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We describe an implementation of the generalized Lagrange al-

gorithm for computing units in algebraic number fields [Buch-

mann 1987a], together with extensive experimental data of

the algorithm’s application (to all totally real quartic fields of

discriminant below 60000). We also present an improved al-

gorithm, with related experimental data.

1. INTRODUCTIONThe computation of units in number �elds is oneof the most important and most di�cult tasks incomputational algebraic number theory. In recentyears many new methods for this purpose havebeen proposed, such as the ones in [Buchmann andPeth}o 1989; Fincke and Pohst 1985].In this paper we describe an implementation ofthe generalized Lagrange algorithm (GLA) for com-puting the unit group O� of an order O of an al-gebraic number �eld F of arbitrary degree n. TheGLA works by enumerating the connected graphof reduced ideals of O. It was introduced in [Buch-mann 1987a], where complexity results were provedbut nothing was said about performance in prac-tice.In Section 2 we describe the implementation ofthe original GLA, which yields a �nite generatingsystem for O�. We applied the GLA to all totallyreal quartic �elds of discriminant below 60000. Thedata obtained from that computation are presentedin Section 4.For unit rank bigger than three, it turns out thatthe GLA is not e�cient. This is because enumer-ating the complete graph of reduced ideals seemsto be far too time-consuming.
c
 A K Peters, Ltd.1058-6458/96 $0.50 per page



200 Experimental Mathematics, Vol. 3 (1994), No. 3

However, if we restrict ourselves to enumerat-ing a suitable subgraph only, a modi�cation of theGLA, called PGLA, turns out to be e�cient. ThePGLA yields a subgroup of �nite index in O�, notnecessarily O� itself. So far, we have not been ableto prove an upper bound for that index; in prac-tice, however, it seems to always be very small.The PGLA and the corresponding numerical re-sults are presented in Section 3.
2. THE GENERALIZED LAGRANGE ALGORITHM AND

ITS IMPLEMENTATIONWe �x an algebraic number �eld F and an order Oof F . Throughout the paper, d and R will denotethe discriminant and regulator of O.Let �1; : : : ; �r1 be the real isomorphisms of Fand let �r1+1; �r1+1; : : : ; �m; �m be the nonreal iso-morphisms of F into the �eld of complex numbers.Denote by j j1; : : : ; j jm the normalized archimedeanvaluations of F : explicitly, for � 2 F de�ne j�ji =j�(�)jei , where ei = 1 if �i is real and ei = 2 other-wise. We assume that �1 is the identity map, andso write j�j instead of j�j1 for � 2 F .Let a be a fractional ideal of O. A number � 2 ais called a minimum of a if 0 is the unique � 2 asuch that j�ji < j�ji for 1 � i � m. The ideala is called reduced if 1 is a minimum in a. Twominima � and � in a are called neighbors if 0 is theunique � 2 a such that j�ji < maxfj�ji; j�jig for all1 � i � m. Two reduced ideals a and b are calledneighbors if �(a; b)b = a with � a neighbor of 1 ina. Thus the reduced ideals of O with this neighborrelation form a directed graph, the reduced idealsbeing the vertices and the edges being in one-to-one correspondence with the elements �(a; b).It is proved in [Buchmann 1987a] that the sub-graph whose vertices are the reduced ideals in theideal class of a is connected. The set of reducedideals in the ideal class of a is called the cycleof reduced ideals in that class. It is �nite andits cardinality, called the period length, is denotedby p(a). It was proved in [Buchmann 1987b] thatp(a) = O(R).

First we present the GLA to construct the graphof reduced ideals for a given ideal class and to com-pute a basis of O�. The details are explained below.
Algorithm 2.1 (GLA). Input: A reduced ideal a.
Output: The cycle C of reduced ideals in the classof a and a minimal generating system U for O�.� (Initialize) Set C = fag and U = ?.� For all b 2 C:� Compute the set N of neighbors c of b withcorresponding �(b; c).� For all c 2 N :� If c 62 C, add c to C.� Else, there is c0 in C such that c = c0. In thatcase there is a chain c = c1; c2; : : : ; ck = c0of reduced ideals contained in C such thatci+1 = �(ci+1; ci)ci for 1 � i < k. Becausec = c0, the element

