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Let G be a finite group. The table of marks of G arises from
a characterization of the permutation representations of G by
certain numbers of fixed points. It provides a compact descrip-
tion of the subgroup lattice of G and enables explicit calcula-
tions in the Burnside ring of G. In this article we introduce a
method for constructing the table of marks of G from tables
of marks of proper subgroups of G. An implementation of this
method is available in the GAP language. These computer pro-
grams are used to construct the table of marks of the sporadic
simple Mathieu group M,,. The final section describes how
to derive information about the structure of G from its table
of marks via the investigation of certain Mobius functions and
the idempotents of the Burnside ring of G. Tables with detailed
information about M,4 and other groups are included.

The concept of a table of marks of a finite group
G was introduced by William Burnside in the sec-
ond edition of his classic book Theory of groups
of finite order [1911, chapter XII]. This table pro-
vides a means to characterize the permutation rep-
resentations of G up to equivalence. At the same
time the table of marks describes in some detail
the poset (partially ordered set) of all conjugacy
classes of subgroups of G. It thereby provides a
very compact description of the subgroup lattice
of G.

Traditionally, the computation of the table of
marks of G starts by constructing the complete
subgroup lattice of G. The table of marks of G then
is derived mainly by counting inclusions between
different conjugacy classes of subgroups of G. This
method, described in [Felsch and Sandlébes 1984],
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is implemented in several computer systems and
works for groups up to a certain size.

Our purpose here is to introduce a method for
the construction of the table of marks that is inde-
pendent of the knowledge of the complete subgroup
lattice of G and therefore can be applied to groups
G that are too big to compute their complete sub-
group lattice. The main idea of this approach is
to use the “known” tables of marks of subgroups
of G and to induce them to G in order to deter-
mine the table of marks of G. So the input of this
method basically consists of the tables of marks of
the maximal subgroups of G. In order to combine
these tables into the complete table of marks of
G we have to determine the fusion maps from the
sets of conjugacy classes of subgroups of the maxi-
mal subgroups of G to the set of conjugacy classes
of subgroups of G. Such a map associates to the
M-conjugacy class of a subgroup U of a maximal
subgroup M of G its G-conjugacy class.

These fusion maps can to a large extent be re-
covered from the tables of marks of the maximal
subgroups of G by elementary group theory. We
will approximate the fusion maps step by step us-
ing this information and, now and then, taking ad-
vantage of selected bits of additional information
about G until the approximation process eventu-
ally stops with the correct fusion maps.

Additional information about the group G stems
for example from the character table of G. If G
has a small permutation representation we can use
explicit representatives of the conjugacy classes of
subgroups of the maximal subgroups of G to derive
additional information. It is, however, not neces-
sary to have explicit embeddings of the maximal
subgroups into G. But, any source of information
is welcome if it can answer the questions that arise
in the approximation process. The point is that
the number of open questions is hopefully small in
comparison to the size of the group.

Computer programs that perform this method
interactively have been implemented in the GAP
language [Schonert et al. 1994]. This package of
functions is available from the author.

With this method we can in particular determine
the number of subgroups of the simple Mathieu
group My, of order 244 823040 = 2'°.33.5.7-11-23.

Theorem. My, has 1363957253 subgroups in 1529
conjugacy classes.

The construction of the table of marks of M, from
which the above number of subgroups is derived is
described in some detail in Section 6. This group
provides an extensive example of how the computer
programs can be used. The list of all conjugacy
classes of subgroups of M, is not printed here.
The complete list of the classes together with their
maximal subgroups, their minimal overgroups and
their normalizers, has 82 pages [Pfeiffer 1995].

This paper is organized as follows. Section 1 re-
calls basic properties of finite group actions, intro-
duces the table of marks and describes its relation
to the Burnside ring of a finite group. Section 2
describes the concept of induction of marks; the
basic induction formula is proved in Theorem 2.2.

The next sections describe the method used to
determine the fusion maps from the maximal sub-
groups into the given group. First, in Section 3,
we use the projective special linear group L, (7) as
a rather informal example to illustrate the process
and the problems it raises. This is formalized in
Section 4, which also provides the theoretical tools
that govern the approximation process. Section 5
summarizes the method into a strategy.

In Section 8 the table of marks of G is used to
investigate the Mobius function of the subgroup
lattice of G and the idempotents of the Burnside
ring of G, together with their implications on the
structure of G.

Section 6 also contains tables with more detailed
information about the subgroups of M, and sub-
groups of other simple (and almost simple) groups.

1. THE BURNSIDE RING AND THE TABLE OF MARKS

We recall basic facts about finite group actions,
define the table of marks, and describe its relation
to the subgroup structure and the Burnside ring.
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Let G be a finite group. Denote by &5 = {U :
U < G} the set of all subgroups of G. Then G is a
partially ordered set (poset) with incidence relation
<. The group G acts on G4 by conjugation, that
is, via UY = ¢7'Ug for U < G and g € G. This G-
action respects incidence: if U < V then UY < V¥
forall U,V < G and g € G. We denote the G-orbit
of U < G (that is, the conjugacy class of subgroups
of G that contains U) by [U]s and usually omit the
subscript as long as no confusion can arise. The set
of G-orbits 64 /G = {[U] : U < G} is also a poset,
with incidence [U] < [V]if U < VY for U,V < G
and some g € G. We will refer to S /G as the
poset structure of G.

A (right) G-set X is a set X together with an
action (z,9) — z-g: X xG — X such that -1 =z
and z - (g1g2) = (x - ¢g1) - g2 for all z € X and
all g1,90 € G. Every G-set X decomposes into a
disjoint union of orbits {z - g : ¢ € G}, each of
which is itself a G-set. A G-set is transitive if it
consists of only one orbit. All G-sets in this article
are assumed to be finite.

A homomorphism between two G-sets X and Y
is a map 9: X — Y such that ¢(z-g) = ¢¥(z) - ¢
for all z € X and all g € G. Two G-sets X and
Y are isomorphic if there exists a bijective homo-
morphism ¥: X — Y.

Let G, =1, Gy, ..., G, = G be representatives
of the conjugacy classes of subgroups of G. Then
Se/G ={[G;] : i =1,...,r}. For each subgroup
U < G, the group G acts transitively on the set
U\G = {Ug : g € G} of right cosets of U in G.
Conversely, every transitive G-set X is isomorphic
to a G-set U\G where U is a point stabilizer of X in
G. For every g € G the G-set UY\G is isomorphic
to U\G. Thus every transitive G-set is isomorphic
to G;\G for some i < r.

Definition 1.1. Let G be a finite group.

(i) Let X be a finite G-set and let U < G. The
mark Bx (U) of U on X is defined as

Bx(U) = ‘FiXX(U)‘ )

where

Fixx(U)={re€e X :z-u=zforalluec U}

is the set of fixed points of the subgroup U in
the action of G on X.
(ii) The table of marks of G is the square matrix

M(G) = (ﬁGi\G(Gj))i,j

where both G; and Gj run through the system of
representatives of the conjugacy classes of sub-
groups of G.

Remark. If X and Y are isomorphic G-sets, we have
Bx(U) =By (U) forallU < G. Moreover, x(U) =
Bx (U?) for all U < G and all g € G. The table of
marks thus consists of a “complete” list of marks
of transitive G-sets.

Let U < G and consider the G-set G;\G. Then U
has fixed points in that action if and only if U is
contained in a one point stabilizer, that is, in at
least one conjugate of G;. Thus the table of marks
describes the poset &5/G: the incidence matrix
of this poset is obtained from M (G) by replacing
every nonzero entry by 1.

But M(G) contains far more information about
the subgroup structure of G. This is due to the
following recalculation of the value of a mark.

Proposition 1.2. Let U,V < G. Then
Bric(U)={V?:9€e G ULV} |Na(V):V].

Proof. By the definition of a mark, By\¢(U) is the
number of cosets of V' in G that are fixed by the
subgroup U. That is,

Ba(U) = ‘{Vg 19 € G,Vgu=Vg for all u € U}‘

Now for any given g € G we have Vgu = Vg for
all w € U if and only if U < V9. And since there
are exactly |V elements g that give the same coset
V g this means

PralU)=[{geG:U <V} /|V].

The claim finally follows from the fact that there
are exactly ‘NG(V)‘ elements g that give the same
conjugate V9 of V. O
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The next lemma collects some easy consequences
of the above formula. In particular the numbers of
incidences between two conjugacy classes of sub-
groups of G can be derived from M(G).

The table of marks of the alternating group As
of order 60 in Table 1 serves as an example. Aj; has
nine conjugacy classes of subgroups. They are dis-
tinguished by their orders and have isomorphism
types 1, 2, 3, 22, 5, S5, Dy, Ay, and A;. The
rows of the table correspond to the transitive G-
sets U\G.

