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We describe an algorithm to compute the trace of Hecke op-
erators acting on the space of Hilbert cusp forms defined rel-
ative to a real quadratic field with class number greater than
one. Using this algorithm, we obtain numerical data for eigen-
values and characteristic polynomials of the Hecke operators.
Within the limit of our computation, the conductors of the or-
ders spanned by the Hecke eigenvalue for any principal split
prime ideal contain a nontrivial common factor, which is equal
to a Hecke L-value.

1. INTRODUCTION

Let F be a totally real algebraic number field with non-

trivial class group. We shall study the space Sk(c,ψ) of
Hilbert cusp forms (relative to F ) and the Hecke opera-

tors T (a) acting on it. We shall describe our result us-

ing the framework first introduced in [Shimura 78]. Fol-

lowing Shimura’s work, the trace formula (whose origin

goes back to fundamental work of Eichler, Selberg, and

Shimizu) was made more explicit in [Saito 84]. Saito’s

formula gives us a method for computing Hecke eigenval-

ues as long as the dimension of the space remains reason-

ably small. It is then natural to expect Hecke eigenvalues

for prime ideals p in a given ideal class to have a new fea-

ture specific to the ideal class. Such a new feature can

be detected only by computing Hecke eigenvalues for the

base field with nonprincipal ideal classes. The purpose of

this paper is to compute examples of such Hecke eigen-

values for real quadratic fields with class number greater

than 1 and to present a new phenomenon that we have

discovered through our numerical examples.

We summarize our observations for the data of Hecke

eigenvalues when the weight is parallel (k1, k1), the level

c is the maximal order oF of F , and the Hecke charac-

ter ψ is the identity 1 . Let f be a primitive form con-

tained in S(k1,k1)(oF , 1 ) that is orthogonal to any base
change lift from Q (that is, f is a primitive form in the

“F -proper” subspace of S(k1,k1)(oF , 1 ) as defined in [Doi
et al. 98]). We denote by Cf (p) the eigenvalue of T (p)

satisfying f |T (p) = Cf (p)f , by K
+
f the subfield of the
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Hecke field Kf of f generated by Cf ((p)F ) for all rational

primes p, and by oK+
f
the maximal order of K+

f . For

split prime ideals p, we computed the discriminant of the

order Λf (p) spanned by the eigenvalue of T (p) (that is,

Λf (p) = oK+
f
+ Cf (p)N(p)

(k1−2)/2oK+
f
) to see whether it

has extra factors outside the discriminant of the maxi-

mal order. Extra factors show up as the conductor of

the order (for the definition of the conductor, see just

above Lemma 2.3); so, we write c(Λf (p)) for the conduc-

tor. Surprisingly enough, as long as the prime ideals p

are principal and split, the conductors c(Λf (p)) contain a

nontrivial common factor Ff , at least within the limit of

our computations. (see Sections 4.1 and 4.2).

In Section 2, we recall the space of Hilbert cusp forms

for totally real number fields and Hecke operators. We

then reformulate Saito’s formula into a more computable

one. The notion of the conductor of an order plays an

important role in this process. In Section 3, we give an

algorithm to compute the trace of Hecke operators for a

real quadratic field F . Key points of the computation

are the determination of the relative discriminant DK/F ,

the character
D
K
p

i
, and the Hecke L-value LF (0,χK/F )

for any totally imaginary quadratic extension K over F .

In particular, the computation of the Hecke L-value by

Shintani’s method [Shintani 76] has been reduced to that

of Hilbert symbols (cf. [Okazaki 91]). In Section 4, we

give examples of eigenvalues and characteristic polyno-

mials of Hecke operators restricted to the case where the

weight is (2, 2) and F is Q(
√
257) or Q(

√
401), and we

describe our analysis of the data to convince the reader

of the conclusion we have already described.

While I was preparing the revision of this paper follow-

ing the request of the referee to provide a more detailed

study of Ff , Professor Haruzo Hida provided the follow-

ing crucial suggestion:

(1) Within the limits of the computations carried out,

check that FfoKf is divisible by the common factor

of 1 +N(p)− Cf (p) for the principal primes p.

(2) As is well known, several outstanding mathemati-

cians have worked out the congruence primes be-

tween a primitive cusp form and an Eisenstein se-

ries, which are essentially given by the value at the

weight of a Hecke L-function of the base field. No-

tably, A. Wiles studied in depth such an Eisenstein

congruence, which is a key step in his proof of the

Iwasawa conjecture for totally real fields. Therefore,

if (1) is affirmative, his result presumably implies

that Ff is divisible by the congruence primes. Here

the congruence prime can be found in the prime fac-

tors of the numerator of the algebraic part of the

Hecke L-value LF (2,χ) associated with a nontrivial

class character χ .

(3) Moreover, it is expected that the set of the primes

of Ff coincides with that of the congruence primes

between the F -proper cusp form f and the Eisen-

stein series of weight (k1, k1) with Mellin transform

LF (s,χ)LF (s + 1 − k1,χ−1) for a nontrivial class
character χ.

We shall give affirmative numerical evidence for (1)

and (2) in Section 4.3. As for (3), we hope to discuss this

property in a subsequent paper.

Notation

For an associative ring R with identity element, we de-

note by R× the group of invertible elements of R. We

write M2(R) for the ring of 2 × 2 matrices over R, and
12 for the identity element of M2(R).

For an algebraic number field F of finite degree, we

denote by oF , dF , and DF the maximal order of F , the

different of F over Q, and the discriminant of F over

Q. We write I(F ) for the ideal group of F , and P (F ),

Cl(F), and hF (respectively P
+(F ), Cl+(F), and h+F ) for

the principal ideal group of F , the ideal class group of

F , and the class number of F (respectively those in the

narrow sense). For α ∈ F×, we put (α)F = αoF . For a

prime ideal p of F and m ∈ I(F ), we denote by ordp(m)
the order of m at p. For α ∈ F , we set α ( 0 if α is

totally positive. We define o×F+ = {a ∈ o×F | a ( 0}.
For integral ideals a, b of F , we write a | b if ba−1 ⊂ oF ;
for elements α(W= 0),β of oF , we write α | β if βα−1 ∈
oF . For α1, . . . ,αr ∈ F , we write [α1, . . . ,αr] for the Z-
submodule of F generated by α1, . . . ,αr. We denote by

ζF the Dedekind zeta function of F .

For an extension K of F of finite degree, we denote

by DK/F the relative discriminant of K over F . For an

element α of K, we denote by DK/F (α), NK/F (α), and

TrK/F (α) the relative discriminant, the norm, and the

trace of α in K over F . We denote by N(a) the norm

of an ideal a of F. (We also use the symbols NK/F (α),

TrK/F (α), and N(a) when K and F are local fields.)

For a ∈ R, we denote by [a] the greatest integer not
greater than a. Let

D
a
p

i
be the Legendre symbol for a ∈

Z and a prime number p. For a set X, we denote the

cardinality of X by |X| and also by 2X. For a subgroup
H of a group G, we write [G : H ] = |G/H |. For a subfield
F of a field K, the symbol [K : F ] means the degree of K
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over F . The disjoint union of sets Y1, . . . , Ys is denoted

by
�s
i=1 Yi.

2. THE TRACE FORMULA FOR TOTALLY REAL
NUMBER FIELDS

In this section, we first recall the definition of Hecke op-

erators acting on the space of Hilbert cusp forms as given

in [Shimura 78, §2]. (Cf. also [Shimura 91].)

2.1 Hilbert Cusp Forms and Hecke Operators

Let F be a totally real algebraic number field of degree

g, and denote by a and h the sets of archimedean primes

and nonarchimedean primes of F . For p ∈ h, we also
denote by p the corresponding prime ideal of F . For any

set X, we write Xa for the set of all indexed elements

(xv)v∈a with xv ∈ X . Let FA be the ring of adeles of

F , and F×A the group of ideles of F . For v ∈ a ∪ h and
x ∈ FA, let Fv be the v-completion of F , and xv its v-
component. We write Fa and Fh for the archimedean

and nonarchimedean factors of FA, and identify Fa with

Ra. For a ∈ I(F ) and p ∈ h, we denote by ap the

topological closure of a in Fp. We abbreviate (oF )p and

(dF )p by op and dp, for short. We then set oh =
�
p∈h op

and dh =
�
p∈h dp. For a ∈ F×A , we denote by aoF the

fractional ideal of F such that (aoF )p = apop for every

p ∈ h (i.e., aoF = F ∩ Fa
�
p∈h apop). For a ∈ F×A ,

we set ordp(a) = ordp(aoF ). We denote by πp a prime

element of Fp. By a Hecke character of F , we understand

a character of F×A with values in T = {z ∈ C | |z| = 1}
that is trivial on F×.
Let G = GL2(F ). We set Gv = GL2(Fv) for every v ∈

a∪h. We consider the adelizationGA ofG, and denote by
Ga and Gh its archimedean and nonarchimedean factors.

We set Ga+ = {x ∈ Ga | det(x) ( 0} and G+ = G ∩
Ga+Gh. For an element x of GA, we denote by xa its

a-component. For x ∈ GA, we set xι = det(x)x−1 and
x−ι = (xι)−1. We take an element δh of Fh such that
δhoh = dh, define subsets Yh and Wh of Gh by

Yh =

w
1 0

0 δh

W
M2(oh)

w
1 0

0 δh

W−1
∩Gh,

Wh =

w
1 0

0 δh

W
GL2(oh)

w
1 0

0 δh

W−1
,

and set

Y = Ga+Yh, W = Ga+Wh.

We denote by H the complex upper half-plane. For

α = (αv)v∈a =
DD

av bv
cv dv

ii
v∈a ∈ Ga+, z = (zv)v∈a ∈ Ha,

k = (kv)v∈a ∈ Za, and a C-valued function f on Ha, we

set

α(z) =
D
(avzv + bv)/(cvzv + dv)

i
v∈a,

Jk(α, z) =
�
v∈a

D
det(αv)

−kv/2(cvzv + dv)kv
i
,

(f,kα)(z) = Jk(α, z)−1f(α(z)),
and denote by S̃k the space of all holomorphic functions
f on Ha satisfying the following two conditions:

(ia) There exists 0 < N ∈ Z such that f,kγ = f for all
γ ∈ SL2(oF ) ∩ (12 +N ·M2(oF )).

(ib) For every α ∈ G+, one has
(f,kα)(z) =

3
0Uξ∈Lα

cα(ξ)eF (ξz)

with a lattice Lα of F and cα(ξ) ∈ C, where

eF (ξz) = exp(2π
√−1�v∈a ξvzv).

Let ψ be a Hecke character of F of finite order such

that the nonarchimedean part of its conductor is equal to

oF (i.e. ψ(o
×
h ) = {1}). We denote by Sk(oF ,ψ) the space

of all C-valued functions f on GA satisfying the following

two conditions:

(iia) f(sαxw) = ψ(s)f(x) for s ∈ F×A , α ∈ G, and w ∈
Wh (x ∈ GA).

(iib) For every x ∈ Gh, there exists an element fx of S̃k
such that f(x−ιu) = (fx,ku)(i) for all u ∈ Ga+,

where i = (
√−1, . . . ,√−1) ∈ Ha.

The elements of Sk(oF ,ψ) are called (adelic) Hilbert cusp
forms of weight k, level oF , and character ψ. We note

that if Sk(oF ,ψ) W= {0}, then ψv(−1) = (−1)kv for all
v ∈ a; moreover, kv > 0 for all v ∈ a (cf. [Shimura 78,
Proposition 1.1]).

Let RC(W,Y ) be the free C-module generated by

the double cosets W\Y/W . For WyW,WzW,WwW ∈
W\Y/W , we take coset decompositions WyW =�m
i=1Wyi and WzW =

�n
j=1Wzj , and set

m(WyW,WzW ;WwW ) = 2{(i, j) |Wyizj =Ww}.
We then define the product (WyW )(WzW ) by

(WyW )(WzW )

=
3

WwW∈W\Y/W
m(WyW,WzW ;WwW )WwW.

Note that the above sum is finite. We extend this product

C-linearly on RC(W,Y ). Then RC(W,Y ) becomes a C-

algebra, which is called the Hecke algebra for W and Y .



