Bounds for the Density of Abundant Integers
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We say that an integer n is abundant if the sum of the divisors
of n is at least 2n. It has been known [Wall 1972] that the
set of abundant numbers has a natural density A(2) and that
0.244 < A(2) < 0.291. We give the sharper bounds

0.2474 < A(2) < 0.2480.

INTRODUCTION

Let x be a positive real number, and n an integer.
Let o(n) be the sum of the divisors of n, and set

fin)=—=, (&) ={n:f(n) =z} (01

A number in &7 (x) is called z-abundant, or simply
abundant if r = 2.

Davenport proved that & (x) has a natural den-
sity A(x), and that A(z) is a continuous function of
x; see, for example, [Davenport 1933; Elliott 1979,
Chapter 5; Tenenbaum 1995, II1.1 and IIL.2].

Behrend [1933] proved that 0.241 < A(2) < 0.314,
and Wall [1972] improved this to 0.244 < A(2) <
0.291. We prove here the following:

Theorem 0.1. The density A(2) of the set of abun-
dant numbers satisfies

0.2474 < A(2) < 0.2480.

This answers a question asked by Henri Cohen: Is
the proportion of abundant numbers more or less
than a quarter? The method used is essentially
that given by Behrend, the computer allowing us
to do more computations. This method in fact
gives the density A(x) for every .

Perhaps it could be worthwile to try an analytic
method. Cohen, Deshouillers, Martinet showed in
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[Martinet et al. 1973] that the Mellin transform of
A(z) is the function

0=y o (- )

5 p>2 (1 - %)S ' >0

Hence, by inversion, we have for every o > 1

1 o+100
Az) = %/ x™%g(s) ds,

but the computation of this integral seems to be
difficult; taking x = 2 and 0 = 2 we computed the
sum between 2 — 10000z and 2 4 100007, and got
the approximate value 0.242. For large values of
Im(s) the computation of g(s) is difficult.

1. EXPRESSING A(x) AS A SUM

We denote by (p,),>1 the increasing sequence of
primes. Let k be a fixed integer. We consider the
set

(@) ={n: f(n) >z, ged(n, pips...pi) = 1}.

(1-1)
This set has a density [Elliott 1979; Tenenbaum
1995], which will be denoted by A (z).

Let n be an arbitrary integer. We denote by
ny the product of the prime factors of n among
{p1,p2,...,pr} and we write n = n;ny. The func-
tion f is multiplicative and f(n) = f(ni)f(no) is
greater than or equal to z if and only if f(ny) >
x/f(ny). This proves that o/(x) is partitioned as
follows:

A= J

a ap,
n1=p; 1...pk"

x
f(n1)
Considering the densities we have:
Proposition 1.1.

Ay = Y ) nilA‘“ (%) (1-2)

aq .
n1=p; .--Pyp.

where the sum is taken over all ny that are a prod-
uct of primes belonging to {p1,p2,..., Dk}

To see this, it is sufficient to prove the following
lemma.

Lemma 1.2. Let p be an integer greater than 1 and
(Ay)azo a sequence of disjoint sets having densities
dy. Set o =] ,oqp* . Then & has a density
d(<) and -

d(t) = iada.

a>0 p

Proof. Write

=Y )

The second set in this union is formed of multiples
of p"*t'. Its upper density is bounded by 1/p"**

U p“%)

a>r

and
—d <d() < —
OSZuSr p O;r T+1

where d and d denote the lower and upper densi-
ties. We let r — oo and we get the result. a

2. TRIVIAL BOUNDS FOR A, (x)

Proposition 2.1. For every k > 0 and every x > 0

we have

Ay(z) < Fy (2-1)
and
where Fj, = Hle(l —1/pi).

Proof. Clear, since @7 (z) is formed only with in-
tegers coprime with p;ps...ps, and comprises all
these integers if # < 1. g

3. LOWER BOUND FOR A(x)

Let z be a arbitrary positive real parameter. If in
(1-2) we just keep the integers n; = pi*...p;* < z,
we get a lower bound for A(x). Hence

sz 1 T
; o, n_lAk (f(n1)>

ni=p; ---Py

Alz) 2



We still get a lower bound if we just keep those n;
such that f(n,) > z; hence

> (i)

ni=p;L..p. "

f(n1)>=

By (2-2), all the A(xz/f(ny)) are equal to Fj;
hence

Alz) =

n1<z

Z ni (3-1)
1

ni=pyt.p.*
f(n)2w

Az) > Fy,

This lower bound is almost trivial and could
have been shown slightly differently. We choose an
upper bound z and a set {p;,ps,...,pr} of small
primes. We compute all the integers m less than
z, composed of prime factors from {p,, ps,...,pr},
and z-abundant. Every multiple of an abundant
number being abundant, all the products of the
numbers m thus obtained by some prime factors
out of {p1,ps,...,pr} are still abundant numbers.
The lower bound for A(z) is the density of this set,

F.>, 1/m.