1 2 3 22 5 S3 Dy Ay A
G 60
2\G 30 2
3\G 20 . 2
22\G 5 3 . 3
5\G 22 . . .2
S;\G w 2 1 . . 1
Dyo\G 6 2 o1 1
AN\G 5 1 2 1 . . .1
A5\G 1 1 1 1 1 1 1 1 1

TABLE 1. The table of marks of As.

Lemma 1.3. Let U,V < G. Then the following hold.
(i) The first entry of every row of M(G) is the in-
dex of the corresponding subgroup

ngg(l) = ‘G . V‘ .

(ii) The entry on the diagonal is its index in its nor-
malizer in G,

BVIG ‘NG . V‘

(iii) The length of the conjugacy class [V] of V is
given by

Bvia(1)

Bvia(V)

(iv) The number of conjugates of V' that contain U
s given by

V]| =16 Na(V)| =

Bvic(U)

Vi G, ULV
g€ = Gratr)

Denote by va(V,U) = {U? : g € G, U? < V}| the
number of conjugates of a subgroup U of G con-
tained in a fixed subgroup V of G. These numbers
also are determined by M (G).

Proposition 1.4. Let U,V < G. Then the number of
conjugates of U that are contained in 'V is

\4 Bvic(U) Bung (1)
‘NG Bua(U) Byvia(1)

Proof. In the subgroup lattice of G the number of
edges joining the class [V] of V and the class [U] of
U can be expressed in two different ways as length
of the class times the number of edges leaving one
member of the class, that is

va(V,U) =

‘ Bvia(U) =

U] -|{v?:9€ G, U< VY
=|[V]]- {U? : g € G, U? < V}].

Thus vg(V,U) can be expressed in terms of marks
by Lemma 1.3. |

On the other hand M(G) is determined by the
numbers vg(V,U) for all V,;U < G and the ad-
ditional knowledge of the index ‘G : V‘ for every
V <G.

Lemma 1.5. Let V,U < G. Then
Bric(U) = |G : V| va(V,U)/ve(G,U).

Denote for any G-set X its isomorphism class by
[X]. The Burnside ring 2(G) of G is the free
abelian group

QG) = {z”: a;[G\G] : a; € Z}

i=1

generated by the isomorphism classes of transitive
G-sets [G;\G], i = 1,...,r. Here the sum [X]+[Y]
of the isomorphism classes of G-sets X and Y is the
isomorphism class [X U Y] of the disjoint union of
X and Y. Moreover, their product [X] - [Y] is the
isomorphism class [X x Y] of the Cartesian product
of X and Y. This turns Q(G) into a commutative
ring with identity [G\G].
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Let X and Y be G-sets and let U < G. Then
Fixxoy (U) = Fixx (U) U Fixy (U),
Fixx«y (U) = Fixx (U) x Fixy (U).
Therefore
Bxoy(U) = Bx(U) + By (U),
Bxxy(U) = Bx(U) - By (U).

Thus, if we define Gx for each X € Q(G) to be the
r-tuple Bx = (Bx(G1),...,Bx(G,)), the map

/BZX HBX

is a ring homomorphism from Q(G) to Z".
Let X = ) a;[G;\G] € Q(G). Then x can be
expressed in terms of the table of marks M(G) as

Bx = (ai,...,a,) - M(G).

Moreover, the G-set X is characterized up to iso-
morphism by Gx.

Theorem 1.6 (Burnside). The homomorphism
G:QG) = ZT

s injective. In other words, two G-sets X and Y
are isomorphic if and only if Bx = By.

Proof. We may assume that the representatives G|
are sorted in such a way that [G;] < [G;] implies
i < j. Then Bg\¢(G;) = 0 unless j < i and
Bu\g(U) > 1forallU < G. Thus the matrix M (G)
is lower triangular with nonzero diagonal entries,
hence invertible. g

Let X be a G-set. The permutation character mwx
of G on X is defined as mx(g) = ‘FixX(g)‘ for any
element g € G. This number, of course, coincides
with the mark (x((g)) of the cyclic subgroup gen-
erated by g on X. Therefore, the table of marks
M (G) contains in the columns corresponding to
cyclic subgroups a complete list of transitive per-
mutation characters 1§/ of G corresponding to the
transitive G-sets V\G.

The following proposition [Kerber 1991, 3.2.18]
provides a way to determine the columns of M (G)
that correspond to cyclic subgroups.

Let e; = (e;(G1),...,ei(G,)) € Z" be the primi-
tive idempotent of Z" corresponding to the conju-
gacy class of G, that is e;(G;) = d;;, and write

€; = E ez'jﬁc:j\G
J

with rational coefficients e;;. (The matrix (e;;)

then is the inverse of M(G).)

Proposition 1.7. Let i,j < r and let e;; and G; be as
above. Then

Ze'j — {‘P(‘Gz‘)/ ‘NG(Gi)‘ if G; is cyclic,
— " 0
j

otherwise,

where ¢ denotes the Euler function.

Proof. Let z = (z1,...,%,) € Z". For any subgroup
U < G denote z(U) = z; if U is a conjugate of
G;. Then z defines a class function 7, of G via
7.(g) = z({g)). Note that 85, ¢ this way yields the
permutation character 1¢ and that (1¢,1¢,) =1
for each 1 < j <. Hence 7, = ), eijlgj and

Zeij = Zeij(lGu 1gj) = <1Gaz€ijlgj>
J J

J
= (]‘G77T6i)7

where 7., = 0 and therefore (15, 7,,) = 0 unless G;
is cyclic.

In that case the result follows from the fact that
the go(‘Gt‘) different generators of G; lie in

e(|Gi))/ [Na(Gy) : Ca(G))]

different conjugacy classes of elements of G that
contribute 1/ ‘CG(GZ»)‘ each to (1g,m,). O

2. INDUCTION OF MARKS

Let M be a subgroup of G. Then the marks of
M can be induced to marks of G by means of the
following trivial observation. A subgroup V of M
is also a subgroup of G, and V has the same sub-
groups regardless of whether it is viewed as a sub-
group of M or as a subgroup of G. But in general
not every subgroup of V' that is conjugate in G to
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a given subgroup U of V' is conjugate to U in M.
More precisely, a G-conjugacy class of subgroups
of V' is a disjoint union of M-conjugacy classes of
subgroups of V. In terms of numbers of subgroups
this means

Lemma2.1. Let V < M < G and U < G. Then the
number of G-conjugates of U that are contained in
Vs

va(V,U) = > wu(V,U"),

U'~U

where the sum ranges over all representatives U’
of conjugacy classes of M that are conjugate to U
n G.

This leads to the following induction formula for
tables of marks.

Theorem 2.2 (Induction of marks). Let V < M < G
and U < G. Then the mark Byig(U) is given by

Bvia(U) = |Na(U)| Z

U’~U

ﬂv-M(U')

where the sum ranges over all representatives U’
of conjugacy classes of M that are conjugate to U
n G.

Proof. By Proposition 1.4 the mark By (U) is ex-
pressed in terms of numbers of subgroups as

|[Na(U))]

B (U) = V] va(V,U).

By the preceding Lemma, this equals

And by Proposition 1.4 this translates into

Ng( V
Ba(U) = | ‘CV‘ ‘Z | ‘U' Banv (U,
U~ U
which completes the proof. O

Remark. Replacing subgroups by group elements
and normalizers by centralizers in the above in-
duction formula yields the induction formula for
ordinary characters of finite groups: if ¢ is a char-
acter of M < G and g € G then the value at g of
the induced character ¢

©“(9) =|Caly) \Z 0(9),

g'~g

where the sum ranges over all representatives g’ of
conjugacy classes of M that are conjugate to ¢ in
G [Isaacs 1994, p. 64].

In order to compute the table of marks of G by in-
duction of marks it is sufficient to know the tables
of marks of representatives of the conjugacy classes
of maximal subgroups of G since every proper sub-
group of G is contained in a maximal subgroup M
of G. The remaining problem is to determine the
fuston from the maximals to G in order to know
which representatives of subgroups U’ of M are
conjugate to a representative U of subgroups of
G. This means to determine for each maximal
subgroup a map from its conjugacy classes of sub-
groups to the conjugacy classes of subgroups of G.
The next sections provide tools to determine the
conjugacy classes of subgroups of G together with
the fusion maps from its maximals.

