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We study self-affine tilings of R™ with special emphasis on the
two-digit case. We prove that in this case the tile is connected
and, if n < 3, is a lattice-tile.

INTRODUCTION

We study certain tilings of R® defined by “gener-
alized decimal expansions” in which the base ten
and the digits 0,...,9 are replaced by an integer
n X n matrix A and a finite subset D of Z™. The
expansions in question are of the form

Z Ai’l]i,

—oo<i<N

where N € Z and all the v; belong to D. To
guarantee convergence, A is assumed to be expand-
ing, that is, all its eigenvalues have absolute value
greater than 1. Since A is an integer matrix, its
determinant is £¢q, where ¢ is a positive integer.
D is required to consist of exactly ¢ elements, one
for each coset of AZ™ in Z™; in the terminology of
[Lagarias and Wang a], D is a standard digit set.
We assume for simplicity that 0 belongs to D.

Corresponding to the integer and fractional parts
in the usual decimal expansion, define I to consist
of all sums of the form vy +- - -+ A*v;,, where k > 0
and v; € D, and @ to be the set of all infinite
sums A7 v, + A 2v_ 4+ ---, for v; € D. In the
usual decimal expansion, () is the unit interval and
I ={0,1,2,...}. The translates of @ by elements
of I tile some subset of R*. By enlarging I we can
obtain a set G' such that the translates of @ by
elements of G’ tile all of R™ (see Proposition 1.5).
In fact, G' C G = I — I, the set of differences of
elements of 1.
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FIGURE 1. Lattice-tile for A = (_J7) and
D ={(0,0),(1,0),(~1,5)}.

The following simple example illustrates several
features of the general case: if n =1, A = 3 and
D = {0,4,11}, then I = {0,4,11,12,16,...} and
R is tiled by the translates of @ by Z (see the end
of Section 1).

It turns out that G’ is a lattice if G = I — I is one
also, and in this case G' = G. If G is a lattice, we
call Q a lattice-tile. It is shown in [Grdchenig 1994;
Grochenig and Haas] that G is always a lattice for
n = 1. On the other hand, [Lagarias and Wang a,
Example 2.3] shows that G is not always a lattice
forn > 1.

The tile @ itself can be intriguingly complex.
Figure 1 shows @ for A= (_3,) and D = {(0,0),
(1,0),(—1,5)}. One can show that @ has infinitely
many connected components, each with infinitely
many holes.

By contrast, Figure 2 shows @ for A = (3;)
and D = {(0,0),(1,0),(0,1),(1,1)}. This tile is
connected and simply connected; there are density
points of @) on the boundary.

As a last example, Figure 3 shows a case where
Q is connected but not simply connected.
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FIGURE 2. Lattice-tile for A= (3 ) and
D = {(0,0),(1,0),(0,1), (1,1)}.

FIGURE 3. Lattice-tile for A= (39) and D =

{(_L _1)’ (07 _l)v (17 _1)7 (_2v0)7 (Ov )7 (2a0)7
(-1,1),(0,1),(1,1)}.

The rest of this article is structured as follows.
Section 1 consists mostly of a review of basic results
on self-affine tilings of R™. This section overlaps
substantially with results of other authors [Bandt
1991, Grochenig and Haas, Grochenig and Madych
1992, Kenyon 1992, Lagarias and Wang a—c, Vince
1993]. In Section 2 we investigate certain aspects
of the case ¢ = 2: we prove that @) is always con-
nected, and that G is a lattice for n < 3. Finally,
in Section 3, we derive an algorithm for checking if
G is a lattice given A and D (see [Vince 1993] for
another algorithm).

1. BASIC RESULTS

In this section we establish some basic results on
tilings of R™ which are self-affine in the terminology
of [Lagarias and Wang a]. Many of these results are
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due independently to other authors; we refer the
reader to the references given in the introduction.
Let A be an expanding integer n X n matrix,
that is, one whose eigenvalues have absolute value
greater than 1. We write det A = +q, where ¢ is a
positive integer. Reducing A to Jordan canonical
form, we see that, for any bounded set B C R",
the diameter of A=*B tends to 0 as k — oo.
We also suppose given (or choose) a set D of
q elements of Z"™ such that 0 € D and D — DN
AZ" = 0; in other words, the elements of D are
distinct modulo AZ™. It follows that Z" is the
disjoint union of the g cosets r + AZ™, for r € D.
(Throughout this paper X + Y will denote the
set of all sums x +y with x € X, y € Y, and
likewise X — Y. Infinite sums are defined if all sets
contain 0: if 0 € X}, for all k, X; + X, + --- is the
increasing union of the X; + --- + Xj, for all k.)
Since Z™ = D + AZ"™, we have Z" =D + AD +
A?7™ and so on. We write

I=D+AD+ A*D +---.

