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We describe an implementation of the generalized Lagrange al-
gorithm for computing units in algebraic number fields [Buch-
mann 1987a], together with extensive experimental data of
the algorithm’s application (to all totally real quartic fields of
discriminant below 60000). We also present an improved al-
gorithm, with related experimental data.

1. INTRODUCTION

The computation of units in number fields is one
of the most important and most difficult tasks in
computational algebraic number theory. In recent
years many new methods for this purpose have
been proposed, such as the ones in [Buchmann and
Pethd 1989; Fincke and Pohst 1985].

In this paper we describe an implementation of
the generalized Lagrange algorithm (GLA) for com-
puting the unit group O* of an order O of an al-
gebraic number field F' of arbitrary degree n. The
GLA works by enumerating the connected graph
of reduced ideals of O. It was introduced in [Buch-
mann 1987a], where complexity results were proved
but nothing was said about performance in prac-
tice.

In Section 2 we describe the implementation of
the original GLA, which yields a finite generating
system for O*. We applied the GLA to all totally
real quartic fields of discriminant below 60000. The
data obtained from that computation are presented
in Section 4.

For unit rank bigger than three, it turns out that
the GLA is not efficient. This is because enumer-
ating the complete graph of reduced ideals seems
to be far too time-consuming.
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However, if we restrict ourselves to enumerat-
ing a suitable subgraph only, a modification of the
GLA, called PGLA, turns out to be efficient. The
PGLA yields a subgroup of finite index in O*, not
necessarily O* itself. So far, we have not been able
to prove an upper bound for that index; in prac-
tice, however, it seems to always be very small.
The PGLA and the corresponding numerical re-
sults are presented in Section 3.

2. THE GENERALIZED LAGRANGE ALGORITHM AND
ITS IMPLEMENTATION

We fix an algebraic number field F' and an order O
of F. Throughout the paper, d and R will denote
the discriminant and regulator of O.

Let 01,...,0., be the real isomorphisms of F
and let 0, 41,07, 115+ - -, Om, Om be the nonreal iso-
morphisms of F' into the field of complex numbers.
Denote by | |1, ., ]| |m the normalized archimedean
valuations of F': explicitly, for £ € F define |{|; =
|o(€)|*, where e; = 1 if 0; is real and e; = 2 other-
wise. We assume that o; is the identity map, and
so write |«| instead of |a|; for a € F.

Let a be a fractional ideal of O. A number u € a
is called a minimum of a if 0 is the unique o« € a
such that |a|; < |u|; for 1 < i < m. The ideal
a is called reduced if 1 is a minimum in a. Two
minima p and v in a are called neighbors if 0 is the
unique « € a such that |a|; < max{|pl;, |v|;} for all
1 < i < m. Two reduced ideals a and b are called
neighbors if p(a,b)b = a with x4 a neighbor of 1 in
a. Thus the reduced ideals of O with this neighbor
relation form a directed graph, the reduced ideals
being the vertices and the edges being in one-to-
one correspondence with the elements p(a, b).

It is proved in [Buchmann 1987a] that the sub-
graph whose vertices are the reduced ideals in the
ideal class of a is connected. The set of reduced
ideals in the ideal class of a is called the cycle
of reduced ideals in that class. It is finite and
its cardinality, called the period length, is denoted
by p(a). It was proved in [Buchmann 1987b] that

p(a) = O(R).

First we present the GLA to construct the graph
of reduced ideals for a given ideal class and to com-
pute a basis of O*. The details are explained below.

Algorithm 2.1 (GLA). Input: A reduced ideal a.
Output: The cycle C' of reduced ideals in the class
of a and a minimal generating system U for O*.
« (Initialize) Set C = {a} and U = @.
e For all b € C:
» Compute the set N of neighbors ¢ of b with
corresponding (b, c).
e Forall c € N:

o If cZ C, add ¢ to C.

o Else, there is ¢/ in C such that ¢ = ¢’. In that
case there is a chain ¢ = ¢y, ¢g, ..., cp = ¢
of reduced ideals contained in C such that
¢iv1 = p(cip1,¢)c; for 1 < 4 < k. Because
¢ = ¢/, the element

k-1
n= H p(€it, €i)
i=1

is a unit. Replace U by a minimal generating
system for (U, n).