3. L,(7), A SMALL EXAMPLE

Consider the projective special linear group G =
L,(7) of order 168. It has three conjugacy classes
of maximal subgroups, two classes of type S; and
one class of type 7 : 3; see, for example, the Atlas
of finite groups [Conway et al. 1985, p. 3]. Assume
that we already know the tables of marks of these
groups, that is the corresponding posets of conju-
gacy classes of subgroups together with additional
incidence information. The poset structure of S,
is given in Figure 1 and the underlying set of ele-
ments is

{]_, 2(1, 2b, 3, 4:, 220,, 22b, Sg, Dg, A4, 54},
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[5]

Dy | A, ]

4 | 22 | 22q
2a 2b
1

FIGURE 1. The poset structures of S, and 7:3.

where 2a and 2%a are contained in A,. The poset
structure of 7 : 3 is also given in Figure 1 with
underlying set of elements

{1,3,7,7: 3}.

In order to construct the poset structure of Ly(7)
we start with the disjoint union of two copies of
the poset structure of Sy, a yellow (Y') and a red
(R) one, say, and a blue (B) copy of the poset
structure of 7 : 3. They form one colored diagram
with vertex set

{1(Y), 2a(Y), 2b(Y), 3(Y), 4(Y), 22a(Y), 2%b(Y),
S3(Y), Ds(Y), As(Y), Sa(Y), L(R), 2a(R),
2b(R), 3(R), 4(R), 2%a(R), 2°b(R), S3(R), Ds(R),
A4(R), Ss(R), 1(B), 3(B), 7(B), 7: 3(B)}.

Here a symbol like 2%a(Y") is just a name for a
vertex in the yellow part of the disjoint union of
diagrams. The fact that it denotes an elementary
abelian group of order 4 follows from the informa-
tion that is stored in the table of marks, rather
than from its name. Of course, the names we are
working with here were carefully chosen as to indi-
cate the type of object they denote.

According to Lemma 1.3(i) the table of marks
contains information about the size of each sub-
group and conjugate subgroups of L,(7) have the
same size. Therefore, if we split the whole set of
vertices into subsets according to the orders of the
corresponding subgroups then only vertices in the
same subset can be conjugate in L, (7). This yields
the following partition on the set of vertices.

{1(Y), 1(R), 1(B)}
(R),3(B)}
2a(Y),2%b(Y),4(R),2%a(R), 2°b(R)},
{93(Y), S3(R)}, {7(B)}, {Ds(Y), Ds(R)},

{A4(Y), Aa(R)}, {72 3(B)}, {Sa(Y), Sa(R)}-

» {2a(Y), 26(Y), 2a(R), 2b(R) },

7

Our aim now is to manipulate this colored di-
agram with the partition of the vertices step by
step until it represents the poset structure of L,(7).
This is achieved by two sorts of manipulations:

(i) We will split a part of the partition of the ver-
tices into subsets whenever we can ensure that
only vertices lying in the same subset corre-
spond to subgroups of L,(7) that can possibly
be conjugate in L (7).
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(i) We will fuse (identify) two vertices whenever
we find out that they correspond to subgroups
of L,(7) that are conjugate.

Eventually each subset will consist of only a single
element: then we are done!The interested reader is
encouraged to illustrate the progress we make by
drawing updated versions of the colored diagram
after every single manipulation.

The subsets {7(B)} and {7 : 3(B)} both contain
only one element, hence each of them already de-
termines a unique conjugacy class of subgroups of
L, (7).

There is, of course, only one trivial subgroup in
L,(7), so we are allowed to fuse the vertices 1(R),
1(Y) and 1(B) corresponding to the trivial sub-
groups of the three maximal subgroups into a sin-
gle vertex, which we simply denote by 1.

From the table of marks of S, we can derive that
subgroups named 4 contain one cyclic subgroup of
order 2, in contrast to the subgroups named 22,
which contain three cyclic subgroups of order 2
each. Hence these subgroups can not be conju-
gate in Ly(7) and we are allowed to split the set
of groups of order 4 into two subsets accordingly.
Now the situation is as follows.

{1}, {2a(Y), 2b(Y), 2a(R), 2b(R) },
{3(Y),3(R),3(B)}, {4(Y),4(R)},
{2%a(Y),220(Y), 2%a(R), 2°b(R)},

2
{93(Y), S3(R)}, {7}, {Ds(Y), Ds(R)},
{4a(Y), As(R)}, {7 : 3}, {Sa(Y), Su(R)}-

By Sylow’s theorem, G acts transitively on the
set of Sylow p-subgroups of G for any prime p.
Hence we can fuse all the subgroups of type Dg
(for p = 2) and all the subgroups of type 3 (for
p=3).

The normalizer in G of a group of type 3 is a
group of type S;. (Note that this can also be de-
cided from the tables of marks, since a cyclic 3
has index two in S; and the order of its normalizer
in S, is 6.) Together with the subgroups of type
3 their normalizers are conjugate in G, hence we
can fuse the subset corresponding to these groups

into a single vertex. (See Corollary 4.10 for how
knowledge about normalizers can be exploited in
the general case.)

Within the Sylow 2-subgroup of type Dg of S,
there is only one S,-class of subgroups of type 4.
Hence, by Sylow’s theorem, all subgroups of this
type are conjugate in G and we can fuse the yellow
and the red group named 4. (See Corollary 4.8 for
how knowledge about the Sylow subgroups can be
exploited in the general case.)

From the character table of L,(7) we can read off
that there is only one class of elements (and hence
of subgroups) of order 2, so we can fuse all vertices
named 2a or 2b into a single vertex 2.

We are left with three subsets containing more
than one element: those corresponding to the sub-
groups of type 2%, A4 or S;. In order to show that
subgroups of type 2? that are not conjugate in a
maximal S, are not conjugate in G either, we ex-
amine the permutation character of G on S;. The
character table of L,(7) admits only one character
7 of degree 7 that satisfies m(g) > 0 for all g € G,
therefore 7 is the permutation character of G on
S4. The restriction of w to Sy admits two different
decompositions into transitive components, corre-
sponding to the two classes of maximal subgroups
of type S, in G. The corresponding sums of rows
of the table of marks of S, reveal different values of
fixed points for the two different conjugacy classes
of subgroups of type 22 inside Sj.

Hence the set containing the groups of this type
must split in two subsets. One of them contains
the red 2?a(R) and the yellow 2?b(Y") (remember
that the labeling was chosen in such a way that
groups of type 2?a are normal in S;). And both
subsets now correspond to one conjugacy class of
subgroups of G.

Now the red A,(R) and the yellow A,(Y) lie
above different classes of groups of type 2%, whence
they must correspond to different classes of sub-
groups of G. So we split the subset {A4(Y), A4(R)}
in two parts. The same holds for S; (we knew right
from the start that there are two classes of them in
L, (7)) and we split the subset {S,(Y"), S4(R)} into
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A

Dy EN @

Ly (7)

FIGURE 2. The poset structure of L(7).

two parts. (See Corollary 4.5 for how knowledge
about numbers of subgroups can be exploited in
the general case.)

Now every subset corresponds to exactly one con-
jugacy class of subgroups of G. We finally add the
group itself. Thus we have constructed the com-
plete poset structure of L,(7) (see Figure 2), with
vertex set

{13, {2}, {3}, {4}, {2%}, {20}, { S5}, {7}, {Ds},
{Asa}, {Asb}, {7: 3}, {Saal, {Sud}, {L2(T)}.

This small example illustrates several aspects of
the general procedure. We have seen essentially
two types of steps in the development of the poset
of Ly(7). Most of the conclusions, like those using
Sylow’s theorem or the conjugacy of normalizers,
were based on general facts about the structure of

finite groups. Other conclusions, like the existence
of exactly one conjugacy class of subgroups of or-
der 2 or the fusion of the subgroups of type 22,
arose from additional knowledge about the partic-
ular group L, (7). The next section formalizes the
general setting.

4. APPROXIMATING THE FUSION MAP

Let M,,..., M, be a complete set of representa-
tives of conjugacy classes of maximal subgroups of
G and, for ¢ = 1,...,r, denote by j; the inclusion
map from M; into G, given by j;(m) = m for each
m € M;. For each ¢ = 1,...,r, let 9, be the
poset of conjugacy classes of subgroups of M; and
let & = S /G be the poset of conjugacy classes
of subgroups of G. Then each inclusion map j;



256 Experimental Mathematics, Vol. 6 (1997), No. 3

induces a map 7;: M; — & mapping the conjugacy
class [U]y, of subgroups of M; to the conjugacy
class [U]g of subgroups of G. Denote by 9 the
disjoint union
m =,
i=1

and let j: 9T — & be the union of the maps j; given
by

jm) =4;(m) fmeM, i=1,...,r

Let m € M. Then m is of the form m = [U]y,
for some i = 1,...,7. Denote n(m) = |Ny, (U)|
and By, (m) = Bvia, (U). Then the induction
formula 2.2 can, for any subgroups U,V < M; < G,
be written as

> ﬁ By, (m)

i(m)=[Ula

Ba(U) = ‘NG(U)‘

where the sum ranges over all m € 9; such that
j(m) = [Ule-

In this section we discuss how to determine this
fusion map j.