410 Experimental Mathematics, Vol. 11 (2002), No. 3

For every y ∈ Y , we may assume that WyW =�m
i=1Wyi and (yi)a = 1 (∈ Ga). For f ∈ Sk(oF ,ψ),

we define a function f |WyW on GA by

(f |WyW )(x) =
m3
i=1

f(xyιi) (x ∈ GA).

Then, for s ∈ F×A , α ∈ G, w ∈ Wh, and x ∈ GA,

we have (f |WyW )(sαxw) = ψ(s)
�m

i=1 f(x(yiw
ι)ι) =

ψ(s)(f |WyW )(x); moreover, for x ∈ Gh, we have

(f |WyW )(x−ιu) =
m3
i=1

f((xy−1i )−ιu)

= (

m3
i=1

(fxy−1i
),ku)(i)

for all u ∈ Ga+, where fxy−1i
is as in (iib). Thus

f |WyW ∈ Sk(oF ,ψ). Extending this action C-linearly to
the whole of RC(W,Y ), we have a ring homomorphism

φ of RC(W,Y ) into the C-linear endomorphism algebra

EndC
DSk(oF ,ψ)i. We call an element of φ(RC(W,Y )) a

Hecke operator.

We now determine the generators of RC(W,Y ). For

each integral ideal a of F , we define elements T (a) and

S(a) of RC(W,Y ) by

T (a) =
3

WyW∈W\Y/W
det(y)oF=a

WyW, S(a) =W

w
a 0

0 a

W
W,

where a = (π
ordp(a)
p )p∈h ∈ F×h (⊂ F×A ). Now we set

T (πlp,π
lI
p ) = W

D πlp 0

0 πl
I
p

i
W for l, lI ∈ Z. (Note that πp ∈

F×p (⊂ F×A ).) For y, z ∈ Y , we have

(WyW )(WzW ) =WyzW

if gcd(det(y)oF , det(z)oF ) = oF . (2—1)

Thus we have

T (a) =
�
p|a

p[ ordp(a)/2]3
lp=0

T (π
lp
p ,π

ordp(a)−lp
p )

Q
,

and hence

T (ab) = T (a)T (b) if gcd(a, b) = oF . (2—2)

For any integer e ≥ 0, we have

T (1,πep) =

e(
f=0

(
1≤j≤N(pf )

gcd(mfj ,π
f
p,π

e−f
p )=1

W

w
π
e−f
p mfjδ

−1
p

0 π
f
p

W
,

where {mfj}N(p
f )

j=1 is a complete set of representatives of

op/π
f
pop. Moreover, for l,m, n ≥ 0, we have

T (πlp,π
l
p)T (π

m
p ,π

n
p ) = T (π

l+m
p ,πl+np ). (2—3)

Thus

T (1,πp)T (1,π
e
p)

=

l
T (1,πe+1p ) +N(p)T (πp,πp)T (1,πp)

e−1 if e ≥ 2,
T (1,π2p) + (N(p) + 1)T (πp,πp) if e = 1.

(2—4)

Therefore, we have

T (p)T (pe) = T (pe+1)

+N(p)S(p)T (pe−1) for p ∈ h and e ≥ 1.
(2—5)

From (2—1), (2—3), and (2—4), we see that RC(W,Y ) is

the commutative C-algebra generated by T (p) and S(p)

for all prime ideals p of F . We also denote by T (a) the

image φ(T (a)) in EndC
DSk(oF ,ψ)i.

An element f of Sk(oF ,ψ) is called a primitive form
if f is a normalized common eigenfunction of T (p)

for all prime ideals p. Here normalized means that

the coefficient c(1) of the Fourier expansion fx(z) =�
ξ c(ξ)eF (ξz) for x = 12 (∈ Gh) is equal to 1, where

fx is as in (iib). (Cf. [Shimura 78, p. 650].)

2.2 The Trace Formula

It is known that the characteristic polynomial of a Hecke

operator can be obtained immediately from traces of

Hecke operators by using (2—2), (2—5), and Newton’s

identities ([Miyake 89, pp. 266—267]). In particular if

we take a prime ideal p of F , we can obtain the charac-

teristic polynomial Xr + a1X
r−1 + · · · + ar−1X + ar of

T (p) as follows:

Let c1, . . . , cr be the eigenvalues of T (p), and set bl =

cl1 + · · ·+ clr = tr (T (p)l). Then by (2—5), we have

tr (T (p)l) =

[l/2]3
i=0

ww
l

i

W
−
w

l

i− 1
WW
N(p)iψ(πp)

itrT (pl−2i)

for l = 1, . . . , r, where
D
l
−1
i
= 0. Therefore, we can

obtain bl from trT (p
l−2i) (i = 0, . . . , [l/2]). By Newton’s

formula, we have

bl + bl−1a1 + bl−2a2 + · · ·+ b1al−1 + lal = 0

for l = 1, . . . , r. Thus we can obtain a1, . . . , ar from

b1, . . . , br.
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Now we describe the trace formula of a Hecke operator

T (a) on Sk(oF ,ψ) given by [Saito 84, Theorem 2.1]. But

first, we introduce the following notation.

Let K be a quadratic extension of F . We denote by

OK/F the set of all orders in K containing oF . Let Λ ∈
OK/F . Since Λ is an F -lattice, we can take x1, x2 ∈ K
and a1, a2 ∈ I(F ) such that Λ = a1x1 + a2x2. Then we
define the integral ideal DK/F (Λ) of F by

DK/F (Λ) = (a1a2)
2

eeeeex(1)1 x
(1)
2

x
(2)
1 x

(2)
2

eeeee
2

,

where x
(1)
j , x

(2)
j are the conjugates of xj over F . We call

DK/F (Λ) the relative discriminant of Λ with respect to

K/F .

Theorem 2.1. Let F ( W= Q) be a totally real algebraic

number field of degree g, ψ a Hecke character of F of fi-

nite order such that the nonarchimedean part of its con-

ductor is equal to oF , and k = (k1, . . . , kg) ∈ Za such
that kj ≥ 2 and ψvj (−1) = (−1)kj for each vj ∈ a. For
every element bP (F ) ∈ Cl(F), we define a mapping η of
Cl(F) into Cl+(F) by η(bP (F )) = b2P+(F ). Then, for

any integral ideal a of F , we have

tr T (a) = ε(a)δ(a)
2ζF (2)|DF |3/2

(2π)2g
ψ
pD
π
ordp(a)/2
p

i
p∈h
Q

·
p g�
j=1

(kj − 1)
Q

+ ε(a)(−1)g2−1

·
3
m∈Ma

ψ
pD
π
ordp(m)
p

i
p∈h
Q−1

·
3
n∈Nm

3
s∈Sn

p g�
j=1

Φ(sj , nj , kj)
Q 3
Λ∈Rsn

h(Λ)

hF [Λ× : o×F ]

+ (−1)g−1b(k)
3

λ∈C(ψ)
λ
pD
π
ordp(a)
p

i
p∈h

Q 3
b|a
b⊂oF
b∈I(F )

N(b).

(2—6)

Here

• ε(a) = 1 or 0 depending on whether aP+(F ) ∈
η(Cl(F)) or not;

• δ(a) = 1 or 0 depending on whether a is a square or

not;

• Ma = {m} is the set of all representatives of

{mP (F ) ∈ Cl(F) | m2a ∈ P+(F)} such that m ⊂ oF
and gcd(m, a) = oF ;

• for every m ∈Ma, we take an element nm of oF such

that (nm)F = m2a and nm ( 0, and we set Nm =

nmEF , where EF is a complete set of representatives

of o×F+/(o
×
F )

2;

• for n ∈ Nm, we set Sn = {s ∈ m | s2 − 4nU 0};
• let sj , nj be the vj-components of s, n in Fa, and
αj , βj the roots of X

2 − sjX + nj ; then we set

Φ(sj , nj , kj) =
α
kj−1
j − βkj−1j

αj − βj n
−(kj−2)/2
j ;

• Ksn = F (
√
s2 − 4n), and Rsn is the set of all dis-

tinct orders Λ in OKsn/F satisfying DKsn/F (Λ) |
(s2 − 4n)Fm−2;

• h(Λ) is the class number of Λ; that is, h(Λ) =
|(Ksn⊗F Fh)×/K×

sn

�
p∈h Λ

×
p |, where Λp is the topo-

logical closure of Λ in Ksn ⊗F Fp;
• b(k) = 1 or 0 depending on whether k = (2, . . . , 2)

or not;

• C(ψ) is the set of all unramified Hecke characters λ
of F such that λ2 = ψ.

Note that the second sum of the right-hand side of

(2—6) is independent of the choice of Ma, nm, and EF .

We remark also that (2—6) is shortened and corrected

from the original formula which appeared in [Saito 84].

2.3 Preliminary Lemmas

We now present five lemmas for transforming (2—6) into

a more computable form.

Lemma 2.2. Let F be an algebraic number field of finite

degree, and K a quadratic extension of F . For an integral

ideal c of F , we put ρ(c) = oF+coK . Then ρ is a bijection

of the set of all integral ideals of F onto OK/F .

Proof: Thie result follows immediately from [Shimura

71, Proposition 4.11] when F = Q, and we prove our

assertion in a similar fashion. It is well known that there

exist θ ∈ K and a ∈ I(F ) such that oK = oF + θa. Let c

be an integral ideal of F . Since coK ⊂ oF +coK ⊂ oK , we
see that oF +coK is a Q-lattice in K. Moreover, oF +coK
is a subring of K containing oF . Thus oF + coK ∈ OK/F ,
and hence ρ is a mapping. If oF + coK = oF + c

IoK with

integral ideals c, cI of F , then oF + θac = oF + coK =

oF + c
IoK = oF + θacI. Since {1, θ} is a basis of K over

F , we have c = cI. Thus ρ is injective. Let Λ be any

order in OK/F . Since oK is the unique maximal order of

K, we have Λ ⊂ oK . Set b = {c ∈ a | θc ∈ Λ}. Since
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oF Λ ⊂ oK = oF+θa, we have {0} b ⊂ a. Moreover,
b is an oF -module. Thus b ∈ I(F ). For any x ∈ Λ, we
have x = r + θs with r ∈ oF and s ∈ a, since Λ ⊂ oK .
Then θs = x − r ∈ Λ, and hence s ∈ b. Therefore,

Λ = oF + θb. Now we set c = ba
−1. Then c is an integral

ideal of F , and Λ = oF + θb = oF + θac = oF + coK .

Thus ρ is surjective.

We denote the mapping ρ−1 by c, and we call c(Λ) the
conductor of Λ for Λ ∈ OK/F .

Lemma 2.3. Let F and K be as in Lemma 2.2. Then for

Λ ∈ OK/F , we have
DK/F (Λ) ·DK/F−1 = c(Λ)2.

Proof: By Lemma 2.2, we have oK = oF + θa and

Λ = oF + θac(Λ) with θ ∈ K and a ∈ I(F ). Now let

θ(1), θ(2) be the conjugates of θ over F . Then we have

DK/F = DK/F (oK) = a2(θ(2) − θ(1))2 and DK/F (Λ) =

(ac(Λ))2(θ(2) − θ(1))2.
Let F be an algebraic number field of finite degree,

and K a quadratic extension of F . For p ∈ h, we define

D
K
p

i
=


1 if p splits in K,

−1 if p remains prime in K,

0 if p ramifies in K.

Lemma 2.4. Let F be a totally real algebraic number

field of finite degree, and K a totally imaginary quadratic

extension of F . Then for Λ ∈ OK/F , we have

h(Λ) = hK
J
o×K : Λ

×o−1N(c(Λ)) �
p|c(Λ)
p∈h

p
1− DK

p

i
N(p)−1

Q
.

Proof: This can be proved in exactly the same way as

in [Miyake 89, Theorem 6.7.2], which deals with the case

F = Q. For any lattice L inK and p ∈ h, we write Lp for
the topological closure of L in K ⊗F Fp. For Λ ∈ OK/F ,
we have

h(Λ) =
eee(K ⊗F Fh)× j K×�

p∈h
Λ×p
eee

=
eee(K ⊗F Fh)× j K×�

p∈h
(oK)

×
p

eee
·
eeeK×�

p∈h
(oK)

×
p

j
K×�

p∈h
Λ×p
eee.

