# Finite Subgroups of $\mathbf{G L}_{24}(\mathbb{Q})$ 

Gabriele Nebe

## CONTENTS

## Introduction

1. Definitions and First Properties
2. Methods for Determining Rational Irreducible Maximal Finite Groups
3. Results
4. The Rational Irreducible Maximal Finite Supergroups of Irreducible Cyclic Groups
5. Essentially Semisimple Groups
6. Proof of the Main Theorem

Acknowledgements
Table of Notation
Table of Invariant Forms
References

1991 Mathematics Subject Classification. Primary 20C10; Secondary 20H15, 11E12, 20F29, 20E28, 20-04.
Key words and phrases: finite rational matrix groups, finite integral matrix groups, integral lattices in Euclidean space, positive definite integral quadratic forms.

We classify maximal finite irreducible subgroups of $\mathrm{GL}_{24}(\mathbb{Q})$, together with their natural lattices. There are 65 conjugacy classes of such groups, 41 of which consist of primitive groups. New methods for finding the maximal finite supergroups of irreducible cyclic groups are developed and applied.

## INTRODUCTION

In this work we determine a set of representatives of the conjugacy classes of rational irreducible maximal finite (r.i.m.f.) groups in $\mathrm{GL}_{24}(\mathbb{Q})$. This completes the classification of the r.i.m.f. subgroups of $\mathrm{GL}_{n}(\mathbb{Q})$ for $n \leq 24$ started in [Plesken 1991], where the study of maximal finite subgroups of $\mathrm{GL}_{n}(\mathbb{Q})$ was essentially reduced to that of irreducible groups, and continued in [Plesken and Nebe 1995] and [Nebe and Plesken 1995] (compare also [Plesken 1985], where the maximal finite irreducible subgroups of $\mathrm{GL}_{p}(\mathbb{Z})$ for primes $p<24$ are determined).

Finite subgroups of $\mathrm{GL}_{n}(\mathbb{Q})$ fix positive definite quadratic forms on the one hand and on the other hand they act on $n$-dimensional lattices. In particular the r.i.m.f. groups can be regarded as full automorphism groups of lattices in Euclidean spaces. The existence of the Leech lattice, the unique even unimodular lattice of dimension 24 with minimal square length 4 [Conway and Sloane 1993], makes the dimension particularly interesting. The automorphism group of this lattice is a covering group of the Conway group and an r.i.m.f. group. In close relation to this lattice are some other interesting $k$ modular lattices of r.i.m.f. subgroups of $\mathrm{GL}_{24}(\mathbb{Q})$ that turn up; $k$-modular lattices are defined in Definition 1.4(vii). Examples are given after Remark 1.10, and detailed in my thesis [Nebe 1995,

Chapter VI]. In fact, this paper is supposed to make one main part of the results of my thesis available to a wider audience. I have not included its second part, the discussion of the simplicial complexes $M_{24}^{\mathrm{irr}}(\mathbb{Q})$ and $M_{24}^{\mathrm{irr}, F}(\mathbb{Q})$, which encode the interrelation of the r.i.m.f. groups via common irreducible subgroups.

The group $\mathrm{GL}_{24}(\mathbb{Q})$ has 65 conjugacy classes of r.i.m.f. groups, listed in Table 1. Of these, 41 consist of primitive groups (Definition 1.14).

Dimension 24 is the lowest where r.i.m.f. groups fixing a two dimensional space of invariant quadratic forms turn up (Theorem 3.1). Already in $\mathrm{GL}_{16}(\mathbb{Q})$ there exist two nonuniform r.i.m.f. groups fixing a four-dimensional space of invariant forms [Nebe and Plesken 1995]. These two examples show that for nonuniform groups it might happen that the determinant of each integral invariant positive definite quadratic form is divisible by some prime not dividing the order of the automorphism group. That this is not possible for uniform groups and under some additional assumptions also if the space of invariant quadratic forms is of dimension two has been shown in [Nebe and Plesken 1995] (see also [Feit 1974] for the absolutely irreducible case). Theorem 2.2 deals with this problem when the commuting algebra of the group is isomorphic to a number field, and gives rise to a purely arithmetic method to determine the r.i.m.f. supergroups of those groups.

The classification of the nonabelian finite simple groups and their character tables [Conway et al. 1985; Jansen et al. 1995] is used. However, the results of Section 4, where some r.i.m.f. supergroups of the irreducible finite cyclic subgroups of $\mathrm{GL}_{24}(\mathbb{Q})$ are determined, are independent of this classification, thanks to Theorem 2.2.

Concrete number-theoretic questions, such as the computation of fundamental units and class numbers, can be dealt with using KANT [Pohst et al. 1993]. Group-theoretic problems can often be solved using GAP [Schönert et al. 1994] or CAYLEY [Cannon 1984]. The main computations are done with the help of programs developed at the

Lehrstuhl B für Mathematik of the RWTH Aachen, such as the program for computing the automorphism group of a lattice implemented by B. Souvignier [Plesken and Pohst 1985; Souvignier 1994; Plesken and Souvignier 1996], the sublattice algorithm to compute all invariant lattices of a given matrix group and other C programs partly implemented by H. Brückner.

The principal strategy for the construction of the maximal finite groups is the use of normal subgroups. An important notion is that of imprimitivity (Definition 1.14), which reduces the classification of r.i.m.f. groups to the one of primitive maximal finite groups. For a primitive subgroup $G \leq \mathrm{GL}_{n}(\mathbb{Q})$, the restriction of the natural representation of $G$ to a normal subgroup of $G$ is homogenous. In particular each abelian normal subgroup of $G$ is cyclic. Using a theorem of P. Hall, which classifies those $p$-groups whose abelian characteristic subgroups are cyclic, this restricts the possibilities for the maximal nilpotent normal subgroup Fit $(G)$ of $G$.

Let $C:=C_{G}(\operatorname{Fit}(G))$ be the centralizer in $G$ of $\operatorname{Fit}(G)$. Then $C$ is a normal subgroup of $G$ and $C / Z(\operatorname{Fit}(G))$ is a subgroup of the automorphism group of a direct product of finite simple groups. Therefore the possibilities for $C$ can be derived from the classification of finite simple groups and their character tables in the Atlas of Finite Groups [Conway et al. 1985]. The quotient group $G /(C \operatorname{Fit}(G))$ is isomorphic to a subgroup of the outer automorphism group $\operatorname{Out}(\operatorname{Fit}(G))$ of $\operatorname{Fit}(G)$, so in principle the group $G$ may be constructed using only group theoretical means. But the exclusive usage of group theoretical constructions is cumbersome and not stable against errors. It is not very powerful, because it does not use the fact that $G$ is maximal finite.

Maximal finite groups satisfy a certain closedness condition: They are full automorphism groups of all their invariant lattices with respect to all their invariant quadratic forms.

Therefore, the language of lattices and quadratic forms is introduced in Section 1.

Section 2 develops further arithmetic methods, also dealing with reducible normal subgroups (Definition 2.4). Short-cuts using the knowledge of certain irreducible but not necessarily normal subgroups of $G$ can be obtained with the help of Theorem 2.2.

Section 3 contains the main result, the list of irreducible maximal finite subgroups of $\mathrm{GL}_{24}(\mathbb{Q})$; see Table 1 on pages 173-174. That table also displays some information about the invariant lattices. On the one hand, these lattices have nice geometric and arithmetic properties and are of interest on their own. On the other hand, they provide powerful means for identifying the r.i.m.f. groups.

That the groups listed in Table 1 are maximal finite can easily be checked using Remark 1.3, so it remains to prove that the list of r.i.m.f. groups is complete. This is done in the last three sections.

Nearly two-thirds of the r.i.m.f. subgroups of $\mathrm{GL}_{24}(\mathbb{Q})$ have irreducible cyclic subgroups. Therefore the r.i.m.f. supergroups of those irreducible groups are determined in Section 4, which is also interesting for the classification of cyclotomic lattices. The results of this Section are independent from the classification of finite simple groups. The latter is often used in Section 5, where we determine the r.i.m.f. groups having an irreducible subgroup that is a central product of quasisimple groups. Whereas Section 4 provides short-cuts used throughout Section 6, Section 5 is mainly intended to fix the notation for the occurring characters of the quasisimple groups.

The last section completes the proof of Theorem 3.1, classifying the primitive r.i.m.f. groups by constructing normal subgroups and determining the r.i.m.f. supergroups as automorphism groups of invariant lattices.

A table of notations may be found on page 192. An additional table, on pages 193-195, lists the invariant forms of the primitive r.i.m.f. groups of degree dividing 24 that are not tensor products of forms of smaller dimension. The invariant forms, as well as generators for the r.i.m.f. groups, are available in GAP.

## 1. DEFINITIONS AND FIRST PROPERTIES

This section introduces the language of lattices and quadratic forms. The main (trivial) observation is Remark 1.3, describing the maximal finite groups as full automorphism groups of all their invariant lattices. Frequently used notations from [Plesken and Nebe 1995] are briefly repeated (see also the table of notations on page 192).

Definition 1.1. Let $G \leq \mathrm{GL}_{n}(\mathbb{Q})$ be a finite rational matrix group. The set $\mathbb{Q}^{1 \times n}$ has a natural $\mathbb{Q} G$ module structure.
(i) A set $L \subseteq \mathbb{Q}^{1 \times n}$ is a full $\mathbb{Z}$-lattice if $L$ is a free abelian subgroup of rank $n$. The set of $G$ invariant full $\mathbb{Z}$-lattices is denoted by $\mathbb{Z}(G)$.
(ii) A quadratic form $X \in \mathbb{Q}_{\text {sym }}^{n \times n}$ is $G$-invariant if $g X g^{\operatorname{tr}}=X$ for all $g \in G$. The $\mathbb{Q}$-vector space of $G$-invariant quadratic forms is denoted by $\mathcal{F}(G)$, and the subset of $\mathcal{F}(G)$ consisting of positive definite quadratic forms is denoted by $\mathcal{F}_{>0}(G)$.
(iii) $G$ is called uniform if $\operatorname{dim} \mathcal{F}(G)=1$.
(iv) The enveloping algebra $\bar{G}$ is the $\mathbb{Q}$-subalgebra of $\mathbb{Q}^{n \times n}$ spanned by the matrices in $G$.