Fusion Maps and Prefusion Maps

Let 9t and & be as above. Moreover, let &' = &\
{[G]g}. In order to approximate the map j: 9 —
&' we will work with idempotent maps on 9. An
approximation of 7 will be called a prefusion map.
Moreover, any map on 2 that describes which el-
ements of 91 map into the same conjugacy class
of subgroups of G will be called a fusion map. If
we can determine one such fusion map f we can

identify &' and f(9) and thus have found j = f.

Definition 4.1. A prefusion map on 9 is a pair
(f,=) such that

(i) f is an idempotent map from 9t to I,

(ii) = is an equivalence relation on the image f(9M),
and

(i) there is a map g¢: f(IM) — & with go f = j
and m; = my whenever g(m;) = g(ms) for any
my, mq € f(IM).

A fusion map on M is an idempotent map f: 9N —
M such that there exists a bijection g: f(9) — &’
with go f = j.

For any prefusion map (f,=) on 9t we denote the
set of all =-classes on f(90) by f(91)/= and denote
by /= the canonical map from f(91) to f(IM)/=.
Thus, for any m € f(9), its =-class is m/=. The
relation between the pair (f,=) and the sets 9
and & is illustrated by the following diagram.

m—L s fom) —2 @

- )=

Due to (iii), we may regard = as an equivalence
relation on the set G4 of all subgroups of G, with
the property that U = V whenever U and V are
conjugate subgroups of G. Moreover, we may re-
gard f as a function from the disjoint union of the
sets of subgroups Gy, of the groups M; to M via
f(U) = f([U]n,) for any subgroup U < M;.

Note that, since 7:91 — &' is surjective, and
j =go f,also ¢ must be surjective.

If, for example, f = idgy is the identity map on
M and < is the global equivalence on 9 defined by
my < my for all my, my € M then ¢, = (idgy, &)
is a prefusion map since j = joidgy and, vacuously,
j(my) = j(my) implies m; < m..

The following lemma provides the termination
condition of the approximation process.

Lemma 4.2. Let f: 9 — I be such that (f,=) is a
prefusion map on M. Then f is a fusion map.

Proof. Since (f,=) is a prefusion map, there is a
map g: f(9M) — &' such that j = gof and g(m,) =
g(my) implies m; = m, for all my, m, € M. Hence
g is injective. U

The approximation process is guided by a partial
order on the set of prefusion maps on 1.

Let (f1,=1) and (f,,=») be prefusion maps on
M. We say that (f2, =») is stronger than (f,,=,),
and write (f1,=1) > (f2,=2), if there exist maps
hy: f1(ON) — f2(9N) and ha: fo(IM) /=2 — fL(ON) /=,
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such that f2 = h]_ Of]_ and /E]_ = h2 O/Ez Oh]_, that
is, if the following diagram is commutative.

m L ) —— & —— (W)=
[ H [r
m —E fy(om) & —— fo(M)/=,

Let U; and U, be conjugate subgroups of G.
Then |U;| = |Uz|. This allows us to define |m| =
|U| for m = [Uly, € M. Thus, if we define an
equivalence || on M by my || m. if ‘ml‘ = ‘mZ‘,
then @, = (idgy,||) is a prefusion map. (Because
then, 5 = j oidgy and j(m;) = j(my) implies
my || my.) Moreover, ¢, is stronger that ¢, since,
with hy(m/|]) = 9 for all m € M and h, the iden-
tity map on 9t we have /& = hyo /|| o hy.

Every group contains one trivial subgroup. There
are r elements ¢, ...,t, in 91 corresponding to the
trivial subgroups of the r maximal subgroups of G.
Define

, _Jty ifm=t forsomei=1,...,r,
Fim) = {m otherwise,
then ¢3 = (f',]|) is a prefusion map and ¢3 is
stronger than ¢s.

Lemma 4.3. Let (f,=) be a prefusion map that is
minimal with respect to the partial order < on the
set of all prefusion maps on M. Then = is =, and
f s a fusion map.

Proof. Suppose there are m;,my € f(9) such that
my # Mo and m; = my. Define

me if m = my or m.,

fim) = { F(m) otherwise.

Then, either (f',=) is a prefusion map, in which
case it is strictly stronger than (f,=). Otherwise,
there is no g such that 7 = g o f', whence there
is an equivalence =" on f(9) such that m; £ m,
and (f,=') is a prefusion map. But then (f,=') is
strictly stronger than (f,=). So the claim follows
from Lemma 4.2. O

Subgroups of Subgroups

Let (f,=) be a prefusion map on 1.

Define, for subgroups U and A of G, the set
S(U,A) = {B < U : B = A} as the set of all
subgroups B of U that lie in the =-class of A. De-
note by s(U, A) = ‘S(U, A)‘ its size. This number
is determined as follows. If U is a subgroup of
the maximal subgroup M; of G, then (by Proposi-
tion 1.4)

s(U,A) = >

F(B)=f(4)

U
= Z mﬁU\Mi(B)

F(B)=f(4)

VM:(UJB)

where the sums range over all representatives B of
conjugacy classes of M; with f(B) = f(A).

Proposition 4.4. Let U, A < G and g € G. Then the
map B — BY is a bijection between S(U,A) and
S(UY, A). In particular, s(U,A) = s(UY, A).

Proof. Let B € S(U, A), that is B < U and B = A.
Then BY < UY and BY = A whence BY € S(UY, A).
The inverse map is given by conjugation with g—*.

O

This property can be used to detect elements of
f(9M) that are not conjugate in G.

Corollary 4.5. Let R be a complete system of repre-
sentatives of =-classes on f(IM). Define an equiv-
alence relation =" on f(ON) by saying that U ="V
if and only if U =V and s(U, A) = s(V, A) for all
A € R. Then (f,=') is a prefusion map, and is
stronger than (f,=).

Proof. Since (f,=) is a prefusion map, there is
a map ¢g: f(IM) — &' such that j = go f and
j(my) = j(ms) implies m; = my for all m;,m, €
f(O1). By Proposition 4.4 and the definition of =’
then j(my) = j(ms) also implies m; =" m, for all
my,ms € f(9M). Hence (f,=') is a prefusion map.

Let h; be the identity map on f(9) and let
ha(m/=") = m/= for any m € f(9M). Then
/= = hyo /='ohy and therefore (f,=') is stronger
than (f,=). O
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A procedure that systematically applies this corol-
lary to f(91) in order to produce the strongest
possible prefusion map from (f,=) will be called
RefineClassesFrame.
Comparing the sets S(U, A) for conjugate sub-
groups U leads to even more detailed insights.
Let U < M; and let A < G. Let

FU,A) = f(S(U, A) = {s1,...,5,5 S [(M)

be the image of S(U, A) under f. Note that by
the definition of S(U, A) all elements s; € F'(U, A)
lie in the same =-class. To each s; € F(U, A) we
associate a number py (s;) defined by

NU(SJ') = Z VMi(U7B)7

f(B)=s;

where the sum runs over the conjugacy classes of
subgroups [B] of M; with f(B) = s;. Conjugation
in G partitions the set F'(U, A) in such a way that
the sum of the py(s;) corresponding to one part
gives the number of G-conjugate subgroups of U
of a certain type.

Corollary 4.6. Let U < M; and U' < M; be such
that f(U) = f(U'), and let A < G. Then there
are an integer k, partitions F(U,A) = 7, U---Umy
and F(U',A) = m; U--- Uy, elements s; € m; for
jg=1,....k and a map f':IM — M defined, for
m €M, by

7 ={ i

such that

if f(m) € m; or f(m) € 7},
otherwise,

Z pu(s) = Z pu (s)

sem; sET)
and (f',=) is a stronger prefusion map than (f,=).

This last result appears to be not as explicit as one
might wish. In many cases, however, it is possible
to explicitly determine the partitions and thus a
new map f'.

If, for example, F(U, A) = {s} contains only one
element, then, regardless of the size of F(U', A),

the partition will be trivial and f’ can be defined
as f'(s") = s for each s’ such that f(s") € F(U', A).
A procedure that systematically searches f(90)
for places where Corollary 4.6 can be applied in
order to produce the strongest possible prefusion
map from (f,=) will be called ConcludeFrame.

