω)

¶¶
.

Lemma 3.9. Let ∆ ⊆ ∆3 be a simplex with ver-

tices v1, . . . ,v4. The maximum value of each function

s1, s2, . . . , s123 is attained at a vertex of ∆ , i.e.

max
ω∈∆

sl(ω) = max
1≤i≤4

sl(vi)

where l = 1, 2, 3, 12, 13, 23, 123.

Let s1 = max1≤i≤4 s1(vi) and similarly for

s2, s3, . . . , s123.

Corollary 3.10. For ω ∈ ∆

ρ(ω) ≥ 1

1 + s123

µ
1

1 + s1

µ
1

1 + s12
+

1

1 + s13

¶
+

1

1 + s2

µ
1

1 + s12
+

1

1 + s23

¶
+

1

1 + s3

µ
1

1 + s13
+

1

1 + s23

¶¶
.

Let the above lower bound for ρ(ω) be denoted ρ(∆).

Then we have:

Corollary 3.11. µ(∆) ≥ 1
K ρ(∆) vol(∆).

The following two lemmas will allow us to obtain a

global bound for kDn(ω)k.

Lemma 3.12. For any ω ∈ ∆3, kD(Tω)D(ω)k ≤ √7.
Proof: Suppose j(ω) = 1, so that

T (ω) = T (ω1,ω2,ω3) =

µ
1

ω1
−m1,

ω2
ω1
,
ω3
ω1

¶
.



136 Experimental Mathematics, Vol. 11 (2002), No. 1

If j(Tω) = 1 then

D(Tω)D(ω)

=

m1 − 1
ω1

−ω2
ω1

−ω3
ω1

0 1 0
0 0 1

−ω1 −ω2 −ω3
0 1 0
0 0 1


=

1−m1ω1 −m1ω2 −m1ω3
0 1 0
0 0 1

 . (3—2)

Suppose kxk = k(x1, x2, x3)k =
p
x21 + x

2
2 + x

2
3 = 1.

Then kD(Tω)D(ω)xk2

=

°°°°°°°
1−m1ω1 −m1ω2 −m1ω3

0 1 0
0 0 1


x1x2
x3


°°°°°°°
2

=
¡
(1−m1ω1)x1 −m1ω2x2 −m1ω3x3

¢2
+ x22 + x

2
3

≤ ¡(1−m1ω1)
2 +m2

1ω
2
2 +m

2
1ω

2
3

¢¡
x21 + x

2
2 + x

2
3

¢
+ 1− x21

≤ 3 + 1 = 4,
since 0 ≤ ω3 ≤ ω2 ≤ ω1 ≤ 1

m1
. Thus kD(Tω)D(ω)k ≤ 2.

Now if j(Tω) = 2 or 3 then D(Tω)D(ω) will be the same

as (3—2) up to a change in the order of the rows. Thus,

for any ω such that j(ω) = 1, kD(Tω)D(ω)k ≤ 2.
Now suppose that j(ω) = 2 so that

T (ω) = T (ω1,ω2,ω3) =

µ
ω2
ω1
,
1

ω1
−m1,

ω3
ω1

¶
.

Then if j(Tω) = 1

D(Tω)D(ω)

=

−ω2
ω1

m1 − 1
ω1

−ω3
ω1

0 1 0
0 0 1

 0 1 0
−ω1 −ω2 −ω3
0 0 1



=

1−m1ω1 −m1ω2 −m1ω3
−ω1 −ω2 −ω3
0 0 1

 .
So, if x21 + x

2
2 + x

2
3 = 1 then

kD(Tω)D(ω)xk2

=

°°°°°°
1−m1ω1 −m1ω2 −m1ω3

−ω1 −ω2 −ω3
0 0 1

x1x2
x3

°°°°°°
2

=
¡
(1−m1ω1)x1 −m1ω2x2 −m1ω3x3

¢2
+ (ω1x1 + ω2x2 + ω3x3) + x

2
3

≤ ¡(1−m1ω1)
2 +m2

1ω
2
2 +m

2
1ω

2
3

¢¡
x21 + x

2
2 + x

2
3

¢
+ (ω21 + ω22 + ω23) + 1− x21 − x22

≤ 3 + 3 + 1 = 7.

Thus

kD(Tω)D(ω)k ≤
√
7.

If j(Tω) = 2 or 3 then the same estimate holds, and it

can easily be checked that if j(ω) = 3 then the same

estimate is valid.