Generally for an abelian group G and subgroups H , I,

and J satisfying I ⊃ J , the sequence
1→ (H ∩ I)/(H ∩ J)→ I/J → HI/HJ → 1

is exact. Thus

h(Λ) = hK ·
eee�
p∈h
(oK)

×
p

j �
p∈h

Λ×p
eee

·
eeeDK× ∩

�
p∈h
(oK)

×
p

i j D
K× ∩

�
p∈h

Λ×p
ieee−1

= hK ·
p�
p∈h

ee(oK)×p /Λ×p eeQ · eeo×K/Λ×ee−1.
Since (oK)p W= Λp if and only if p | c(Λ), we need to show
only that

|(oK)×p /Λ×p | = N(c(Λ)p)
p
1− DK

p

i
N(p)−1

Q
(2—7)

for (oK)p W= Λp. We denote an element α⊗β of K⊗F Fp
simply by αβ. Let p satisfy (oK)p W= Λp. Assume first

that p splits in K. Set oK = oF + θa with θ ∈ K and

a ∈ I(F ), and take αp ∈ Fp such that αpop = ap. Let

f be the minimal polynomial of θ over F , and let θ1, θ2

be the two roots of f in Fp. For a, b ∈ Fp, we set τ (a +
bαpθ) = (a+bαpθ1, a+bαpθ2). Then τ is a topological Fp-

algebra isomorphism of K⊗F Fp onto Fp×Fp. (cf. [Weil
67, Chapter III, Theorem 4]). Since (αp(θ2 − θ1))

2op =

(DK/F )p = op, we have τ ((oK)p) = op × op and τ(Λp) =
{(α,β) ∈ op × op | α − β ∈ c(Λ)p}. Hence τ (Λp)× =

{(α,β) ∈ o×p ×o×p | α−β ∈ c(Λ)p}. For (α,β) ∈ o×p ×o×p ,
we set ρ((α,β)) = αβ−1(1 + c(Λ)p). Then ρ is a group

homomorphism of o×p × o×p onto o×p /(1 + c(Λ)p). Since
Ker(ρ) = τ (Λp)

×, we have τ ((oK)
×
p )/τ (Λ

×
p ) = (o×p ×

o×p )/τ (Λp)× ∼= o×p /(1 + c(Λ)p). Therefore,
|(oK)×p /Λ×p | =

eeo×p /(1+c(Λ)p)ee = N(c(Λ)p)(1−N(p)−1).
Thus we obtain (2—7) in this case. Now assume that p

remains prime or ramifies in K. Then K⊗F Fp is a field.
For β ∈ o×p and γ ∈ (oK)×p , we set µ1(β(1 + c(Λ)p)) =
β(1 + c(Λ)p(oK)p) and µ2(γ(1 + c(Λ)p(oK)p)) = γΛ×p .
Since (1 + c(Λ)p(oK)p) ∩ o×p = (1 + c(Λ)p + θc(Λ)pap) ∩
o×p = 1 + c(Λ)p and Λ

×
p = o×p + c(Λ)p(oK)p = o×p (1 +

c(Λ)p(oK)p), the sequence

1→ o×p /(1 + c(Λ)p)
µ1→ (oK)

×
p /(1 + c(Λ)p(oK)p)

µ2→ (oK)
×
p /Λ

×
p → 1

is exact. Therefore,

EE(oK)×p /Λ×p EE = EE(oK)×p /(1+ c(Λ)p(oK)p)EE · EEo×p /(1+c(Λ)p)EE−1.
Here we haveee(oK)×p /(1 + c(Λ)p(oK)p)ee = ee((oK)p/c(Λ)p(oK)p)×ee
=

l
N(c(Λ)p)

2(1−N(p)−2) if p remains prime in K,

N(c(Λ)p)
2(1−N(p)−1) if p ramifies in K,
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and
eeo×p /(1 + c(Λ)p)ee = ee(op/c(Λ)p)×ee = N(c(Λ)p)(1 −

N(p)−1), which proves (2—7) in this case.

Lemma 2.5. Let F and K be as in Lemma 2.4. Let g be

the degree of F over Q. Let χK/F be the ideal character

corresponding to the extension K/F (by means of class

field theory). Then

LF (0,χK/F ) = 2
g−1 hK

hF
J
o×K : o

×
F

o ,
where LF (s,χK/F ) is the Hecke L-function associated

with χK/F .

Proof: Let WK (respectively WF ) be the group of the

roots of 1 in K (respectively F ), and RK (respectively

RF ) the regulator of K (respectively F ). Set wK = |WK |
and wF = |WF |. Let ZK(s) =

D
(2π)1−sΓ(s)

ig
ζK(s)

and ZF (s) =
D
π−s/2Γ(s/2)

ig
ζF (s). Then we have

Ress=0 ZK(s) = −(2π)ghKRKw−1K and Ress=0 ZF (s) =

−2ghFRFw−1F . By ζK(s) = ζF (s)LF (s,χK/F ), we have

ZK(s) = πg(1−s)/2Γ ((s+ 1)/2)g ZF (s)LF (s,χK/F ), and
hence Ress=0 ZK(s) = πg Ress=0 ZF (s) · LF (0,χK/F ).
Therefore,

LF (0,χK/F ) =
hKRKw

−1
K

hFRFw
−1
F

.

Thus we need to show that

[o×K : o
×
F ] = 2

g−1wKw−1F R−1K RF . (2—8)

Let l be the mapping from o×K to Rg defined by l(δ) =

(log |δ(1)|, . . . , log |δ(g)|), where δ(1), . . . , δ(g) are the con-
jugates of δ over F . Then o×K/WKo

×
F
∼= l(o×K)/l(o

×
F ).

Since [l(o×K) : l(o
×
F )] = 2g−1R−1K RF , we have [o

×
K :

WKo
×
F ] = 2g−1R−1K RF . On the other hand, we have

[WKo
×
F : o

×
F ] = w

−1
F wK . Thus we obtain (2—8).

Lemma 2.6. Let F and K be as in Lemma 2.4. Then,

for any integral ideal f of F , we have3
c|f

c⊂oF
c∈I(F )

w
N(c)

�
p|c
p∈h

p
1− DK

p

i
N(p)−1

QW

=

w �
p|f

(Kp)=−1
p∈h

N(p)ordp(f)+1 +N(p)ordp(f) − 2
N(p)− 1

W

·
w �

p|f
(Kp)=1
p∈h

N(p)ordp(f)
Ww �

p|f
(Kp)=0
p∈h

N(p)ordp(f)+1 − 1
N(p)− 1

W
.

Proof: For every prime ideal p of F and 0 ≤ s ∈ Z, we
set

ϕ(ps) =

l
1 if s = 0,

N(p)s
p
1− DK

p

i
N(p)−1

Q
if s ≥ 1.

Now let f = pe11 · · · perr be the factorization of f into prime

factors. Then3
c|f

w
N(c)

�
p|c

p
1− DK

p

i
N(p)−1

QW

=

e13
s1=0

· · ·
er3
sr=0

p
ϕ(ps11 ) · · ·ϕ(psrr )

Q
=

r�
j=1

p ej3
sj=0

ϕ(p
sj
j )
Q
.

Here we have

ej�
sj=0

ϕ(p
sj
j ) =


N(pj)

ej if
i
K
pj

J
= 1,i

N(pj)
ej+1 +N(pj)

ej − 2J
·iN(pj)− 1J−1 if

i
K
pj

J
= −1,i

N(pj)
ej+1 − 1JiN(pj)− 1J−1 if

i
K
pj

J
= 0.

Therefore, we obtain our lemma.

2.4 Formula for Computation
From the above lemmas, we obtain the following result:

Proposition 2.7. With the notation of Theorem 2.1, we have

trT (a) = ε(a)δ(a)(−1)g21−gζF (−1)ψ
Qi
π
ordp(a)/2
p

J
p∈h

w
·
Q g9
j=1

(kj − 1)
w
+ ε(a)(−1)g2−g

�
m∈Ma

ψ
Qi
π
ordp(m)
p

J
p∈h

w−1
·
�
n∈Nm

�
s∈Sn

Q g9
j=1

Φ(sj , nj , kj)
w
· LF (0,χKsn/F )

·
W 9

p|fsn
(Ksnp )=−1

p∈h

N(p)ordp(fsn)+1 +N(p)ordp(fsn) − 2
N(p)− 1

}

·
W 9

p|fsn
(Ksnp )=1
p∈h

N(p)ordp(fsn)
}W 9

p|fsn
(Ksnp )=0
p∈h

N(p)ordp(fsn)+1 − 1
N(p)− 1

}

+ (−1)g−1b(k)
�

λ∈C(ψ)
λ
Qi
π
ordp(a)
p

J
p∈h

w �
b|a

b⊂oF
b∈I(F )

N(b),

(2—9)
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where fsn = c
D
oF + ((s+

√
s2 − 4n)/2)oF

i
m−1 =

D
(s2 −

4n)FDKsn/F
−1i1/2m−1, and χKsn/F is the ideal charac-

ter corresponding to the extension Ksn/F . (We note that

(s2 − 4n)FDKsn/F
−1 is a square by Lemma 2.3.)

Proof: In view of Theorem 2.1, we only need to show
that

2ζF (2)|DF |3/2
(2π)2g

= (−1)g21−gζF (−1), (2—10)�
Λ∈Rsn

h(Λ)

hF [Λ× : o×F ]
= 2

1−g
LF (0,χKsn/F )

·
W 9

p|fsn
(Ksnp )=−1

N(p)ordp(fsn)+1 +N(p)ordp(fsn) − 2
N(p)− 1

}

·
W 9

p|fsn
(Ksnp )=1

N(p)ordp(fsn)
}W 9

p|fsn
(Ksn

p )=0

N(p)ordp(fsn)+1 − 1
N(p)− 1

}
.

(2—11)

By the functional equation of ζF , we have ζF (2) =

|DF |−3/2(−2π2)gζF (−1), and hence we obtain (2—10).
Next, by Lemma 2.4 and Lemma 2.5, we have

�
Λ∈Rsn

h(Λ)

hF [Λ× : o×F ]

=
�

Λ∈Rsn

hKsn

hF
o
o×Ksn

: o×F
PN(c(Λ)) 9

p|c(Λ)

Q
1− iKsn

p

J
N(p)−1

w
= 2

1−g
LF (0,χKsn/F )

�
Λ∈Rsn

N(c(Λ))

·
9
p|c(Λ)

Q
1− iKsn

p

J
N(p)−1

w
.

Now, from Lemma 2.3, we have

Rsn =
\
Λ ∈ OKsn/F | DKsn/F (Λ) | (s2 − 4n)Fm−2

�
=
\
Λ ∈ OKsn/F | c(Λ)2 | (s2 − 4n)FDKsn/F

−1m−2
�

=
\
Λ ∈ OKsn/F | c(Λ) | fsn

�
.

Thus we have3
Λ∈Rsn

N(c(Λ))
�
p|c(Λ)

p
1− DKsn

p

i
N(p)−1

Q
=
3
c|fsn
c⊂oF
c∈I(F )

N(c)
�
p|c

p
1− DKsn

p

i
N(p)−1

Q
,

since the mapping c is bijective by Lemma 2.2. Therefore

we obtain (2—11) by Lemma 2.6.

3. COMPUTATION FOR REAL QUADRATIC FIELDS

In this section, we give an algorithm to compute For-

mula (2—9) for a real quadratic field F . In particular, we

assume F = Q(
√
m) with a square-free integer m satisfy-

ing m ≡ 1 (mod 4Z) exclusively, though the case m W≡ 1
(mod 4Z) can be handled by a similar consideration be-

low. Throughout this section, we let ω = (1 +
√
m)/2,

and denote by σ the nontrivial automorphism of F . We

note that for every integral ideal a of F there exist ratio-

nal integers a > 0 and b such that a = [a, b+ω]; moreover,

it is well known how to check whether a ∈ P (F ) (respec-
tively a ∈ P+(F )) and to find an explicit generator of a
when a ∈ P (F ) (respectively a ∈ P+(F )) by the theory
of continued fractions (cf. [Dirichlet 1894], for example).