Definition 1.2. Let $L, L^{\prime}$ be full $\mathbb{Z}$-lattices in $\mathbb{Q}^{1 \times n}$, $\mathcal{F} \subseteq \mathbb{Q}_{\text {sym }}^{n \times n}$ a subset of the symmetric rational $n \times n$ matrices, and $F \in \mathcal{F}$.
(i) The automorphism group $\operatorname{Aut}(F, L)$ of $F$ on $L$ is defined as the set of $g \in \mathrm{GL}_{n}(\mathbb{Q})$ such that $L g=L$ and $g F g^{\mathrm{tr}}=F$.
(ii) The Bravais group $\mathcal{B}(\mathcal{F}, L)$ of $\mathcal{F}$ on $L$ is defined as the intersection of all $\operatorname{Aut}\left(F^{\prime}, L\right)$, as $F^{\prime}$ runs over $\mathcal{F}$.
(iii) If $G$ is a finite subgroup of $\mathrm{GL}_{n}(\mathbb{Q})$ and $L \in$ $\mathcal{Z}(G)$ is a $\mathbb{Z} G$-lattice, the Bravais group of $G$ on $L$ is defined as the Bravais group of the space of $G$-invariant forms: $\mathcal{B}(G, L):=\mathcal{B}(\mathcal{F}(G), L)$.

Remark 1.3. Let $G \leq \mathrm{GL}_{n}(\mathbb{Q})$ be a finite rational matrix group. Each finite supergroup $G^{\prime} \leq \mathrm{GL}_{n}(\mathbb{Q})$ of $G$ is contained in a group $\operatorname{Aut}(F, L)$ for some $F \in \mathcal{F}_{>0}(G)$, and $L \in \mathcal{Z}(G)$. In particular, $G$ is maximal finite if and only if $G=\operatorname{Aut}(F, L)$ for all $F \in \mathcal{F}_{>0}(G)$ and all $L \in \mathcal{Z}(G)$.

Definition 1.4. Let $L, L^{\prime}$ be full $\mathbb{Z}$-lattices in $\mathbb{Q}^{1 \times n}$ and $F, F^{\prime} \in \mathbb{Q}_{\text {sym },>0}^{n \times n}$ positive definite symmetric matrices.
(i) The dual lattice $L^{\#(F)}$ of $L$ with respect to $F$ consists of the elements $x \in \mathbb{Q}^{1 \times n}$ satisfying $x F y^{\operatorname{tr}} \in \mathbb{Z}$ for all $y \in L$.
(ii) $F$ is called integral on $L$ if $L^{\#(F)} \supseteq L$.
(iii) $F$ is called primitive on $L$ if $L^{\#(F)} \supseteq L$ and $p L^{\#(F)} \nsupseteq L$ for all primes $p$.
(iv) If $F$ is integral on $L$, the lattice

$$
L^{\operatorname{ev}(F)}:=\left\{x \in L \mid x F x^{\operatorname{tr}} \in 2 \mathbb{Z}\right\}
$$

is called the even sublattice of $L$ with respect to $F$. We call $(L, F)$ even if $L^{\operatorname{ev}(F)}=L$.
(v) $\operatorname{det}(F, L)$ denotes the determinant of a Gram matrix of $L$ with respect to $F$.
(vi) $(L, F)$ is called normalized if $F$ is integral on $L$ and the finite abelian group $L^{\#(F)} / L$ is of square-free exponent and of rank at most $\frac{1}{2} n$ [Watson 1962].
(vii) For $k \in \mathbb{N}$, the lattice $(L, F)$ is called $k$-modular if there is a matrix $T \in \mathrm{GL}_{n}(\mathbb{Q})$ with $L=$ $L^{\#(F)} T$ and $T F T^{\operatorname{tr}}=k F$. (See [O'Meara 1973], where such a lattice is called $T$-modular.) A 1 -modular lattice is called unimodular.

Remark 1.5. Let $G \leq \mathrm{GL}_{n}(\mathbb{Q})$ be a finite rational matrix group, $F \in \mathcal{F}_{>0}(G)$, and $c \in C_{\mathbb{Q}^{n \times n}}(G)$ with $\operatorname{det}(c) \neq 0$. The set $\mathcal{Z}(G)$ is closed under the operations

$$
\begin{aligned}
& d(F): M \mapsto M^{\#(F)}, \\
& g(F): M \mapsto M^{\operatorname{ev}(F)}, \\
& m(c): M \mapsto M c, \\
& e:\left(M_{1}, M_{2}\right) \mapsto\left\langle M_{1}, M_{2}\right\rangle_{\mathbb{Z}}, \\
& s:\left(M_{1}, M_{2}\right) \mapsto M_{1} \cap M_{2},
\end{aligned}
$$

where $M, M_{1}, M_{2} \in \mathcal{Z}(G)$.
A finite rational matrix group $G \leq \mathrm{GL}_{n}(\mathbb{Q})$ is called lattice sparse if any lattice in $\mathcal{Z}(G)$ can be obtained from any other by combining the five operations just defined. If $p$ is a prime, $G$ is called p-lattice sparse if any lattice $L \in \mathcal{Z}(G)$ can be obtained, by combining these operations, from any
other lattice in $\mathcal{Z}(G)$ that contains $L$ with index a p-power.

Definition 1.6. Let $U$ be a finite subgroup of $\mathrm{GL}_{n}(\mathbb{Q})$ and $S \subseteq \mathcal{Z}(U)$.
(i) $S$ is called $U$-critical if all r.i.m.f. supergroups of $U$ are conjugate to a group $\operatorname{Aut}(F, L)$ with $F \in \mathcal{F}(U)$ and $L \in S$.
(ii) $S$ is called $U$-normal critical if all r.i.m.f. supergroups $G$ containing $U$ as a normal subgroup are conjugate to a $\operatorname{group} \operatorname{Aut}(F, L)$ with $F \in \mathcal{F}(U)$ and $L \in S$.

Remark 1.7. Let $U$ be a finite subgroup of $\mathrm{GL}_{n}(\mathbb{Q})$ and let $S \subseteq z(U)$ be a set of representatives of the orbits of $N_{\mathrm{GL}_{n}(\mathbb{Q})}(U)$ on $Z(U)$.
(i) $S$ is a $U$-critical set.
(ii) If $U$ is uniform, the subset $S^{\prime}$ of normalized elements of $S$ is a $U$-critical set.
(iii) If $U$ is uniform and lattice sparse, every lattice $L \in \mathcal{Z}(U)$ is $U$-critical.

Notations 1.8. Examples of r.i.m.f. groups are the automorphism groups of the following irreducible root lattices: $A_{n}$ for $n \neq 7,8, B_{n}$ for $n \neq 4, F_{4}$, $E_{6}, E_{7}$, and $E_{8}$ [Plesken 1991]. We will use the same symbol to denote one of these root lattices, the corresponding root system, and the $\left(\mathrm{GL}_{n}(\mathbb{Q})\right.$ conjugacy class of) its automorphism group.

For prime $p$, the irreducible rational representations of $\mathrm{PSL}_{2}(p)$ of degree $p-1$ and $p+1$ are described in [Plesken and Nebe 1995, Chapter V]. According to the notations introduced there, the lattices of dimension $p+1$ are denoted by $M_{p+1, i}$, where $i \in\{2,3,4,6\}$ divides $(p-1) / 2$. The corresponding representations are obtained by inducing up the representation of the Borel subgroup of $\mathrm{SL}_{2}(p)$ (of unimodular matrices $\binom{a b}{0}$, for $a, b, c \in$ $\left.\mathbb{F}_{p}\right)$ onto $\left\langle\zeta_{p-1}^{(p-1) / i}\right\rangle \leq \mathbb{C}^{*}$.

The $\mathbb{Z P S L}_{2}(p)$ lattices of dimension $p-1$ can be constructed as follows. The cyclic group $C_{p}=$ $\langle a\rangle \leq \mathrm{GL}_{p-1}(\mathbb{Q})$ of order $p$ acts on the root lattice $A_{p-1}$. The $C_{p}$-sublattices of $p$-power index in $A_{p-1}$ are linearly ordered and generated by the rows of
the matrices $\left(a-I_{p-1}\right)^{i}$. Denote the unique $\mathbb{Z} C_{p^{-}}$ sublattice of $A_{p-1}=A_{p-1}^{(1)}$ of index $p^{i-1}$ by $A_{p-1}^{(i)}$. The lattices $A_{p-1}^{(i)}$ are called Craig lattices [Conway and Sloane 1993].

If $i \in\{2,3\}$ divides $(p+1) / 2$ and $p>3$, then according to [Plesken and Nebe 1995, Theorem V.8] the automorphism group of $A_{p-1}^{((p+1) /(2 i))}$ is isomorphic to $C_{2} \times \mathrm{PGL}_{2}(p)$ and a lattice sparse r.i.m.f. group.

For the nonabelian finite simple and quasisimple groups we use the notation of [Conway et al. 1985], except that we denote the alternating group of degree $n$ by $\mathrm{Alt}_{n}$, to avoid confusion with the root system $A_{n}$. Split extensions are indicated by the symbol :, while . indicates an extension that may be either split or nonsplit. The group $\left\langle-I_{n}, G\right\rangle$ is denoted by $\pm G$.