Lemma 3.13. For any ω ∈ ∆3

kD(ω)k2

=
1

2

µ
1 + ω21 + ω22 + ω23 +

q
(ω21 + ω22 + ω23 + 1)

2 − 4ω21
¶
.

Proof: This is an easy calculation.

Corollary 3.14. If m(ω) ≥ m then

kD(ω)k2 ≤ 1
2

µ
1 +

3

m2
+

r
9

m4
+

4

m2
+ 1

¶
.

Proof: By the lemma,

kD(ω)k2 = 1

2

µ
1 + ω21 + ω22 + ω23

+
q
ω41 + ω42 + ω43 + 2(ω

2
1ω

2
2 + ω21ω

2
3 + ω22ω

2
3 − ω21 + ω22 + ω23) + 1

¶
.

If m(ω) ≥ m then ω3 ≤ ω2 ≤ ω1 ≤ 1
m , so

kD(ω)k2 ≤ 1
2

µ
1 +

3

m2
+

s
3

m4
+ 2

µ
3

m4
+

2

m2

¶
+ 1

¶
=
1

2

µ
1 +

3

m2
+

r
9

m4
+

4

m2
+ 1

¶
.

4. NUMERICAL ESTIMATION

As explained in the previous section, to prove that

the three-dimensional Gauss algorithm is exponentially

strongly convergent almost everywhere it is enough to

show that

In :=
1

n

Z
∆3

log kDn(ω)kµ(dω) < 0

for some n ∈ N. In this section we will discuss how an
upper bound for the integral In can be found.

1. Choice of norm. The integral In obviously depends

on which norm on the space of linear maps R3 → R3 is
used. Any norm which is defined by

kDk = sup
v∈R3\{0}

kDvk
kvk (4—1)
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for some norm k · k on R3 can be used. In our cal-

culations we will use the norm defined by (4—1) where

k · k is the standard Euclidean norm on R3, i.e. kvk =
k(v1, v2, v3)k =

p
v21 + v

2
2 + v

2
3 . Recall that the norm of a

linear map D : R3 → R3 induced by the Euclidean norm
on R3 is given by

kDk2 = max{γ : γ is an eigenvalue of DtD}.

This norm has the disadvantage that it is hard to com-

pute, in comparison to many other norms. Nevertheless,

this norm will be used in our calculations because Monte-

Carlo integration shows that the value of n required to

obtain Z
∆3

log kDn(ω)kµ(dω) < 0

using the Euclidean norm is smaller than the value

needed using any of the other standard norms, such as

kvk = P3
i=1 |vi| or kvk = max1≤i≤3 |vi|. The advantage

of using a smaller value of n outweighs the disadvantage

that the norm is harder to compute.

2. Choice of n. Firstly, it is necessary to find n such

that In < 0. This can easily be done by estimating

In non-rigorously using a Monte-Carlo type technique.

There are two conflicting factors which determine the

choice of n. On one hand, it is obviously desirable to

have n as small as possible. On the other hand, the larger

In is in absolute value, the larger our error terms in the

estimation procedure can be. In practice, a compromise

has to be reached between these two factors. Table 1

contains Monte-Carlo estimates for the integrals In.

n In

1 0.16

2 0.068

3 0.035

4 0.012

5 −0.004
6 −0.015
7 −0.024
8 −0.032
9 −0.037

TABLE 1. The approximate value of the integral In for
n = 1, 2, . . . , 9.

Our calculation will show that I8 < 0 since n = 8

seems to be the best compromise.

3. Constant factors. Recall that the invariant measure

µ is given by

µ(dω) =
ρ(ω)

K
dω.

Thus

I8 =
1

8K

Z
∆3

log kD8(ω)kρ(ω) dω.

Let γ(D) denote the largest eigenvalue of DtD. Then

I8 =
1

8K

Z
∆3

log
p
γ(D8(ω))ρ(ω) dω

=
1

16K

Z
∆3

log
¡
γ(D8(ω))

¢
ρ(ω) dω.

We now describe how the integral

bI8 = Z
∆3

log
¡
γ(D8(ω))

¢
ρ(ω) dω

can be estimated.

4. Partitioning of ∆3. We will estimate the integralbI8 by considering ∆3 as the union of the simplices

∆(m1,j1),...,(m8,j8) and estimating the integral over each of

these simplices separately. Of course, there are infinitely

many simplices ∆(m1,j1),...,(m8,j8), so the set of these sim-

plices is split into two parts: a finite part, where we con-

sider each simplex individually, and an infinite part where

we use a crude upper bound for the integral.