For p ∈ h, we call p odd (respectively even) if p (2)F
(respectively p | (2)F ).

3.1 Preliminaries

We note that ζF (−1) = ζ(−1)·LD−1, Dmii = 24−1B
2,(m),

where B
2,(m) is the second generalized Bernoulli number

associated with
D
m
i
. Here

D
m
i
is the character corre-

sponding to Q(
√
m)/Q. It is known that

B
2,(m) = (6m)

−1
m3
a=1

D
m
a

i
(6a2 − 6am+m2)

(cf. [Iwasawa 72, §2]). Hence

ζF (−1) = (144m)−1
m3
a=1

D
m
a

i
(6a2 − 6am+m2).

Thus the first and third sums of the right-hand side of

(2—9) are easily computable.

Hereinafter, we consider the second sum for the case

ε(a) = 1, which implies Ma W= ∅. We first explain a

method for choosing Ma, Nm, and Sn in (2—9). Choose

an arbitrary complete set of integral representatives C

of Cl(F). Take the set of all elements b1, . . . , bu of C

such that b2ja ∈ P+(F ). If gcd(bj , a) = oF , then set

mj = bj ; if gcd(bj , a) W= oF , then take a prime ideal pj
of F satisfying pj a and pσj bj ∈ P (F ) (i.e., pjP (F ) =
bjP (F )), and set mj = pj . Then the set Ma is given by

Ma = {m1, . . . ,mu}.

We fix m ∈ Ma. Then we can take nm satisfying 0 U
nm ∈ oF and (nm)F = m2a. Now we can choose {1} as
EF when hF = h+F , and {1, ε} as EF when hF W= h+F ,

where ε is the fundamental unit of F satisfying ε > 1.

Thus we can take Nm = nmEF . (Note that the choice of
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Ma and Nm has no effect on tr T (a), as remarked after

Theorem 2.1.) We also fix n ∈ Nm. Now we set m =

[l1, l2+ω] with l1, l2 ∈ Z satisfying 1 ≤ l1 and 0 ≤ l2 < l1.
For s ∈ m, we can set s = yl1 + x(l2 + ω) with y, x ∈ Z.
Then we have

s2 U 4n⇐⇒ s2 < 4n, (sσ)2 < 4nσ

⇐⇒ −2√n < s < 2√n, −2√nσ < sσ < 2√nσ

⇐⇒



y < −2l2 + 1 +
√
m

2l1
x+

2
√
n

l1
,

y > −2l2 + 1 +
√
m

2l1
x− 2

√
n

l1
,

y < −2l2 + 1−
√
m

2l1
x+

2
√
nσ

l1
,

y > −2l2 + 1−
√
m

2l1
x− 2

√
nσ

l1
.

(3—1)

Thus we have

Sn = {yl1 + x(l2 + ω) | y, x ∈ Z satisfying (3—1)}.
Set K = F (

√
α) with α ∈ oF satisfying αU 0. Then our

study is reduced to the computation of the following :

(i) DK/F =
�
p∈hDp,

(ii)
D
K
p

i
for p ∈ h,

(iii) LF (0,χK/F ),

where
�
p∈hDp is the prime factorization of DK/F .

3.2 Determination of Dp and
D
K
p

i
for an

Odd Prime p

First we explain a way to determine Dp and
D
K
p

i
for an

odd prime ideal p of F .

Proposition 3.1. Let F be an algebraic number field of

finite degree, and K = F (
√
α) a quadratic extension of

F with α ∈ oF . Let p be an odd prime ideal of F . Then

Dp =

l
oF if 2 | ordp(α),
p otherwise.

Proof: If 2 | ordp(α), then we can find α1 ∈ oF such

that K = F (
√
α1) and ordp(α1) = 0. Since DK/F |

DK/F (
√
α1) and DK/F (

√
α1) = (4α1)F , we have Dp =

oF . Now assume 2 ordp(α), take a prime ideal P of K

that lies above p, and let e be the ramification index of P

in K/F . Then 2 ·ordP(√α) = ordP(α) = e ·ordp(α), and
hence e = 2. Since [KP : Fp] = 2 and p (2)F , we have

Dp = pe−1 = p (cf. [Weil 67, Chapter VIII, Corollary 3

of Proposition 7]).

We can determine Dp from this proposition.

Let F , K, and p be as in Proposition 3.1. By

Dedekind’s discriminant theorem, we know thatD
K
p

i
= 0⇐⇒ p | DK/F . (3—2)

For an explicit determination of
D
K
p

i
for p DK/F , we

start with the following lemma.

Lemma 3.2. Let F be a Galois extension of Q of

prime degree, and K = F (
√
α) a quadratic extension

of F with α ∈ oF . Let p be an odd prime ideal of

F satisfying p DK/F , and p the prime number in

Q that lies below p (i.e., p | (p)F , which means that
p ∩ Z = pZ). If p remains prime in F/Q, then we

set a = NF/Q(αp
− ordp(α)); if p ramifies in F/Q, then

we take a ∈ (απ
− ordp(α)
p + πpop) ∩ Z; if p splits in

F/Q, then we take a0 ∈ (α + pordp(α)+1op) ∩ Z, and set
a = a0p

− ordp(α). Then we haveD
K
p

i
=
D
a
p

i
.

Note that this criterion does not depend on the choices

of α and a from the proof below.

Proof: Put [F : Q] = g. Now, p splits or remains prime

in K/F by (3—2), and 2 | ordp(α) by Proposition 3.1.
Since p is odd, we have

(1 + πpop)
2 = 1 + πpop;

indeed, for any element 1+πpy ∈ 1+πpop, the polynomial
πpX

2+2X − y has a root x ∈ op by Hensel’s lemma,and
thus (1 + πpx)

2 = 1 + πpy. Note that p splits in K/F if

and only if the polynomial X2 − α is reducible over Fp;

that is, D
K
p

i
= 1⇐⇒ α ∈ (F×p )2.

Assume first that p remains prime in F/Q. Then

[Fp : Qp] = g and ordp(p) = 1. Write Gal(F/Q) =

{σ1, . . . ,σg} and α0 = αp− ordp(α)(∈ o×p ∩ oF ). Then

{αpj0 + op | j = 0, . . . , g − 1} = {ασj0 + op | j = 1, . . . , g}
(cf. [Weil 67, Chapter I, Corollary 2 of Theorem 7]). Thus

α ∈ (F×p )2 ⇐⇒ α0 ∈ (o×p )2

⇐⇒ (α0α
p
0 · · ·αp

g−1
0 )

(p−1)/2

= α
(N(p)−1)/2
0 ∈ 1 + pop

⇐⇒ (α
σ1
0 α

σ2
0 · · ·ασg0 )(p−1)/2

= NF/Q(α0)
(p−1)/2 ∈ 1 + pop

⇐⇒ a
(p−1)/2

= NF/Q(α0)
(p−1)/2 ∈ 1 + pZ

⇐⇒ ia
p

J
= 1.
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Next assume that p ramifies in F/Q. Since απ
− ordp(α)
p ∈

o×p and op/πpop ∼= Z/pZ, we can take a ∈ (απ− ordp(α)p +

πpop) ∩ Z. Thus

α ∈ (F×p )2 ⇐⇒ απ
− ordp(α)
p ∈ (o×p )2

⇐⇒ a ∈ (o×p )2
⇐⇒ a(p−1)/2 ∈ 1 + πpop

(i.e. a(p−1)/2 ∈ 1 + pZ)
⇐⇒ Da

p

i
= 1.

Finally, assume that p splits in F/Q. Then Fp ∼= Qp

and ordp(p) = 1. Since Z is dense in op, we can take

a0 ∈ (α + pordp(α)+1op) ∩ Z. Then α(1 + pop) = α +

pordp(α)+1op = a0(1 + pop). Thus

α ∈ (F×p )2 ⇐⇒ a0 ∈ (F×p )2
(i.e. a = a0p

− ordp(α) ∈ (o×p )2)
⇐⇒ a(p−1)/2 ∈ 1 + πpop

(i.e. a(p−1)/2 ∈ 1 + pZ)
⇐⇒ Dapi = 1.

This completes the proof.

Lemma 3.3. Let F = Q(
√
m) be a real quadratic field

with a square-free integer m satisfying m ≡ 1 (mod 4Z).
Let p be an odd prime number in Q such that

D
m
p

i
= 1,

and p the prime ideal of F that lies above p. Let r be an

integer such that p = [p, r + ω]. Then, for u ∈ Z and

1 ≤ j ∈ Z, u ≡ √m (mod pjop) if and only if u
2 ≡ m

(mod pjZ) and u ≡ −2r − 1 (mod pZ).

Proof: We first prove that u ≡ √m or −√m (mod pjop)

if and only if u2 ≡ m (mod pjZ) for u ∈ Z and 1 ≤
j ∈ Z. If u − √m ∈ pjop or u +

√
m ∈ pjop, then

u2 − m = (u − √m)(u + √m) ∈ pjop, and hence u2 −
m ∈ pjop ∩ Z = pjZ. Conversely, X2 ≡ m (mod pjZ)

has exactly two solutions modulo pjZ, since p W= 2 andD
m
p

i
= 1. Since p is odd and

√
m ∈ o×p , we have

√
m W≡

−√m (mod pjop). Thus if u ∈ Z satisfies the condition
u2 ≡ m (mod pjZ), then u ≡ √m or −√m (mod pjop).

Now, 2−1(2r + 1 +
√
m) = r + ω ∈ p ⊂ pop. Thus

2r + 1 +
√
m ∈ pop, that is, √m ≡ −2r − 1 (mod pop).

Therefore, we obtain our assertion.

From the two lemmas above, we obtain the following

proposition:

Proposition 3.4. Let F and m be as in Lemma 3.3, and

0 ( α ∈ oF . Set K = F (
√
α), and α = a1 + a2ω with

a1, a2 ∈ Z. Let p be an odd prime ideal of F satisfying

p DK/F , and p the prime number in Q that lies below p.

Put t = ordp(α). In particular, if p splits in F/Q, we set

p = [p, r+ ω] with r ∈ Z, l = ordp(gcd(a1, a2)), and take
u ∈ Z such that u2 ≡ m (mod pt−l+1Z) and u ≡ −2r−1
(mod pZ). Set

a =



p−2t
D
a21 + a1a2 + a

2
2(1−m)/4

i
if p remains prime in F/Q,

(mp−2)t/2
D
a1 − a2(p− 1)/2

i
if p ramifies in F/Q,

p−t
D
(p+ 1)/2

iD
2a1 + a2(1 + u)

i
if p splits in F/Q.

Then we have D
K
p

i
=
D
a
p

i
.

Proof: If p remains prime in F/Q, our assertion follows

immediately from Lemma 3.2. Next we assume that p

ramifies in F/Q. Then p = [p, (p − 1)/2 + ω]. Since√
mp−1 ∈ F×, ordp(

√
mp−1) = −1, and ordq(

√
mp−1) ≥

0 for any q ∈ h − {p}, we see that πp =
√
m
−1
p is a

prime element of Fp and απ
−t
p = α(mp−2)t/2 ∈ oF . Thus

a1(mp
−2)t/2, a2(mp−2)t/2 ∈ Z, and hence απ−tp +πpop ⊃

α(mp−2)t/2+p z (mp−2)t/2(a1−a2(p−1)/2). Therefore,
we obtain a in Lemma 3.2 in this case. Now assume

that p splits in F/Q. By Lemma 3.3, we have u ≡ √m
(mod pt−l+1op). Since pl | a2, we have a2u ≡ a2

√
m

(mod pt+1op), and henceD
(p+ 1)/2

iD
2a1 + a2(1 + u)

i ≡ D(p+ 1)/2i
· D2a1 + a2(1 +√m)i

= (p+ 1)α

≡ α (mod pt+1op).

Thus ((p + 1)/2)(2a1 + a2(1 + u)) ∈ (α + pt+1op) ∩ Z.
Therefore, our assertion follows from Lemma 3.2.