For $i=1,2$, let $G_{i} \leq \mathrm{GL}_{n_{i}}(\mathbb{Q})$ be irreducible finite matrix groups with corresponding natural representations $\Delta_{i}$ and commuting algebras $A_{i}:=$ $C_{\mathbb{Q}^{n_{i} \times n_{i}}}\left(G_{i}\right)$. The $A_{i}$ are $\mathbb{Q}$-division algebras. The tensor product

$$
G_{1} \otimes G_{2} \cong G_{1}{\underset{C}{2}}^{Y} G_{2}
$$

need not be an irreducible subgroup of $\mathrm{GL}_{n_{1} n_{2}}(\mathbb{Q})$, since the $\mathbb{Q}$-algebra $A_{1} \otimes_{\mathbb{Q}} A_{2}$ is not necessarily a division algebra. If $Q$ is a maximal common subalgebra of $A_{1}$ and $A_{2}$, an irreducible constituent group of $G_{1} \otimes G_{2}$ is denoted by $G_{1} \otimes G_{2}$.

The following abbreviations are used: If $Q=\mathbb{Q}$, then $Q$ is omitted in most cases. $Q \cong \mathbb{Q}[\alpha]$ is simply denoted by $\alpha$. The quaternion algebra $Q \cong Q_{p, q}$ with center $\mathbb{Q}$ ramified at the places $p$ and $q$ with Hasse invariant $\frac{1}{2}$ is abbreviated as $p, q$.

If $G_{1}$ or $G_{2}$ are of degree 1 over $Q$, then $Q_{Q}^{\otimes}$ is simply denoted by $\bigcirc$. Hence $Q_{8} \bigcirc Q_{8}$ denotes the absolutely irreducible subgroup of $\mathrm{GL}_{4}(\mathbb{Q})$ isomorphic to $Q_{8} Y_{C_{2}} Q_{8}=2_{+}^{1+4}$. Alternatively, this group may be denoted by $D_{8} \otimes D_{8}$ or $2_{+}^{1+4}$.

Consider the case when $G_{1}=C_{5}$ and $G_{2}=$ $\mathrm{SL}_{2}(3)$. Then the enveloping algebras are $\bar{G}_{1} \cong$ $A_{1} \cong \mathbb{Q}\left[\zeta_{5}\right]$ and $\bar{G}_{2} \cong A_{2} \cong Q_{\infty, 2}$. Although the
maximal common subalgebra of $A_{1}$ and $A_{2}$ is $\mathbb{Q}$, we have $\bar{G}_{2} \leq A_{1}^{2 \times 2}$. The irreducible subgroup of $\mathrm{GL}_{8}(\mathbb{Q})$ isomorphic to $C_{5} \times \mathrm{SL}_{2}(3)$ is denoted by $C_{5} \otimes_{\sqrt{5}} \mathrm{SL}_{2}(3)$.
Among the commonly occurring groups are extensions of the matrix groups $G_{1} \otimes_{Q} G_{2}$ by a cyclic group of order 2. They are denoted as follows:

Notations 1.9. For $i=1,2$, let $G_{i} \leq \mathrm{GL}_{n_{i}}(\mathbb{Q})$ be finite irreducible matrix groups with commuting algebras $A_{i}$ in $\mathbb{Q}^{n_{i} \times n_{i}}$, and let $Q$ be a maximal common subalgebra of dimension $d$ of $A_{1}$ and $A_{2}$. Setting $n:=n_{1} n_{2} / d$, we view as embedded in $\mathbb{Q}^{n \times n}$ the groups $G_{i}$, their rational algebra spans $\bar{G}_{i}$, as well as $A_{i}, Q, G_{1} \otimes_{Q}^{\otimes} G_{2}$, etc. Assume that $G_{1} \otimes_{Q}^{\otimes} G_{2}$ is an irreducible subgroup of $\mathrm{GL}_{n}(\mathbb{Q})$.
(i) Let $a_{i} \in \bar{G}_{i} \backslash G_{i}$ be units normalizing $G_{i}$ such that $p^{-1} a_{i}^{2} \in G_{i}$ for some square-free nonzero integer $p$. Then

$$
G_{1}{\underset{Q}{\otimes}}_{2(p)}^{\otimes} G_{2}:=\left\langle G_{1} \otimes_{Q}^{\otimes} G_{2}, p^{-1} a_{1} a_{2}\right\rangle
$$

is an irreducible finite subgroup of $\mathrm{GL}_{n}(\mathbb{Q})$ containing $G_{1} \underset{Q}{\otimes} G_{2}$ as a subgroup of index 2 .
(ii) Assume there is a chain of simple $\mathbb{Q}$-algebras $\left\langle\bar{G}_{1} \bar{G}_{2}\right\rangle \subseteq A \subset B \subseteq \mathbb{Q}^{n \times n}$ with (crossed product) $B=A \oplus A x$ for some $x \in B$ satisfying $x^{2}= \pm 1$, $x A x=A$, and $x \bar{G}_{i} x=\bar{G}_{i}$ for $i=1,2$. If there are units $a_{i} \in \bar{G}_{i}$ with $a_{i} x$ normalizing $G_{i}$ and $p^{-1}\left(a_{i} x\right)^{2} \in G_{i}$, for $i=1,2$, and some square-free integer $p \neq 0$, then

$$
G_{1}{\underset{Q}{\bigotimes}}_{2(p)}^{\otimes} G_{2}:=\left\langle G_{1} \underset{Q}{\otimes} G_{2}, p^{-1} a_{1} a_{2} x\right\rangle
$$

is an irreducible finite subgroup of $\mathrm{GL}_{n}(\mathbb{Q})$ containing $G_{1} \underset{Q}{\otimes} G_{2}$ with index 2 .
(iii) Let $A_{1} \supset \bar{G}_{1}$ be a simple subalgebra of $\mathbb{Q}^{n \times n}$ centralizing $\bar{G}_{2}$. Let $a_{1} \in A_{1} \backslash \bar{G}_{1}$ and $a_{2} \in \bar{G}_{2}$ be units normalizing $G_{1}$ and $G_{2}$, respectively, with $p^{-1} a_{i}^{2} \in G_{i}$ for some square-free nonzero integer $p$. Then

$$
G_{1} \underset{Q}{\stackrel{2(p)}{\otimes}} G_{2}:=\left\langle G_{1} \underset{Q}{\otimes} G_{2}, p^{-1} a_{1} a_{2}\right\rangle
$$

is an irreducible finite subgroup of $\mathrm{GL}_{n}(\mathbb{Q})$ containing $G_{1} \underset{Q}{\otimes} G_{2}$ with index 2.
In each case, if $p=1$, we omit ( $p$ ) from the symbols. If $G_{1}$ or $G_{2}$ is of degree 1 over $Q$, we omit the $\times$ and the subscript from the symbols, writing instead ${ }^{2(p)}$, $\stackrel{2(p)}{\square}$, and $\stackrel{2(p)}{\square}$.

Examples. The symbol $\left[6 . U_{4}(3) \cdot 2 \underset{\sqrt{-3}}{\stackrel{2}{2}} \mathrm{SL}_{2}(3)\right]_{24}$ represents an irreducible matrix group $G$ of degree 24 constructed from the matrix group

$$
G_{1}:=6 . U_{4}(3) .2_{2} \leq \mathrm{GL}_{12}(\mathbb{Q})
$$

with commuting algebra $A_{1}:=C_{\mathbb{Q}^{12 \times 12}}\left(G_{1}\right)$ and the matrix group $G_{2}:=\mathrm{SL}_{2}(3) \leq \mathrm{GL}_{4}(\mathbb{Q})$ with commuting algebra $A_{2}:=C_{\mathbb{Q}^{4 \times 4}}\left(G_{2}\right) ;$ both $A_{1}$ and $A_{2}$ are isomorphic to $\mathbb{Q}[\sqrt{-3}]$. The commuting algebra $Q \leq \mathbb{Q}^{24 \times 24}$ of the central product

$$
G_{1} \underset{\sqrt{-3}}{\otimes} G_{2}=6 \cdot U_{4}(3) \cdot 2 \underset{\sqrt{-3}}{\left.\otimes \mathrm{SL}_{2}(3) \leq \mathrm{GL}_{24}(\mathbb{Q})\right) ~}
$$

is again isomorphic to $\mathbb{Q}[\sqrt{-3}]$, and we have $G=$ $\left\langle G_{1} \underset{\sqrt{-3}}{\sqrt{-3}} G_{2}, x\right\rangle$ for a suitable matrix $x \in \mathbb{Q}^{24 \times 24}$ inducing the Galois automorphism on $Q$.

The group $G$ could also be denoted by the symbol $\left[6 . U_{4}(3) .2^{2(2)} \mathrm{SL}_{2}(3)\right]_{24}$. Here $G_{1}=6 . U_{4}(3) .2_{1}$ is an irreducible subgroup of $\mathrm{GL}_{24}(\mathbb{Q})$ with commuting algebra $A_{1} \cong Q_{\infty, 2}$, and $G_{2}$ is isomorphic to the unit group of the maximal $\mathbb{Z}$-order in $A_{1}$, this being unique up to conjugacy.

This notation distinguishes the two isomorphic groups $\left[L_{2}(7)^{2(2)} F_{4}\right]_{24}$ and $\left[L_{2}(7) \stackrel{2(2)}{\otimes} F_{4}\right]_{24}$, since it implies that the irreducible constituents of the restriction of the natural representation to $L_{2}(7)$ are absolutely irreducible in the first case but not in the second.

In most cases it is not necessary to construct the extensions by the cyclic group of order 2 explicitly, since these extensions occur in a natural way as subgroups of the normalizer of $G_{1} \underset{Q}{\otimes} G_{2}$ in the automorphism group of a suitable lattice. Also, the extension cannot be read off from the symbol, as shown by the example of the two isoclinic
r.i.m.f. subgroups $\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\stackrel{2}{\otimes}} \mathrm{Alt}_{5}\right]_{24, i}$ of $\mathrm{GL}_{24}(\mathbb{Q})$.