In [Buchmann 1988] it is proved that the complex-
ity of this algorithm is O(R |d|®) for every € > 0.

Another application of Algorithm 2.1 is testing
whether a given ideal a is principal. If we know the
reduced principal ideals in O we compute a reduced
ideal b in the principal cycle of a and check whether
b belongs to the cycle.

In order to find all neighbors of 1 in a reduced
ideal we calculate for that ideal all the minimal
sets containing 1, a concept that we now define.
For any finite nonempty S € O* and 1 < i < m,
we set

|S|; = max{|a|; : @ € S}.
We call S a minimal set in a if
{aca:0<a);<|S|iforl1<i<m}=S§
and

{a€a:|al; <|S|; for 1 <i<m}=1{0}.
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Now, given a reduced ideal b, clearly all elements
of a minimal set containing 1 are neighbors of 1,
and each neighbor of 1 is contained in such a min-
imal set. Starting from the minimal set

{Beb:|pli<1lforl<i<m},

we can find all the other minimal sets by means
of expansions and compressions. To define these
operations, let S(¢) be the set of o € S such that
la|; = |S|; and |a|; < |S]; for all 1 < j < m with
j #i. Fori € {1,...,m}, the i-th expansion e;(S)
of S is the minimal set S’ satisfying S'(i) = @ and

|S']; =|S]; for 1 < j < m and j # i.
The i-th compression is
ki(S) ={a €S :|al; <[S]}.

Using expansions and compressions we are able
to compute all neighbors of 1 by determining all
minimal sets containing 1:

Algorithm 2.2 (Finding all minimal sets containing 1).
Input: The set S’ of § € b such that |3|; < 1 for
1< <m.
Output: The set S of all minimal sets containing 1.
« (Initialize) Set § = {S5'}.
e Forall S €8:
e Foralli=1,...,m:
e Set S =8 U{e;(S)}.
o If 1 € k;(5), set 8§ =8 U k;(5).

In [Buchmann 1987a] it is proved that § can only
contain finitely many elements, and therefore the
algorithm terminates. It remains to explain the im-
plementation of expansion and compression. The
compression of a set S is easily computed:

Algorithm 2.3 (Compression).
Input: A minimal set S and an indexi € {1,...,m}.
Output: k;(5).
« (Initialize) Set k;(S) = @.
o Forall a € S:
o If |a); < max{|B]; : B € S}, set

ki(S) = ki(S) U{a}.

Computing the ¢-th expansion of a minimal set S
is more complicated. We first determine |e;(S)| by
means of a divide and conquer strategy. Then we
determine e;(S) by complete enumeration.

Algorithm 2.4 (Expansion).

Input: A minimal set S and an indexi € {1,...,m}.

Output: e;(S).

« (Initialize) Set e;(S) = @, found = false, C; = |5|;
for 1 < j < mandj # i, C;=2]|dY", and
denom = 2.

o While found = false or denom = 2:

o If there exists 8 # 0 with |3|; < C; for all j # i:
+ Set found = true and C; = |3|;/ denom.
 Else:
o If found = false, set C; = 2C;.
» Else:
e If denom = 2, set denom = 1 and C; = 2C;.

« Replace €;(.S) by the set of all « with |a|; < C;

for 1 <j<m.

The initialization C; = 2|d|'/™ is based on experi-
ence. This choice works pretty well in practice.

Next we explain how to solve the enumeration
problems in Algorithm 2.4. This is done by rescal-
ing the Minkowski lattice corresponding to a in
such a way that the box that we want to enumer-
ate becomes the unit cube. Then we use the al-
gorithm of Fincke and Pohst [1983] to enumerate
a sphere containing the cube, and collect all ad-
missible points. This is a lot faster than using the
algorithm of Fincke and Pohst without rescaling,
since scaling decreases the number of enumeration
steps (Figure 1).

Algorithm 2.5 (Finding all elements within given bounds).

Input: A Z-basis ai,...,q, of a and positive real
bounds C,...,C,,.

