
Reduction of Huge, Sparse Matrices over Finite

Fields Via Created Catastrophes
Carl Pomerance and J. W. Smith

CONTENTS

1. Introduction

2. Description of the Method

3. Outline of Experiments

4. Conclusion

Acknowledgements

References

The authors' research was supported in part by NSF grants.

We present a heuristic method for the reduction modulo 2 of

a large, sparse bit matrix to a smaller, dense bit matrix that

can then be solved by conventional means, such as Gaussian

elimination. This method worked effectively for us in reducing

matrices as large as 100,000 � 100,000 to much smaller, but

denser square matrices.

1. INTRODUCTIONThe last stage of several algorithms to factor in-tegers, notably the quadratic sieve [Pomerance etal. 1988] and the number �eld sieve [Buhler et al.],involves the reduction of a huge, sparse bit ma-trix. (By a bit matrix we mean a matrix over the�eld with two elements: every element is 0 or 1and arithmetic is modulo 2.) Although the matri-ces involved can be truly huge|100,000 rows andcolumns is no longer unusual|they may have asfew as twenty 1's per row. Another feature of thesematrices is that the �rst few columns tend to bedenser than the rest: typically, about half of all ofthe 1's appear in the �rst pM columns, out of atotal of M columns.In this paper we describe a heuristic method forobtaining linear dependencies among the rows ofsuch matrices. In addition, we present data fromexperimental runs with randomly generated squarematrices of size 50,000 and 100,000.Odlyzko [1985] introduced a simple, two-step al-gorithm for dealing with these matrices. First, acertain fraction of the columns (the heaviest ones,which are mostly on the left side of the matrix)are declared \inactive", and are temporarily re-moved from the sparse data structure holding thematrix. What is left is a very sparse matrix withfewer columns than rows. Odlyzko then followsthe Markowitz rule for row reduction in the activecJones and Bartlett Publishers, Inc.1058-6458/92 $0.50 per page

90 Experimental Mathematics, Vol. 1 (1992), No. 2

part of the matrix. This is a local rule that at eachstage chooses as pivot an entry that minimizes theMarkowitz count (r � 2)(c� 2)� 2, where r is thenumber of 1's in the active part of the row and c isthe number of 1's in the column. The Markowitzcount is the trivial upper bound for the net amountof �ll-in that may occur when the given element isused as a pivot. When the sparse active part is �-nally eliminated, the history of the row operationsperformed is recalled, and repeated on the densepart. This results in a much smaller square matrixthat can then be reduced via conventional Gaus-sian elimination.Note that since arithmetic is modulo 2, there isnever a problem with numerical stability. Thus theMarkowitz rule can be used in its pure form.Odlyzko observed experimentally that, if enoughcolumns are put in the inactive portion of the ma-trix, the entire sparse active portion can be elimi-nated without the Markowitz count ever becomingpositive. That is, there is no �ll-in at all in theactive part of the matrix. We call such an eventa catastrophe. (The word \miracle" has been sug-gested to us as more appropriate. We use \catas-trophe" in the sense of R. Thom's theory, where asmall change can produce a large e�ect.)In our initial experiments with Odlyzko's algo-rithm, we found that, for matrices as dense as theones we actually were encountering with factoriza-tion algorithms, we had to pay too high a price toproduce a catastrophe. Namely, we had to declaretoo many columns inactive, so that the resultingmatrix, while smaller than the original, was un-comfortably large for conventional Gaussian elim-ination. In addition, there did not seem to beany reliable rule for deciding what was the opti-mal number of columns to declare inactive at thestart of the process.Our method is based on Odlyzko's two-step al-gorithm, but with the following changes. First, amuch smaller number of columns are initially de-clared inactive. Second, we only do Gaussian elim-ination on the active part so long as no rows �llin. When this becomes impossible, we declare afew more columns inactive. This typically allowsa few more elimination steps to be performed. Wecontinue in this way, trying to coax a catastropheinto occurring. When it �nally does, we �nd thatmany fewer columns have been declared inactivethan in Odlyzko's original method.