The occurrence of such pairs of groups is explained as follows.
Remark 1.10. Let $U \leq \mathrm{GL}_{n}(\mathbb{Q})$ be an irreducible Bravais group with $\operatorname{dim}_{\mathbb{Q}}(\mathcal{F}(U))=2$. Then the maximal totally real subfield $K$ of the center of the commuting algebra of $U$ is a real quadratic number field. Assume that there is a $U$-invariant lattice $L \in \mathbb{Z}(U)$ giving rise to an embedding $U \hookrightarrow \mathrm{GL}_{n}(\mathbb{Z})$ such that $D:=N_{\mathrm{GL}_{n}(\mathbb{Z})}(U) / U$ is isomorphic to an infinite dihedral group. Then the two nonconjugate subgroups of $D$ of order 2 define two uniform supergroups $G=\langle U, x\rangle$ and $H=\langle U, t x\rangle$, containing $U$ with index two. Here $t U$ generates the translation subgroup of $D$ and $x$ induces the Galois automorphism of $K$.
If one takes for example $U= \pm D_{10} \leq \mathrm{GL}_{4}(\mathbb{Q})$, then $G$ and $H$ are conjugate in $\mathrm{GL}_{4}(\mathbb{Q})$. But it often occurs that the two groups $G$ and $H$ are not isomorphic-for instance in the last example of the two isoclinic r.i.m.f. subgroups of $\mathrm{GL}_{24}(\mathbb{Q})$, but also in other cases, where only one of the two groups $G$ or $H$ is maximal finite. Two examples of such groups $U$ are closely related to the Leech lattice: $2 . J_{2} \bigcirc \mathrm{SL}_{2}(5)$ and $\mathrm{SL}_{2}(13) \bigcirc \mathrm{SL}_{2}(3)$. One extension of each group-namely $\left[2 . J_{2} \square_{\square}^{2} \mathrm{SL}_{2}(5)\right]_{24}$ and $\left[\mathrm{SL}_{2}(13){ }^{2(2)} \mathrm{SL}_{2}(3)\right]_{24}$-is a maximal finite subgroup of $\mathrm{GL}_{24}(\mathbb{Q})$, the other one a subgroup of the r.i.m.f. group $\left[2 . \mathrm{Co}_{1}\right]_{24}$, the automorphism group of the Leech lattice. The group $U=\mathrm{SL}_{2}(13) \bigcirc \mathrm{SL}_{2}(3)$ is also the automorphism group of an extremal 3modular lattice. Further examples can be found in [Nebe 1995, Chapter VI].

The following observation may be used for some of the r.i.m.f. subgroups of $\mathrm{GL}_{24}(\mathbb{Q})$, to distinguish the two groups $G$ and $H$.

Remark 1.11. Let $U \unlhd G$ be a normal subgroup of $G$ of index 2 with $Z(U)=Z(G) \cong C_{2}$, and assume that $G / Z(U)$ is a semidirect product $G / Z(U)=$ $U / Z(U):\langle x Z(U)\rangle$ and that the conjugacy class of the complement $x Z(U)$ of $U / Z(U)$ in $G / Z(U)$ is
unique. Then there are two isoclinic but nonisomorphic groups containing $U$ with index two, $G$ and the subcentral product $H \cong G \hat{\zeta}^{C_{2}} C_{4}$. If $\langle x Z(U)\rangle$ is a complement of $U / Z(U)$ in $G / Z(U) \cong H / Z(U)$, the two groups $G$ and $H$ may be distinguished by the isomorphism type of the group $\langle x, Z(U)\rangle$, which is either $C_{2} \times C_{2}$ or $C_{4}$. The group $G$ is called split if $\langle x, Z(U)\rangle \cong C_{2} \times C_{2}$, and nonsplit if $\langle x, Z(U)\rangle \cong C_{4}$. If the complement $x Z(U)$ of $U / Z(U)$ in $G / Z(U)$ is not unique, but for all complements $x^{\prime} Z(U)$ the groups $\left\langle x^{\prime}, Z(U)\right\rangle \leq G$ are isomorphic to $\langle x, Z(U)\rangle$, the isomorphism type of the latter group also distinguishes the two groups $G$ and $H$ and the same nomenclature of split and nonsplit groups is used.

The next lemma is useful in verifying the uniqueness of the complement of $U / Z(U)$ in $G / Z(U)$.

Lemma 1.12. Let $G=U:\langle x\rangle \cong U: C_{2}$ and $H=$ $V:\langle y\rangle \cong V: C_{2}$ be semidirect products, where the conjugacy class of the complement $\langle x\rangle$ of $U$ in $G$ is unique, and likewise the conjugacy class of the complement $\langle y\rangle$ of $V$ in $H$. Then there is a unique conjugacy class of complements of $U \times V$ in the subdirect product $G \wedge^{C_{2}} H=(U \times V):\langle x y\rangle \leq G \times H$.

Proof. Let $\langle a\rangle \cong C_{2}$ be a complement of $(U \times V)$ in $(U \times V):\langle x y\rangle$. Then $a=(u x)(v y)$ for some $u \in U$ and $v \in V$. Since $1=a^{2}=(u x)^{2}(v y)^{2} \in U \times V$, we get $(u x)^{2}=(v y)^{2}=1$. Hence $\langle u x\rangle$ is a complement of $U$ in $G$, and $\langle v y\rangle$ is a complement of $V$ in $H$. Therefore there are elements $u^{\prime} \in U$ and $v^{\prime} \in V$ with $(u x)^{u^{\prime}}=x$ and $(v y)^{v^{\prime}}=y$, so $a^{\left(u^{\prime} v^{\prime}\right)}=x y$.

The uniqueness condition of Remark 1.11 is in particular fulfilled for these pairs $(G / Z(U), U / Z(U))$ : $\left(S_{n}, \mathrm{Alt}_{n}\right)$ for $n \leq 5$ (where the complement is generated by a transposition); $\left(\mathrm{PGL}_{2}(q), \mathrm{PSL}_{2}(q)\right)$ for $q$ an odd prime power (where the complement is generated by an element of order two corresponding to an element in $\mathrm{GL}_{2}(q)$ whose determinant is not a square); and ( $J_{2} .2, J_{2}$ ). So it is well defined to say that the two r.i.m.f. groups $\left[2 . J_{2} \square_{\square}^{2} \mathrm{SL}_{2}(5)\right]_{24}$ and $\left[\mathrm{SL}_{2}(13) \stackrel{2(2)}{\square} \mathrm{SL}_{2}(3)\right]_{24}$ are split in the sense of

Remark 1.11. For $G:=\left[\left(\mathrm{SL}_{2}(5) \stackrel{2}{\square} \mathrm{SL}_{2}(5)\right): 2\right]_{8}$, where $U=\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2$, the complement of $U / Z(U)$ in $G / Z(U)$ is not unique, but all groups $\langle x, Z(U)\rangle$ for $x \in G \backslash U$ such that $x^{2} \in Z(U)$ are isomorphic to $C_{2} \times C_{2}$, so $G$ is split. The corresponding nonsplit group $G \stackrel{C_{2}}{今} C_{4}$ is a proper subgroup of $E_{8}$. In this sense the group

$$
\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\stackrel{2}{\sqrt{5}}} \mathrm{Alt}_{5}\right]_{24,1}
$$

is split and

$$
\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\underset{\rightharpoonup}{\star}} \mathrm{Alt}_{5}\right]_{24,2}
$$

is the corresponding nonsplit group.
Here is an important case where one obtains a unique matrix group:
Lemma 1.13. Let $U$ be a finite uniform subgroup of $\mathrm{GL}_{n}(\mathbb{Q})$. For $i=1,2$, let $G_{i}:=\left\langle U, x_{i}\right\rangle$ be absolutely irreducible subgroups of $\mathrm{GL}_{n}(\mathbb{Q})$ containing $U$ with index 2, where $x_{1}$ and $x_{2}$ induce the same automorphism on $U$. Then $G_{1}$ and $G_{2}$ are conjugate in $\mathrm{GL}_{n}(\mathbb{Q})$.
Proof. By [Plesken and Nebe 1995, Lemma II.7], $\operatorname{dim}_{\mathbb{Q}}\left(C_{\mathbb{Q}^{n \times n}}(U)\right)$ equals 1 or 2 . Since $U$ is uniform, this implies that the commuting algebra $C_{\mathbb{Q}^{n \times n}}(U)$ is either $\mathbb{Q}$ or isomorphic to an imaginary quadratic number field $K$. Assume first that $C_{\mathbb{Q}^{n \times n}}(U)$ has dimension 2. Then the $x_{i}$ induce the Galois automorphism on $K$. Since both elements $x_{i}$ induce the same automorphism on $U$ one has $x_{1} x_{2}^{-1} \in$ $C_{\mathbb{Q}^{n \times n}}(U)=K$. Hence $x_{1}=k x_{2}$ for some element $k \in K$ of norm $\pm 1$, the only elements of finite order in $\mathbb{Q}^{*}$. But the norm form of $K$ is positive definite, so the norm of $k$ has to be 1 , and hence $x_{1}^{2}=x_{2}^{2}$. Therefore the map $\varphi: U \cup\left\{x_{1}\right\} \rightarrow U \cup\left\{x_{2}\right\}$ with $\left.\varphi\right|_{U}=$ id and $\varphi\left(x_{1}\right)=x_{2}$ extends to a group isomorphism $G_{1} \rightarrow G_{2}$. Moreover the natural representations of $G_{1}$ and $G_{2}$ are induced from the same representation of the subgroup $U$ of index 2 , so they are equivalent. Therefore $G_{1}$ and $G_{2}$ are conjugate in $\mathrm{GL}_{n}(\mathbb{Q})$. If $C_{\mathbb{Q}^{n \times n}}(U)=\mathbb{Q}$ the lemma follows similarly.