This gives a unique representation for each element
of I, because if ry + --- 4+ AFr, = 51 +--- + AFs,,
we get r; = s; modulo AZ™, so r;1 = s; and r; = s;
for all ¢ by induction. As already remarked, for
n=1A=3and D = {0,4,11} we have I =
{0,4,11,12,16,...}.

Now set 7Z = A Y(D + Z), for any Z C R™.
Then

™"Z=Q.+A"Z,

where Q;, = 7*({0}) = A 1D+---+ A *D. Clearly
Q1 CQyC---and AQ, C A%2Q, C --- C I. The
compact set

Uk

k

is invariant under 7. Following [Hutchinson 1981]
(compare [Falconer 1985 and [Lagarias and Wang
a]), we examine how 7 acts on the compact subsets
of R™ in order to characterize this invariant set.

Recall that, for any metric space X, the Haus-
dorff metric on the space of compact nonempty
subsets of X is defined by

d(K,L) =inf{e | K C N, (L) and L C N.(K)},

where N, (K) is the open e-neighborhood of K. Let
H(X) be this space of subsets with the Hausdorff
metric. It is well known that, if X is complete, so
is H(X).

Clearly, 7 maps H(R") into itself. We know
that some power 7V of 7 is a contraction; let Q
be its unique fixed point. Since 7¥7Q = 7Q, one
has 7Q) = @, by uniqueness. If K € H(R") and
7K = K then 7K = K so that K = Q, again
by uniqueness. Furthermore, if we apply 7 repeat-
edly to any K € H(R"), the iterates tend to @ in
the Hausdorff metric (consider the subsequences of
the form k& = jN + ko, for ky fixed and j — o0).
Therefore:

Lemma 1.1. The map 7 : H(R*) — H(R") has a
unique fized point Q, and Q = limy_,. T°K for
any K € H(R"). O

In particular, taking K = {0}, we get 7"K = Qx,
so @ = U, @Qr and the finite sets @}, are approxi-
mations to @ in the Hausdorff metric.

We next ask how R™ may be represented in terms
of I and Q). We first show that R* = Z" + Q); in
other words, that 7() = T", where 7 : R* — T"
is the quotient map onto the n-torus T = R" /Z".
Since multiplication by A takes Z™ to itself, it in-
duces a map of T™ to itself, also denoted A. Now
A~ acts on subsets of T" taking B to A !B, so
it induces a map A™' : H(T") — H(T"). Also =
induces a map 7 : H(R") — H(T"), which is con-
tinuous; indeed, 7 decreases distances. Since the
digits form a complete set of representatives mod-
ulo AZ", we see that m7 = A~ 'w. If we take a com-
pact set K C R™ that projects surjectively to T™
and apply 7 repeatedly, we get 7Q = 7 lim, 7*K =
lim, 77* K = lim;, A *7 K = T", showing that Z"+
Q = R™ as claimed.

21 August 1996 at 14:34
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By Baire’s theorem, this also implies the follow-
ing result (compare [Lagarias and Wang a, Theo-
rem 1.1]):

Proposition 1.2. Q) has nonempty interior. O

We next look at the self-similarity properties of @
(compare [Falconer 1985]). Let |X| be Lebesgue
measure of X; all sets considered will be measur-
able. We say that two sets K and L overlap if their
intersection has positive measure.

Lemma 1.3. The translates of A~*Q by elements of
Qr do not overlap. The translates of Q) by elements
of I do not overlap.

Proof. Q) contains at most ¢* points and |A~*Z| =
q *|Z| for any Z. Since Q = 7*Q, the first asser-
tion follows. For the second, note that if u,v € I,
there is some k such that u,v € A*Q,. If uw and v
are distinct, A *u+ A"*Q and A *v+A"*Q don’t
overlap, and therefore neither do v+ @ and v+ Q.