Output: The set Z of all a € a with |a]; < C; for
1<i<m.

e (Initialize) Set Z = @ and

bj _ (a]‘(l)/Cl: .. .,Oéj(rl)/orla
Rea{" ™ /\/Crit1, ..., Real™ 7)1 /G
Ima™ ™/ /i, oy Imeg™ 7 )G ).
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FIGURE 1. Effect of rescaling on enumeration of boxes. Left: Original situation. Right: After rescaling; note

how the image of P now falls outside the ball.

« Use the algorithm of [Fincke and Pohst 1983] to
find the set X of all x € Z" with Hijij <m.
o For all x € X:
e Set B = (by,...,b,)x.
o If |B]; < Cjfor 1 <j<m,set Z=2U{B}.

An easy modification of this algorithm finds in-
stead of all the admissible points just one of them
or returns the message that there is none.

This concludes the description of the GLA. Nu-
merical examples can be found in Section 4.

3. THE MODIFIED ALGORITHM

Our experience shows that computing the complete
graph of reduced principal ideals is extremely time-
consuming and is in general hopeless for unit rank
larger than two. Therefore we have studied a mod-
ification of the algorithm in which we only deter-
mine a few neighbors that are easier to find. For
k € {1,...,m}, a k-th degree neighbor of 1 is a
neighbor g with |u|; < |1]; for all j € {1,...,m}
except for k values of j. The k-th degree neighbors
of a reduced ideal are defined analogously. Com-
puting first-degree neighbors is fairly simple. Also
the partial graph that we obtain by only comput-
ing those neighbors still yields a subgroup of O*
of finite index. Experience shows, however, that
for orders of unit rank greater than three this in-
dex tends to be very large. There we have to de-

termine higher-degree neighbors. For example, in
order to determine the unit group of the maximal
order of a field of unit rank 11 it was useful to com-
pute fourth-degree neighbors. Such neighbors can
be computed by means of the following procedure.

Algorithm 3.1 (Computing a k-th degree neighbor).

Input: A reduced ideal a and a set U C {1,...,m}
with k elements.

Output: A k-th degree neighbor 8 with |5]; > [1|;
for all j € U and |8|; < |1|; otherwise (or the
information that such a neighbor does not exist).

« (Initialize) Set C; =1 for j € U and C; = |d|*/™
for j € U; set denom = 2 and found = false.

e While found = false or denom = 2:

o If there exists 5 # 0 with |3|; < C; for j € U:
* Set found = true and C; = |§|;/denom for
jeU.
» Else:
o If found = false, set C; = 2C; for j € U.
» Else:
o If denom = 2, set denom = 1 and C; = 2C;
for j e U.

o If B8 is an m-th degree neighbor with m < k, set
found = false and return.

o Else, return S.

Which neighbors should be used for a given number
field? In general we recommend computing only
first- and second-degree neighbors. That is based
on computational experience with many fields, and
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on the fact that Algorithm 3.1 gets more time-
consuming for higher-degree neighbors. In all cases
considered, with fields of degree up to twenty and
various signatures, we found subgroups of units
with small indices in the full unit group using first-
and second-degree neighbors.

4. NUMERICAL RESULTS AND OBSERVATIONS

All computations were done on Apollo worksta-
tions DN3000 and DN4500 (CPU Motorola 68020/
68030). We used the Fortran version of the num-
ber theoretic program library Kant, developed in
Disseldorf [Schmettow 1991]. More data is con-
tained in [Jintgen 1990]. All algorithms described
in this paper are now a part of Kant V1.

We first present a detailed example to illustrate
what a complete graph produced by Algorithm 2.1
looks like. Let O be the maximal order of the to-
tally real field of degree four generated by a root
of f(t) =t* —t* — 16t> — 5t + 5. The discriminant
is 10025 and an integral basis is given by w; = 1,
wy = p, wy = p?, ws = 55(—5 — 8p + p°).

Figure 2 shows the graph of minima in 0. Two
minima are neighbors if and only if the correspond-
ing vertices are connected by an edge. There are
nine minima that are pairwise non associated, cor-
responding to nine reduced principal ideals; The
corresponding vertices are labeled pg, ..., ue. Re-
maining vertices are labeled with expressions of the
form k(p;), which have the following meaning: If
the vertex p; is connected to a vertex labeled k(u;),
the minimum p; has k neighbors associated to p;.