Sylow’s Theorem

All Sylow p-subgroups of G are conjugate, and ev-
ery p-subgroup of G lies inside a Sylow p-subgroup.
Here this can be used as follows.

Proposition 4.7. Let (f,=) be a prefusion map on
N that is stronger than p,. Let p be a prime and
S € SylL,(G) a Sylow p-subgroup of G. Let P < S
and assume that P = Q implies P ~ Q for all
Q<S. Then P~ Q for oll Q < G with P = Q.

Proof. Let Q < G with Q = P. Then @ is a p-
subgroup of G and by Sylow’s theorem there exists
a g € G with Q9 < S. Since (f,=) is a prefusion
map we have QY = P and the hypothesis implies
Q¢ ~ P whence Q ~ P. d

This result allows us to fuse certain =-classes of
p-subgroups into singletons.

Corollary 4.8. Let (f,=) be a prefusion map on M
that is stronger than @s. Let P € 9N with P <
S < M; for S € Syl (G) and some mazimal M; <
G. Suppose f(P)/= N f(M;) contains exactly one
element mp and define a map f': 9 — M by

fim) = {f(m)

otherwise.
Then (f',=) is a prefusion map and (f',=) < (f,=).

Proof. Since (f,=) is a prefusion map, there is a
map g: f(9M) — & such that j = go f and g(m,) =
g(my) implies m; = my for all my,my, € f(IM).
Let ¢’ be the restriction of g to f'(9M) C f(IM).
Then, by Proposition 4.7, also 7 = ¢g' o f' and, of
course, ¢'(my) = ¢'(m2) implies m; = my for all
my,ms € f'(9N). Hence (f',=) is a prefusion map.

Let hy(m) = f'(m) for all m € f(9) and let
h, map the =-class of each m € f'(9M) to its =-
class in f(91). Let /=' be the restriction of /= to



Pfeiffer: The Subgroups of M,4, or How to Compute the Table of Marks of a Finite Group 259

f'(M). Then /= = hyo /='ohy, whence (f',=') is
stronger than (f,=). O

A procedure that systematically searches f(91) for
places where Corollary 4.8 can be applied in order
to produce a stronger prefusion map will be called
CheckSylowFrame.

Normalizers

If two subgroups are conjugate in G, so are their
normalizers in GG. This translates into the present
context as follows.

Proposition 4.9. Let UV < G with U J V and
assume that V. = A implies V ~ A for oll A <
Ng(U). Then V.~ A for all A< G withV = A
and U < A9 for some g € G.

Proof. Let A < G and g € G with A = V and
U < A9. Then A < Ng(U) and A9 =V and the
hypothesis implies A7 ~ V whence A ~ V. g

This result allows us to fuse certain classes of sub-
groups into singletons.

Corollary 4.10. Let (f,=) be a prefusion map. Let
H e M withU < H < Ng(U) < M; for a subgroup
U < G and some mazimal M; < G. Suppose that
each h = f(H) contains a conjugate of U as a nor-
mal subgroup and that f(H)/=N f(IN;) = {myu}.
Define a map f': M — M as

o (mif fm) = f(H)
f (m)_{f(m)

otherwise.
Then (f',=) is a prefusion map and (f',=) < (f,=).

A procedure that systematically searches f(91) for
places where Corollary 4.10 can be applied in order
to produce a stronger prefusion map will be called
CheckNormalizerFrame.

5. A STRATEGY

The complete program of how to apply the proce-
dures described in the previous section and when
to supplement them with additional information
about the group is given by the following strategy.

A rough guideline is given by Lemma 4.3: Start
with a trivial prefusion map, then keep producing
stronger prefusion maps by splitting and fusing un-
til a fusion map is reached.

1. Start with ¢, = (idgy, ||) (see above) as the ini-
tial prefusion map.

2. Refine the equivalence relation with RefineClass-
esFrame (see 4.5).

3. Apply CheckSylowFrame (see 4.8) and CheckNor-
malizerFrame (see 4.10) in appropriate places.

4. Apply ConcludeFrame (see 4.6).

5. Stop if all classes are singletons. Otherwise find
a legitimation for an action of one of the two
following kinds.

a. Split an =-class into two (or more) parts and
goto 2., or
b. Fuse two (or more) images f(m) and goto 4.

Suppose, for example, that it is known (from the
list of conjugacy classes of elements of G) that G
has exactly two conjugacy classes of elements of
order 2. Then G has two conjugacy classes of sub-
groups of order two. Suppose further that we know
a prefusion map (f, =) such that there exactly two
images f(m) of size two and these two form one =-
class. Then, if the equivalence =' is derived from
= by splitting that class in two, then (f,=') is a
stronger prefusion map than (f,=). Moreover, this
splitting will, via RefineClassesFrame, have an effect
on all classes of subgroups that contain subgroups
of order 2, depending on the distribution of the two
types of subgroups of order two within them.
Suppose that the intersections of two classes of
maximal subgroups are known, that one can find
two classes [Uy ], and [Us],, where Uy and U, are
in fact identical as subgroups of G, that is, where
j(Uy) = j(Us). Suppose further that we know a
prefusion map (f,=) such that f(U;) # f(Us).
Then, if f" is derived from f by fusing the images of
U, and U,, then (f', =) is a stronger prefusion map
than (f,=). Moreover, this fusion will, via Con-
cludeFrame, have an effect on all classes that con-
tain subgroups of U; or U,, because they also must
fuse in some way. For examples of intersections of
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gap> m24:= AllPrimitiveGroups(Size, 48 * Product([20..24]))[1];;

gap> m24.name:= "m24";
gap> m24.generators;

[ (1, 7,12,16,19,21, 6)( 2, 8,13,17,20, 5,11)( 3, 9,14,18, 4,10,15),
( 2,14,18,20, 8)( 3, 7,12,13,19)( 4,21,17,15,10)( 5,11,16, 6, 9),
(1,22)( 2,10)( 3,14)( 4,17)( 8,15)( 9,11)(13,20) (19,21),

( 3,19)( 4,14)( 5,20)( 6,10) ( 8,15)(11,18) (17,21) (22,23),
( 2,10)( 3,13)( 4,11)( 5,18)( 8,15)( 9,17)(14,20) (23,24) 1]

GAP commands giving the permutation representation of Maoy.

maximal subgroups, and methods for determining
them, see [Komissartschik and Tsaranov 1986], for
example.

6. THE TABLE OF MARKS OF M,,

In this section the table of marks of the sporadic
simple Mathieu group M, is determined. We as-
sume that we know the maximal subgroups of M,,,
and that we have already computed their tables of
marks. An implementation in GAP of the pro-
cedures described in Sections 4 and 5 is used to
determine the fusion map from the maximal sub-
groups into Ms,s. We give only a short account of
the development. This should give an impression
of the amount and the type of work involved.

The permutation representation of My, we will
work with is taken from the GAP library of primi-
tive groups, being obtained as shown at the top of
this page.

A complete list of conjugacy classes of maximal
subgroups is given in Table 2 as it is found in the
Atlas [Conway et al. 1985, p. 94]. This is based
on [Todd 1966; Choi 1972a; 1972b]. For a detailed
combinatorial description see also [Conway 1971;
Curtis 1976; 1977].

Table 2 lists for each maximal subgroup of M,
its name, its index in M,, and its order. The spec-
ification describes the subgroup by the kind of ob-
ject it stabilizes. We furthermore list the name
that is used in the GAP session and the number
of conjugacy classes of subgroups of each maximal
subgroup.

In GAP, the maximal subgroups of M, are then
constructed as stabilizers according to the above
table or by explicit generating permutations, as
shown in the sidebar of the next page.

The computation of all but two of the tables of
marks of the maximal subgroups via the lattice of
subgroups is almost automatic. It requires up to 80
MB of main memory and some hours of cpu time.