� = k�1Yi=1 �(ci+1; ci)is a unit. Replace U by a minimal generatingsystem for hU; �i:In [Buchmann 1988] it is proved that the complex-ity of this algorithm is O(R jdj") for every " > 0.Another application of Algorithm 2.1 is testingwhether a given ideal a is principal. If we know thereduced principal ideals in O we compute a reducedideal b in the principal cycle of a and check whetherb belongs to the cycle.In order to �nd all neighbors of 1 in a reducedideal we calculate for that ideal all the minimalsets containing 1, a concept that we now de�ne.For any �nite nonempty S � O� and 1 � i � m,we set jSji = maxfj�ji : � 2 Sg:We call S a minimal set in a iff� 2 a : 0 < j�ji � jSji for 1 � i � mg = Sand f� 2 a : j�ji < jSji for 1 � i � mg = f0g:
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Now, given a reduced ideal b, clearly all elementsof a minimal set containing 1 are neighbors of 1,and each neighbor of 1 is contained in such a min-imal set. Starting from the minimal setf� 2 b : j�ji � 1 for 1 � i � mg;we can �nd all the other minimal sets by meansof expansions and compressions. To de�ne theseoperations, let S(i) be the set of � 2 S such thatj�ji = jSji and j�jj < jSjj for all 1 � j � m withj 6= i. For i 2 f1; : : : ;mg, the i-th expansion ei(S)of S is the minimal set S0 satisfying S0(i) = ? andjS0jj = jSjj for 1 � j � m and j 6= i:The i-th compression iski(S) = f� 2 S : j�ji < jSjig:Using expansions and compressions we are ableto compute all neighbors of 1 by determining allminimal sets containing 1:
Algorithm 2.2 (Finding all minimal sets containing 1).

Input: The set S0 of � 2 b such that j�ji � 1 for1 � i � m.
Output: The set S of all minimal sets containing 1.� (Initialize) Set S = fS0g.� For all S 2 S:� For all i = 1; : : : ;m:� Set S = S [ fei(S)g.� If 1 2 ki(S), set S = S [ ki(S).In [Buchmann 1987a] it is proved that S can onlycontain �nitely many elements, and therefore thealgorithm terminates. It remains to explain the im-plementation of expansion and compression. Thecompression of a set S is easily computed:
Algorithm 2.3 (Compression).

Input: Aminimal set S and an index i 2 f1; : : : ;mg.
Output: ki(S).� (Initialize) Set ki(S) = ?.� For all � 2 S:� If j�ji < maxfj�ji : � 2 Sg, setki(S) = ki(S) [ f�g:

Computing the i-th expansion of a minimal set Sis more complicated. We �rst determine jei(S)j bymeans of a divide and conquer strategy. Then wedetermine ei(S) by complete enumeration.
Algorithm 2.4 (Expansion).

Input: Aminimal set S and an index i 2 f1; : : : ;mg.
Output: ei(S).� (Initialize) Set ei(S) = ?, found = false, Cj = jSjjfor 1 � j � m and j 6= i, Ci = 2 jdj1=n, anddenom = 2.� While found = false or denom = 2:� If there exists � 6= 0 with j�jj < Cj for all j 6= i:� Set found = true and Cj = j�jj=denom.� Else:� If found = false, set Ci = 2Ci.� Else:� If denom = 2, set denom = 1 and Ci = 2Ci.� Replace ei(S) by the set of all � with j�jj � Cjfor 1 � j � m.The initialization Ci = 2 jdj1=n is based on experi-ence. This choice works pretty well in practice.Next we explain how to solve the enumerationproblems in Algorithm 2.4. This is done by rescal-ing the Minkowski lattice corresponding to a insuch a way that the box that we want to enumer-ate becomes the unit cube. Then we use the al-gorithm of Fincke and Pohst [1983] to enumeratea sphere containing the cube, and collect all ad-missible points. This is a lot faster than using thealgorithm of Fincke and Pohst without rescaling,since scaling decreases the number of enumerationsteps (Figure 1).
Algorithm 2.5 (Finding all elements within given bounds).