Let Ξ8 denote the set of elements of the 8
th level of

the Markov partition, i.e.,

Ξ8 = {∆(m1,j1),...,(m8,j8) : mi ∈ N and
1 ≤ ji ≤ 3 for 1 ≤ i ≤ 8}.

The finite part of Ξ8 which is used for integration is

denoted Z.

5. The choice of Z. The set

Ω =
[
∆∈Z

Z

should have as large a measure as possible. Consequently,

the elements of Z should be chosen to be as large in

measure as possible. There are two general principles

which can be used in the choice of Z. Firstly, if all the mi

are relatively small then the measure of ∆(m1,j1),...,(m8,j8)

will be relatively large. Secondly, if two or more mi are

large then the measure will be small.
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6. Splitting of the elements of Z. The set Z is divided

into three parts, Z = Z(1) ∪ Z(2) ∪ Z(3), according to
the relative measures of the simplices. The simplices in

Z(1) are of relatively small measure; those in Z(3) are of

relatively large measure while Z(2) contains simplices of

intermediate measure. Since the integral over a simplex

will be estimated in terms of the values of the integrand

at the vertices, it follows that, in general, the larger the

simplex the less accurate the estimate will be. Conse-

quently the simplices in Z(2) and Z(3) will be split into

subsimplices and the integral over each of these subsim-

plices will be estimated individually. Note that the ver-

tices of a simplex ∆ ∈ Z can be calculated using Propo-
sition 3.5.

A simplex ∆ ∈ Z(2) with vertices v1, . . . ,v4 is divided
into four pieces in the following way. Define

c =
1

4
(v1 + v2 + v3 + v4).

Then
∆ =

4[
i=1

∆i

where∆1 is the simplex with vertices v1,v2,v3, c; ∆2 has

vertices v1,v2,v4, c; ∆3 has vertices v1,v3,v4, c; and ∆4
has vertices v2,v3,v4, c. Let S4(∆) = {∆1,∆2,∆3,∆4}.
The simplices in Z(3) are divided into 16 pieces.

Firstly, ∆ ∈ Z(3) is split into four pieces in the same
way as described above. Each of these four pieces is split

into four pieces in the same way. Thus, if ∆ ∈ Z(3) let
S4(∆) = {∆1,∆2,∆3,∆4}. Then, if S16(∆) denotes the
16 subsimplices that ∆ is split into, we have

S16(∆) =

4[
i=1

S4(∆i).

Let

Z = Z(1) ∪
µ [
∆∈Z(2)

S4(∆)

¶
∪
µ [
∆∈Z(3)

S16(∆)

¶
.

Then

Ω =
[
∆∈Z

∆.

7. Estimation of the integral over ∆ ∈ Z and the mea-
sure of ∆. Let v1, . . . ,v4 be the vertices of ∆ ∈ Z.
(i) For i = 1, . . . , 4, calculate the matrix D8(vi) using

Proposition 3.4.

(ii) Calculate dn(∆) = log

µ
max
1≤i≤4

γ(D8(vi))

¶
.

(iii) Find ρ(vi) using (2—5) and let ρ(∆) = max
1≤i≤4

ρ(vi).

(iv) Calculate a lower bound for the density over ∆ using

Corollary 3.10.

(v) Find the volume of ∆ using

vol(∆) =
1

6

¯̄̄̄
¯̄det
v2 − v1v3 − v1
v4 − v1

¯̄̄̄¯̄ .
(vi) Let

I
(u)
(∆) =

(
dn(∆)ρ(∆) vol(∆) if dn(∆) < 0;

dn(∆)ρ(∆) vol(∆) if dn(∆) > 0.

Notice thatZ
∆

log
¡
γ(D8(ω))

¢
ρ(ω) dω ≤ I(u)(∆).

The symbol “(u)” is intended to denote that this

is an upper bound for the “unnormalised” integral.

Note that

1

8

Z
∆

log kD8(ω)kµ(dω) ≤ 1

16K
I
(u)
(∆).

(vii) Let µ(u)(∆) = ρ(∆) vol(∆). ThenZ
∆

ρ(ω) dω ≥ µ(u)(∆).

8. Estimation of the integral over Ω and the measure
of Ω. The following estimates hold:Z

Ω

log
¡
γ(D8(ω))

¢
ρ(ω) dω ≤

X
∆∈Z

I
(u)
(∆)

and Z
Ω

ρ(ω) dω ≥
X
∆∈Z

µ(u)(∆).