O

Definition 1.4. Let X, H,Y C R™ be measurable
sets, where X is bounded with nonempty interior.
We say that H{ 4+ X is a tilingof Y if Y = H + X
and the translates of X by elements of JH don’t
overlap.

We now define G as the set I — I of differences of
I. From Proposition 1.2 and the self-similarity of
Q@ (Lemma 1.3), we can recover the following tiling
property [Grochenig and Haas|.

Proposition 1.5. There ezists a subset G' of G such
that the translates of Q by elements of G' tile R™.
Furthermore, G' — G' C G.

Proof. We know that ) has nonempty interior.
Given r > 0, we use the expansiveness of A to find
k such that a ball of radius r + diam @ fits inside
AFQ. But A*Q = A*Q; + Q, and the translates
of @ by elements of A*Q,, are nonoverlapping, by
Lemma 1.3. Thus, for some element v, of A*Qy,
the translates of Q under G, = A*Q, —v, C G tile
(a superset of) a ball of radius r around the origin.

We now have tilings of arbitrarily large regions
around the origin; we will use them to assemble a

21 August 1996 at 14:34

tiling of R®. Given any positive integer s, the inter-
sections of GG, with B,, the ball of radius s around
the origin, can only produce finitely many differ-
ent sets. Thus, there is an infinite subsequence
of values of r for which these intersections are all
equal. Starting with s = 1, we take a subsequence
G1,Gj, ... of Gi,Gs,. .., all meeting Bj in the same
set. For s = 2, we take a subsequence G3,G3, ...
of Gi,Gji, . .., all meeting By in the same set. We
repeat the process for increasing s. Define G’ to be
the set of elements of G belonging to all but finitely
many of the sets Gi,G? G3,...: by construction,
G' 4+ @ is a tiling of R".

To prove that G' — G' C G, we observe that
G, — G, =Qr, —Qr, C€I—1=(G. The result
follows since any finite subset of G’ is contained in
a translate of some G,. O

Next we consider how 7 acts on the measurable
subsets of (). If K and L are measurable sets, we
write K = L if the symmetric difference (K UL)\
(K N L) has measure zero. We say that K is 7-
invariant if K = 7K.

We first observe that, Z C Q implies |[7Z] = |Z|.
For, setting Y = Q \ Z, we have |7Z| < |Z| and
|7Y| < |Y| by the definition of 7. But 7ZU 7Y =
7TQQ = @Q = ZUY, so Z and 7Z have the same
measure. Thus, if Z C 7Z or if 7Z C Z, the set Z
is T-invariant.

At the same time, we have the following ergod-
icity result (see the end of this section):

Proposition 1.6. Any T-invariant subset of Q) has
measure 0 or |Q|.

Proof. Suppose that Z is 7-invariant and |Z] > 0. It
follows directly from the Lebesgue density theorem
that we may choose a point x such that

. |ZnN N (z)]
lim ———— =1.
N0 N.(@)]

Thus, given 6 > 0, we have
EALACTI
|Q N Ne(z)]
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for € > 0 sufficiently small. For k large enough, the
diameter of A7*Q will be small enough, in compar-
ison with ¢, to ensure the existence of v € @}, such
that

Zn@w+A*Q)|
PRICEY )

Indeed, by Lemma 1.3, the tiny sets v + A=*Q, for
v in some subset of Qy, cover N.(x), except for a
narrow margin around the boundary of N.(z) (of
negligible size), without overlapping; if the above
ratio were smaller than 1 — § for all such v the
ratio in the previous inequality would be smaller
than 1 — %6, a contradiction.

By hypothesis, Z = 7*Z. Hence Z = Q,+A*Z.
Again by Lemma 1.3, we have

(Qu+A*Z)N(v+ A*Q)=v+ A2,

Hence Aok
Z —*Z
12l _ v+ A7 _ |21_5'
QI v+ A~Q|
Since 6 > 0 is arbitrary, we are done. O

Corollary 1.7. Ezcept on a set of measure zero, m :
Q — T™ is f-to-one for some fized integer f.

Proof. Let Q®) be the set of z € Q such that z+7Z"
meets @ in at least k points (including z). Clearly,
Q =QW D> QR® D ..., and Q™ is empty for
large k (since @ is bounded) and the Q® are all
measurable.