Our experiments suggest that when the averagenumber of 1's per row in the active part of the ma-trix reaches a certain critical level of about 3:3�0:3,the catastrophe is about ready to occur. An un-usual graph-theoretic model may be needed to ex-plain this phenomenon (see Section 4). In particu-lar, the development of the \giant connected com-ponent" in the evolution of a random graph [Bol-lobas 1985] may be relevant to the explanation.The coordinate recurrence method from [Wiede-mann 1986], which uses the Berlekamp{Massey al-gorithm for �nding the minimum polynomial of alinear recurrence over a �nite �eld, can also be usedfor this problem. The idea here is that if A is ann� n matrix and ~x and ~y are �xed n-vectors, thesequence Ak~x �~y for k = 0; 1; : : : is linear recurrent,easily computable if A is sparse, and its minimumpolynomial is likely to be an important factor ofthe minimum polynomial of A. After a little cal-culating, we decided that while the coordinate re-currence method should eventually be the methodof choice for su�ciently large problems, for our ma-trices it was perhaps �ve times slower.In [LaMacchia and Odlyzko 1991], other meth-ods for reducing sparse matrices modulo 2 (and,more generally, over a �nite �eld) are discussed, in-cluding the conjugate gradient method, the Lanc-zos method and the coordinate recurrence method.
2. DESCRIPTION OF THE METHODOur goal is to �nd several, say ten, independentrow dependencies in our given matrix. This maybe accomplished via Gaussian elimination with ei-ther row or column operations. It is convenientto use row operations because, while the rows areuniformly sparse, some columns are fairly dense.We thus are able to make vertical cuts in the ma-trix to segregate the heaviest columns in which wedelay row reduction. The row reduction proceedswith very simple Gaussian elimination steps on thesparsest portion of the matrix. We must remem-ber the history of operations on this sparse portion,since it must be repeated on the inactive portionlater.We attempt to �nd the row dependencies by rowreduction until the matrix is in upper triangularform, and then use back-substitution. We are notconcerned with permuting rows and columns sothat the upper triangular form is actually visible;

Pomerance and Smith: Reduction of Huge, Sparse Matrices over Finite Fields Via Created Catastrophes 91

this can be kept track of internally. After an el-ement is used as pivot, we consider its row andcolumn to have been eliminated, though of coursea record of what was done must be kept to obtainthe �nal dependencies.By the weight of a column we mean the numberof 1's in the column corresponding to rows thathave not yet been eliminated. By the weight of arow we mean the number of 1's in the row corre-sponding to active columns that have not yet beeneliminated. Thus, whenever more columns are de-clared inactive, row weights either remain constantor decrease.
Step 0. Identify a certain number of columns as\inactive". This, in e�ect, temporarily removesthese columns from the matrix. We initially des-ignate as inactive the 5% heaviest columns of theentire matrix. (For particularly sparse matrices, itmay be appropriate to designate fewer columns in-active, but there is no particular reason with ourmethod to ever initially designate more than 5%inactive.) Processing on the inactive columns is de-ferred; Steps 1{4 apply only to the active columnsof the matrix.
Step 1. Eject columns of weight 0, since they playno role in any row dependency.
Step 2. Eliminate each column of weight 1 and thecorresponding row, since such a row cannot be in-volved in any row dependency. This procedure maycreate more columns of weight 0 or 1, so we cy-cle through Steps 1 and 2 until there are no morecolumns of weight 0 or 1.
Step 3. Eject excess rows. Because of Step 1, wemay now discover that our matrix is more overde-termined than it needs to be|the di�erence be-tween the number of rows and columns may behigher than the number of row dependencies thatwe need. We just delete these rows from the matrixuntil the row surplus equals the number of targetrow dependencies (typically about ten in factoringapplications). The choice of rows to be deletedis completely up to us. We eliminate the heavi-est rows, though other strategies, such as deletingrows that contain 1's in many columns of weight 2,may be worthwhile. We cycle through Steps 1{3until no more deletions are possible.
Step 4. Use rows of weight 1 to eliminate the cor-responding column. This amounts to deleting the