4. UPPER BOUNDS FOR A(x)

As in the previous section, we introduce a real pos-
itive parameter z and write

%1
ni1=p; ---Pp

In the second sum, each value of A, is bounded
from above by F},; thus the second sum is bounded
from above by

z<ny 1 1<n1<o0 1 n1<z 1
Fe —=F ——F Y
@y ap et ay ap et 1 k 1
NnN1=p; Py ni1=p; p ni1=p; Py
n1<z
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SO
WEE 1 T
Aw < ) n_lA’“<f<n1>>

Nni=p; ---Py
n1<z

z: i.mm

ny
ni=pit..p ¥

+1 - F

It remains to bound the values of A, that appear
in the sum (4-1). If we just use the trivial upper
bound A, < F,, we will get A(z) < 1, so we need
a nontrivial upper bound for Aj(z). This is the
subject of the next section.

5. MEAN VALUES OF f(n)' AND UPPER BOUNDS FOR
A(x)

Let f} be the multiplicative function that takes the
value 1 for p® with p < p; and the value f(p®) for
p > pi. We fix an integer r and we consider g = f]
and the mean value of g computed on the first n
integers:

m=1

Let p be the convolution product of g and the
Mobius p function:

plm) = > 1 (%) 9(a). (5-1)

d|m

The Mobius inversion formula gives

M= = gl = 30 pld)

Il
| =
3
>
&
3
|
| =
>
&
SIS

< f: pld) _ Ag(r).

The function p(d)/d is multiplicative, so Ag(r) is
also equal to the value of the Euler product

Ak(r)=H(1+@+p(p2)+---+>. (5-2)

P p?

p
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Using the definition equation (5-1) of p, we have

p(p*) = g(p*)—g(P*~")

1 1\’ 1 1
= 1+__|_...+_a —14+—+-- -+ —
p p p p

when p > p; and « > 0, otherwise p(p®) = 0.
We return to the sum

Let B,, be the number of integers m between 1 and
n such that fy(m) > x, or equivalently g(m) > x".
We collect the terms of this sum in two classes,
first those terms for which g(m) > x”, that are
bounded from below by x”, and the other terms,
that are bounded from below by 1. We get

"B, +n— B, <nM, <nAy(r);
dividing by n and letting n — oo we get

Ag(r) —1
Bl < =01

)

where By, (x) is the density of the set of all m such
that fr(m) > z. This set is the disjoint union of
the pi*...pp* o (z), and we deduce the following
upper bound, proved by Behrend [1933].

Proposition 5.1. For every integer r > 1 and every k,

Ap(r)—1

X < F}
AA(I') _Fh Q;T—]_

(5-3)

Table 1 gives the upper bounds for Ags(r) — 1 for
r=1,2,4,8,16,...,4096.

r Ags(r)-1< r Ags(r)-1<
1 0.000284 64 0.0189
2 0.000568 128 0.0395
4 0.00114 256 0.0866
8 0.00228 512 0.213
16 0.00458 1024 0.726
32 0.00925 2048 123
4096 1.37 x 107

TABLE 1. Upper bounds for Ags(r) — 1.

When z is very close to 1, almost every integer
is z-abundant and the trivial upper bound (2-1) is
better than the upper bound (5-3). Table 2 shows
this phenomenon. It gives for some values of = the
best upper bound for A;(z) obtained by formula
(5-3) choosing the right value for . The value r =
0 on the first line means that, for this x = 1.0001,
the trivial upper bound (2-1) is the better one.

x r Ags(z) < x T Ags(z) <
1.0001 0 0.0897 1.005 2048 4.35 x 107°
1.001 1 0.0254 1.01 2048 1.68 x 10~°
1.002 1024 0.0096 1.02 4096 9.21 x 1020

TABLE 2. Some upper bounds for Ags(r) obtained
using Table 1.

6. UPPER BOUNDS FOR THE EULER PRODUCTS A\(r)

In this section we give some effective upper bounds
used to get upper bounds for the Euler products
Ay (r). In all this section we write

1 1Y 1 1\
p(pa)=(1+—+---+—a> —(1+—+---+ )
P P P

pafl
=3 uld) (f (%)) |
dlp

This is the p function defined by (5-1) for k = 0.

We gave in [Deléglise and Nicolas 1994] a method
to quickly compute a good approximate value of an
Euler product [, g(1/p), when g is a holomorphic
function around 0 whose first Taylor series coeffi-
cients are not too large. This method could have
been used to get some very accurate values for the
first Ag(r). For very large values of r the accu-
racy would not be so good. Since we just need an
upper bound for each Ay(r), we will just use the
trivial method: find upper bounds for the partial
products, and for the tails of the products.