To verify that Q*) C 7Q®) for all k, take z,y €
Q@ such that z—y € Z". Since Q = 7Q), we have x =
A7 z'+r)and y = A~ (y' +5) for some z',y' € Q
and r,s € D. Clearly, z' —y' € Z", and if ' = ¢/
then r — s € AZ" so that r = s and, therefore,
z = y. This proves that Q*) C 7Q® and that
Q¥ is r-invariant for all k. By Proposition 1.6,
Q™| is 0 or |@Q|. Now take f to be the largest
value of k for which |Q"®)| = |Q|. O

Notice that in this proof we only use the fact that
(D — D) N AZ™ = {0}; see [Lagarias and Wang a
for more general digit sets.

Two other consequences are worth noticing: the
Lebesgue measure of ) is always an integer, and

the boundary of () has measure zero (since Q has
positive measure and maps inside itself under 7.)
We now show that G' = G if G is a lattice.

Proposition 1.8. G is a lattice if and only if the
translates of Q) by elements of G tile R™.

Proof. Assume G is a lattice, and take v,w in G.
By hypothesis, v —w = ¢ — y where z,y € I. Ifv
and w are distinct, x+ @ and y+ @ do not overlap,
by Lemma 1.3, so neither do v + @ and w + Q.
Conversely, if the G-translates of ) don’t over-
lap, G = G’ since G' + @ is a tiling. Thus, by
Proposition 1.5, G — G C G and G is a lattice.

From Propositions 1.5 and 1.8 we get:

Theorem 1.9. If G is a lattice, G+ Q is a tiling and
the Lebesgue measure of Q is equal to the index of

G inZ". [l
We may deduce a criterion for G to be a lattice.
Lemma 1.10. GNQ =Z" N Q implies G = Z™.

Proof. Define C : Z" — Z™ by C(v) = A (v +r),
where 7 is the unique element of D such that v+r €
AZ". Clearly, C~'G C G. For any v € Z" and any
k > 1 we have, by definition, C*(v) € 7%({v}). But
Q = limy, 7({v}) and Z" is discrete, so eventually
C*(v) € Q. By hypothesis, C*(v) € G, i.e.,, v €
C~*@. Hence v € G, as required. O

Returning to our earlier example, we show that
G=Zforn=1, A=3and D = {0,4,11}. It is
easy to see from the definition that @) is contained
in [0, 3']. We generate all integers in this interval:

042125352
and

0245,

Here a — ¢ means ¢ = 3a + b. For example,
2=4-33-11-32+0-3' —7-3° We thus have GN
Q =1{0,1,2,3,4,5} =ZNQ and, by Lemma 1.10,
G = 7Z. From Theorem 1.9, Z + @ is a tiling and
Ql=1.

21 August 1996 at 14:34
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Let G be the lattice generated by G; in particu-
lar, G is a lattice if and only if G = §. As we shall
see in Section 3, G is easily computable.

Proposition 1.11. G is a lattice if and only if GNQ =
SNQ.

Proof. G a lattice implies G N Q = §N @ trivially.
Conversely, assume G NQ = §GN Q: since Q is
bounded and G' + Q = R", the set G' is not con-
tained in a proper vector subspace of R”. By def-
inition, AG C G, so AG C §G. Now § is contained
in Z" and spans R™ since G’ does; thus § is iso-
morphic to Z*. Also D C G (since D C G) and the
elements of D are distinct modulo AZ"™ and hence
modulo A§ (since § C Z"). Therefore, D contains
precisely one element in each coset of AG in G, and
C : 9 — G as in the proof of Lemma 1.10 is well-
defined. Now follow the proof of Lemma 1.10 with
G instead of Z". O

The question whether or not G is a lattice has been
settled in certain cases.

Theorem 1.12 [Grochenig 1994]. G is always a lat-
tice if n = 1.

Example 1.13 [Lagarias and Wang a]. G is not a
lattice for

A= (5 3) and D={(0,0),(3,0),(0,1), (3, 1)}.
For the reader’s convenience, we include a proof of
Theorem 1.12, based on arguments in [Grochenig
1994; Grochenig and Haas]. We first present a se-
ries of auxiliary definitions and results. Consider
the n-dimensional case for a moment. We denote
by xx(g) the coefficient of 2% = 2§ ... 2k for k €
Z™, in a Laurent series g € ]R[zl,zfl, A S

The key to the proof is the introduction of the
tiling polynomial T, defined by x&(T) = |Q N (k +
Q)|. Clearly, T is constant if and only if the trans-
lates of @ under elements of Z™ do not overlap.