Definition 1.14 [Plesken 1991]. A finite irreducible rational matrix group $G \leq \mathrm{GL}_{n}(\mathbb{Q})$ is imprimitive if there is $m$ dividing $n$ and $H \leq \mathrm{GL}_{m}(\mathbb{Q})$ such that $G$ is conjugate to a subgroup of the wreath product $H \backslash S_{k}$, for $k=n / m$. (Elements of $H \backslash S_{k}$ are $k \times k$ block matrices with entries in $H$ and at most one nonzero entry in each row and column; formally, $H \backslash S_{k}$ is generated by elements $\operatorname{diag}\left(h_{1}, \ldots, h_{k}\right)$, for $h_{i} \in H$, together with elements $P \otimes I_{m}$, for $P$ a $k \times k$ permutation matrix.) If $G$ is not imprimitive, we call it primitive.
The imprimitive r.i.m.f. groups $G$ have the form $G=H \backslash S_{k}$ for some primitive r.i.m.f. group $H \leq$ $\mathrm{GL}_{m}(\mathbb{Q})$ with $m=n / k$ and hence can easily be constructed if the r.i.m.f. groups of degree $m$ are known for all proper divisors $m$ of $n$. If $X_{m}$ is a symbol for the primitive r.i.m.f. subgroup $H$ of $\mathrm{GL}_{m}(\mathbb{Q})$, the imprimitive group $G=H \imath S_{k}$ is denoted by $X_{m}^{k}$.

Remark 1.15. Let $G \leq \mathrm{GL}_{n}(\mathbb{Q})$ be primitive and let $N \unlhd G$ be a normal subgroup of $G$.
(i) If $N$ is abelian, then $N$ is cyclic.
(ii) If $G: N=2$ then $N$ is irreducible.
(iii) The natural representation of $N$ consists of pairwise equivalent irreducible representations.
(iv) If $1 \neq N$ is a $p$-group for some prime $p$, then $p^{\alpha}(p-1)$ divides $n$ for some $\alpha \geq 0$.

## 2. METHODS FOR DETERMINING THE R.I.M.F. GROUPS

In determining the r.i.m.f. subgroups of $\mathrm{GL}_{n}(\mathbb{Q})$ it is crucial to be able to determine all r.i.m.f. supergroups $G$ of a given (irreducible) subgroup $U \leq \mathrm{GL}_{n}(\mathbb{Q})$. According to Remark 1.3, the group $G$ is of the form $G=\operatorname{Aut}(F, L)$ for some $L \in \mathcal{Z}(U)$ and $F \in \mathcal{F}_{>0}(U)$. Since each lattice $L \in \mathcal{Z}(U)$ defines an embedding $U \rightarrow \mathrm{GL}_{n}(\mathbb{Z})$ and since $\mathrm{GL}_{n}(\mathbb{Z})$ has only finitely many conjugacy classes of finite subgroups (see [Buser 1985], for example), $\mathcal{Z}(U)$ decomposes into finitely many orbits under the operation of the normalizer $N_{\mathrm{GL}_{n}(\mathbb{Q})}(U)$ by multiplication from the right.

Thus the main problem for nonuniform groups $U$ is to determine the relevant $F \in \mathcal{F}_{>0}(U)$.

If one only has to determine those r.i.m.f. supergroups $G$ of $U$, with $\operatorname{dim} \mathcal{F}(G) \leq 2$, the following theorem may be applied:

Theorem 2.1 [Nebe and Plesken 1995, Theorems II. 2 and II.4]. Let $G$ be a finite subgroup of $\mathrm{GL}_{n}(\mathbb{Q})$ with $\operatorname{dim} \mathcal{F}(G) \leq 2$. If $G$ is irreducible, assume that the class group of the maximal real subfield $K$ of the center of $C_{\mathbb{Q}^{n \times n}}(G)$ is generated by the ideal classes represented by prime ideals containing $|G|$. Then for each $L \in \mathcal{Z}(G)$ there exists a form $F \in \mathcal{F}_{>0}(G)$ integral on $L$ with $\operatorname{det}(F, L)$ having only prime divisors dividing $|G|$.

Passing to the Bravais group $B:=\mathcal{B}(U)$, one can often construct a bigger subgroup $B \leq G$ such that the commuting algebra $C_{\mathbb{Q}^{n \times n}}(B)$ is commutative. The next theorem deals with this commonly occurring situation; in order to state it, we need some additional notation for totally real fields.

Let $K$ be a totally real number field. A finite set of rational primes is denoted by $\Pi(K)$ if
(a) each ideal class of $K$ has an integral ideal containing $\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$ for some $p_{1}, \ldots, p_{r} \in \Pi(K)$ and $\alpha_{i} \in \mathbb{N}$, and
(b) for each $x \in K$ there is an integral $y \in K$ such that $x y$ is totally positive and the prime divisors of the norm $N_{K / \mathbb{Q}}(y)$ lie in $\Pi(K)$.

Note that there is a generating set $\left\{\bar{I}_{j}\right\}$ of the narrow ideal class group of $K$ [Hasse 1963] represented by integral ideals $I_{j}$ such that the prime divisors of the norm of the $I_{j}$ ly in $\Pi(K)$.

Theorem 2.2. Let $G$ be a finite irreducible subgroup of $\mathrm{GL}_{n}(\mathbb{Q})$, and let $L \in \mathbb{Z}(G)$ be a $\mathbb{Z} G$-lattice. Assume that $C:=C_{\mathbb{Q}^{n \times n}}(G)$ is commutative, and let $K$ denote the maximal totally real subfield of $C$. Then there exists $F \in \mathcal{F}_{>0}(G)$ primitive on $L$ such that the prime divisors of $\operatorname{det}(F, L)$ lie in the finite set $\Pi:=\Pi(K) \cup \Pi(|G|)$, where $\Pi(|G|)$ denotes the set of prime divisors of $|G|$, and the set $\Pi(K)$ is as described above.

Proof. Assume that $F \in \mathcal{F}_{>0}(G)$ is integral and primitive on $L$ and that some prime $p \notin \Pi$ divides $\operatorname{det}(F, L)$. It suffices to show that $F$ can be modified to some $F^{\prime} \in \mathcal{F}_{>0}(G)$ in such a way that $F^{\prime}$ is integral on $L, p \nmid \operatorname{det}\left(F^{\prime}, L\right)$, and any prime dividing $\operatorname{det}\left(F^{\prime}, L\right)$ either divides $\operatorname{det}(F, L)$ or lies in $\Pi$.

Denote the completion at $p$ of $L$ by $L_{p}$ and let $e_{1}, \ldots, e_{l}$ be the primitive idempotents of $\mathbb{Q}_{p} \otimes C$. Since $p \nmid|G|$, the lattice $L_{p}$ splits into a direct sum of irreducible $\mathbb{Z}_{p} G$-lattices $X_{i}$, for $i=1, \ldots, l$, each of which has only $p^{\alpha} X_{i}$ as $\mathbb{Z}_{p} G$-sublattices. Then $l \geq 2$, because $p \mid \operatorname{det}(F, L)$ and $F$ is primitive on $L$.

Let $M^{\prime}$ be the maximal order in $C$. Taking the idempotents $e_{i}$ modulo $p$ one gets primitive idempotents of $M^{\prime} / p M^{\prime}$. Hence the ideal $p M^{\prime}$ splits into $l$ different prime ideals $p M^{\prime}=\pi_{1}^{\prime} \ldots \pi_{l}^{\prime}$ that are permuted transitively by the Galois group $\operatorname{Gal}(C / \mathbb{Q})$ [Lang 1970]. For the ideal $p M$ in the maximal order $M$ of the maximal totally real subfield $K$ the following two situations may occur:

1) $p M=\pi_{1} \ldots \pi_{l}$ where $\pi_{i} M^{\prime}=\pi_{i}^{\prime}$, or
2) $p M=\pi_{1} \ldots \pi_{l / 2}$ where $\pi_{i} M^{\prime}=\pi_{2 i-1}^{\prime} \pi_{2 i}^{\prime}$.

In the first case $e_{i} F: X_{i} \rightarrow \operatorname{Hom}_{\mathbb{Z}_{p}}\left(X_{i}, \mathbb{Z}_{p}\right)$ induces a quadratic form on the lattice $X_{i}$, for $1 \leq$ $i \leq l$. The dual lattice $L^{\#(F)}$ is of the form $L^{\#(F)}=$ $p^{\alpha_{1}} X_{1} \oplus \cdots \oplus p^{\alpha_{l}} X_{l}$ for some $\alpha_{i} \in \mathbb{Z}$, for $1 \leq i \leq l$. Since $\Pi(K)$ satisfies condition (a), there are $y_{i} \in M$ with $\pi_{i}=\left(y_{i}, p\right)$ such that the prime divisors of the norm of $y_{i}$ lie in $\Pi \cup\{p\}$, for $1 \leq i \leq l$. Define $F_{1}:=y_{1}^{\alpha_{1}} \ldots y_{l}^{\alpha_{l}} F$. Then $p$ does not divide the determinant $\operatorname{det}\left(F_{1}, L\right)$ of $F_{1}$ on $L$ and all prime divisors of $\operatorname{det}\left(F_{1}, L\right)$ either divide $\operatorname{det}(F, L)$ or lie in $\Pi$. Because of condition (b) on $\Pi$ one may choose $y \in M$ such that $y F_{1}$ is positive definite and the prime divisors of the norm of $y$ lie in $\Pi$. If the endomorphism ring of $L$ is not the maximal order $M^{\prime} \subseteq C$, then the form $y F_{1}$ need not be integral on $L$. But then there is some $m \in \mathbb{N}$ such that $F^{\prime}:=m y F_{1}$ is integral on $L$ and the prime divisors of $m$ divide the group order $|G|$.