Input: A Z-basis �1; : : : ; �n of a and positive realbounds C1; : : : ; Cm.
Output: The set Z of all � 2 a with j�ji � Ci for1 � i � m.� (Initialize) Set Z = ? andbj = (�j(1)=C1; : : : ; �j(r1)=Cr1 ;Re�(r1+1)j =pCr1+1; : : : ; Re�(r1+r2)j =pCr1+r2 ;Im�(r1+1)j =pCr1+1; : : : ; Im�(r1+r2)j =pCr1+r2):



202 Experimental Mathematics, Vol. 3 (1994), No. 3

x

y
P

Q
1 x

y P 0

Q01

FIGURE 1. E�ect of rescaling on enumeration of boxes. Left: Original situation. Right: After rescaling; notehow the image of P now falls outside the ball.
� Use the algorithm of [Fincke and Pohst 1983] to�nd the set X of all x 2 Zn with 

Pxjbj

 � m.� For all x 2 X:� Set � = (b1; : : : ;bn)x.� If j�jj � Cj for 1 � j � m, set Z = Z [ f�g.An easy modi�cation of this algorithm �nds in-stead of all the admissible points just one of themor returns the message that there is none.This concludes the description of the GLA. Nu-merical examples can be found in Section 4.
3. THE MODIFIED ALGORITHMOur experience shows that computing the completegraph of reduced principal ideals is extremely time-consuming and is in general hopeless for unit ranklarger than two. Therefore we have studied a mod-i�cation of the algorithm in which we only deter-mine a few neighbors that are easier to �nd. Fork 2 f1; : : : ;mg, a k-th degree neighbor of 1 is aneighbor � with j�jj < j1jj for all j 2 f1; : : : ;mgexcept for k values of j. The k-th degree neighborsof a reduced ideal are de�ned analogously. Com-puting �rst-degree neighbors is fairly simple. Alsothe partial graph that we obtain by only comput-ing those neighbors still yields a subgroup of O�of �nite index. Experience shows, however, thatfor orders of unit rank greater than three this in-dex tends to be very large. There we have to de-

termine higher-degree neighbors. For example, inorder to determine the unit group of the maximalorder of a �eld of unit rank 11 it was useful to com-pute fourth-degree neighbors. Such neighbors canbe computed by means of the following procedure.
Algorithm 3.1 (Computing a k-th degree neighbor).