Weset D=3, 2% and D=3, 2% (The
notation comes from the fact that D(z) = D(z)
when |z| = 1.)

21 August 1996 at 14:34

We first show that

for all k € Z", where, as we recall, ¢ = |det A|. By
Lemma 1.3 and the fact that ) = 7Q), we have

xk(qT) =¢q|Q Nk+Q[=]AQ N Ak+AQ)|
= |ATQ N Ak+ATQ| = |D+Q N Ak+D+Q)
= > d+Q N Ak+d'+Q)

d,d'eD

= > QN Ak+d — d+Q| = xar(DDT),

d,d’'e€D

by the definition of D and T
Given g, we define § by xx(§) = xar(DDg).

Thus (1.1) may be rewritten as 7' = ¢T". Notice
also that 1 = ¢, since D is a complete set of residues
modulo AZ™.

Returning to the one-dimensional case, we take
A=q.

Lemma 1.14. For n =1 and |z| = 1 we have
q9(z) = Y g(w)|D(w)].

Proof. Write § = DDg. Then
9(2) = §(27) + zg1(27) + - + 27 g1 (27)

for appropriate gi,...,g,-1. Setting w? = z, we
get g(w) = g(2) + wgr(z) + -+ wi™ g, 1(2). But
Yowie, W =0 for 0 < j < ¢q. It follows that
79(2) = 3 yaz, G(w). a

Taking g =1 and g = T, we obtain, for |z| = 1,
> D) =¢’ (1.2)

and

> IDW)P(T(w) - T(2)) =0.  (1.3)

wi=z

Since x_(T) = xx(T"), the restriction of T' to the
unit circle S* = {z | |z| = 1} is real valued.

Lemma 1.15. If T is nonconstant, gcd(D) > 1.
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Proof. The set E of extrema of T in S' is finite
and has at least two points. Also, if z € E, the
difference T'(z) — T'(y) has the same sign for all
y € S'. Take z € E distinct from 1. By (1.2)
and (1.3), there is some wy with wg = z, for which
T(wo) = T'(z) and therefore wy € E. For each z
there is at least one such w, and different values of
z correspond to different wy; finiteness of E then
guarantees that, given z, there is exactly one such
wp and therefore T'(w) # T'(z) if w # wy and w? =
z. Again from (1.3), |D(w)| = 0 for such w and,
from (1.2), | D(wy)| = g and therefore w§ = 1 for all
d € D (since 0 € D). It follows that wE™ = 1,
implying ged(D) > 1 since wi = z # 1. O

Proof of Theorem 1.12. By the previous lemma, if
ged(D) = 1 the translates of Q by Z do not overlap.
Since Z + @ = R, the translates of @) by Z tile R.
But § C Z and G + Q is a tiling; it follows that
§ =7 and G = Z is a lattice. O

We close this section by describing briefly how the
results of this section are related to the study of
expanding toral epimorphisms [Katznelson 1971;
Mané 1987]. Katznelson determined which toral
epimorphisms are Bernoulli in terms of the eigen-
values of A, where A is the integral matrix rep-
resenting the epimorphism A. From Katznelson’s
theorem and the classification of Bernoulli shifts
by their entropy it follows that any expanding toral
epimorphism is equivalent to the shift of type (1/¢,
..., 1/q), where ¢ = |det A|. In fact, in many cases
the generalized decimal expansion (base A) pro-
vides an equivalence between A on T" and a one-
sided Bernoulli shift. Because Q = A™'D + A~1Q
and the translates are nonoverlapping, one may
define (almost everywhere on @) the shift S by
S(xz) = Az — r, where r is such that z € A7 'r +
A1Q. Tt is easily verified that 70 S = Aox when-
ever S is defined. By Theorem 1.9, 7 : Q@ — R"/G
is an equivalence between (Q,S) and (R"/G, A),
provided G is a lattice. In particular, when G is
a lattice, Proposition 1.6 can be deduced from the
known fact [Mafié 1987] that A is ergodic.