Lemma 6.1. Let r be an integer > 1 and p > 2r.

Then .
<1+1> —1<13%,
p p



Proof. We have

(L+1/p)" =1 _exp(rln(l+1/p)) —1
r/p r/p
exp(r/p) — 1
< r/p
etl? —1
< 7 < 1.3. 0

Lemma 6.2. Let r an integer > 2 and p > 2r. Then

1 16
— < 1.78.
(1—1/19) Sy

Proof. Let w = 1/p. Then

() < () < ()

hence

1 1 1 16
In(y):—2 1“(1 >S21H(1 1>:1I1_97
u —u —1

1

since the function (1/u)In(1/(1 —w)) is increasing
for 0 <u <4 <1 O

Lemma 6.3. For every integer r and every prime p,

r(*)
>

a>0
1+1/p)7 —1 1 o
§1+%+r< ) L
P 1-1/p) pt—p
Proof. Set
1 1
Y:1+5++ a_1’ X:Y+_a

We get, for o > 1,

« 1
b p*
1

_ W()(7“—1 +XT—2Y+___+YT—1)
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Using this upper bound for a > 2 in the sum

Z p(p®)

a>0 pa

we get the conclusion. 0

Lemma 6.4. For every integer r > 1 and every p >
max(2r, 15) we have

S st
a>0 p p

Proof. The preceding three lemmas give, for every
r>2,

.
—1 —(1. 1. )
(1

<1+131— ifp>15.
p
For r = 1 this upper bound is still true, because

o 1 1
ZM: N
pOt

20 2 _ pd
a>0 a>0 p p p

Lemma 6.5. For every integer v with 1 < r < 10000
we have

II (Zp(pa)> §1+1L07_
p>106 “a>0 p
Proof. Set
B p(p*)
w=11 (Z p” >
p>106 N a>0

Using Lemma 6.4 we get

The sum of 1/p? can be computed as explained in
[Deléglise and Nicolas 1994, pp. 331-332], or it can
be found in [Glaisher 1891]:

1
E — = 0.452247420041 . . ..
p
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Interval Interval Interval Interval

[1,10%] 1| [1,109 24799 | [10°,10° +107) 2476049 | [10', 10' +107) 2476150

[1,10%] 24 | [1,107] 2476741 | [10'°,10'° 4+ 107) 2476372 | [10'®, 10'® +107) 2476212

[1,10%] 249 | [1,10%] 24760673 | [10%, 10* +107) 2476154 | [10'6, 106 +107) 2476247

[1,10%] 2492 | [1,10°] 247610965 | [10'%, 102 +107) 2476199 | [10'7, 107 +107) 2476098
[10%3, 10%3 +107) 2476213 | [10%%, 10'® +107) 2476304

TABLE 3. Frequency of abundant numbers in different intervals.

Hence, subtracting ) _ o 1/p?, we have

1
> — =10.0000000677 ...

> =
p>106

and
r

o7 < 1073,

In(u) < 0.9

and finally

Inu r
= <14 —,
u=ce + 107

using the estimate e’ < 14 ¢ for ¢ < 0.001. O

We get an upper bound for the Euler product (5-2),
writing

H <Z P(Pa)>
p>pr S 20 pe
- 11 <Z P(pa)> 11 (
pr<p<106 * a>0 pO‘ p>100
The first product is bounded by Lemma 6.3 and
the second by Lemma 6.5.
Table 1 gives the upper bounds for Ags(r) — 1
forr=1,2,4,8,16,...,4096. These are the values

used for bounding the values A; that appear in
formula (4-1).

25

a>0

7. NUMERICAL RESULTS

We have bounded A(2) using (3-1) and (4-1) with
x =2, k =95 (which is the number of primes less
than 500), and z = 10*. For the upper estimate

each term
T
I
g f(p11- - 'pkk)

in (4-1) is bounded using formula (5-3) with r =
1,2,4,8,...,4096 and the trivial bound (2-1); we
keep the best result obtained. This requires the
enumeration of all the pi*...p.* not greater than
z, which is done by a backtracking procedure. The
total number of these n less than 10'* whose prime
factors are less than 500 is 23581230171.

The computation was performed on an HP900-
730 workstation, using about 100 hours of CPU
time. It yields

0.2474 < A(2) < 0.2480; (7-1)
in particular A(2) = 0.247....

8. OTHER EXPERIMENTAL RESULTS

We computed the number of abundant numbers
less than N for N = 1,10,10%,...,10°, and also
the number of abundant numbers in the intervals
[N, N+107) for N = 10°,10'°,...,10'®. The re-
sults are given in Table 3 and seem to show that
the next digit of A(2) is a 6.

We thank the referee for remarking to us that the
number of abundant numbers given above in the
intervals of size 107 are compatible with a binomial
law with parameters m, = 2476200 and s = 1365.
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