In the second case $F$ induces isomorphisms

$$
X_{2 i-1} \cong \operatorname{Hom}_{\mathbb{Z}_{p}}\left(X_{2 i}, \mathbb{Z}_{p}\right)
$$

Hence the dual lattice $L^{\#(F)}$ is of the form

$$
L^{\#(F)}=p^{\alpha_{1}}\left(X_{1} \oplus X_{2}\right) \oplus \cdots \oplus p^{\alpha_{l / 2}}\left(X_{l-1} \oplus X_{l}\right)
$$

for some $\alpha_{i} \in \mathbb{Z}$. As in the first case one constructs a $G$-invariant quadratic form $F^{\prime} \in \mathcal{F}_{>0}(G)$ integral on $L$, such that the prime divisors of $\operatorname{det}\left(F^{\prime}, L\right)$ either lie in $\Pi$ or divide $\operatorname{det}(F, L)$ and $p \nmid \operatorname{det}\left(F^{\prime}, L\right)$.

As shown by the example of the two r.i.m.f. groups $\left[D_{120} \cdot C_{2}\right]_{16,1}$ and $\left[D_{120} \cdot C_{2}\right]_{16,2}$ of $\mathrm{GL}_{16}(\mathbb{Q})$ with 4dimensional spaces of invariant forms, the set $\Pi(K)$ is necessary. The two r.i.m.f. groups leave invariant no positive definite lattice whose determinant is only divisible by primes $<11$. The commuting algebras of the above two groups are both isomorphic to $\mathbb{Q}[\sqrt{3}, \sqrt{5}]$, a number field whose maximal order contains no totally positive prime element dividing 11.

Theorem 2.2 is applied via the following corollary, which is also referred to as the m-parameter argument, where $m:=[K: \mathbb{Q}]$ is the dimension of $\mathcal{F}(U)$.

Corollary 2.3. Let $U \leq \mathrm{GL}_{n}(\mathbb{Q})$ be a finite irreducible matrix group whose commuting algebra $C:=$ $C_{\mathbb{Q}^{n \times n}}(U)$ is commutative. Let $L \in \mathcal{Z}(U)$ be a $\mathbb{Z} U-$ lattice and $G \leq \mathrm{GL}_{n}(\mathbb{Q})$ a finite supergroup of $U$ acting on $L$. In the notation of Theorem 2.2 , let $K$ be the maximal totally real subfield of $C$, and denote by $\tilde{\Pi}=\tilde{\Pi}(K,|G|)$ the union of $\Pi\left(K^{\prime}\right)$ over all subfields $K^{\prime}$ of $K$. Then there exists $F \in \mathcal{F}_{>0}(G)$, primitive on $L$, such that the prime divisors of $\operatorname{det}(F, L)$ lie in $\tilde{\Pi}$.

Proof. The commuting algebra of $G$ is a subfield of $C$ and its maximal totally real subfield $K^{\prime}$ is a subfield of $K$. Hence $\Pi\left(K^{\prime}\right) \subseteq \tilde{\Pi}$ and the statement follows from Theorem 2.2.

Another important method deals with primitive r.i.m.f. supergroups $G$ of (reducible) subgroups $N$ of $\mathrm{GL}_{n}(\mathbb{Q})$ containing $N$ as normal subgroup. The idea is to construct a $G$-invariant order $\Lambda_{0}$ in the enveloping algebra $\bar{N}$ containing the $\mathbb{Z}$-order generated by the matrices in $N$. Since the $\mathbb{Z}$-module generated by $\Lambda_{0}$ and the matrices in $G$ is again an order, there is a $\Lambda_{0}$-lattice on which $G$ acts.

We recall the radical idealizer process [Benz and Zassenhaus 1985]. Let $\Lambda$ be a $\mathbb{Z}$-order in a simple $\mathbb{Q}$-algebra $A$. The arithmetic (right) radical $\mathrm{AR}_{r}(\Lambda)$ of $\Lambda$ is defined as the intersection of all those maximal right ideals of $\Lambda$ that contain the discriminant ideal of $\Lambda$. The arithmetic radical is a full $\mathbb{Z}$-module in $A$. Its (right) idealizer $\operatorname{Id}_{r}\left(\operatorname{AR}_{r}(\Lambda)\right)$ is defined as the set of all elements $a \in A$ such that $\operatorname{AR}_{r}(\Lambda) a \subseteq \operatorname{AR}_{r}(\Lambda)$; this again is a $\mathbb{Z}$-order in $A$ containing $\Lambda$. The repeated application of $\mathrm{Id}_{r} \circ \mathrm{AR}_{r}$ is called the radical idealizer process. It constructs a finite ascending chain of $\mathbb{Z}$-orders in $A$. The maximal element $\left(\mathrm{Id}_{r} \circ \mathrm{AR}_{r}\right)^{\infty}(\Lambda)$ of this chain is necessarily a hereditary order in $A$ [Reiner 1975, pp. 356-358].

Definition 2.4. Let $N \leq \mathrm{GL}_{n}(\mathbb{Q})$ be a finite group and let $F \in \mathcal{F}_{>0}(N)$. Assume that the algebra $\bar{N} \leq \mathbb{Q}^{n \times n}$ generated by the matrices in $N$ is simple. Then the natural $\mathbb{Q} N$-module $\mathbb{Q}^{1 \times n}$ decomposes into a direct sum of $l$ copies of an irreducible $\mathbb{Q} N$-module $V$. Let $\Lambda_{0}$ be the hereditary order in $\bar{N}$ obtained applying the radical idealizer process to the order $\langle N\rangle_{\mathbb{Z}}$. Let $L_{1}, \ldots, L_{s} \subseteq V$ be representatives of the isomorphism classes of the irreducible $\Lambda_{0}$-lattices in $V$. Then the generalized Bravais group $\mathcal{B}^{\circ}(N)$ of $N$ is defined as the set of $g \in \bar{N}$ such that $g F g^{\text {tr }}=F$ and $L_{i} g=L_{i}$ for $1 \leq i \leq s$.

Proposition 2.5 [Nebe and Plesken 1995, II.10]. Let $G$ be a primitive r.i.m.f. group in $\mathrm{GL}_{n}(\mathbb{Q})$ with $N \unlhd$ $G$. Then $N \unlhd \mathcal{B}^{\circ}(N) \unlhd G$. Moreover, if $X$ is a finite subgroup of the unit group $\bar{N}^{*}$ of $\bar{N}$ with $N \unlhd X$, then $X \leq \mathcal{B}^{\circ}(N)$.

This proposition is a good criterion for deciding which normal subgroups of primitive r.i.m.f. groups may occur. It implies that a primitive r.i.m.f. group has no normal subgroup $N$ conjugate to $L_{2}(8), 2$. $\mathrm{Alt}_{8}, \mathrm{Alt}_{9}, 2 . \mathrm{Alt}_{9}$ or $2 . \mathrm{Sp}_{6}(2)$, where the natural character of $N$ is a multiple of the absolutely irreducible rational character of degree 8 of $N$, since $N$ is not normal in $\mathcal{B}^{\circ}(N)=2 . O_{8}^{+}(2) .2$. Compare Table 4.

## 3. RESULTS

Theorem 3.1. Up to conjugacy, there are 65 r.i.m.f. subgroups of $\mathrm{GL}_{24}(\mathbb{Q})$, of which 41 are primitive groups. Four r.i.m.f. groups are not absolutely irreducible, and three of them even have a two-dimensional space of invariant forms. Twenty-eight of the r.i.m.f. groups leave modular lattices invariant.

These 65 groups are listed in Table 1, whose information is arranged as follows.

In the first column, the number of the r.i.m.f. group $G=\operatorname{Aut}(L)$ is given, followed by a name for the group. The imprimitive groups (Definition 1.14) are the ones denoted by $X_{d}^{k}$, where $X_{d}$ is a name for a primitive r.i.m.f. subgroup of $\mathrm{GL}_{d}(\mathbb{Q})$ and $d k=24$. The additional abbreviations (s) and (ns) state whether the group $G$ constructed according to Definition 1.9 is split or nonsplit in the sense of Definition 1.11. I thank a referee who encouraged me to make the description of some of the r.i.m.f. groups precise in this way.

The next three columns of the table give information about the $G$-invariant lattice $L$ of minimal determinant. First the isomorphism type of $L^{\#} / L$ is given. The information in this column also allows us to recover the symbol of the invariant form in the Witt ring $W(\mathbb{Q})$, as proposed in [DeMeyer et al. 1989, p. 9]; see [Plesken and Nebe 1995] and [Nebe 1995]. The next column gives the minimum of the lattice, and the following one the number of shortest vectors of $L$ decomposed into orbits under $G$. The order of $G$ is then given. The column headed "sparse?" shows the primes $p$ for which the group $G$ is $p$-lattice sparse, or the word "yes" if the group is lattice sparse. Finally, on lines $42,59,60$, and 65 , the last column gives the isomorphism type of the commuting algebra of $G$; for the remaining groups this information is omitted since they are absolutely irreducible.