Name Index Order Specification | GAP ‘ Classes
Mog 24 10200960 point m23 204
Moo : 2 276 887040 duad n22 490
24 Ag 759 322 560 octad ea8 1766
Mo : 2 1288 190 080 duum ni2 213
26 : 3.5 1771 138240 | sextet e3s6 2261
L3(4): S;3 2024 120960 triad n21 226
26 : (L3(2) x Ss3) 3795 64512 | trio nea 2156
L,(23) 40320 6072 | projective line | 123 23
Lo (7) 1457280 168 | octern 17 15

TABLE 2. The maximal subgroups of Msy.
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m23:= Stabilizer(m24, 24);
n22:= Stabilizer(m24, [23, 24], OnSets);

trio:=[[1,2,3,4,5,6,12,16]1, [8,10,13,20,21,22,23,24],[7,9,11,14,15,17,18,1911;
ea8:= Stabilizer(m24, trio[2], OnSets); ea8.name:= "ea8";

duum:= [[1,5,8,10,11,14,17,18,20,21,23,24], [2,3,4,6,7,9,12,13,15,16,19,22]1];
ml2:= Stabilizer(m24, duum[1], OnSets); ml2.name:= "ml2";

nl2:= Normalizer(m24, m12); nl2.name:= "nl12";

sextet:= [[1,12,16,18],[2,15,21,23],[3,14,22,24],[4,7,8,20],[5,9,17,19]11;
grp:= m24; for four in sextet do grp:= Stabilizer(grp, four, OnSets); od;
e3s6:= Normalizer (m24, grp); e3s6.name:= "e3s6";

n21:= Stabilizer(m24, [22..24], OnSets);
trio:=[[1,6,10,11,12,13,16,18],[2,3,7,8,9,15,19,24]1,[4,5,14,17,20,21,22,23]];

grp:= Stabilizer(Stabilizer(m24, trio[1], OnSets), trio[2], OnSets);
nea:= Normalizer(m24, grp); nea.name:= "nea'";

123:= Subgroup (m24,

[(1,7)(2,16) (3,14) (4,9)(5,6) (8,21)(10,11) (12,19)(13,15) (17,24) (18,20) (22,23),
(1,23,2)(3,10,16) (4,19,20) (5,8,22)(6,24,17) (7,18,11)(9,21,13) (12,14,15)]1);

123.name:= "123";

m23.name:= "m23";

n22.name:= "n22";

n21.name:= "n21";

17:= Subgroup (m24,
[(1,14)(2,20)(3,9)(4,16)(5,12)(6,24) (7,10)(8,21)(11,23)(13,19) (15,18) (17,22),
(1,11,18)(2,7,5)(3,21,16) (4,20,15) (6,24,8) (9,14,10) (12,13,19) (17,23,22)]);
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17 .name:= "17";

m24 .max:= [m23, n22, ea8, nl2, e3s6, n2l1, nea, 123, 17];

Construction of the stabilizers.

In addition to the permutation representation of a
maximal subgroup M one has to supply a complete
list of representatives of perfect subgroups of M as
input for the lattice program.

For the maximal subgroups M,3; and Mss : 2
(and for Ms, inside My, : 2) the method described
here has been applied to obtain their table of marks
together with a list of representatives of the conju-
gacy classes of subgroups.

We will skip quickly through the automatic part
of the strategy, and just report some interesting fig-
ures. The disjoint union 9 of the conjugacy classes
of maximal subgroups of M,, consists of 7354 sub-
groups that initially fall into 116 =-classes, i.e.,
that have 116 different orders. The refinement via

RefineClassesFrame yields 445 classes. This tells us
that there are at least 445 different isomorphism
types of subgroups of My, besides My, itself.

The inspection of the Sylow subgroups via Check-
SylowFrame yields the fusion of the 6 =-classes of
Sylow subgroups. The =-class of the trivial sub-
groups is detected and fused. Moreover, 31 =-
classes of 2-subgroups inside the Sylow 2-subgroup
are fused. The Sylow p-subgroups for p =5, 7, 11,
and 23 are cyclic, so here is nothing left for Check-
SylowFrame to do. The Sylow 3-subgroup has order
33, here are some =-classes with more than one
element. The routine CheckSylowFrame will prove
most powerful inside the Sylow 2-subgroup of or-
der 2'° that contains lots of classes of subgroups.
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The application of CheckNormalizerFrame yields
the fusion of 36 more classes. Then 302 fusions of
single subgroups are caused by ConcludeFrame. We
are left with 320 unfinished classes.

Since My, has this small permutation represen-
tation on 24 points, and all maximal subgroups are
given explicitly as subgroups of this permutation
group on 24 points, we have access to a represen-
tative for each conjugacy class of subgroups of each
maximal subgroup of Ms,. Thus, we can use these
permutation groups in order to distinguish groups
that are not conjugate in Ms,.

Let U be a subgroup of Ms,. Then U acts on
24 points and the lengths of the orbits of U give a
partition 7y of 24. If U’ is a subgroup of Ms, that
is conjugate to U then 7wy = . If we use this cri-
terion on the =-classes then 269 of them split into
two or more classes. A further refinement with Re-
fineClassesFrame yields a total of 1453 classes. Then
CheckSylowFrame can fuse 523 classes inside the Sy-
low 2-subgroup and three classes inside the Sylow
3-subgroup. Moreover, CheckNormalizerFrame can
fuse 479 classes. Then ConcludeFrame causes 1722
fusions of elements of f(M). We are left with 93
unfinished classes.

The representatives of the conjugacy classes of
subgroups of the maximal subgroups of M,, can
also be used to determine the size of their normaliz-
ers in M,,. Of course, the normalizers of conjugate
subgroups have the same size. This criterion can
be used to split one of the =-classes of subgroups
of order 4 into three classes. RefineClassesFrame
then yields a total of 1510 classes. CheckSylow-
Frame fuses 4 classes inside the Sylow 2-subgroup.
CheckNormalizerFrame fuses 20 further classes. Con-
cludeFrame causes one additional fusion in f(90).

Checking the sizes of normalizers of the =-classes
of small size (4, 8, 12, and 16) together with the
application of RefineClassesFrame leads to a total of
1527 classes.

The remaining problem is quite small; we are
faced with a pre-fusion map (f,=) where only 28 of
the =-classes have more than one element. These
classes contain subgroups of order 16, 60 [2 classes],

120 [3 classes], 168, 240 [3 classes], 336, 360 [2
classes], 480, 660, 720 [4 classes], 1320, 1344, 1440,
2520, 7920, 20160 [2 classes], 40320, and 443520.
Five of these classes can be solved by looking at
intersections of the maximal subgroups.
The point stabilizer m23 and the duad stabilizer
n22 intersect in a group of size 443520,

gap> Size(Intersection(m23, n22));
443520

(which is, of course, the 2 point stabilizer Ms,)
and, since the =-class of groups of this size consists
of a conjugacy class of subgroups of M3 and a
conjugacy class of subgroups of My, : 2, we can
fuse this class.

The point stabilizer m23 and the triad stabilizer
n21 intersect in a group of size 40320 (which is
M, : 2, the duad stabilizer in Mss), so do the
duad stabilizer n22 and n21.

gap> Size(Intersection(m23, n21));
40320
gap> Size(Intersection(n22, n21));
40320

Thus the three elements in the =-class of groups
of that size belong to one single conjugacy class of
subgroups of M,,.

We look at the size of the intersection of ea8 and
the stabilizer of the point 1 in My,

gap> Size(Intersection(ea8,
Stabilizer(m24, 1)));
20160

and can decide for one of the =-classes of groups
of size 20160 that they indicate a single conjugacy
class.

Similarly we find a group of order 7920 (M)
as the intersection of n12 and m23 and a group
of order 1440 (Ag.2%) as the intersection of n22
and n12. This allows us to fuse the =-classes of
groups of these orders. After the fusion of these
five classes ConcludeFrame causes 23 further fusions.
In particular, the class of groups of order 660 is
fused into a singleton, and consequently the class
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gap> ol:= Orbits(derl, [1..24]1);

[[1,23,17,24,20,5,21,10,18,8,14,11], [2,15,13,7,19,9,16,4,22,6,12,3]]

gap> 02:= Orbits(der2, [1..24]);

[[1,11,9,4,13,22,24,7,21,2,18,5], [3,23,8,16,15,14,6,17,12,20,10,19]]
gap> g:= RepresentativeOperation(m24, Set(o2[1]), Set(ol1[1]), OnSets);
(2, 5,10,16, 4, 8,19,12, 3, 7,11,23,22,17,13,14, 6,15, 9,24,21,18,20)
gap> h:= RepresentativeOperation(nl2, repl, rep27g);

(2,19, 6,15)( 3,22,16, 7)( 4,13)( 9,12)(10,24,14,17)(18,20,23,21)

gap> repl™h = rep2-g;
true

Calculation of a conjugating element.

of groups of order 1320 can be identified as the
class of their normalizers, so it also can be fused.

The =-class of groups of order 480 consists of
two elements, a subgroup of n12 and a subgroup
of e3s6. The duums stabilized by each of these
groups is exhibited by passing to the derived sub-
groups. Let repl and rep2 be representatives of
the two elements in the =-class and let derl and
der2 be their respective derived subgroups. As
shown at the top of the page, we determine their
orbits on the 24 points and an element g of My,
that maps the duum of rep2 to that of repl (and
thereby conjugates rep2 into n12). The index of
the subgroups in n12 is relatively small (396), and
we can find a conjugating element inside n12. We
thus have explicitely shown that repl and rep2
are conjugate in My, and can now fuse the corre-
sponding =-class. ConcludeFrame then fuses all but
one of the remaining classes.