Remark 3.5. Note that we can find u ∈ Z satisfying
u2 ≡ m (mod pt−l+1Z) (3—3)

when
D
m
p

i
= 1. Then we have u ≡ −2r − 1 or 2r + 1

(mod pZ), as we see in the proof of Lemma 3.3. Finding a

solution u of (3—3) can be reduced to mod p calculation by

the following procedure: Let u = c0+ c1p+ · · ·+ ct−lpt−l
with 0 ≤ cj ≤ p − 1, and set uj = c0 + c1p + · · · + cjpj
for 0 ≤ j ≤ t − l. Since m ≡ u2j = (uj−1 + cjpj)2 ≡
u2j−1 + 2uj−1cjp

j (mod pj+1Z), we have

m ≡ c20 (mod pZ), (3—4a)

p−j(m− u2j−1) ≡ 2uj−1cj (mod pZ) (3—4b)
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for 1 ≤ j ≤ t − l. Thus we can determine c0, . . . , ct−l
inductively by (3—4a, b).

From Proposition 3.4 and Remark 3.5, we can immedi-

ately determine
D
K
p

i
for every odd prime ideal p satisfying

p DK/F .

3.3 Determination of Dp and
D
K
p

i
for an Even Prime p

Next we give a method for determining Dp and
D
K
p

i
for

an even prime ideal p of F .

Proposition 3.6. Let F , m, α, K, a1, and a2 be as in
Proposition 3.4. Let p be an even prime ideal of F . As-

sume p2 (α)F . If m ≡ 1 (mod 8Z), we set l = (m−1)/8
and p = [2, r + ω], where r = 0 or 1; we also set

Am = {(a, b) ∈ Z2 | a+ b(2l(−1)r + r)− 1 ∈ 8Z},
AIm = {(a, b) ∈ Z2 | a− b(2l − r)− 1 ∈ 4Z}.

If m ≡ 5 (mod 8Z), we set l = (m− 5)/8,
Am = {(a, b) ∈ Z2 | (a− 1, b) ∈ 4Z× 8Z

or (a− 2l − 2, b− 3) ∈ 8Z× 4Z
or (a− 2l − 1, b− 1) ∈ (8Z)2
or (a− 2l − 5, b− 5) ∈ (8Z)2},

AIm = {(a, b) ∈ Z2 | (a− 1, b) ∈ (4Z)2
or (a− 2l − 2, b− 3) ∈ (4Z)2
or (a− 2l − 1, b− 1) ∈ (4Z)2}.

Then we have

D
K
p

i
=


1 if p (α)F and (a1, a2) ∈ Am,
−1 if p (α)F , (a1, a2) /∈ Am,

and (a1, a2) ∈ AIm,
0 otherwise,

and

Dp =


oF if

D
K
p

i W= 0,
p2 if

D
K
p

i
= 0 and p (α)F ,

p3 if p | (α)F .

Proof: We set

f = max{j ∈ Z | 0 ≤ j ≤ 3,
there exists γ ∈ oF such that γ2 ≡ α (mod pj)}.

Then, by [Okazaki 91, Proposition 3], we have

D
K
p

i
=


1 if f = 3,

−1 if f = 2,

0 if f ≤ 1,
Dp =

l
p2−2[f/2] if p (α)F ,

p3 if p | (α)F .

When p | (α)F , we have α+ p2 ⊂ πpo
×
p , thus f = 1, and

hence
D
K
p

i
= 0; moreover, Dp = p

3. Thus our proposition

holds in this case. Therefore, we may assume p (α)F .

To prove our proposition, we need to show only that

f = 3⇐⇒ (a1, a2) ∈ Am,
f ≥ 2⇐⇒ (a1, a2) ∈ AIm.

We first assume that m ≡ 1 (mod 8Z). Then ordp(α) =
0, and {t ∈ Z | 0 ≤ t < 2j , 2 t} is a complete set
of representatives of (oF /p

j)× for j ≥ 1. Therefore, for
j ≥ 1, there exists γ ∈ oF such that γ2 ≡ α (mod pj) if

and only if there exists t ∈ {t ∈ Z | 0 ≤ t < 2j , 2 t}
such that α− t2 ∈ pj . Now we have
p2 = [4, 2l − r + ω], p3 = [8,−2l(−1)r − r + ω].

Since α−t2 = Da1+a2(2l(−1)r+r)−t2i+a2D−2l(−1)r−
r + ω

i
and 1 ≡ 12 ≡ 32 ≡ 52 ≡ 72 (mod 8Z), we have
f = 3⇐⇒ there exists t ∈ {1, 3, 5, 7}

such that α− t2 ∈ p3
⇐⇒ (a1, a2) ∈ Am.

Moreover, since α−t2 = (a1−a2(2l−r)−t2)+a2(2l−r+ω)
and 1 ≡ 12 ≡ 32 (mod 4Z), we have
f ≥ 2⇐⇒ there exists t ∈ {1, 3} such that α− t2 ∈ p2

⇐⇒ (a1, a2) ∈ AIm.
Thus the assertion is proved in this case. Now assume

that m ≡ 5 (mod 8Z). Then ordp(α) = 0, and {u+ vω |
0 ≤ u, v < 2j , (u, v) /∈ (2Z)2} is a complete set of repre-
sentatives of (oF /p

j)× for j ≥ 1. Thus for j ≥ 1, there
exists γ ∈ oF such that γ2 ≡ α (mod pj) if and only if

there exists (u, v) ∈ {(u, v) ∈ Z2 | 0 ≤ u, v < 2j , (u, v) /∈
(2Z)2} such that α − (u + vω)2 ∈ pj = [2j , 2jω]. Since

α− (u+ vω)2 = (a1−u2− (2l+1)v2)+ (a2− 2uv− v2)ω
and

(a1 − u2 − (2l + 1)v2, a2 − 2uv − v2)

≡



(a1 − 1, a2) if 2 u and 4 | v,
(a1 − 5, a2) if 2 u, 2 | v, and 4 v,

(a1 − 2l − 2, a2 − 3) if 2 u, 2 v, and 4 | u− v,
(a1 − 2l − 2, a2 − 7) if 2 u, 2 v, and 4 u− v,
(a1 − 2l − 1, a2 − 1) if 4 | u and 2 v,

(a1 − 2l − 5, a2 − 5) if 2 | u, 4 u, and 2 v,

(mod 8Z),

we have

f = 3⇐⇒ there exists (u, v) ∈ {(u, v) | 0 ≤ u, v ≤ 7,
(u, v) /∈ (2Z)2}

such that α− (u+ vω)2 ∈ [8, 8ω]
⇐⇒ (a1, a2) ∈ Am.
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Moreover, since

(a1 − u2 − (2l + 1)v2, a2 − 2uv − v2)

≡


(a1 − 1, a2) if 2 u and 2 | v,
(a1 − 2l − 2, a2 − 3) if 2 u and 2 v,

(a1 − 2l − 1, a2 − 1) if 2 | u and 2 v,

(mod 4Z),

we have

f ≥ 2⇐⇒ there exists (u, v) ∈ {(u, v) | 0 ≤ u, v ≤ 3,
(u, v) /∈ (2Z)2}

such that α− (u+ vω)2 ∈ [4, 4ω]
⇐⇒ (a1, a2) ∈ AIm.

This completes the proof.

Remark 3.7. Let F , m, α, and K be as in Proposition

3.4. Let p be an even prime ideal of F . When p2 | (α)F ,
we cannot apply this case to Proposition 3.6. However

we can take α1, instead of α, satisfying

K = F (
√
α1), α1 ∈ oF , p2 (α1)F (3—5)

as follows:

(i) If m ≡ 1 (mod 8Z), then we take γ ∈ oF such that
(γ)F = (p

σ)hF ∈ PF , and put

α1 = α(2−1γ)2[ ordp(α)/2].

Then α1 satisfies (3—5), since (2−1γ)F =

p−1(pσ)hF−1.

(ii) If m ≡ 5 (mod 8Z), set

α1 = α · 2−2[ ordp(α)/2].

Then α1 satisfies (3—5), since p = (2)F .

Thus, by Proposition 3.6 and Remark 3.7, we can

immediately determine Dp and
D
K
p

i
for an even prime

ideal p.

3.4 Hecke L-Values

Finally, we explain the method for computing

LF (0,χK/F ) that was established by [Shintani 76]

for totally real algebraic number fields F . [Okazaki

91] deals with Shintani’s formula for the case of real

quadratic fields F , and we observe that the ideal charac-

ter corresponding to K/F is expressed by the Legendre

symbols and the Hilbert symbols. Applying this result

to Shintani’s formula, we obtain Formula (3—6) with

simple calculation. We note that the conductor of χK/F
is equal to DK/F (cf. [Weil 67, Chapter XIII, Theorem

9]), and we can determine DK/F by Proposition 3.1 and

Proposition 3.6.

Let F , m, α, K, a1, and a2 be as in Proposition 3.4.

Let ε be the fundamental unit of F that is greater than 1,

and set

ε+ =

l
ε if ε( 0,

ε2 otherwise.

We take e, eI ∈ Z such that ε+ = e+eIω. Let a1, . . . , ah+F
be a complete set of representatives of Cl+(F) such that

aµ ⊂ oF for all µ. For 1 ≤ µ ≤ h+F , we can determine
uniquely integers dµ, d

I
µ, and d

II
µ such that

dµ[d
I
µ, d
II
µ + ω] = aµDK/F ,

dµ, d
I
µ > 0, and 0 ≤ dIIµ < dIµ ; we take integers sµ, s

I
µ,

and Qµ as follows:

(i) If aµDK/F ∈ P (F ), then take sµ, sIµ such thatD
sµ + s

I
µω
i
F
= aµDK/F ,

and set

Qµ = 1.

(ii) If aµDK/F /∈ P (F ), then we can take an odd

prime ideal qµ of F such that qµ splits in F/Q,

gcd(qµ, (α)F ) = oF , and qµaµDK/F ∈ P (F ). Then
qµ = [qµ, rµ + ω] with qµ, rµ ∈ Z. We take sµ, sIµ
such that D

sµ + s
I
µω
i
F
= qµaµDK/F ,

and set

Qµ =
Da1−a2rµ

qµ

i
.

Moreover, for 1 ≤ i ≤ dµ and 1 ≤ j ≤ eIdµdIµ, we take
the integer 1 ≤ rµij ≤ eIdµdIµ such that

rµij ≡ eIdIµi− (e+ eI(dIIµ + 1))j (mod eIdµdIµZ),

and we set

Bµij = 4
−1(eIdµdIµ)

−2D(2e + eI)(r2µij + j2) + 4rµijji
− 4−1(eIdµdIµ)−1(2e+ eI + 2)(rµij + j)
+ 12−1(2e+ eI + 3),

uµij = (e
IdµdIµ)

−1
p
rµijsµ + j

p
esµ + e

IsIµ
m− 1
4

QQ
,

vµij = (e
IdµdIµ)

−1
p
rµijs

I
µ + j(es

I
µ + e

Isµ + eIsIµ)
Q
.
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Note that uµij , vµij ∈ Z. Now, for an odd prime ideal p
of F and u+ vω ∈ oF , we set

χp(u+vω) =

lDNF/Q(u+vω)

p

i
if p remains prime in F/Q,D

u−vr
p

i
otherwise,

where p is the prime number in Q that lies below p, and

r an integer satisfying p = [p, r + ω]. For an even prime

ideal p of F dividing DK/F and β ∈ oF , we set

χp(β) =

l
(β,α)Fp if p (β)F ,

0 otherwise,

where ( , )Fp is the Hilbert symbol (and α is retained as

in Proposition 3.4). Then we obtain

LF (0,χK/F ) =

h+F3
µ=1

sgn
D
NF/Q(sµ + s

I
µω)
i
Qµ

·
w dµ3
i=1

eIdµdIµ3
j=1

Bµij
�

p|DK/F

p∈h

χp(uµij + vµijω)

+

dµ3
l=1

2l − dµ
2dµ

�
p|DK/F

p∈h

χp
D
ld−1µ (sµ + s

I
µω)
iW
.

(3—6)

Thus, if we can compute the Hilbert symbol (β,α)Fp
for an even prime p and α,β ∈ oF − {0} satisfying p
(β)F , we can determine LF (0,χK/F ) by (3—6). We note

that the Hilbert symbol

( , )Fp : F
×
p × F×p −→ {±1}

satisfies

(a, b)Fp = (b, a)Fp , (3—7a)

(a, bc)Fp = (a, b)Fp(a, c)Fp , (3—7b)

for a, b, c ∈ F×p and naturally induces the mapping

F×p /(F
×
p )

2 × F×p /(F×p )2 −→ {±1} (3—8)

(for the Hilbert symbol, see [Neukirch 86], for example).