row and column from the sparse structure, record-ing what happened so it can be duplicated later inthe inactive portion of the matrix. Repeat Step 4until no more moves are possible.If the original matrix is sparse enough, it is possi-ble that at this point everything has been removedfrom our sparse data structure, leaving only the in-active columns to deal with. Repeating the historyof row operations performed on the sparse part onthe relatively few inactive columns then creates asmall, near square (and dense) matrix that may benow reduced with conventional Gaussian elimina-tion.However, what do we do next if, at the end ofStep 4, there is still a large matrix? Odlyzko [1985]originally proposed to proceed with Gaussian elim-ination on the sparse part in a manner so as tominimize �ll-in. For example, we might next use arow that intersects a column of weight 2 in orderto eliminate that column. After there are no morerows or columns of weight � 2, we could look forrows of weight 3 intersecting columns of weight 3,and so on.Our method is both simpler and apparently moree�ective. We simply return to Step 0, designatingan additional 0.1% (rather than 5%) of the remain-ing columns as inactive. Again, we choose for thisrole the heaviest columns remaining.This, then, is the entire method. We iterateSteps 0{4 until there is nothing left in the sparsepart. On the second and subsequent passes throughStep 0, we remove from the sparse structure theheaviest 0.1% of the columns present (actually thesmallest integer not less than 0.1% of the numberof columns).The process must terminate because, if we applyStep 0 often enough, we remove everything fromthe sparse structure. In the worst case, if the in-put is a dense bit matrix, it is likely there will neverbe anything to do in Steps 1{4. We will continu-ally repeat Step 0, calling columns inactive untilnothing is left.We consider the method successful if, at the con-clusion, the inactive columns are few enough to behandled by conventional matrix methods. For ex-ample, with an initial square matrix having 64,000columns, we may be left at the end with 10,000inactive columns. This is few enough to handleconventionally.

92 Experimental Mathematics, Vol. 1 (1992), No. 2

For sparse inputs, the reduction winds down inan interesting way, which we did not at �rst ex-pect. At some point in the reduction procedurethe density and structure of the sparse portion ofthe matrix are such that Step 4 \explodes": whenthe column intersecting a row of weight 1 is elimi-nated, other rows acquire weight 1, and the proce-dure continues to propagate in this way until noth-ing is left. This is the catastrophe referred to in theIntroduction.Note that our algorithm is quite greedy. At nostep do we increase the number of 1's in the sparseportion. We refuse to allow any �ll-in at all. Inaddition, no row or column in the sparse portionever gets heavier.One variation of this scheme seems to work a lit-tle better in practice. Notice that it is not necessar-ily harmful to create heavier columns, since theymay be deleted in the next pass through Step 0anyway. We thus delay our return to Step 0, byfollowing Step 4 with the following.
Step 5. Use each row of weight 2 to eliminate thelighter of the two corresponding columns. Therow and column are deleted from the sparse ma-trix structure. The other column intersecting thedeleted row is replaced by its sum with the removedcolumn (since we are working modulo 2, the sumis the same as the exclusive-or).The e�ect on the matrix would of course be ex-actly the same if we used the row to eliminate theheavier of the two columns, but the history record(the list of rows to which our weight-2 row is added)would be longer.This step usually reduces the number of 1's inthe sparse matrix by two (coming from the deletedrow itself), but sometimes other 1's are deleted inthis process. We now cycle through Steps 4{5 untilno further reductions are possible.Try as we might, we could not otherwise im-prove signi�cantly on the simple scheme describedabove. For example, we tried changing the per-centage of columns declared inactive at each runthrough Step 0 (5% and 0:1% for the initial andsubsequent passes). For nearby choices, the re-sults were similar, and for grossly di�erent choices,the results were worse. We tried other schemesfor declaring columns inactive, such as choosingcolumns that intersect many rows of weight 3. Wetried allowing elimination to continue so long as