9. An upper bound for the integral over the complemen-
tary set ∆3 \Ω. By Lemma 3.12, kD(Tω)D(ω)k ≤ √7.
Thus kD8(ω)k ≤ (

√
7)4 = 49, which implies thatZ

∆3\Ω
log kD8(ω)kµ(dω) ≤ log(49)µ(∆3 \Ω)

= log(49)
¡
1− µ(Ω)¢

≤ log(49)
µ
1− 1

K

X
∆∈Z

µ(u)(∆)

¶
.
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Set of simplices All simplices ∆(m1,j1),...,(m8,j8)

for which 1 ≤ ji ≤ 3 for i = 1, . . . , 8 and:
Z1 #{i : 1 ≤ mi ≤ 3} = 8 or #{i : 1 ≤ mi ≤ 3} = 7 and #{i : 4 ≤ mi ≤ 6} = 1
Z2 #{i : 7 ≤ mi ≤ 14} = 1, #{i : 1 ≤ mi ≤ 3} = 7
Z3 #{i : 15 ≤ mi ≤ 22} = 1, #{i : 1 ≤ mi ≤ 3} = 7
Z4 #{i : 4 ≤ mi ≤ 6} = 2, #{i : 1 ≤ mi ≤ 3} = 6
Z5 #{i : 4 ≤ mi ≤ 6} = 3, #{i : 1 ≤ mi ≤ 3} = 5
Z6 #{i : 4 ≤ mi ≤ 6} = 4, #{i : 1 ≤ mi ≤ 3} = 4
Z7 #{i : 4 ≤ mi ≤ 6} = 5, #{i : 1 ≤ mi ≤ 3} = 3
Z8 #{i : 4 ≤ mi ≤ 6} = 6, #{i : 1 ≤ mi ≤ 3} = 2
Z9 #{i : 4 ≤ mi ≤ 6} = 7, #{i : 1 ≤ mi ≤ 3} = 1
Z10 #{i : 4 ≤ mi ≤ 6} = 8
Z11 #{i : 4 ≤ mi ≤ 6} = 1, #{i : 7 ≤ mi ≤ 9} = 1, #{i : 1 ≤ mi ≤ 3} = 6

TABLE 2. The definition of Z1, . . . , Z11.

10. An upper bound for I8. We have the following final
upper bound for I8:

I8 =
1

8

Z
∆3
log kD8(ω)kµ(dω)

=
1

16K

Z
Ω

log
¡
γ(D8(ω))

¢
ρ(ω) dω

+
1

8

Z
∆3\Ω

log kD8(ω)kµ(dω)

≤ 1

16K

µ X
∆∈Z

I
(u)
(∆)

¶
+
1

4
log(7)

µ
1− 1

K

X
∆∈Z

µ(u)(∆)

¶
.

5. NUMERICAL RESULTS

The method described in the previous section can easily

be implemented on a computer. In this section we will

present numerical results which were obtained using this

method and which prove that

I8 =
1

8

Z
∆3

log kD8(ω)kµ(dω) < 0.

For convenience of presentation of these results, we split

the set Z of simplices which are used for integration into

11 parts, Z1, Z2, . . . , Z11. These sets are defined in Ta-

ble 2.

The simplices in Z1 were split into 16 pieces, those in

Z2 were split into 4 pieces, and the remaining simplices

were not split at all, i.e.

Z(3) = Z1, Z(2) = Z2, Z(1) =

12[
i=3

Zi.

Let

Ωi =
[
∆∈Zi

∆.

Table 3 contains the numerical results. The pro-

gram which produced these results was written in

C. To evaluate γ(D8(ω)), which requires the calcula-

tion of the largest eigenvalue of the symmetric matrix

(D8(ω))
tD8(ω), the routines tred2 and tqli (see pages 474

and 480 of [Press et al. 92]) were used.

i Upper bound for Lower bound for

the integral over Ωi, the measure of Ωi,

i.e. 1
16K

P
∆∈Zi I

(u)
(∆) i.e. 1

K

P
∆∈Zi µ

(u)(∆)

1 −0.0155527 0.866392

2 −6.58355× 10−4 0.0610718

3 −1.15405× 10−5 6.09373× 10−3
4 −5.94629× 10−4 0.0281124

5 −6.53896× 10−5 1.65073× 10−3
6 −3.24197× 10−6 4.72975× 10−5
7 −7.14697× 10−8 6.80746× 10−7
8 −7.30254× 10−10 4.95039× 10−9
9 −3.37587× 10−12 1.72503× 10−11
10 −5.60129× 10−15 2.28312× 10−14
11 −1.85439× 10−4 0.0106883

Total −0.0170713 0.974056

TABLE 3. Results for regions Ω1, . . . ,Ω11.