After the computation of all neighbors of 1 we
already have fourteen units. Using MLLL [Pohst
1987], we obtain a basis of the corresponding sub-
group of O* consisting of only two units, so we
have not yet found a subgroup of finite index. Af-
ter the computation of all neighbors of u, we have
seven more units, and it turns out that those 21
units generate O*. The graph required the com-
putation of 257 minimal sets by 798 expansions
and 610 compressions, and 30% of all expansions
and compressions do not yield new minimal sets.

4(p1) 2(pz) 3(us) (g 109) 3(pe)
1(p7) 1(ps3) 1 1(ue)
\] 1 [/Km)
M2 s
5(p1)
4(pr)
Fg Mo
3(% 2(n2)  1(s)
1(p2) 1(pe) 3(p1) 1(p7) 1(p2)
68 units il
1(pr7) 5(p1)
1(ps) 1(p2)
2(p1) 4(pr)
1(p1) 1(ps) 1(p1) 1(ps)
He
A M5 Lua)
1(pa) 1(pme) 1(me) 1(pa) 1(pe) 1(u2)

FIGURE 2. Example of a graph of minima. See
text to the left for the meaning of the labels.

To compute all neighbors of all nine minima by
the expansion and compression technique we had
to compute the absolute values of 22000 algebraic
numbers. Only 77 of those numbers are necessary
for the construction of the graph.

We observe that the number of neighbors of 1
is much larger than the number of neighbors of all
the other minima. Experimental experience sug-
gests that this is typical. In fact, for the minima
that are “far away” from 1 the number of neighbors
seems to be four. We obtain the following system
of fundamental units:

T = —wi + 2wy — w3 — 3w,
M2 = Wa + Wy,

N3 = w1 + 2wy — wy;

the regulator is approximately 6.1491.
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d R p | #({U) d R p | #({U) d R p | #({U)
19773 9.447 | 17 131 21469 7.951 | 10 70 23252 | 18.856 | 24 194
19796 | 17.135 | 26 192 21568 | 17.222 | 19 133 23297 | 11.286 | 11 85
19821 7.782 8 58 21725 5.537 6 63 23301 9.846 | 12 82
20032 7.662 7 51 21737 8.622 8 62 23377 | 14.492 | 17 127
20225 7.835 | 11 94 21801 | 10.605 | 12 100 23525 7.569 7 76
20308 | 19.780 | 17 190 21964 | 12.377 | 14 96 23552 | 12.682 | 16 90
20808 | 11.760 | 11 107 22000 8.457 8 91 23600 7.350 | 10 82
21025 5.041 9 70 22221 | 10.178 | 11 94 23665 | 15.175 | 18 127
21056 7.801 6 53 22545 | 14.827 | 16 120 23724 | 14.408 | 14 112
21200 | 12.639 | 17 133 22592 | 18.338 | 17 152 24197 | 20.307 | 27 208
21208 | 14.648 | 19 134 22676 | 18.784 | 24 171 24336 | 12.310 | 10 111
21308 | 12.253 | 15 105 22784 | 11.234 | 12 91 24400 9.835 | 12 126
21312 | 16.105 | 22 157 22896 | 12.981 | 17 119 24417 | 11.877 | 12 111

TABLE 1. Discriminant, regulator, period length and cardinality of minimal generating system for a sample of

totally real quartic fields. A complete list was computed up to discriminant 69025.

As already mentioned, the number p of reduced
principal ideals of the maximal order O satisfies

R ko
W <p< ;Ra
where ky, € R=° depends on the signature of F,
and w is the order of the torsion subgroup of O*
[Buchmann 1987b]. For totally real fields of degree
four the value of ko turns out to be 2-43/log®2 ~
384.

Table 1 is part of a list we compiled of all to-
tally real quartic fields up to discriminant 69025.
The value of the regulator is close to the period
length and for all 560 fields up to discriminant
69025 the quotient p/R is less than 2. Unfortu-
nately we could not find any asymptotic behavior
such as is known for totally real quadratic fields.