The groups are ordered with respect to connected components in the simplicial complexes $M_{24}^{\mathrm{irr}}(\mathbb{Q})$ and $M_{24}^{\mathrm{irr}, F}(\mathbb{Q})$ [Nebe 1995] and with respect to the determinants of an invariant lattice of minimal determinant.

| lattice $L$ | $\operatorname{det} L$ | min | $\left\|L_{\text {min }}\right\|$ | $\|\operatorname{Aut}(L)\|$ | sparse? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 B_{24}$ | 1 | 1 | 48 | $2^{24} \cdot 24$ ! | $p \neq 2$ |
| $2 E_{8}^{3}$ | 1 | 2 | 720 | $2^{43} \cdot 3^{16} \cdot 5^{6} \cdot 7^{3}$ | yes |
| 3 [2. $\left.\mathrm{Co}_{1}\right]_{24}$ | 1 | 4 | 196560 | $2^{22} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23$ | yes |
| $4\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{2}}{\stackrel{2}{5}} \mathrm{Alt}_{5}\right]_{24,2}(\mathrm{~ns})$ | $2^{8}$ | 4 | $3600+8640$ | $2^{9} \cdot 3^{3} \cdot 5^{3}$ | $p \neq 5$ |
| $5 F_{4}^{6}$ | $2^{12}$ | 2 | 144 | $2^{46} \cdot 3^{14} \cdot 5$ | yes |
| $6\left[6 . U_{4}(3) .2 \underset{\sqrt{-3}}{\underset{\downarrow}{2}} \mathrm{SL}_{2}(3)\right]_{24}$ | $2^{12}$ | 4 | 3024 | $2^{12} \cdot 3^{8} \cdot 5 \cdot 7$ | $p \neq 3$ |
| $7 E_{6}^{4}$ | $3^{4}$ | 2 | 288 | $2^{35} \cdot 3^{17} \cdot 5^{4}$ | yes |
| $8\left[( \pm 3) . \mathrm{PGL}_{2}(9)^{2(2)} \mathrm{SL}_{2}(3)\right]_{24}$ | $3^{4}$ | 4 | $12960+6480+2160$ | $2^{8} \cdot 3^{4} \cdot 5$ | $p \neq 2,3$ |
| $9\left[\mathrm{Sp}_{4}(3) \underset{\sqrt{-3}}{\stackrel{2}{-}}\left(3_{+}^{1+2}: \mathrm{SL}_{2}(3)\right)\right]_{24}$ | $3^{8}$ | 4 | 2160 | $2^{11} \cdot 3^{8} \cdot 5$ | $p \neq 3$ |
| $10 \quad A_{2}^{12}$ | $3^{12}$ | 2 | 72 | $12^{12} \cdot 12$ ! | yes |
| $11\left[6 . U_{4}(3) .2^{2}\right]_{12}^{2}$ | $3^{12}$ | 4 | 1512 | $2^{21} \cdot 3^{14} \cdot 5^{2} \cdot 7^{2}$ | yes |
| $12 F_{4} \otimes E_{6}$ | $2^{12} \cdot 3^{4}$ | 4 | 864 | $2^{14} \cdot 3^{6} \cdot 5$ | yes |
| $13\left[3_{+}^{1+2}: \mathrm{SL}_{2}(3) \stackrel{2}{\underset{-}{-3}} \mathrm{SL}_{2}(3)\right]_{12}^{2}$ | $2^{12} \cdot 3^{8}$ | 4 | 432 | $2^{15} \cdot 3^{10}$ | $p \neq 3$ |
| $14\left[3 . S_{6}{ }^{2(2)} D_{8}\right]_{24}$ | $2^{12} \cdot 3^{8}$ | 4 | 144 | $2^{8} \cdot 3^{3} \cdot 5$ | $p \neq 3$ |
| $15\left(A_{2} \otimes F_{4}\right)^{3}$ | $2^{12} \cdot 3^{12}$ | 4 | 216 | $2^{25} \cdot 3^{10}$ | yes |
| $16\left[6 . L_{3}(4) .2^{2(2)} D_{8}\right]_{24}$ | $2^{12} \cdot 3^{12}$ | 8 | $3024+7560$ | $2^{11} \cdot 3^{3} \cdot 5 \cdot 7$ | yes |
| $17 \quad\left[\left(\mathrm{SL}_{2}(3) \bigcirc C_{4}\right) \cdot 2 \stackrel{2(3)}{\sqrt{-1}} U_{3}(3)\right]_{24}$ | $2^{12} \cdot 3^{12}$ | 8 | 4536+6048 | $2^{11} \cdot 3^{4} \cdot 7$ | yes |
| $18 A_{24}$ | 25 | 2 | 600 | $2 \cdot(25!)$ | $p \neq 5$ |
| $19 A_{4}^{6}$ | $5^{6}$ | 2 | 120 | $2^{28} \cdot 3^{8} \cdot 5^{7}$ | yes |
| $20 \quad M_{6,2}^{4}$ | $5^{12}$ | 3 | 80 | $2^{19} \cdot 3^{5} \cdot 5^{4}$ | $p \neq 2$ |
| $21 \quad\left[\left(\mathrm{SL}_{2}(5) \stackrel{2}{\square} \mathrm{SL}_{2}(5)\right): 2\right]_{8}^{3}(\mathrm{~s})$ | $5^{12}$ | 4 | 360 | $2^{22} \cdot 3^{7} \cdot 5^{6}$ | yes |
| $22 \quad\left[2 . J_{2} \stackrel{2}{\square} \mathrm{SL}_{2}(5)\right]_{24}(\mathrm{~s})$ | $5^{12}$ | 8 | 37800 | $2^{11} \cdot 3^{4} \cdot 5^{3} \cdot 7$ | yes |
| $23\left[ \pm D_{10} \stackrel{2}{\sqrt{5}} \mathrm{Alt}_{5}\right]_{12}^{2}$ | $2^{8} \cdot 5^{6}$ | 4 | $240+600$ | $2^{11} \cdot 3^{2} \cdot 5^{4}$ | $p \neq 5$ |
| $24 \quad\left[\mathrm{SL}_{2}(5)^{2(2)} \mathrm{SL}_{2}(3)\right]_{12}^{2}$ | $2^{4} \cdot 5^{8}$ | 4 | 720 | $2^{13} \cdot 3^{4} \cdot 5^{2}$ | $p \neq 2$ |
| $25\left[\mathrm{SL}_{2}(5)_{\infty, 2}^{2(2)} 2_{-}^{1+4^{\prime}} . \mathrm{Alt}_{5}\right]_{24}$ | $2^{8} \cdot 5^{8}$ | 6 | 2400 | $2^{10} \cdot 3^{2} \cdot 5^{2}$ | $p \neq 2$ |
| $26\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{\text { ® }}}{\stackrel{2}{5}} \mathrm{Alt}_{5}\right]_{24,1}(\mathrm{~s})$ | $2^{8} \cdot 5^{12}$ | 8 | 1800 | $2^{9} \cdot 3^{3} \cdot 5^{3}$ | yes |
| $27 \quad F_{4} \otimes M_{6,2}$ | $2^{8} \cdot 5^{12}$ | 6 | 240 | $2^{10} \cdot 3^{3} \cdot 5$ | $p \neq 2$ |
| $28\left[\mathrm{SL}_{2}(5) \underset{\infty, 3}{\underset{\otimes}{\otimes}}\left( \pm 3_{+}^{1+2}\right) . \mathrm{GL}_{2}(3)\right]_{24}$ | $3^{8} \cdot 5^{12}$ | 8 | 1080 | $2^{8} \cdot 3^{5} \cdot 5$ | $p \neq 3$ |
| $29\left(A_{2} \otimes M_{6,2}\right)^{2}$ | $3^{12} \cdot 5^{12}$ | 6 | 120 | $2^{11} \cdot 3^{4} \cdot 5^{2}$ | yes |
| $30 \quad\left[ \pm 3 . \mathrm{Alt}_{6} \cdot 2^{2}\right]_{12}^{2}$ | $3^{12} \cdot 5^{12}$ | 8 | 540 | $2^{13} \cdot 3^{6} \cdot 5^{2}$ | yes |
| $31 A_{2} \otimes\left[\mathrm{SL}_{2}(5)^{2(2)} \mathrm{SL}_{2}(3)\right]_{12}$ | $2^{4} \cdot 3^{12} \cdot 5^{8}$ | 8 | 1080 | $2^{7} \cdot 3^{3} \cdot 5$ | $p \neq 2$ |
| $32 \quad A_{6}^{4}$ | $7^{4}$ | 2 | 168 | $2^{23} \cdot 3^{9} \cdot 5^{4} \cdot 7^{4}$ | yes |

TABLE 1. The r.i.m.f. groups of degree 24. The meaning of the columns is explained on the preceding page.