The remaining =-class of groups of order 16 con-
sists of two elements. Each of them is the image
under f of five elements of M1, where two are con-
jugacy classes of subgroups of nea, two of e3s6 and
one of ea8.

gap> Orbits(rep3, [1..24]);

Let rep3 and rep4 be representatives of the two
elements in that =-class. Again we look at the
orbits of these groups on the 24 points; see code at
the bottom of the page.

The groups rep3 and rep4 both stabilize the
same octad and they are not conjugate in the octad
stabilizer ea8. Therefore they are not conjugate in
M, and this class splits.

Finally the table of marks of Ms, can be com-
puted via InducedFrame, a program that imple-
ments the induction formula 2.2. The number of
subgroups of Ms, now can be derived from that
table by means of Lemma 1.3.

gap> tom:= InducedFrame(frame);;
gap> Length(tom.subs) ;
1529

Out of the 704 divisors of the order of M, only 117
occur as orders of subgroups of Ms,. Table 3 lists
for each such order the number of conjugacy classes
of subgroups with that order and the total num-
ber of subgroups in these classes. The most popu-
lar orders among the conjugacy classes are 32 (212
classes) and 64 (209 classes). 32 is also the most

(f1,6,10,11,13,18,16,121, [2,3,8,7,14,9,19,23,15,5,20,4,24,17,21,22]]

gap> Orbits(rep4, [1..24]);

(f+,6,10,11,13,18,16,121, [2,3,7,4,8,19,5,9,21,24,23,22,15,14,17,20]]

Orbits of rep3 and rep4.
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Order CL Subgroups | Order CL Subgroups Order  CL Subgroups
1 1 1 112 2 1457280 1728 1 17710
2 2 43263 120 9 11221056 1920 5 414414
3 2 356224 126 1 1943040 2160 1 113344
4 12 5668971 128 120 57323475 2304 6 398475
5 1 1020096 144 10 10838520 2520 1 97152
6 6 18944640 160 4 701316 2688 8 667920
7 1 1943040 168 7 6072000 2880 2 85008
8 50 62606115 180 2 1360128 3072 4 318780
9 2 2833600 192 86 37940386 3456 3 88550

10 3 7140672 216 2 1700160 3840 5 148764
11 1 2225664 240 9 4250400 4032 1 30360
12 24 69026496 253 1 967680 4608 9 239085
14 1 5829120 256 47 13149675 5760 3 106260
15 1 4080384 288 13 5738040 6072 1 40320
16 129 145731795 320 6 1976436 6912 3 53130
18 5 23235520 336 6 4371840 7680 2 63756
20 5 19381824 360 4 1870176 7920 1 30912
21 3 7772160 384 66 22929390 8064 1 30360
22 1 2225664 432 1 566720 9216 3 79695
23 1 967680 448 1 30360 10752 1 3795
24 51 153864480 480 4 1530144 11520 3 42504
27 1 1133440 504 1 242880 13824 1 17710
30 1 4080384 512 15 2948715 20160 2 14168
32 212 186438483 576 11 2514820 21504 2 22770
36 7 18701760 640 3 446292 23040 2 21252
40 3 7140672 660 2 370944 32256 1 3795
42 2 7772160 720 5 1020096 40320 2 12144
48 74 125578068 768 29 3665970 60480 1 2024
54 3 5667200 896 2 182160 64512 1 3795
55 1 2225664 960 6 754446 69120 1 1771
56 3 2914560 1008 1 242880 95040 1 1288
60 7 10540992 1024 1 239085 120960 1 2024
63 1 1943040 1080 1 113344 138240 1 1771
64 209 137745091 1152 12 1452220 190080 1 1288
72 15 24368960 1280 1 191268 322560 1 759
80 3 3379068 1320 2 370944 443520 1 276
96 71 75444600 1344 6 394680 887040 1 276
108 3 3400320 1440 2 340032 10200960 1 24
110 1 2225664 1536 23 1753290 | 244823040 1 1

TABLE 3. For each number that occurs as the order of a subgroup of May, the table shows the number of
conjugacy classes of subgroups (Cl.) and the complete number of subgroups of that order.
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popular order among the subgroups (186438483
subgroups). On the other hand, there are 44 con-
jugacy classes that are uniquely determined by the
order of the subgroups they contain.

7. RESULTS FOR OTHER GROUPS

The methods described above have been developed
with a particular interest in the tables of marks of
simple and almost simple groups. It should be pos-
sible to adapt them to larger classes of groups, but
we note that arguments involving Sylow subgroups
(and in particular Corollary 4.8) lose their mean-
ing when the table of marks of a p-group is to be
determined.

In Table 4 we list the number of subgroups and
the number of conjugacy classes of subgroups for
these groups: all projective special linear groups
L, (p°) of order less than 10%; the projective special
linear groups L3z(n) for n = 3,4, 5; the alternating
groups A, for n =5,...,11; the symmetric groups
S, for n =5,...,10; the unitary groups Us(n) for
n =3,4,5 and U,(2); the Suzuki group Sz(8); the
symplectic group S;(4); the Mathieu groups M,
Mo, My and Mss plus their automorphism groups
M, : 2 and My, : 2; the Janko groups Ji, J, and
J3; and the McLaughlin group McL.

The complete tables of marks of these groups
have been determined by the methods described
above. These tables form a library that is part of
GAP.

Buekenhout and Rees [1988] have determined
the poset structure of the Mathieu group M;,. The
poset structure of the sporadic simple Janko group
J> was determined in [Pahlings 1987]. The poset
structure of the sporadic simple Janko group J3 is
determined in [Pfeiffer 1991]. Informations about
parts of the subgroup lattice of the sporadic simple
McLaughlin group McL can be found in [Diawara
1987].

A rather incomplete set of facts about subgroups
of the Mathieu groups is given in [Greenberg 1973].
P. Fong (Math Reviews 50:4731) points out that
“this can not remain the last work on the subject.”

8. APPLICATIONS

In this final section we extract more information
about the group G from its table of marks. This is
done in two different ways: via the Mobius function
of the subgroup lattice of G and via the idempo-
tents of the Burnside ring of G.

8.1. Mobius Functions

For any finite poset X, a Mobius function p can be
defined as inverse of the incidence relation < via

> nlw,y) =0,

e<y<z

for all z,z € X, where § denotes the Kronecker
delta. In particular, we have u(z,z) = 1 for all
€ X. This is a natural generalization of the well
known Mobius function in number theory, where
the partial order is given as divisibility (compare
[Rota 1964]).

Two posets are in a natural way associated to
a given finite group G: one is the lattice &5 =
{U : U < G} of all subgroups of G with inclusion
as incidence. Denote its Mobius function by pg.
The investigation of this case goes back to [Hall
1936], where it was intensely studied. For every
U < G the value ug(U,G) can be derived from
the table of marks of G (compare [Pahlings 1993,
Proposition 1]).

Lemma 8.1. Let U < G. Then ug(U,G) is deter-
mined by

Z ﬁA!G(U)/ﬂA!G(A) ,UG(A, G) = daa,

(Al

where the sum ranges over all conjugacy classes [A]
of subgroups of G.

In other words, pug(U, G) is the entry in the column
corresponding to U of the final row of the inverse
of the unweighted table of marks, i.e., the matrix
that is derived from the table of marks by dividing
each row by its diagonal value.
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| Name Order ClL Subgroups | Name Order ClL Subgroups
Linear Groups L3(3) 5616 ol 6374