3.5 Hilbert Symbol for m ≡ 1 ( mod 8Z)

We first give a method for computing the Hilbert symbol

when m ≡ 1 (mod 8Z).

Lemma 3.8. Let µ ∈ Z×2 satisfying µ2 ∈ Z. Then u ≡
µ (mod 2jZ2) if and only if u

2 ≡ µ2 (mod 2j+1Z) and
u ≡ µ (mod 4Z2) for u ∈ Z and 2 ≤ j ∈ Z.

Proof: Suppose u ≡ µ (mod 2jZ2) with u ∈ Z and 2 ≤
j ∈ Z. Then u ≡ µ (mod 4Z2). Since u + µ ≡ 2µ

(mod 4Z2) and µ ∈ Z×2 , we have 2−1(u+µ) ∈ µ+2Z2 =
Z×2 , and hence ord2(u + µ) = 1. Thus u2 − µ2 = (u −
µ)(u+µ) ∈ 2j+1Z2, that is, u2−µ2 ∈ 2j+1Z. Conversely,
if u2 ≡ µ2 (mod 2j+1Z) and u ≡ µ (mod 4Z2), then

ord2(u+µ) = 1, and hence u−µ = (u2−µ2)(u+µ)−1 ∈
2jZ2.

Lemma 3.9. Let F = Q(
√
m) be a real quadratic field

with a square-free integer m satisfying m ≡ 1 (mod 8Z).
Let p = [2, r+ω] be an even prime ideal of F , where r = 0

or 1. Then, for u ∈ Z and 2 ≤ j ∈ Z, it follows that
u ≡ √m (mod 2jop) if and only if u

2 ≡ m (mod 2j+1Z)

and u ≡ −2r − 1 (mod 4Z).

Proof: Since m ≡ 1 (mod 8Z), we have Fp ∼= Q2. Thus,

by Lemma 3.8, we see that u ≡ √m (mod 2jop) if and

only if u2 ≡ m (mod 2j+1Z) and u ≡ √m (mod 4op)

for u ∈ Z and 2 ≤ j ∈ Z. Since 2−1(2r + 1 + √m) =
r + ω ∈ p ⊂ 2op, we have

√
m ≡ −2r − 1 (mod 4op).

Thus u ≡ √m (mod 4op) if and only if u ≡ −2r − 1
(mod 4Z). This completes the proof.

From the two lemmas above, we obtain the following

result:

Proposition 3.10. Let F , m, p, and r be as in Lemma
3.9. Let β1,β2 ∈ oF − {0}, and set βj = cj + djω

with cj , dj ∈ Z. We take uj ∈ Z such that u2j ≡ m

(mod 2ordp(βj)−lj+5Z) and uj ≡ −2r − 1 (mod 4Z),

where lj = min{ord2(2cj + dj), ord2(dj)}. We set tj =
2− ordp(βj)(cj + dj(1 + uj)/2). Then we have

(β1,β2)Fp

= (−1)(t1−1)(t2−1)/4+ordp(β1)(t22−1)/8+ordp(β2)(t21−1)/8.

Proof: Since o×p = (1 + 23op) ∪ (3 + 23op) ∪ (5 + 23op) ∪
(7 + 23op), we have (o

×
p )

2 ⊂ 1 + 23op. Conversely, for

any element 1 + 23y ∈ 1 + 23op, we can take a root x ∈
op of the polynomial 2X

2 + X − y by Hensel’s lemma,
then 1 + 23y = (1 + 22x)2, and hence 1 + 23op ⊂ (o×p )2.
Therefore,

(o×p )
2 = 1 + 23op. (3—9)

Now set ej = ordp(βj). Since βj = 2lj−1(2−lj (2cj +
dj) + 2−ljdj

√
m), we have ej ≥ lj − 1. Thus uj ≡√

m (mod 2ej−lj+4op) by Lemma 3.9, and hence dj(1 +
uj)/2 ≡ djω (mod 2ej+3op). Therefore, tj = 2−ej (cj +
dj(1 + uj)/2) ≡ 2−ejβj (mod 23op), that is, tj(o×p )2 =
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2−ejβj(o×p )2. It follows that (β1,β2)Fp = (2e1t1, 2e2t2)Fp .
Since Fp ∼= Q2, we have

(2e1t1, 2
e2t2)Fp = (−1)(t1−1)(t2−1)/4+e1(t

2
2−1)/8+e2(t21−1)/8

(cf. [Neukirch 86, Chapter III, Theorem 5.6], for exam-

ple). This completes the proof.

Remark 3.11. It is well known that X2 ≡ a (mod 2jZ)
has exactly four solutions modulo 2jZ for a ∈ 1+8Z and
3 ≤ j ∈ Z. If xj is one of the solutions, then all the
solutions are xj , xj + 2

j−1, −xj , and −xj + 2j−1, since
xj is odd. Now we can inductively determine xj by

x3 = 1,

xj =

l
xj−1 if 2 | 2−j+1(x2j−1 − a),
xj−1 + 2j−2 otherwise,

for 4 ≤ j ∈ Z. To prove this, we assume that xj−1 is a
solution of X2 ≡ a (mod 2j−1Z) with j ≥ 4, and set

c =

l
0 if 2 | 2−j+1(x2j−1 − a),
1 otherwise,

and xj = xj−1 + c2j−2. Since 2−j+1(x2j−1 − a) ≡ c ≡
−xj−1c (mod 2Z), we have x2j−1 − a ≡ −xj−1c2j−1
(mod 2jZ). Thus

x2j = x
2
j−1 + xj−1c2

j−1 + c22j+j−4

≡ x2j−1 − (x2j−1 − a) = a (mod 2jZ).

From this, we can easily find uj of Proposition 3.10 and

u of Proposition 3.14 below.

From Proposition 3.10 and Remark 3.11, we can im-

mediately compute the Hilbert symbol when m ≡ 1

(mod 8Z).

3.6 Hilbert Symbol for m ≡ 5 (mod 8Z)
Now we explain a method for computing the Hilbert sym-

bol when m ≡ 5 (mod 8Z).
By [Okazaki 91, Proposition 4], we have

Proposition 3.12. Let F = Q(
√
m) be a real quadratic

field with a square-free integer m satisfying m ≡ 5

(mod 8Z). Let p be an even prime ideal of F . Put

τ = 1 + 4ω and ξ = (m − 9)/4 + ω. Then F×p /(F
×
p )

2

is generated by −1, τ, ξ, 2, and we have

(b, a)Fp =



1 if (b, a) = (−1,−1)
or (−1, τ ) or (−1, 2)
or (τ, τ ) or (τ, ξ)

or (ξ, 2) or (2, 2),

−1 if (b, a) = (−1, ξ) or (τ, 2) or (ξ, ξ).

From this proposition, we can take\
(−1)i1τ i2ξi32i4 ee i1, i2, i3, i4 ∈ {0, 1}�

as a complete set of representatives of F×p /(F
×
p )

2. Thus

for any β1,β2 in oF − {0}, we can compute (β1,β2)Fp
by (3—7a), (3—7b), (3—8), and Proposition 3.12, if we

can find lj1, lj2, lj3, lj4 ∈ {0, 1} such that βj(F×p )2 =
(−1)lj1τ lj2ξlj32lj4(F×p )2 for j = 0, 1. Now we have

βj(−1)ij1τ ij2ξij32− ordp(βj) ∈ oF∩o×p for any ij1, ij2, ij3 ∈
{0, 1}, and

βj(−1)ij1τ ij2ξij32− ordp(βj) ∈ (o×p )2
⇐⇒ βj(F

×
p )

2 = (−1)ij1τ ij2ξij32ij4(F×p )2,

where ij4 = 0 or 1 according as 2 | ordp(βj) or 2
ordp(βj). Thus, for an element δ of oF , we wish to give

an effective method to see that δ ∈ (o×p )2. (In fact, this
will be given in Proposition 3.14 below.)

For γ ∈ (Q2)
2, we denote by γ1/2 the root of X2 −

γ contained in (
�∞
j=−∞ 2

j(1 + 4Z2)) ∪ {0}. Note that
γ1
1/2γ2

1/2 = (γ1γ2)
1/2 for γ1, γ2 ∈ (Q2)

2.

Lemma 3.13. Let F , m, and p be as in Proposition 3.12.
Let δ ∈ Fp. Then δ ∈ (o×p )2 if and only if
(i) NFp/Q2

(δ) ∈ (Z×2 )2; and
(ii) TrFp/Q2

(δ) + 2NFp/Q2
(δ)1/2,

TrFp/Q2
(δ)− 2NFp/Q2

(δ)1/2 ∈ (Z2)2 ∪m(Z2)2.

Proof: In this proof, we abbreviate TrFp/Q2
and NFp/Q2

by Tr and N . Since op is the topological closure of oF in

Fp, we have

op = {2−1(x+ y
√
m) | x, y ∈ Z2, x− y ∈ 2Z2}.

We first prove the “only if” part. Since δ ∈ (o×p )2, there
exist x, y ∈ Z2 such that δ = (2−1(x+y√m))2, and hence
Tr(δ) = 2−1(x2 + y2m) and N(δ) = (4−1(x2 − y2m))2.
Since ordp(δ) = 0, we have N(δ) ∈ (Z×2 )

2. Now we

have N(δ)1/2 = (−1)l4−1(x2 − y2m) with l = 0 or 1.

Therefore,

Tr(δ) + (−1)l2N(δ)1/2 = x2 ∈ (Z2)2,
Tr(δ)− (−1)l2N(δ)1/2 = y2m ∈ m(Z2)2.

Now we prove the “if” part. Since N(δ) ∈ (Z×2 )2, we
have δ ∈ o×p . Set δ = 2−1(a+b

√
m) with a, b ∈ Z2. Since

Tr(δ)2 − 4N(δ) = b2m, we have

a = Tr(δ), b = (−1)j(m−1(Tr(δ)2 − 4N(δ)))1/2



Okada: Hecke Eigenvalues for Real Quadratic Fields 421

with j = 0 or 1. On the other hand, since (Tr(δ)2 −
4N(δ)) ∈ m(Z2)2, we have Tr(δ)+(−1)l2N(δ)1/2 ∈ (Z2)2
and Tr(δ) − (−1)l2N(δ)1/2 ∈ m(Z2)2 with l = 0 or 1.

Thus we set

x = (−1)jDTr(δ) + (−1)l2N(δ)1/2i1/2 (∈ Z2),
y =
D
m−1(Tr(δ)− (−1)l2N(δ)1/2)i1/2 (∈ Z2).

ThenD
2−1(x+ y

√
m)
i2

= 2−1
p
Tr(δ) + (−1)jDm−1(Tr(δ)2 − 4N(δ))i1/2√mQ

= 2−1(a+ b
√
m) = δ.

Since δ ∈ o×p , we have δ ∈ (o×p )2. This completes the
proof.

From the above lemma, we obtain the following result:

Proposition 3.14. Let F , m, and p be as in Proposition
3.12. Let δ ∈ oF , and set δ = 2−1(a+b√m) with a, b ∈ Z.
Then δ ∈ (o×p )2 if and only if

(i) 8 | 4−1(a2 − b2m)− 1; and

(ii) b = 0 and 4 | 2−1a− 1; or
b W= 0 and 4 | a+ 1; or
b W= 0, ord2(a) = 1, 2 | r, and 4 | 2−r(a+ 2u)− 1,

where u is a rational integer such that u2 ≡ 4−1(a2−b2m)
(mod 22 ord2(b)Z) and u ≡ 1 (mod 4Z), and r = ord2(a+
2u).