Input: A reduced ideal a and a set U � f1; : : : ;mgwith k elements.
Output: A k-th degree neighbor � with j�jj > j1jjfor all j 2 U and j�jj < j1jj otherwise (or theinformation that such a neighbor does not exist).� (Initialize) Set Cj = 1 for j 62 U and Cj = jdj1=nfor j 2 U ; set denom = 2 and found = false.� While found = false or denom = 2:� If there exists � 6= 0 with j�jj < Cj for j 2 U :� Set found = true and Cj = j�jj=denom forj 2 U .� Else:� If found = false, set Cj = 2Cj for j 2 U .� Else:� If denom = 2, set denom = 1 and Cj = 2Cjfor j 2 U .� If � is an m-th degree neighbor with m < k, setfound = false and return.� Else, return �.Which neighbors should be used for a given number�eld? In general we recommend computing only�rst- and second-degree neighbors. That is basedon computational experience with many �elds, and
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on the fact that Algorithm 3.1 gets more time-consuming for higher-degree neighbors. In all casesconsidered, with �elds of degree up to twenty andvarious signatures, we found subgroups of unitswith small indices in the full unit group using �rst-and second-degree neighbors.
4. NUMERICAL RESULTS AND OBSERVATIONSAll computations were done on Apollo worksta-tions DN3000 and DN4500 (CPU Motorola 68020/68030). We used the Fortran version of the num-ber theoretic program library Kant, developed inD�usseldorf [Schmettow 1991]. More data is con-tained in [J�untgen 1990]. All algorithms describedin this paper are now a part of Kant V1.We �rst present a detailed example to illustratewhat a complete graph produced by Algorithm 2.1looks like. Let O be the maximal order of the to-tally real �eld of degree four generated by a rootof f(t) = t4 � t3 � 16t2 � 5t+ 5. The discriminantis 10025 and an integral basis is given by !1 = 1,!2 = �, !3 = �2, !4 = 120(�5� 8�2 + �3).Figure 2 shows the graph of minima in O. Twominima are neighbors if and only if the correspond-ing vertices are connected by an edge. There arenine minima that are pairwise non associated, cor-responding to nine reduced principal ideals; Thecorresponding vertices are labeled �1; : : : ; �9. Re-maining vertices are labeled with expressions of theform k(�i), which have the following meaning: Ifthe vertex �j is connected to a vertex labeled k(�i),the minimum �j has k neighbors associated to �i.After the computation of all neighbors of 1 wealready have fourteen units. Using MLLL [Pohst1987], we obtain a basis of the corresponding sub-group of O� consisting of only two units, so wehave not yet found a subgroup of �nite index. Af-ter the computation of all neighbors of �2 we haveseven more units, and it turns out that those 21units generate O�. The graph required the com-putation of 257 minimal sets by 798 expansionsand 610 compressions, and 30% of all expansionsand compressions do not yield new minimal sets.
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FIGURE 2. Example of a graph of minima. Seetext to the left for the meaning of the labels.To compute all neighbors of all nine minima bythe expansion and compression technique we hadto compute the absolute values of 22000 algebraicnumbers. Only 77 of those numbers are necessaryfor the construction of the graph.We observe that the number of neighbors of 1is much larger than the number of neighbors of allthe other minima. Experimental experience sug-gests that this is typical. In fact, for the minimathat are \far away" from 1 the number of neighborsseems to be four. We obtain the following systemof fundamental units:�1 = �!1 + 2!2 � !3 � 3!4;�2 = !2 + !4;�3 = !1 + 2!2 � !4;the regulator is approximately 6:1491.
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d R p #(U)19773 9:447 17 13119796 17:135 26 19219821 7:782 8 5820032 7:662 7 5120225 7:835 11 9420308 19:780 17 19020808 11:760 11 10721025 5:041 9 7021056 7:801 6 5321200 12:639 17 13321208 14:648 19 13421308 12:253 15 10521312 16:105 22 157

d R p #(U)21469 7:951 10 7021568 17:222 19 13321725 5:537 6 6321737 8:622 8 6221801 10:605 12 10021964 12:377 14 9622000 8:457 8 9122221 10:178 11 9422545 14:827 16 12022592 18:338 17 15222676 18:784 24 17122784 11:234 12 9122896 12:981 17 119

d R p #(U)23252 18:856 24 19423297 11:286 11 8523301 9:846 12 8223377 14:492 17 12723525 7:569 7 7623552 12:682 16 9023600 7:350 10 8223665 15:175 18 12723724 14:408 14 11224197 20:307 27 20824336 12:310 10 11124400 9:835 12 12624417 11:877 12 111
TABLE 1. Discriminant, regulator, period length and cardinality of minimal generating system for a sample oftotally real quartic �elds. A complete list was computed up to discriminant 69025.As already mentioned, the number p of reducedprincipal ideals of the maximal order O satis�esRlogr jdj � p � k0w R;where k0 2 R�0 depends on the signature of F ,and w is the order of the torsion subgroup of O�[Buchmann 1987b]. For totally real �elds of degreefour the value of k0 turns out to be 2 � 43= log3 2 �384.Table 1 is part of a list we compiled of all to-tally real quartic �elds up to discriminant 69025.The value of the regulator is close to the periodlength and for all 560 �elds up to discriminant69025 the quotient p=R is less than 2. Unfortu-nately we could not �nd any asymptotic behaviorsuch as is known for totally real quadratic �elds.We also applied the algorithm to the maximalorders of all the totally real �elds of minimal dis-criminant and degrees four, �ve and six. To �ndthe result for the �eld of degree six we computed4062 di�erent minimal sets. We needed 20310 ex-pansions and 17636 compressions which, in turn,required the enumeration of 53857 boxes in R 6 .We also tried to apply the algorithm to totallyreal �elds of minimal discriminant in degrees sevenand eight. In both cases we stopped the com-putation after 36000 seconds of computing time.