Ly (7) 168 15 179 L3(4) 20160 95 44877
Ly (8) 204 12 386 L3 (5) 372000 140 345809
L,(11) 660 16 620 Alternating Groups
L»(13) 1092 16 042 | A, 60 9 59
Lo (17) 2448 22 2420 Ag 360 22 201
L,(19) 3420 19 2912 Az 2520 40 3786
L»(16) 4080 21 3455 Asg 20160 137 48337
L,(23) 6072 23 9915 Ag 181440 223 508402
L(25) 7800 37 9559 Ao 1814400 428 6469142
Lo (27) 9828 16 5286 A 19958400 788 81711572
L-(29) 12180 22 10040 Symmetric Groups
L,(31) 14880 29 15413 Ss 120 19 156
L,(37) 25308 23 17731 Se 720 o6 1455
L,(32) 32736 24 22328 St 5040 96 11300
L,(41) 34440 33 36129 Ss 40320 296 151221
L,(43) 39732 20 25462 So 362880 954 1694723
L,(47) 51888 29 48837 S1o 3628800 1593 29594446
L(49) 58800 51 73945 Unitary Groups
L»(53) 74412 20 43254 Us(3) 6048 36 9150
L»(59) 102660 26 82368 Us(2) 25920 116 45649
L,(61) 113460 32 91144 Us(4) 62400 34 31373
L,(67) 150348 20 79602 U;(5) 126000 80 179308
L,(71) 178920 39 203705 Suzuki Groups
L, (73) 194472 38 176087 | Sz(8) 29120 22 17295
Ly (79) 246480 37 247355 Symplectic Groups
L,(64) 262080 76 360787 | S4(4) 979200 496 4045873
L,(81) 265680 69 433087 Sporadic Groups
L,(83) 285852 24 190904 My, 7920 39 8651
L»(89) 352440 37 341323 M;i» 95040 147 214871
L»(97) 456288 45 451547 | M2 :2 190080 213 538243
L,(101) 515100 29 343307 | Mas 443520 156 941627
L»(103) 546312 29 396865 My : 2 887040 490 3396237
L,(107) 612468 24 374718 M3 10200960 204 17318406
L»(109) 647460 36 523864 J1 175560 40 158485
L,(113) 721392 39 622753 Jo 604800 146 1104344
Lo(121) 885720 63 976309 Js 50232960 137 71564248
L,(125) 976500 29 708273 | McL 898128000 373 1719739392

TABLE 4. For each of the groups given in Section 7, the table lists its name, its order, the number of conjugacy
classes of subgroups and the number of subgroups.
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Proof. We have ug(G,G) =1 and for U < G by the
definition of the Mobius function

0= Z :U*G(Av G)a

U<A

where the sum runs over all subgroups A of G that
contain U. Since the Mobius function is invariant
under conjugation in G this can be written as

0=) [{A7:9€G, U< A} ne(4,G),
(4]

where the sum ranges over all conjugacy classes [A]
of subgroups of G. Finally the number of conju-
gates of A that contain U equals Ba\¢(U)/Baa(A)
by Lemma 1.3(iv). O

The knowledge of these values of the Mobius func-
tion is sufficient in many applications. They de-
termine, for example, the number of essentially
different ways in which G can be generated by m
elements. Denote this number by e,,(G). Then

|Aut(G)| e (G) = g..(G),

where g,,(G) is the number of m-tuples of elements
of G that generate G and we have (compare [Hall
1936, (3.3)])

Lemma 8.2. For each m > 0 the number e,,(G) is
determined by the order of Aut(G) and the table of
marks of G as

1

en(G) = [Aut(G)] =,

pe(H,G) |H|™ .

Proof. Let H < G. Each of the |[H|™ m-tuples of
elements of H certainly generates a subgroup U of
H, hence

|H|m = Z gm(U).

U<H

Mobius inversion then yields

gm(H) =Y pa(U, H)|U|™,

U<H

and the lemma follows for H = G from 8.1. O

From this we get e;(4;) = 135(—60 4 4-15-2* +
2:10-32—10-6>—6-10* —5-1224+-60%) = 19 essentially
different ways to generate As; by 2 elements.

Even more detailed questions can be answered
from the table of marks of G. We can, for example,
fix one element € G and ask for the number of

elements y € G with (z,y) = G. For any U < G

let
n.(U) = {y € G: (z,y) = U}|,
m.(U) = |{y € G: (z,y) <U}|.

We have
m,(U) = |{y € U: (z,y) <U}|
Uy, ifzeU,
10 otherwise,
and

m,(U) = Y n,(H).

H<U
By Mobius inversion we get
no(U) = Y pe(H,U)m,(H)
H<U

where ug denotes the Mobius function of the sub-
group lattice of G. In particular,

n,(G) =) ua(U,G)m,(U)

U<G

=Y ne(U,G) [{{z) <U%|g € G}| U],

(U]

where the last summation is over all representa-
tives U of conjugacy classes [U] of subgroups of G.
Note that by Lemma 1.3(iv)

’. _ Boe(()
We finally get
ne(@ =3 Pua((x))

Hence the numbers n,(G) can be computed from
the table of marks for every z € G (or even for any
subgroup U < G instead of (z)).
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U | 1 2 3 22 5 Sy  Diy Ay As

|Na(U) : U| 60 2 2 3 2 1 1 1 1
neU,G) | =60 4 2 0 0 -1 -1 -1 1
AU, G | .12 10 0 -1 -1 -1 1

TABLE 5. Calculation of the Mébius function for G = As.

For the alternating group G = Aj one obtains
thus the following values n,(G).

order of x 1 2 3 5
number of such % 1 15 20 24
n,(G) | 0 24 36 50

(This result again yields e, (As) = (15-24 4 20-36 +
50-24)/120 = 19.)

The second relevant poset in this context is the
poset &g /G of conjugacy classes of subgroups, in
which the class of a subgroup U is incident to the
class of V if there is a g € G such that U9 < V.

Denote by Ag the Mébius function of G4/G.

Again, the values A\g(U,G) for U < G can be
computed from the table of marks. The incidence
matrix of the poset of conjugacy classes of G is
obtained from the table of marks by replacing every
nonzero entry by 1. The inverse of this matrix
contains the values of the Mobius function of the
poset 65 /G.

In the case of G = A; we get the values shown
in Table 5.

The values of the functions ug and Ag are related
in the following way.

Theorem 8.3. Let G be a solvable group and let U <
G. Then

ne(U,G) = |Ne (U) : G'NU| Aa(U,G).

This is obviously true for abelian groups G, since
in that case the two posets &g and & /G coincide.
For U = 1 the theorem has been proved in [Hawkes
et al. 1989]. The generalization stated above is
proved in [Pahlings 1993]. The theorem also holds
for many non-solvable groups, (see [Bianchi et al.
1990; Pahlings 1993], and, in particular, the above
table for As). In [Pahlings 1993] it is shown that
the theorem holds for the projective special linear

group Ly(p), p a prime. There are, however, coun-
terexamples:

In [Bianchi et al. 1990] it has been observed that,
for G = My, pug(1,G) = |My,|, while A¢(1,G) =
2. Thus M, provides a counterexample for U = 1.
In its general form, the formula of theorem does
not hold for the simple groups Us(3), Jo, and My
[Pahlings 1993].

Using the tables of marks of the groups in Ta-
ble 4 one finds that the theorem also fails for the
simple groups Ay, Ao, A1, Myy and McL, in the
latter also for U = 1.

8.2. Idempotents in the Burnside Ring
We identify the Burnside ring (G) with its image
under the map g in Z".

The only idempotents in Z are 0 and 1. Each
idempotent in Z" is of the form e = (ey,...,¢€,)
where ¢; = 0 or 1 for all 4 = 1,...,r. Let e? =
0,...,0,1,0,...0) € Z" be such that its entry in
th ¢-th position equals 1 and all other entries are 0
and, for any I C {1,...,r}, let e =3, e,

The table of marks M (G) provides an efficient
means to determine those subsets I C {1,...,r}
for which the idempotent e’ is an element of Q(G).

Let X be a G-set and suppose H < K < G
such that H is a normal subgroup of index p of
K for some prime p. Then K acts on the fixed
point set Fixy (H) with kernel containing H. Since
|K : H| = p is prime, the orbits of K on Fixy(H)
have either length 1 (corresponding to Fixx (K))
or length p. It follows that

Bx(H) = Bx(K) (mod p) for all G-sets X,
in other words, if H lies in the conjugacy class [G|]
of subgroups of G' and if K lies in class [G;] then
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the i-th column and the j-th column of the table
of marks M (G) are equal modulo p.

In order to describe the idempotents of Q(G) we
define two relations on the set {1,...,r}. For any
prime p let

t —, j if there are H < K < G such that H is
normal of index p in K, H lies in [G}]
and K lies in [G}];

i =, j if the i-th and the j-th column of M (G)
are equal modulo p;

The idempotents of Q(G) are then completely de-
scribed by the following proposition [Dress 1969,
Proposition 1].

Proposition 8.4. Let = be the transitive closure of
the union of all =,.

(i) The relation =, 1is the transitive, reflezive, and
symmetric closure of the relation —,,.

(i) Let I C {1,...,r}. The idempotent e’ lies in
Q(G) if and only if I is a union of =-classes.

In particular, it is possible to decide from the table
of marks of G whether G is solvable or not:

Since solvable groups are characterized by the
fact that every nontrivial subgroup has a normal
subgroup of index p for some prime p we get the
following characterization of solvable groups.

Theorem 8.5 [Dress 1969]. Let G be a finite group.
Then G is solvable if and only if 0 and 1 are the
only idempotents in the Burnside ring Q(QG).
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