2. THE TWO-DIGIT CASE

Throughout this section we assume A to be an ex-
panding n X n integer matrix with ¢ = |det A| = 2,
so that D consists of two digits 0 and v. The case
q = 2 has certain special features that we now ex-
plore. We begin by showing that ) is connected
by constructing a space-filling curve in ). We then
prove two theorems (2.5 and 2.6), which guarantee
that in many cases G is a lattice.

From Lemma 1.3, we have Q = Q) + A~*Q.
Thus Q is the union of 2% k-pieces, each of the
form w+A~*Q, for w € Q. We start by remarking
that the two 1-pieces A~1Q and A~ v+ A~1Q have
nonempty intersection. For, if they were disjoint,
so would be the four 2-pieces, and, inductively, the
2% k-pieces. Now @ has nonempty interior and
therefore contains a ball, which is covered by k-
pieces whose diameter can be taken smaller than
that of the ball. This would contradict the fact
that the ball is connected.

We now construct a surjective continuous func-
tion v : [0,1] — @ by first defining it on the 6-adic
numbers in [0, 1] and then passing to the limit. Let

J, =[0,1]NnZ/6* = {0,1/6%,...,1}.

We say that a function v : Jp, — Q is admissible if
there is at least one point of y(Ji) in the interior of
each k-piece, and for any two consecutive points 7,
s of Jj, there is some k-piece containing both (r)
and (s).

Any admissible v : J, — Q extends to an ad-
missible 7 : Jiyy1 — Q. To see this, let ao,a,
as, a3, a4, as, ag be consecutive points of Ji 1 with
ag, a6 € Ji. By assumption, y(ag) and 7y(ag) both
lie in some k-piece. This k-piece is the union of
two (k + 1)-pieces Py and P;. Arbitrarily choose
F(a1),4(as),¥(as) € Py N Py (which is nonempty
since the two 1-pieces of @ intersect), and further
choose 7(as) € Py and 7(as) € P,. This defines 7,
which is easily seen to be admissible.

Theorem 2.1. Q) is path-connected if ¢ = 2. More-
over, there exists a continuous surjective map <y
from [0,1] to Q.

21 August 1996 at 14:34
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Proof. Start by defining (0) and «(1) arbitrarily.
Use the preceding observation to define « on the
union of all J;. The function ~ is uniformly con-
tinuous, because steps of size 6% correspond to
arcs contained in a k-piece and the diameter of a
k-piece tends to zero. Thus v can be continuously
extended over [0,1]. Furthermore v is surjective
because its image is dense: it contains points in
the interior of each k-piece for all k. O

Another interesting feature of the case ¢ = 2 is
that it allows us to produce many examples of ex-
panding matrices A such that, for all digit sets, G
is a lattice. In particular, this is true for n < 3.

Let A be an expanding matrix with ¢ = |det A| =
2. The lattice G consists of all vectors of the form
g(A)v, where g € Z[z]. Also, since G has rank n,
the conditions g(A)v = 0 and g(A) = 0 are equiv-
alent. We thus identify § with Z[A] which is, by
definition, the ring of all matrices of the form g(A),
where g € Z[z]. The characteristic polynomial p,
of A is irreducible in Z[z]: if it could be factored,
one of the factors would have constant term 1 and
its roots could not have absolute value greater than
1. Therefore, p4 is also the minimal polynomial of
A, and g(A) = 0 if and only if ¢ is a multiple of
pa. A polynomial f of degree less than or equal to
n — 1 is said to be reduced. Every element of Z[A]
may be written uniquely in the form f(A), with f
reduced. The set G corresponds to the set of all
polynomials (reduced or not) with coefficients 0, 1
or —1. This gives the following result:

Proposition 2.2. G is a lattice if and only if every
reduced polynomial f can be written as g + pah,
where the coefficients of g are 0, 1 or —1. In par-
ticular, if G is a lattice for some choice of D, it is
a lattice for all D.

We call a polynomial expanding if all its roots lie
outside the unit circle. For a given degree n, there
exist only a finite number of expanding polynomi-
als with integer coefficients and constant term +2,
since the other coefficients of the polynomial are
bounded, being functions of the roots. Thus, up to
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conjugation by an integer invertible matrix, there
exist only a finite number of n X n expanding ma-
trices with g = 2.