Proof: In this proof, again abbreviate TrFp/Q2
and

NFp/Q2
by Tr and N . Then Tr(δ) = a and N(δ) =

4−1(a2 − b2m) ∈ Z. By Lemma 3.13, we have

δ ∈ (o×p )2 ⇐⇒ N(δ) ∈ (Z×2 )2,
Tr(δ) + 2N(δ)1/2,

Tr(δ)− 2N(δ)1/2 ∈ (Z2)2 ∪m(Z2)2.
(3—10)

Here, by (3—9), we have (Z×2 )
2 = 1 + 8Z2, and hence

(Z2)
2 ∪m(Z2)2 =

D ∞(
j=0

4j(1 + 4Z2)
i ∪ {0}.

Since N(δ) ∈ Z, we have

N(δ) ∈ (Z×2 )2 ⇐⇒ 8 | 4−1(a2 − b2m)− 1. (3—11)

Henceforth, until the end of this proof, we may assume

N(δ) ∈ (Z×2 )
2. When b = 0, we have N(δ)1/2 =

(−1)l2−1a ∈ Z×2 with l = 0 or 1, and hence

Tr(δ) + (−1)l2N(δ)1/2 = 4 · 2−1a,
Tr(δ)− (−1)l2N(δ)1/2 = 0.

Note that 2−1a ∈ Z×2 ∩Z = 1+ 2Z. If 4 | 2−1a− 1, then
4·2−1a ∈ 4(1+4Z) ⊂ (Z2)2∪m(Z2)2; if 4 | 2−1a−3, then
4 · 2−1a /∈ (�∞j=0 4j(1 + 4Z2)) ∪ {0} = (Z2)

2 ∪ m(Z2)2.
Therefore, by (3—10), we have

δ ∈ (o×p )2 ⇐⇒ 4 | 2−1a− 1.

Now we also assume b W= 0. Since (Tr(δ) +

2N(δ)1/2)(Tr(δ) − 2N(δ)1/2) = b2m W= 0, we have

Tr(δ) + 2N(δ)1/2 W= 0. Hence, if Tr(δ) + 2N(δ)1/2 ∈
(Z2)

2 ∪m(Z2)2, then

Tr(δ)− 2N(δ)1/2 = b2m(Tr(δ) + 2N(δ)1/2)−1
∈ ((Q×

2 )
2 ∪m(Q×

2 )
2) ∩ Z2

⊂ (Z2)2 ∪m(Z2)2.

Thus

Tr(δ) + 2N(δ)1/2,Tr(δ)− 2N(δ)1/2 ∈ (Z2)2 ∪m(Z2)2
⇐⇒ Tr(δ) + 2N(δ)1/2 ∈ (Z2)2 ∪m(Z2)2.

(3—12)

When ord2(a) ≥ 2, we have Tr(δ) = a ∈ 4Z2. Since
N(δ)1/2 ∈ 1 + 2Z2, we have Tr(δ) + 2N(δ)1/2 ∈ 2(1 +
2Z2) = 2Z

×
2 . Thus Tr(δ) + 2N(δ)

1/2 /∈ (Z2)2 ∪m(Z2)2,
and hence δ /∈ (o×p )2 by (3—10). When ord2(a) = 0, we

have Tr(δ) + 2N(δ)1/2 ∈ a + 2 + 4Z2 (⊂ Z×2 ). Thus, by
(3—10) and (3—12), we have

δ ∈ (o×p )2 ⇐⇒ 4 | a+ 1.

When ord2(a) = 1, we have ord2(b) ≥ 2 by Equation

(3—11). Thus, by Lemma 3.8, we have u ≡ N(δ)1/2

(mod 22 ord2(b)−1Z2), and hence a + 2u ≡ Tr(δ) +

2N(δ)1/2 (mod 22 ord2(b)Z2). Since Tr(δ), 2N(δ)1/2 ∈
2(1+2Z2), we have Tr(δ)− 2N(δ)1/2 ∈ 4Z2. Thus, since
(Tr(δ) + 2N(δ)1/2)(Tr(δ) − 2N(δ)1/2) = mb2, we have

ord2(Tr(δ) + 2N(δ)
1/2) ≤ 2 ord2(b)− 2, and hence

r = ord2(a+ 2u) = ord2(Tr(δ) + 2N(δ)
1/2).

It follows that a+2u ≡ Tr(δ)+ 2N(δ)1/2 (mod 2r+2Z2),
that is,

2−r(a+ 2u) ≡ 2−r(Tr(δ) + 2N(δ)1/2) (mod 4Z2).
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p Cf (p) N((Cf (p))Kf
) p Cf (p) N((Cf (p))Kf

)

[2, ω] (1±√13)/2 3 [349, 206 + ω] −18±√13 311

[11, 4 + ω] 1 1 [373, 233 + ω] 27 36

[13, 9 + ω] ±√13 13 [379, 153 + ω] 15± 2√13 173

[17, 11 + ω] 4±√13 3 [397, 164 + ω] −20± 3√13 283

[23, 10 + ω] 4±√13 3 [401, 80 + ω] 14±√13 3 · 61
[29, 2 + ω] 2±√13 32 [419, 222 + ω] ∗ −19±√13 22 · 3 · 29
[31, 29 + ω] 1± 2√13 3 · 17 [433, 30 + ω] −24±√13 563

[59, 45 + ω] ±√13 13 [457, 43 + ω] −15 32 · 52
[61, 23 + ω] ∗ −1±√13 22 · 3 [479, 434 + ω] 5± 6√13 443

[67, 24 + ω] ∗ −3± 3√13 22 · 33 [491, 340 + ω] 14± 5√13 3 · 43
[73, 14 + ω] 4± 3√13 101 [499, 130 + ω] ∗ 9± 7√13 22 · 139
[79, 19 + ω] 12±√13 131 [503, 105 + ω] 9± 6√13 32 · 43
[89, 68 + ω] −1± 2√13 3 · 17 [523, 303 + ω] 21 32 · 72
[113, 62 + ω] ∗ 5± 3√13 22 · 23 [563, 34 + ω] 17± 4√13 34

[137, 89 + ω] 14±√13 3 · 61 [571, 172 + ω] 21± 2√13 389

[139, 18 + ω] −12±√13 131 [587, 445 + ω] ∗ −2± 4√13 22 · 3 · 17
[157, 73 + ω] ∗ ±2√13 22 · 13 [593, 478 + ω] −16±√13 35

[173, 27 + ω] 3± 6√13 33 · 17 [613, 486 + ω] −19 192

[193, 100 + ω] ∗ −3±√13 22 [631, 559 + ω] ∗ −18± 8√13 22 · 127
[197, 40 + ω] ∗ −1± 3√13 22 · 29 [643, 336 + ω] ∗ 12± 4√13 26

[199, 177 + ω] −18±√13 311 [647, 51 + ω] 39 32 · 132
[211, 136 + ω] −4± 3√13 101 [653, 173 + ω] ∗ 10± 8√13 22 · 3 · 61
[223, 152 + ω] −8± 3√13 53 [673, 620 + ω] −21± 6√13 33

[227, 102 + ω] ∗ 2± 2√13 24 · 3 [683, 133 + ω] −16±√13 35

[239, 148 + ω] −5± 6√13 443 [701, 452 + ω] 6± 3√13 34

[241, 122 + ω] ∗ −19± 3√13 22 · 61 [709, 38 + ω] 27± 4√13 521

[283, 95 + ω] −16± 3√13 139 [719, 310 + ω] −14± 7√13 32 · 72
[293, 267 + ω] 1 1 [727, 205 + ω] −6± 13√13 2161

[307, 116 + ω] −3± 4√13 199 [739, 558 + ω] ∗ 14 22 · 72
[317, 280 + ω] ±3√13 32 · 13 [769, 550 + ω] −17± 2√13 3 · 79
∗ : principal prime ideal

TABLE 1. The eigenvalues Cf (p) of T (p)|S0
(2,2)

(o
Q(
√
257)

,1) and their norm for a split prime p.

Therefore, by (3—10) and (3—12), we have

δ ∈ (o×p )2 ⇐⇒ Tr(δ) + 2N(δ)1/2 ∈
∞(
j=0

4j(1 + 4Z2)

⇐⇒ 2 | ord2(Tr(δ) + 2N(δ)1/2),
2− ord2(Tr(δ)+2N(δ)

1/2)(Tr(δ) + 2N(δ)1/2)

∈ 1 + 4Z2
⇐⇒ 2 | r, 4 | 2−r(a+ 2u)− 1.

This completes the proof.

Note that we can easily find u of Proposition 3.14 by

Remark 3.11, since 4−1(a2−b2m) = NFp/Q2
(δ) ∈ 1+8Z.

4. NUMERICAL EXAMPLES FOR Q(
√
257) AND

Q(
√
401)

In this section, we shall give numerical examples of eigen-

values and characteristic polynomials of Hecke operators

for real quadratic fields Q(
√
257) and Q(

√
401), whose

class numbers are three and five, respectively.

Let F and m be as in Section 3. We treat only the case

k = (2, 2) and ψ is the identity (i.e., ψ(F×A ) = {1}). We
denote this character by 1 . Let S2(Γ0(m),

D
m
i
) be the

space of elliptic cusp forms of “Neben”-type of level m,

and SN
(2,2)(oF , 1 ) the subspace of S(2,2)(oF , 1 ) that con-

sists of Hilbert cusp forms coming from S2(Γ0(m),
D
m
i
)

through the Doi—Naganuma lifting (cf. [Doi and Na-

ganuma 69] and [Naganuma 73]). We denote by

S0
(2,2)(oF , 1 ) the “F -proper” subspace of S(2,2)(oF , 1 ),
that is, the orthogonal complement of SN

(2,2)(oF , 1 ) with

respect to the standard inner product. It is known that

S0
(2,2)(oF , 1 ) and SN(2,2)(oF , 1 ) are stable under the action
of T (p) for all prime ideals p of F . In the following, we

shall determine eigenvalues and characteristic polynomi-

als of T (p)|S0
(2,2)

(oF ,1 ) for several prime ideals p.

We denote by Ψp(X) the characteristic polynomial of

T (p)|S0
(2,2)

(oF ,1). For a primitive form f in S0
(2,2)(oF , 1 ),

we denote by Cf (p) the eigenvalue of T (p) satisfying
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f |T (p) = Cf (p)f , and then denote by Kf the Hecke field

of f , that is, the field generated over Q by Cf (p) for all

prime ideals p. Let K+
f be the subfield of Kf gener-

ated by Cf ((p)F ) for all rational primes p. We note that

[Kf : K
+
f ] = 2.

Now we set Λf (p) = oK+
f
+Cf (p)oK+

f
for a split prime

p. Then Λf (p) is an order in OKf/K
+
f
in the sense of Sec-

tion 2.2, and the conductor c(Λf (p)) is given by Lemma

2.3 as follows:

c(Λf (p)) =
D
DKf/K

+
f
(Cf (p)) ·DKf/K

+
f

−1i1/2.
4.1 Example for Q(

√
257)

Let F = Q(
√
257). Then hF = h

+
F = 3. We have

dimC S0(2,2)(oF , 1 ) = dimC S(2,2)(oF , 1 )
− 1
2
dimC S2(Γ0(257),

D
257
i
)

= trT (oF )− 1
2
· 20 = 2.

• Table 1 gives numerical data for the eigenvalues of
T (p)|S0

(2,2)
(oF ,1 ) and their norms for split primes p

satisfying N(p) ≤ 769.
• Table 2 gives numerical data for the eigenvalues of
T ((p)F )|S0

(2,2)
(oF ,1 ) for rational primes p such that

p remains prime in F and p ≤ 97. (Note that the
characteristic polynomial of T ((p)F )|S0

(2,2)
(oF ,1) has

a double root.)

p Cf (p) p Cf (p) p Cf (p)

(3)F −4 (37)F 52 (53)F −8
(5)F −2 (41)F −18 (71)F −30
(7)F 0 (43)F 30 (83)F 50
(19)F −18 (47)F 46 (97)F 90

TABLE 2. The eigenvalue Cf (p) of T (p)|S0
(2,2)

(o
Q(
√
257)

,1)

for p = (p)F .

For a primitive form f in S0(2,2)(oF , 1 ), we have

Kf = Q(
√
13), K+

f = Q.

Within the limit of Table 1, we observe that

p is principal ⇐⇒ (2)Kf | Cf (p)

for split primes p; in particular, we remark that

2 | c(Λf (p))

for all principal split primes p in the table.