Although we computed more than 100 neighborsof 1, we were not able to �nd all neighbors of 1 inthat time. Among the neighbors that we did com-pute there was a generating system for the unitgroup.We found similar results for �elds of mixed sig-nature and unit rank greater than three. The time-consuming computation of all neighbors of 1 makesthe algorithm highly ine�cient, so it takes a longtime to compute all vertices in the graph of reducedprincipal ideals. Hence, in general, computing allreduced principal ideals does not seem to be ane�cient method for calculating fundamental unitsand to decide principality of a given ideal.It is therefore interesting to use the modi�ed al-gorithm of Section 3 (the PGLA), and see how itperforms. For quartic �elds of discriminant lessthan 106, we computed a subgroup of �nite in-dex of the unit group of the maximal order, usingn d R N p run time4 725 0:825 9 1 60 seconds5 14641 1:636 37 2 14290 seconds6 300125 3:278 101 1 several days
TABLE 2. Discriminant, regulator, number N ofneighbors of 1, period length, and running time formaximal order of the totally real �eld of minimumdiscriminant in each degree from 4 to 6.
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index 1 2 3 4 5 6 7 8�elds 12897 134 16 13 6 5 1 1vertices in partial graph < 200 6 2 2 2 2 1 1
TABLE 3. Distribution of the index of the unitgroup computed with �rst-degree neighbors in thefull unit group for the maximal order, for all totallyreal quartic �elds of discriminant < 106.�rst-degree neighbors (Section 3). We observed thevalue of the index in each case, and tabulated howoften each value occurred (Table 3).We see that the index is usually very small, andif the number of vertices is larger than 6 we alreadyhave fundamental units. Very similar results wereobserved for totally real �elds of degree �ve up todiscriminant 2 � 106. Unfortunately the index in-creases with the degree of the �eld. Consider thetotally real �eld of degree eight generated by a root� off(t) = t8+2t7�7t6�8t5+15t4+8t3�9t2�2t1+1;which is of (minimum) discriminant 282300416 =213 �413. It has a power integral basis !i = �i�1 for1 � i � n. All �rst-degree neighbors of 1 are units,and among those neighbors there is the followingmaximal system of independent units:"1 = 2!1 + !2 + 4!3 � 5!4 � 11!5 + 4!7 + !8"2 = �16!1 + 12!2 + 151!3 + 64!4� 143!5 � 56!6 + 34!7 + 12!8"3 = 23!1 � 28!2 � 229!3 + 22!4+ 366!5 + 68!6 � 117!7 � 34!8"4 = 4!2 � !3 � 14!4 + 4!5 + 12!6 � 3!7 � 2!8"5 = �102!1 � 163!2 + 327!3 + 345!4� 284!5 � 181!6 + 67!7 + 29!8"6 = 54!1 � 226!2 + 3!3 + 422!4� 112!5 � 191!6 + 39!7 + 25!8"7 = �8!1 � 17!2 + 34!3 + 27!4� 25!5 � 13!6 + 5!7 + 2!8The regulator of this system is � 7811:5107, andthe index of the unit group generated by thoseunits in the full unit group is 355. Computing a setof fundamental units by means of the algorithm in

[Arenz 1991; Pohst and Zassenhaus 1987] startingwith a subgroup of such a large index is far tootime consuming. Using three more second-degreeneighbors we found the following system of funda-mental units:�1 =�2!1� 9!2+8!3+15!4� 8!5� 7!6+2!7+!8�2 =�6!2+12!4� 5!5� 6!6+2!7+!8�3 = 3!1� 6!2� 19!3+10!4+26!5+!6� 8!7� 2!8�4 =�3!1+5!2+15!3� 5!4� 15!5�!6+4!7+!8�5 =�!1� 5!2�!3+9!4+3!5� 3!6�!7�6 = 5!2+2!3� 9!4� 3!5+3!6+!7�7 = !1+!2+6!3+4!4� 17!5� 6!6+6!7+2!8The reason for the index being so large in the�rst case is probably that our �eld contains thequadratic sub�eld Q (p5), whose fundamental unitis not a �rst-degree neighbor but only a fourth-degree neighbor.The PGLA works quite fast for �elds of largerdegree. We applied it to �elds of degree up to 20.For example, consider the �eld generated by a root� of the polynomialf(t) = t12 + 4t11 � 17t10 � 68t9 + 108t8+ 416t7 � 314t6 � 1129t5 + 358t4+ 1353t3 � 36t2 � 540t� 72; (4.1)