Define the reduced polynomial g4 by

PA(LU) =2- 33(]A(33);

thus, the relation ps(A) = 0 becomes gs(4) =
2A°'. We give Z[A] the Manhattan norm

IF (A= lan] + -+ laol,

where f(z) = an, 12" *+---+aq is reduced. Using
the relation 2] = Aga(A), we see that, if f is re-
duced, f(A) € AZ[A] if and only if f(0) is even. We
now define a carrying operation C : Z[A] — Z[A]
(compare Lemma 1.10). If f is reduced there is a
unique € € {0,1,—1} such that

f=zg+2c+e withgeZz]andceZ (2.1)

and |2c + €| = |2¢| + |e|. We define C(f) as the
(reduced) polynomial g + cga.

Lemma 2.3. If ||gal| < 2 then ||C(f)|| < ||, and
equality implies f(A) = Ah(A) for some h.

Proof. Clearly deg(g) < n—21in (2.1). Thus || f|| =
lzgll + [2¢ + €] = |lgl| + |2¢[ + |¢] and |C(f)]| =
19 + cgall < [lgll + |2¢[. Thus [|C(f)|| < ]| = lel-
It follows that ||C(f)|| = ||f|| implies € = 0 and
f(M) = Ag(A) + cAgqa(A). O

Lemma 2.4. If g(A) may be written as AFgy(A) for
all k, then g(A) = 0.

Proof. We have g;(A) = A7%g(A). Since A is con-
tracting, gx(A) — 0. Since Z[A] is a lattice, even-
tually gx(A) = 0. Hence g(4) = 0. O

Theorem 2.5. Let A be an expanding matriz with
q = |det A| = 2. Let q4 be defined by pa(z) =2 —
zqa(z), where py is the characteristic polynomial
of A. If ||gal| < 2 then G is a lattice for all digit
sets D.

Proof. For any f, the sequence ||C*(f)|| is eventu-
ally constant by Lemma 2.3 (since ||g4| < 2). By
Lemmas 2.3 and 2.4, ||C*(f)| is eventually zero.
But if h = C(g) belongs to G then so does g since,
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by definition, g(A) = Ah(A)+¢l. Since 0 € G, we
conclude that f(A) € G. Thus § = G and G is a
lattice. O

Now consider polynomials of the form p(z) = §z'+
ex® — 2, where I > k > 0, § = £1 and € = *£1.
We obtain a criterion for such a polynomial to be
expanding. (An example that is not expanding
is 22 + x — 2.) If p is not expanding, let @ be a
root with || < 1. Then |[6a!| < 1 and |ea®| < 1.
Hence 6! = 1 and ea® = 1. Thus, if the equations
bxz' = 1 and ez* = 1 have no common solution over
the complex numbers, p is expanding.

By the same token, the polynomial

o+ k-2

xe—1 7’

where ¢ = ged(l, k), is always expanding. For one
easily sees that the numerator does not have any
multiple roots. If « is a root of the numerator with
|a| <1, then of = o = 1. Hence ¢ = 1, and « is
not a root of the quotient polynomial.

Theorem 2.6. Let A have characteristic polynomial

k-2

p(e)=— "7

where ¢ = ged(l, k). Then G is a lattice. The same
is true if we replace A by —A.

Proof. Since z' +z* — 2 has no repeated roots, z¢—1
and p are prime. Consider the ¢ X ¢ matrix

0 0 1
10
7 = 1 0
0 1 0
The minimum polynomial of Z is ¢ — 1. Let M =
(5 %), which we write as A® Z. For f(M) € Z[M]

Z

define C(f(M)) as before, namely

C(f(M)) = M *(f(M) —eI)
= ATY(f(A) —el) @ Z7H(f(Z) - €).

(The ¢ we get from Z[M] need not be the £ we
would get for C' on Z[A].) Lemma 2.3 contin-
ues to hold since no assumption concerning eigen-
values was made there. As for Lemma 2.4, sup-
pose g(M) = M'g;(M) for all 7. Since g(M) =
g(A) ® g(Z) we have g(A) = Alg;(A) for all i and,
therefore, g(A) = 0 since A is expanding. Thus
any f(A) belongs to G and G = Z[A] is a lattice.

]

As an application, we have:
Theorem 2.7. G is a lattice if ¢ =2 and n < 3.