4.2 Example for Q(
√
401)

Let F = Q(
√
401). Then hF = h

+
F = 5. We have

dimC S0(2,2)(oF , 1 ) = 24−
1

2
· 32 = 8.

• Table 3 gives numerical data for the characteristic
polynomials Ψ(p)F (X) of T ((p)F )|S0(2,2)(oF ,1 ) for ra-
tional primes p such that p remains prime in F and

p ≤ 23.
p Ψp(X)

(3)F (X4 + 7X3 + 4X2 − 32X + 1)2

(13)F (X4 + 24X3 + 120X2 − 113X − 571)2
(17)F (X4 + 2X3 − 110X2 − 111X + 3019)2

(19)F (X4 + 10X3 − 339X2 − 1360X + 22759)2

(23)F (X4 − 16X3 − 495X2 + 8532X − 11671)2

TABLE 3. The characteristic polynomial Ψp(X) of

T (p)|S0
(2,2)

(o
Q(
√
401)

,1) for p = (p)F .

• Table 4 gives numerical data for the coefficients
of the characteristic polynomials Ψp(X) = X8 +

a1X
7+· · ·+a7X+a8 of T (p)|S0

(2,2)
(oF ,1 ) for principal

split primes p satisfying N(p) ≤ 643 and nonprinci-
pal split primes p satisfying N(p) ≤ 263.

The characteristic polynomial Ψ[2,ω](X) of

T ([2,ω])|S0
(2,2)

(oF ,1 ) is irreducible over Q, and the

roots of Ψ[2,ω](X) are

cijl =
1

40
15− (−1)i5√5 + (−1)i+j√5 110 + 10

√
5

+ (−1)l 4900− (−1)i100√5 + (−1)j 150− (−1)i10√5 110 + 10
√
5 ,

where 0 ≤ i, j, l ≤ 1. Now we take the primitive form f

such that f |T ([2,ω]) = c000f . Then we have

Kf = Q

~�
4900− 100√5 + (150− 10√5)

6
110 + 10

√
5

^
,

K
+
f = Q

W6
110 + 10

√
5

}
.

(The degree of the Galois closure ofKf overQ is 128 =

27.) Then we have

DKf/Q = 5
4 · 292 · 131 · 139,

DK+
f /Q

= 52 · 29,
N(DKf/K

+
f
) = 131 · 139.

• Table 5 gives numerical data for the norm of

c(Λf (p)).
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p a1, a2, a3, a4, a5, a6, a7, a8

[2, ω] −3, −10, 28, 37, −78, −58, 53, 19

[5, ω] −3, −18, 41, 111, −163, −234, 155, 1

[7, 5 + ω] −6, −12, 120, −175, −42, 175, −83, 11

[11, 7 + ω] 9, 10, −101, −253, 149, 918, 809, 179

[29, 22 + ω] 13, −5, −523, −408, 8053, 1917, −48078, 38359

[41, 27 + ω] −16, −90, 2332, −2437, −86432, 249407, 263905, 43909

[43, 26 + ω] −32, 309, −148, −11780, 43156, 18606, −138350, −42131
[47, 44 + ω] 15, −46, −1114, 861, 24682, −30282, −133239, 211541

[73, 39 + ω] 4, −362, −1343, 36721, 107356, −1265768, −1867352, 14282224

[83, 30 + ω] ∗ −32, 92, 5761, −41264, −341588, 3084758, 6681459, −69332531
[89, 60 + ω] −10, −278, 3166, 13505, −241434, 703443, −114403, −611281
[103, 85 + ω] 27, −118, −6456, −10369, 372198, 1371298, −3479619, −15228421
[109, 74 + ω] 29, −186, −10994, −61417, 448682, 4111874, 7230513, −1231091
[113, 23 + ω] −34, 88, 7570, −77675, −156608, 5544655, −26618987, 40066931

[149, 55 + ω] −68, 1775, −22208, 131704, −237922, −810800, 2670928, 1079011

[151, 92 + ω] −22, −151, 5415, −7430, −329865, 1334049, −291087, −2791879
[173, 110 + ω] −11, −381, 7795, −37942, −157229, 2060155, −6349795, 5629151

[179, 107 + ω] −88, 2950, −45092, 245937, 1261812, −21112768, 83231088, −104306576
[181, 21 + ω] −7, −310, 2548, 18965, −210804, 594832, −493872, −100624
[197, 45 + ω] 40, 168, −9515, −110360, 121710, 6701416, 29340685, 31232399

[223, 31 + ω] −68, 1453, −2076, −317709, 3811290, −9269721, −49448362, 130826831

[229, 57 + ω] 33, −67, −8851, −51342, 253023, 1988777, −1662381, −18676169
[239, 206 + ω] −53, 1066, −10574, 54335, −132516, 96784, 72897, −69191
[241, 167 + ω] −35, 218, 2705, −15695, −84085, 59836, 48125, −30371
[257, 122 + ω] ∗ 10, −1119, −14842, 336025, 6080144, −7871441, −548680256, −2339785241
[263, 201 + ω] −36, −295, 12183, 91010, −605219, −5055489, −2431643, 17176609

[337, 172 + ω] ∗ −47, 105, 24343, −327430, −1820659, 57625757, −337202462, 582948571

[379, 103 + ω] ∗ −25, −1214, 26233, 458881, −6336001, −81101528, 302094243, 3696976091

[383, 205 + ω] ∗ −63, 286, 61218, −1739923, 17945914, −49335124, −306466744, 1582083824

[397, 197 + ω] ∗ −77, 690, 64185, −1089907, −15159265, 255263350, 1030269191, −910014589
[421, 304 + ω] ∗ 48, −494, −47086, −216435, 13127696, 123014259, −842081917, −9542329681
[487, 70 + ω] ∗ −25, −1553, 38867, 743048, −20170693, −84273537, 3477790992, −11951208719
[499, 264 + ω] ∗ −22, −1402, 39386, 246139, −13711178, 90023337, 71238749, −717378001
[643, 474 + ω] ∗ −72, −896, 147914, −1370115, −68019308, 937509055, 3125818491, −4860460921
∗ : principal prime ideal

TABLE 4. The coefficients of the characteristic polynomial X8+a1X
7+ · · ·+a7X+a8 of T (p)|S0

(2,2)
(o
Q(
√
401)

,1) for a split

prime p.

From Table 5, we immediately observe that

19 | NDc(Λf (p))i
for all principal split primes p in the table. Moreover, if

we set

P19 = c(Λf ([83, 30 + ω])),

then P19 is a prime ideal of K
+
f , and there exist prime

ideals PI19,PII19 of K
+
f such that

(19)K+
f
= P19P

I
19P

II
19,

P19P
I
19 = [19, 4 + (1 +

√
5)/2] · oK+

f
,

PII19 = [19, 14 + (1 +
√
5)/2] · oK+

f
.

Then we can observe that

P19 | c(Λf (p))

for all principal split primes p in the table.

4.3 Calculation Based on Hida’s Suggestion

We check (1), (2), and (3) of the Introduction.

When F = Q(
√
257), the common factor ofNKf/Q(1+

N(p)−Cf (p)) = Ψp(1+N(p)) is 22 from Table 6. More-

over, it follows immediately from Table 1 that the com-

mon factor of 1 +N(p)−Cf (p) is (2)Kf = FfoKf . When

F = Q(
√
401), the common factor of NKf/Q(1 +N(p)−

Cf (p)) = Ψp(1 +N(p)) is 19
2 from Table 7.
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p N c(Λf (p))

[2, ω] 1

[5, ω] 1

[7, 5 + ω] 1

[11, 7 + ω] 1

[29, 22 + ω] 1

[41, 27 + ω] 31

[43, 26 + ω] 31

[47, 44 + ω] 31

[73, 39 + ω] 34

[83, 30 + ω] ∗ 19

[89, 60 + ω] 41

[103, 85 + ω] 232

[109, 74 + ω] 19 · 29
[113, 23 + ω] 1

[149, 55 + ω] 52

[151, 92 + ω] 29

[173, 110 + ω] 41

[179, 107 + ω] 19

[181, 21 + ω] 11

[197, 45 + ω] 379

[223, 31 + ω] 61

[229, 57 + ω] 19

[239, 206 + ω] 1

[241, 167 + ω] 72

[257, 122 + ω] ∗ 19 · 139
[263, 201 + ω] 409

[337, 172 + ω] ∗ 19 · 41
[379, 103 + ω] ∗ 19 · 31
[383, 205 + ω] ∗ 72 · 19
[397, 197 + ω] ∗ 19 · 41
[421, 304 + ω] ∗ 11 · 192
[487, 70 + ω] ∗ 192 · 31
[499, 264 + ω] ∗ 112 · 19
[643, 474 + ω] ∗ 19 · 79
∗ : principal prime ideal

TABLE 5. The norm of c(Λf (p)) for the primitive form f
in S0(2,2)(oQ(√401), 1 ) and a split prime p.

Moreover, we can observe that the common factor of

1 + N(p) − Cf (p) is P19oKf
= FfoKf

. Thus (1) and (2)

are affirmative, and (3) is correct in this case.

By using [Siegel 69, (22)], we have calculated the value

at 2 of the Hecke L-function associated with a a nontrivial

class character χ. In the case F = Q(
√
257), we have

�
χ:nontrivial

D
3/2
F

(2π)4
LF (2,χ) = 2

2.

In the case F = Q(
√
401), we have

�
χ:nontrivial

D
3/2
F

(2π)4
LF (2,χ) = 19

2.

p NKf/Q
1 +N(p)− Cf (p)

(3)F 22 · 72
(5)F 24 · 72
(7)F 22 · 54
(19)F 24 · 52 · 192
(37)F 22 · 6592
(41)F 24 · 54 · 172
(43)F 24 · 52 · 72 · 132
(47)F 24 · 5412
(53)F 22 · 14092
(71)F 28 · 3172
(83)F 26 · 34 · 52 · 192
(97)F 26 · 52 · 2332

[61, 23 + ω] 22 · 23 · 43
[67, 24 + ω] 22 · 1231
[113, 62 + ω] 22 · 17 · 173
[157, 73 + ω] 24 · 32 · 173
[193, 100 + ω] 22 · 3 · 53 · 61
[197, 40 + ω] 22 · 9871
[227, 102 + ω] 24 · 3 · 1063
[241, 122 + ω] 22 · 32 · 1889
[419, 222 + ω] 22 · 32 · 53 · 101
[499, 130 + ω] 22 · 32 · 6679
[587, 445 + ω] 22 · 3 · 53 · 547
[631, 559 + ω] 22 · 32 · 13 · 17 · 53
[643, 336 + ω] 24 · 3 · 8317
[653, 173 + ω] 24 · 3 · 8623
[739, 558 + ω] 22 · 32 · 114

TABLE 6. NKf/Q

i
1+N(p)−Cf (p)

J
for a principal prime

p, where Cf (p) is an eigenvalue of T (p)|S0
(2,2)

(o
Q(
√
257)

,1).

p NKf/Q
1 +N(p)− Cf (p)

(3)F 192 · 292 · 312
(13)F 114 · 194 · 612 · 3592
(17)F 112 · 192 · 340301812
(19)F 74 · 112 · 192 · 5212 · 32992
(23)F 192 · 40204338312

[83, 30 + ω] 192 · 31 · 11059 · 12836389
[257, 122 + ω] 11 · 192 · 1279 · 3191 · 1236962761
[337, 172 + ω] 192 · 641 · 1109 · 2011 · 8111 · 35099
[379, 103 + ω] 113 · 192 · 1638061 · 511689281
[383, 205 + ω] 24 · 11 · 192 · 1621 · 1790869 · 2150221
[397, 197 + ω] 112 · 192 · 131 · 94781 · 942456979
[421, 304 + ω] 192 · 60830069 · 50854477409
[487, 70 + ω] 11 · 192 · 2699 · 17191 · 16454332679
[499, 264 + ω] 112 · 192 · 61 · 829 · 1681246642091
[643, 474 + ω] 192 · 421 · 334889 · 515366804791

TABLE 7. NKf/Q

i
1+N(p)−Cf (p)

J
for a principal prime

p, where Cf (p) is an eigenvalue of T (p)|S0
(2,2)

(o
Q(
√
401)

,1).
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