the Markowitz count stayed nonpositive. The dif-ferent variations we tried were often not worse thanthe above method, but we could not �nd any thatwere appreciably better, and the elegant simplicityof the above method eventually led us to stick withit, rather than a more complicated variant.(We have heard from Odlyzko that, if the orig-inal matrix is very overdetermined, it pays to doStep 3 in stages, rather than all at once. If thereare enough excess rows to eliminate, one may alsoallow steps that increase some row weights. In par-ticular, Step 5 may be supplemented with a stepthat uses a row that intersects a column of weight 2in order to eliminate that column.)We note a few more technical points. After thesecond pass through Step 0, there is little or, morelikely, nothing to do in Steps 1{3: we are essentiallyjust cycling through Steps 0 and 4 (or Steps 0, 4and 5). But occasionally there is some action inthese steps, and it does not cost much to look.Also, the catastrophe, when it comes, comes inStep 3. Thus, we leave these steps in the main loop.When a column is called inactive it may not bethe same as in the original matrix: it may havebeen a�ected by earlier row operations, if we per-form Step 5. The matrix of inactive columns onwhich we later perform the history operations mustconsist of original columns only. Thus, when wecall a column inactive, we just note its number andcompile the numbered columns from the originalmatrix at the end of the run.
3. OUTLINE OF EXPERIMENTSWe ran a program that implements the algorithmdescribed in the previous section on 44 test ma-trices of various sizes and densities. More pre-cisely, the program incorporates the algorithm un-til the occurrence of a catastrophe and the elimi-nation of the sparse part of the matrix. Actually�nding nontrivial row dependencies requires dupli-cating the recorded row operations on the inac-tive portion of the matrix, reducing the resultingdense matrix, and back-substituting. These op-erations require considerably more time than thesparse-matrix processing of Steps 0{5 above. Wedid not include them in our timings because theyare of a routine nature and, except for the back-substitution step, are done with the normal f0; 1g-encoding for dense bit matrices.

Pomerance and Smith: Reduction of Huge, Sparse Matrices over Finite Fields Via Created Catastrophes 93

Our test matrices were randomly generated anddesigned to approximate the matrices that occur infactorization algorithms. In particular, for anM�M matrix occurring in factorization algorithms,the number of 1's in column i is approximatelyDM=i, for some constantD. This is not a theorem,but a rough observation supported by heuristics.For each value of D ranging from 2 to 3 in in-crements of 0:1, we randomly constructed threesquare matrices of size M = 50;000, in such a waythat the probability of each entry being 1 was D=ifor i > 2D and 12 for i � 2D, where i is the en-try's column number. We ran the program for eachmatrix on a Sun 3/160 workstation with 20MB ofmemory, and averaged together the benchmarks foreach group of matrices having the same value ofD. In addition, we ran the same experiment forM = 100;000 and the same values of D, using onlyone sample per value of D. The results are shownin Table 1. M = 50;000 M = 100;000D C W T C W T2.0 3168 3.19 0:43 6476 3.25 1:052.1 3652 3.27 0:55 7296 3.37 1:442.2 4152 3.43 1:03 8446 3.33 2:082.3 4716 3.38 1:18 9339 3.29 2:382.4 5255 3.37 1:33 10380 3.49 2:542.5 5833 3.57 1:40 11485 3.45 3:332.6 6466 3.54 1:55 12732 3.58 3:432.7 7028 3.61 2:05 13964 3.60 4:062.8 7655 3.44 2:33 15211 3.63 4:322.9 8221 3.36 2:50 16510 3.65 5:303.0 8825 3.51 3:00 17566 3.68 5:46
TABLE 1. Benchmarks for the algorithm of Sec-tion 2, applied to matrices of size M and densitymin(12 ; D=i), where i is the column number. C isthe number of columns that had to be made in-active before a catastrophe was triggered. W isthe average number of 1's per row in the activesparse structure just prior to the catastrophe. T isthe running time, in hours and minutes, on a Sun3/160 workstation with 20MB of memory.The number of 1's per row just prior to the catas-trophe (denotedW) ranged from 3:01, for a matrixwith D = 2:1 andM = 50;000, to 3:68, for the ma-trix with D = 3:0 and M = 100;000. As one cansee from Table 1, there is a slight tendency for thisnumber to increase as the density of the original