Proof. For ¢ = 2 and n = 2 there are six possibili-
ties, with characteristic polynomials X?—2, X242,
X?—-X+2, X2+ X+2, X?-2X+2, X?2+2X +2.
All but the last two are covered by Theorem 2.5.
The case X? + 2X + 2 follows from Theorem 2.6
(with ¢ = 1), and X2 —2X + 2 follows by replacing
A by —A.

For n = 3 we have fourteen possibilities: X3+ 2,
X -X+2 X3 4+X24+2 X2 -X?2-X+2,
X34+X24+X 42, X3-2X+2, X34+2X2+2X+2, and
seven more obtained by reversing the signs of the
terms of even degree. The only cases not covered
by Theorems 2.5 and 2.6 are X — X? — X + 2,
X34+ X?-X-2 X3-2X+2and X3 —-2X -2,
which are easily checked by the algorithm of the
next section. O

3. DETERMINING IF G IS A LATTICE

Let A be a fixed n X n integer expanding matrix,
and D 3> 0 a set of coset representatives of AZ™.
We describe an algorithm to determine if in this
situation G is a lattice.

Let §' be the lattice generated by D, AD, ...,
A" D, and let G be the smallest lattice containing
D and satisfying AG C G. We claim that § = G,
Indeed, since D, AD,..., A" 1D C G, it follows
that ' € §. On the other hand, u € §' implies
Au € §' (since the minimum polynomial of A has
degree at most n) and therefore Au +v —v' € §
for any v,v' € D. Thus, A C G and §C 9.

21 August 1996 at 14:34
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It is now easy to check whether § = Z™: start
with the vectors D, AD, ..., A" D and try to get
the canonical basis by linear combinations. By a
linear change of coordinates, we can assume § =
7.

We would now like to consider a bounded set
X with the property that 7.X C X—equivalently,
that Au +v —v' € X implies u € X. Such sets
clearly exist (for example, X = Q) but they are
not always easy to obtain. In particular, for certain
matrices A, X may not be taken as a round ball or
cube around the origin, however large. We could
work with somewhat more complicated bounded
sets but we prefer to work instead with two sets.

Given A and a bound on the size of the elements
of D, we will find numbers 0 < N; < N, with
the following properties: @ C [—Ny, N;]”, and if
u ¢ [—Nz, No|™ the forward orbit of u by w —
Aw+v —', for v,v" € D, never enters [—Ny, Nq|™.

Let k,, and kj; be two positive numbers such
that 1 < kn,, < ky and k,, < |A| < kp for any
eigenvalue A of A; since A is an expansion, it is
clearly possible to choose such numbers. We can
now choose an invertible matrix M with

Em|u] < |MAM 'u| < kylul

for all u. Defining ||u|| = |Mu|, this becomes
B [ul] < | Aul) < g Jull. Thus, if r = max,ca |Jo]|
we have |lu|| < r/(k,—1) for all u € Q and we can
take any N; such that the cube [~Ny, N;]* con-
tains all points u with ||u|| < r/(k,, —1). Once N;
is fixed, take any N, such that all v with |Ju]] <
maX,e[— NN« ||w|| belong to the cube [— Ny, NoJ*.

After N; and N, have been chosen, reserve one
bit of memory for every integral element of the
cube [— N, N5]" to indicate whether that element
is known to be in G. Start with only the bit for the
zero vector turned on. Perform then the following
process: for each vector w whose associated bit is
on, turn on all vectors of the form Au + d; — da,
for di,dy, € D. A second bit associated to each
vector indicates whether this process has already
been carried out for it. The process stops when

21 August 1996 at 14:34

no vector has only one of the two associated bits
turned on; let G, be the set of vectors marked at
the end. The choice of N; and N, guarantees that
G.N[—Ny, N;]* = GN[—Ny, N1]™; notice, however,
that we usually do not have G, N [Ny, Na]* =
G N [=Nz, N3|*. Since @ C [—Np, N1]* and we
assume § = Z", G is a lattice if and only if

G* ﬂ [—Nl,Nl]n — Zn ﬂ [—Nl,Nl]n.

This algorithm was applied to various random
matrices and digit sets and G always turned out
to be a lattice. This suggests that the examples
of Lagarias and Wang (where G is not a lattice)
must be relatively rare. Also, one example from
each conjugacy class of 3 x 3 expanding integer
matrices A with ¢ = |det A| = 2 was tested, thus
completing the proof that, forn <3 and ¢ =2, G
is a lattice (Theorem 2.7).
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