We also applied the algorithm to the maximal
orders of all the totally real fields of minimal dis-
criminant and degrees four, five and six. To find
the result for the field of degree six we computed
4062 different minimal sets. We needed 20310 ex-
pansions and 17636 compressions which, in turn,
required the enumeration of 53857 boxes in RS.

We also tried to apply the algorithm to totally
real fields of minimal discriminant in degrees seven
and eight. In both cases we stopped the com-
putation after 36000 seconds of computing time.

Although we computed more than 100 neighbors
of 1, we were not able to find all neighbors of 1 in
that time. Among the neighbors that we did com-
pute there was a generating system for the unit
group.

We found similar results for fields of mixed sig-
nature and unit rank greater than three. The time-
consuming computation of all neighbors of 1 makes
the algorithm highly inefficient, so it takes a long
time to compute all vertices in the graph of reduced
principal ideals. Hence, in general, computing all
reduced principal ideals does not seem to be an
efficient method for calculating fundamental units
and to decide principality of a given ideal.

It is therefore interesting to use the modified al-
gorithm of Section 3 (the PGLA), and see how it
performs. For quartic fields of discriminant less
than 10°, we computed a subgroup of finite in-
dex of the unit group of the maximal order, using

n d R N P run time

4 725 | 0.825 9 |1 60 seconds

5 14641 | 1.636 37 | 2 | 14290 seconds
6 | 300125 | 3.278 | 101 | 1 several days
TABLE 2. Discriminant, regulator, number N of

neighbors of 1, period length, and running time for
maximal order of the totally real field of minimum
discriminant in each degree from 4 to 6.
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index 1 2 3 45678
fields 12897 134 16 13 6 51 1
vertices in partial graph | <200 6 2 2 2211

TABLE 3. Distribution of the index of the unit
group computed with first-degree neighbors in the
full unit group for the maximal order, for all totally
real quartic fields of discriminant < 106.

first-degree neighbors (Section 3). We observed the
value of the index in each case, and tabulated how
often each value occurred (Table 3).

We see that the index is usually very small, and
if the number of vertices is larger than 6 we already
have fundamental units. Very similar results were
observed for totally real fields of degree five up to
discriminant 2 - 10°. Unfortunately the index in-
creases with the degree of the field. Consider the
totally real field of degree eight generated by a root
p of

f(t) =t +2t7 —7t5 — 85+ 15¢* +8t° —9t* — 2t + 1,

which is of (minimum) discriminant 282300416 =
213.413. Tt has a power integral basis w; = p'~! for
1 <4 < n. All first-degree neighbors of 1 are units,
and among those neighbors there is the following
maximal system of independent units:

€1 = 2w + we + dws — bwy — 11wy + dwr + ws
€9 = —16wy + 12wy + 151ws + 64wy
— 143ws — 56wg + 34w7 + 12wy
€3 = 23wy — 28wy — 229w3 + 22wy
4 366ws + 68we — 117Tw7 — 3dws
€4 = dwo — w3 — 14wy + 4wy + 12wg — 3wy — 2wg
€5 = —102w; — 163ws + 327ws + 345wy
— 284ws — 181wg + 67wy + 29wsg
€6 = Ddwy — 226ws + w3z + 422wy
— 112w5 — 191wg + 39wr + 25wsg
er = —8wi — 1Tws + 34ws + 27wy
— 25wy — 13w + bwy + 2wy

The regulator of this system is ~ 7811.5107, and
the index of the unit group generated by those
units in the full unit group is 355. Computing a set
of fundamental units by means of the algorithm in

[Arenz 1991; Pohst and Zassenhaus 1987] starting
with a subgroup of such a large index is far too
time consuming. Using three more second-degree
neighbors we found the following system of funda-
mental units:

m = —2w; — Ywy + 8wz + 15wy — 8ws — Twe + 2wr + wy
M2 = —bwy + 12wy — Sws — bwe + 2wr + wsg

3 = 3(-01 — 6w2 — 190.13 + 10&14 + 26&15 + We — 8(4.)7 — 2w8
N4 = —3w1 + bws + 15ws — bwy — 1bws — wg + 4wy + ws
N5 = —w1 — dwa — w3 + Ywy + 3ws — 3w — wr

N6 = dwy + 2wz — Ywy — 3ws + Jwe + w7

N7 = w1 +wsg + 60)3 + 40.14 — 17w5 — 6w6 + 6&17 + 2w8

The reason for the index being so large in the
first case is probably that our field contains the
quadratic subfield Q(v/5), whose fundamental unit
is not a first-degree neighbor but only a fourth-
degree neighbor.