with discriminant 139754631175017849 = 36 � 618and unit rank 11. An integral basis is given in thesidebar at the top of the next page.We applied the PGLA with second-degree neigh-bors. After computing less than 30 neighbors, wedetected the following maximal system of indepen-dent units:�1 =!1+!3+2!5�!6�!7�!8�!9�2 =!1�!3�!4�3!5+!6+2!7+2!8+2!9�!10+!11�3 =�!3+!4�!5+!6+!7+2!9+!11�4 =!1+!2+!5�!6�5 =!3+!6+!7�6 =!3�!4+!5�!6�!7�!9�!11�!12�7 =�!2�!3+!4�!5+!10�8 =�!1�2!2+!5�!6�2!7�!8�!9�2!11�!12�9 =�2!1�!2+!3�!5+!6+!7�!8+!9�!10�10=!3�!4�!5�!10�11=�!1+!7+!12:
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!1 =1!2 =�!3 =(97200� 55176�� 264400�2 � 66734�3 + 185390�4 � 23108�5� 51192�6 + 14792�7 + 9248�8 � 1000�9 � 730�10 � 66�11)=71232!4 =(384864 + 3268848�� 388144�2 � 6744804�3 � 740772�4 + 3896136�5+ 617728�6 � 829024�7 � 155216�8 + 58960�9 + 12004�10 � 196�11)=71232!5 =(�253872� 342648�+ 755744�2 + 650462�3 � 321926�4 � 327964�5� 27448�6 + 60584�7 + 23664�8 � 1848�9 � 2214�10 � 278�11)=71232!6 =(�375168� 1860192�+ 341344�2 + 3700712�3 + 813376�4 � 1952944�5� 693456�6 + 351952�7 + 169936�8 � 10640�9 � 12728�10 � 1440�11)=71232!7 =(143184 + 1697928�+ 26528�2 � 2718394�3 � 297374�4 + 1445204�5+ 175496�6 � 301144�7 � 39888�8 + 22920�9 + 2994�10 � 302�11)=71232!8 =(400680 + 1833588�� 594024�2 � 4314677�3 � 94711�4 + 2656042�5+ 163028�6 � 601020�7 � 47912�8 + 50668�9 + 4081�10 � 1007�11)=71232!9 =(�319104� 911136�+ 127680�2 + 1592920�3 + 855968�4 � 814928�5� 639472�6 + 118512�7 + 148336�8 + 6832�9 � 10760�10 � 1664�11)=71232!10=(�303336� 2094612�+ 4040�2 + 4145733�3 + 1259511�4 � 2226954�5� 948596�6 + 391580�7 + 230824�8 � 6380�9 � 17441�10 � 2257�11)=71232!11=(�449856� 1717824�+ 1731760�2 + 3153528�3 � 2312904�4 � 2083536�5+ 1174880�6 + 602272�7 � 228640�8 � 83344�9 + 14792�10 + 4504�11)=71232!12=(271416� 978084�� 2770680�2 + 1558449�3 + 4388883�4 � 406722�5� 2287860�6 � 150660�7 + 463128�8 + 68916�9 � 31341�10 � 6261�11)=71232An integral basis of the �eld generated over a root � of the polynomial (4.1).The regulator of this system is � 55324:63. Wetried to enlarge the subgroup generated by �1, : : :,�11 using 22 more units and stopped that computa-tion since the regulator did not change. Using themethod of [Pohst and Zassenhaus 1987] we provedthat �1, : : :, �11 generate the full unit group.Our computations indicate that in order to de-termine the full unit group it su�ces to use lowdegree neighbors. It would be very interesting toprove such a result.
REFERENCES[Arenz 1991] B. Arenz, \Computing fundamental unitsfrom independent ones", pp. 163{171 in Computa-tional Number Theory, Debrecen (Hungary), 1989(edited by A. Peth}o et al.), de Gruyter, Berlin, 1991.[Buchmann 1987a] J. Buchmann, \On the computationof units and class numbers by a generalization of
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