matrix increases. Table 1 also suggests that thereis an approximately linear relation between D andthe number C of columns that are made inactive,at least for the given range of D values. Despitethe imperfect relationship between W and the oc-currence of the catastrophe, we could not �nd abetter predictor with our data.Further experiments, especially with smaller andlarger values of D, would be of interest. It shouldbe noted that, the larger D is, the more mainmemory is required for handling the sparse datastructure. Of course, disk memory could also beused, but paging will slow down the process. Itmay also be of interest to do experiments with ran-dom models other than the D=i model describedabove. For applications to discrete logarithm prob-lems [LaMacchia and Odlyzko 1991], it would alsobe good to try experiments over �nite �elds withmore than two elements.
4. CONCLUSIONWe now propose a graph-theoretic interpretation ofour results. Consider the graph where the verticesare the active columns in the matrix and wheretwo columns are connected by an edge if there isa row of weight 2 whose 1's are in these columns.Suppose this graph is connected. If just one morecolumn is declared inactive, the remainder of thematrix will be eliminated using just Steps 1{4 inour algorithm. That is, the catastrophe is readyto occur. If the catastrophe is not ready to occur,we declare more columns inactive, which has thee�ect of reducing the average row weight in theactive portion, and thus increasing the number ofedges in our graph (and reducing the number ofvertices). Thus the graph is now more likely to beconnected.Actually our situation is somewhat more compli-cated. Some row of weight 3 may be \promoted"to a row of weight 2 while we are eliminating a rowof weight 1. Thus a graph that does not at �rstglance look ready for a catastrophe may indeed beready. A full graph-theoretic interpretation of acatastrophe, then, should include not only pairsof columns, but also triples, quadruples, etc. Itshould be a hypergraph. There may be lurking herea theory of evolution of random hypergraphs anal-ogous to the well-known theory for graphs. Forgraphs, it is known that if there are 12 + " times

94 Experimental Mathematics, Vol. 1 (1992), No. 2

as many edges as vertices, it is highly likely thatthe graph has a connected component comprisinga positive proportion of the vertices. Our resultssuggest that, if the average row weight is a littleover three, a catastrophe is highly likely to occur.This suggests a possible theorem on sparse randombit matrices.
ACKNOWLEDGEMENTSWe take this opportunity to thank several friendswho helped with various aspects of our work, no-tably W. R. Alford, Renet Lovorn, Colette Pirieand Randy Tuler.
REFERENCES[Bollobas 1985] B. Bollobas, Random Graphs, Aca-demic Press, Orlando, FL, 1985.

[Buhler et al.] J. Buhler, H. W. Lenstra, Jr. and CarlPomerance, \Factoring integers with the number�eld sieve" (preprint).[LaMacchia and Odlyzko 1991] B. A. LaMacchia andA. M. Odlyzko, \Solving large sparse linear systemsover �nite �elds", pp. 109{133, in Advances inCryptology: Crypto 90 (edited by A. Menzes and S.Vanstone), Lecture Notes in Computer Science 537,Springer-Verlag, Berlin, 1991.[Odlyzko 1985] A. M. Odlyzko, \Discrete logarithmsin �nite �elds and their cryptographic signi�cance",pp. 224{314, in Advances in Cryptology: Proceedingsof Eurocrypt 84 (edited by T. Beth, N. Cot and I.Ingemarsson), Lecture Notes in Computer Science209, Springer-Verlag, Berlin, 1985.[Pomerance et al. 1988] C. Pomerance, J. W. Smithand R. Tuler, \A pipeline architecture for factoringlarge integers with the quadratic sieve algorithm",SIAM J. Comput. 17 (1988), 387{403.[Wiedemann 1986] D. H. Wiedemann, \Solving sparselinear equations over �nite �elds", IEEE Trans.Information Theory 32 (1986), 54{62.
Carl Pomerance, Department of Mathematics, University of Georgia, Athens, GA 30602 (carl@joe.math.uga.edu)J. W. Smith, Department of Computer Science, University of Georgia, Athens, GA 30602 (jws@pollux.cs.uga.edu)
Received August 27, 1991; revised August 7, 1992