The PGLA works quite fast for fields of larger
degree. We applied it to fields of degree up to 20.
For example, consider the field generated by a root
p of the polynomial

f(t) =2 + 4t — 17" — 68t° + 108t°
+ 416t7 — 314¢° — 1129¢° + 358¢* (4.1)
+ 1353t — 36t% — 540t — 72,

with discriminant 139754631175017849 = 3° - 618
and unit rank 11. An integral basis is given in the
sidebar at the top of the next page.

We applied the PGLA with second-degree neigh-
bors. After computing less than 30 neighbors, we
detected the following maximal system of indepen-
dent units:

M =wi+tws+2ws —we —wr —ws —wo
72 =w1 — w3 — w4 — 3wy +we + 2wy + 2wg + 2wg — w1g + w11
N3 = —w3+ws —ws+we+wr+ 2wy +wiy
N4 =wi+ws2+ws —Wwe

N5 =w3+ws+wr

Mo =w3—wq+Ws—We—W7 —Wyg— w1l —Wi2

M =—W2—wW3+wWs—ws+wio
8 :7u}172&)2-{-&)57&}672&177&187(4.1972(4}117(.4)12
Ny = —2w) —ws + w3 —ws +we +wy —ws +wy —wig

o =WwW3 — W4 — W5 — W10
Mmi1=—w1 t+wr+wia.
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97200 — 55176p — 264400p% — 66734p> + 185390p* — 23108p°

— 51192p°% + 14792p" + 9248p% — 1000p° — 730p° — 66p') /71232
wy = (384864 4 3268848p — 388144p% — 6744804p> — 740772p* 4 3896136p°
+617728p5 — 829024p" — 155216p° + 58960p° + 12004p™° — 196p'*) /71232
ws = (253872 — 342648p + 755744p? + 650462p> — 321926p* — 327964p°
— 27448p° + 60584p" + 23664p° — 1848p° — 2214p'° — 278p'1) /71232
we =(—375168 — 1860192p + 341344p% + 3700712p° + 813376p* — 1952944p°
— 693456p° + 351952p" + 169936p°% — 10640p° — 12728p1° — 1440p') /71232
wr = (143184 4 1697928p + 26528p? — 2718394p° — 297374p* + 1445204p°
+ 175496p° — 301144p" — 39888p° + 22920p° + 2994p'° — 302p™!) /71232
ws = (400680 + 1833588p — 594024p? — 4314677p> — 94711p* + 2656042p°
+ 163028p° — 601020p" — 47912p% + 50668p° + 4081p'° — 1007p'!) /71232
wy =(—319104 — 911136p + 127680p° + 15929200° + 855968p* — 814928,°
—639472p% + 118512p" + 148336p° + 6832p° — 10760p"° — 1664p'*) /71232
w10 = (—303336 — 2094612p + 4040p? + 4145733p> + 1259511p* — 2226954p°
— 94859605 + 391580p" + 230824p° — 6380p° — 17441p'° — 2257p11) /71232
wiy = (—449856 — 1717824p + 1731760p> + 3153528p° — 2312904p* — 2083536p°
+ 117488005 + 602272p" — 228640p° — 83344p° 4 14792p"° + 4504p'1) /71232
wip = (271416 — 978084p — 27706800 + 1558449p° + 4388883p* — 406722p°
— 2287860p° — 150660p" + 463128p% + 68916p° — 31341p'° — 6261p't) /71232

An integral basis of the field generated over a root p of the polynomial (4.1).

The regulator of this system is ~ 55324.63. We
tried to enlarge the subgroup generated by ny, ...,
711 using 22 more units and stopped that computa-
tion since the regulator did not change. Using the
method of [Pohst and Zassenhaus 1987] we proved
that 7y, ..., 711 generate the full unit group.

Our computations indicate that in order to de-
termine the full unit group it suffices to use low
degree neighbors. It would be very interesting to
prove such a result.
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