The first of these routines transforms a real, symmet-

ric matrix into tridiagonal form by a series of orthogonal

transformations. The second routine finds the eigenval-

ues of such a matrix. (Quicker algorithms to do this

may exist; a referee suggested that it might be better for

future work to use the singular value decomposition to
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compute the norm rather than computing the eigenval-

ues, and noted that there is a variety of public domain

software for both eigenvalues and singular values, notably

LAPACK.)

The evaluation of the matrix Vn =eA(m1,j1)
eA(m2,j2) · · · eA(mn,jn)V0 (see Proposition 3.5)

was performed using integer variables. All other calcula-

tions were performed to double precision. The program

took approximately 750 hours on a Sun Ultra 5 to

produce the given results. The program was also written

in the Matlab language using the built-in eigenvalue and

matrix multiplication routines. Many of the calculations

were repeated using this program and the results agreed

with the ones obtained by the C program to the accuracy

stated.

Proposition 5.1. For any ω ∈ ∆3 \ Ω
1

8
log kD8(ω)k ≤ 0.452590. (5—1)

Proof: Since the set Ω contains all simplices

∆(m1,j1),...,(m8,j8) for which 1 ≤ mi ≤ 6 for 1 ≤ i ≤ 8, if
ω ∈ ∆3 \ Ω then for some 1 ≤ l ≤ 8, ml ≥ 7. Conse-
quently, by Corollary 3.14,

kD(T l−1ω)k ≤
µ
1

2

µ
1 +

3

72
+

r
9

74
+
4

72
+ 1

¶¶ 1
2

.

Also, since m(ω) ≥ 1 for any ω, for 1 ≤ i ≤ 8

kD(T i−1ω)k2 ≤ 1
2

µ
4 +
√
14

¶
. (5—2)

The matrix product D(T 7ω) · · ·D(Tω)D(ω) can be

viewed as the product of three matrices of the form

D(T iω)D(T i−1ω), one matrix D(T i−1ω) for which (5—2)
holds, and the matrix D(T l−1ω). Thus, by Lemma 3.12,

kD8(ω)k ≤ (
√
7)3
µ
1

2

µ
1 +

3

72
+

r
9

74
+
4

72
+ 1

¶¶ 1
2

×
µ
1

2

µ
4 +
√
14

¶¶ 1
2

≤ 37.364389
This implies (5—1).

Theorem 5.2.

1

8

Z
∆3

log kD8(ω)kµ(dω) ≤ −0.00532930

Proof: By Table 3 and Proposition 5.1

1

8

Z
∆3

log kD8(ω)kµ(dω) ≤ −0.0170713
+ 0.452590(1− 0.974056)

= −0.00532930.

Corollary 5.3. The three-dimensional Gauss algorithm is

exponentially strongly convergent almost everywhere.

6. DISCUSSION

Similar calculations to those described above can be car-

ried out in any dimension. However, the number of calcu-

lations necessary increases very rapidly with the dimen-

sion. One reason for this is that the value of n necessary

to have In < 0 increases with the dimension. In dimen-

sion 3, In < 0 for n ≥ 5, whereas in four dimensions,

In < 0 for n ≥ 12. This obviously increases the num-

ber of calculations necessary. Another problem is that

λ1(D)→ 0 as the dimension increases. This means that

the error terms must be smaller, so more calculations will

be necessary. The calculation can, of course, be broken

down into several disjoint calculations which can then be

carried out simultaneously on different computers. More

modern machines than the one used in this paper may be

of the order of 10 times quicker. Using several of these

machines would result in a 100 times improvement in

the speed of the calculation. However, even allowing for

such an improvement, I believe that the calculations nec-

essary to prove strong convergence in dimension 4 would

still take a great deal longer than the calculations de-

scribed here. There seems to be no reason to doubt that

the result is true in all dimensions.

It should be possible to prove strong convergence of

other three-dimensional continued fraction algorithms by

similar methods to those in this paper, if the invariant

density is known explicitly. If a good approximation to

the invariant density is known then it should also be pos-

sible to prove the results. However, obtaining such an

approximation seems to be very difficult.
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