Experimental Mathematics, Vol. 5 (1996), No. 3

| lattice $L$ | det $L$ | min | $\left\|L_{\text {min }}\right\|$ | $\|\operatorname{Aut}(L)\|$ | sparse? | comm. alg. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $33\left[L_{2}(7)^{2(2)} F_{4}\right]_{24}$ | $7^{4}$ | 4 | $1008+3024$ | $2^{11} \cdot 3^{3} \cdot 7$ | $p \neq 2$ |  |
| $34\left(A_{6}^{(2)}\right)^{4}$ | $7^{12}$ | 4 | 168 | $2^{23} \cdot 3^{5} \cdot 7^{4}$ | yes |  |
| $35\left[L_{2}(7){ }^{2(2)} F_{4}\right]_{24}$ | $7^{12}$ | 8 | $1008+3024$ | $2^{11} \cdot 3^{3} \cdot 7$ | $p \neq 2$ |  |
| $36\left[L_{2}(7)^{2(2)} D_{8}\right]_{12}^{2}$ | $2^{12} .7^{4}$ | 4 | $2 \cdot 336$ | $2^{15} \cdot 3^{2} \cdot 7^{2}$ | yes |  |
| $37 F_{4} \otimes A_{6}$ | $2^{12} \cdot 7^{4}$ | 4 | 504 | $2^{11} \cdot 3^{4} \cdot 5 \cdot 7$ | yes |  |
| $38\left[L_{2}(7){ }^{2(2)} D_{8}\right]_{12}^{2}$ | $2^{12} \cdot 7^{12}$ | 8 | $2 \cdot 336$ | $2^{15} \cdot 3^{2} \cdot 7^{2}$ | yes |  |
| $39 F_{4} \otimes A_{6}^{(2)}$ | $2^{12} \cdot 7^{12}$ | 8 | 504 | $2^{11} \cdot 3^{3} \cdot 7$ | yes |  |
| $40\left[\mathrm{SL}_{2}(13){ }^{2(2)} \mathrm{SL}_{2}(3)\right]_{24}(\mathrm{~s})$ | $13^{12}$ | 12 | $2 \cdot 2184+8736$ | $2^{6} \cdot 3^{2} \cdot 7 \cdot 13$ | $p \neq 2$ |  |
| $41\left[\mathrm{SL}_{2}(7) \underset{-7}{\underset{-}{\otimes}} L_{2}(7)\right]_{24}$ | $2^{6}$ | 4 | $2352+8064+14112$ | $2^{8} \cdot 3^{2} \cdot 7^{2}$ | $p \neq 7$ |  |
| $42\left[6 . \mathrm{Alt}_{7}: 2\right]_{24}$ | $2^{12}$ | 4 | 3024 | $2^{5} \cdot 3^{3} \cdot 5 \cdot 7$ | yes | $\mathbb{Q}[\sqrt{-6}]$ |
| $43\left[3 . M_{10} \stackrel{2(2)}{\triangle} \mathrm{SL}_{2}(3)\right]_{24}$ | $2^{12} \cdot 5^{12}$ | 8 | 1080 | $2^{8} \cdot 3^{4} \cdot 5$ | $p \neq 3$ |  |
| $44\left[\operatorname{Alt}_{5} \stackrel{\chi^{\text {® }}}{\sqrt{5}}\left(C_{3}{ }^{2(2)} \mathrm{X}^{2(2)} D_{8}\right)\right]_{24}$ | $2^{8} \cdot 3^{12} \cdot 5^{12}$ | 10 | 144 | $2^{7} \cdot 3^{2} \cdot 5$ | $p \neq 2$ |  |
| $45 \quad\left[3 . M_{10}{ }^{2(2)} D_{8}\right]_{24}$ | $2^{12} \cdot 3^{12} \cdot 5^{12}$ | 16 | 1080+1080 | $2^{8} \cdot 3^{3} \cdot 5$ | yes |  |
| $46\left(A_{2} \otimes A_{6}\right)^{2}$ | $3^{12} \cdot 7^{4}$ | 4 | 252 | $2^{13} \cdot 3^{6} \cdot 5^{2} \cdot 7^{2}$ | yes |  |
| $47\left(A_{2} \otimes A_{6}^{(2)}\right)^{2}$ | $3^{12} \cdot 7^{12}$ | 8 | 252 | $2^{13} \cdot 3^{4} \cdot 7^{2}$ | yes |  |
| $48 A_{2} \otimes\left[L_{2}(7)^{2(2)} D_{8}\right]_{12}$ | $2^{12} \cdot 3^{12} \cdot 7^{4}$ | 8 | 2.504 | $2^{8} \cdot 3^{2} \cdot 7$ | yes |  |
| $49 \quad A_{2} \otimes\left[L_{2}(7)^{2(\triangleright)} D_{8}\right]_{12}$ | $2^{12} \cdot 3^{12} \cdot 7^{12}$ | 16 | $2 \cdot 504$ | $2^{8} \cdot 3^{2} \cdot 7$ | yes |  |
| $50 \quad A_{12}^{2}$ | $13^{2}$ | 2 | 312 | $(2 \cdot 13!)^{2} \cdot 2$ | yes |  |
| $51\left[\left( \pm L_{3}(3)\right) .2{ }_{\square}^{2} C_{3}\right]_{24}$ | $13^{2}$ | 4 | $936+5616+8424$ | $2^{7} \cdot 3^{4} \cdot 13$ | $p \neq 3$ |  |
| $52 A_{2} \otimes A_{12}$ | $3^{12} \cdot 13^{2}$ | 4 | 468 | $12 \cdot 13$ ! | yes |  |
| $53\left[\left( \pm D_{78}\right) \cdot C_{12}\right]_{24}$ | $3^{12} \cdot 13^{2}$ | 6 | $624+936$ | $2^{4} \cdot 3^{2} \cdot 13$ | $p \neq 13$ |  |
| $54 A_{4} \otimes E_{6}$ | $3_{+}^{4} \cdot 5_{+}^{6}$ | 4 | 720 | $2^{11} \cdot 3^{5} \cdot 5^{2}$ | yes |  |
| $55\left(A_{2} \otimes A_{4}\right)^{3}$ | $3_{+}^{12} \cdot 5_{+}^{6}$ | 4 | 180 | $2^{16} \cdot 3^{7} \cdot 5^{3}$ | yes |  |
| $56\left[ \pm 3 . \mathrm{PGL}_{2}(9) \underset{\text { ® }}{2} D_{10}\right]_{24}$ | $3_{+}^{12} \cdot 5_{+}^{6}$ | 8 | $2700+2160+1080$ | $2^{7} \cdot 3^{3} \cdot 5^{2}$ | $p \neq 5$ |  |
|  | $2^{8} \cdot 3_{+}^{12} \cdot 5_{+}^{6}$ | 8 | $360+900$ | $2^{6} \cdot 3^{2} \cdot 5^{2}$ | $p \neq 5$ |  |
| $58\left[ \pm U_{4}(2) .2\right]_{24}$ | $2^{8} \cdot 3_{+}^{10} \cdot 5_{+}$ | 6 | $240+1440$ | $2^{8} \cdot 3^{4} \cdot 5$ | $p \neq 2$ |  |
| $59\left[\mathrm{SL}_{2}(7) \bigcirc \tilde{S}_{4}\right]_{24}$ | $7{ }^{4}$ | 4 | $2 \cdot 1008+2016$ | $2^{7} \cdot 3^{2} \cdot 7$ | $p \neq 2$ | $\mathbb{Q}[\sqrt{2}]$ |
| $60\left[\mathrm{SL}_{2}(7) \stackrel{2}{\bigcirc} Q_{16}\right]_{24}$ | $2^{6} \cdot 7^{4}$ | 4 | 336 | $2^{8 \cdot 3 \cdot 7}$ | yes | $\mathbb{Q}[\sqrt{2}]$ |
| $61 M_{8,3}^{3}$ | $3_{+}^{3} \cdot 7^{9}$ | 4 | 252 | $2^{16} \cdot 3^{4} \cdot 7^{3}$ | yes |  |
| $62 A_{4} \otimes A_{6}$ | $5_{+}^{6} \cdot 7_{+}^{4}$ | 4 | 420 | $2^{8} \cdot 3^{3} \cdot 5^{2} \cdot 7$ | yes |  |
| $63 A_{4} \otimes A_{6}^{(2)}$ | $5_{+}^{6} \cdot 7_{+}^{12}$ | 8 | 420 | $2^{8} \cdot 3^{2} \cdot 5 \cdot 7$ | yes |  |
| $64\left[\mathrm{SL}_{2}(11) \stackrel{2(2)}{\stackrel{D}{-11}} \mathrm{SL}_{2}(3)\right]_{24}$ | $2^{12} \cdot 11^{12}$ | 12 | 1320 | $2^{6} \cdot 3^{2} \cdot 5 \cdot 11$ | $p \neq 2$ |  |
| $65\left[ \pm L_{2}(11): 2\right]_{24}$ | $5 \cdot 11_{+}^{8}$ | 6 | $2 \cdot 220+660$ | $2^{4} \cdot 3 \cdot 5 \cdot 11$ | yes | $\mathbb{Q}[\sqrt{5}]$ |

## 4. THE R.I.M.F. SUPERGROUPS OF IRREDUCIBLE CYCLIC GROUPS

We now determine the r.i.m.f. supergroups of the irreducible cyclic groups in $\mathrm{GL}_{24}(\mathbb{Q})$. Since 40 of the r.i.m.f. subgroups of $\mathrm{GL}_{24}(\mathbb{Q})$ contain irreducible cyclic subgroups, Table 2 provides many shortcuts, used in the main proof of the classification theorem given in Section 6. The table is of independent interest in view of the study of cyclotomic lattices. Note that the unimodular lattices fixed by
the irreducible cyclic subgroups of $\mathrm{GL}_{24}(\mathbb{Q})$ have already been determined in [Bayer-Fluckiger 1984].

Let $\pm 1 \leq U \cong C_{m}$ be an irreducible subgroup of $\mathrm{GL}_{24}(\mathbb{Q})$. Then $m=70,78,90,52,56,72$, or 84 . The isomorphism classes of $\mathbb{Z} U$-lattices in $\mathbb{Q}^{1 \times 24}$ correspond to the ideal classes of the respective cyclotomic fields $\mathbb{Q}\left[\zeta_{m}\right]$. The respective class numbers are 1, 2, 1, 3, 2, 3, 1 [Washington 1982].

For brevity's sake, we restrict ourselves to a brief discussion of the case $U \cong C_{78}$, which illustrates all

| $U$ | $\Pi$ | r.i.m.f. supergroups |
| :---: | :---: | :---: |
| $C_{70}$ | 2, 3, 5, 7 | $\left[2 . \mathrm{Co}_{1}\right]_{24}, \quad\left[2 . J_{2} \stackrel{2}{\square} \mathrm{SL}_{2}(5)\right]_{24}, \quad A_{4} \otimes A_{6}, \quad A_{4} \otimes A_{6}^{(2)}$ |
| $C_{78}$ | 2, 3, 7, 11, 13 | $\left[2 . \mathrm{Co}_{1}\right]_{24}, \quad\left[\mathrm{SL}_{2}(13) \stackrel{2}{\square} \mathrm{SL}_{2}(3)\right]_{24}, \quad\left[ \pm L_{3}(3) .2 \stackrel{\square}{\square} C_{3}\right]_{24}, \quad A_{2} \otimes A_{12}, \quad\left[\left( \pm D_{78}\right) \cdot C_{12}\right]_{24}$ |
| $C_{90}$ | 2, 3, 5, 7, 13 | $E_{8}^{3}, \quad\left[\mathrm{Sp}_{4}(3) \stackrel{2}{\sqrt{\lambda}-3}\left(3_{+}^{1+2}: \mathrm{SL}_{2}(3)\right)\right]_{24}, \quad\left[\left(\mathrm{SL}_{2}(5) \stackrel{2}{\square} \mathrm{SL}_{2}(5)\right): 2\right]_{8}^{3}$, $\left[\mathrm{SL}_{2}(5) \underset{\infty}{\underset{\infty}{\otimes}, ~} \stackrel{2}{\otimes}\left( \pm 3_{+}^{1+2}\right) . \mathrm{GL}_{2}(3)\right]_{24}, \quad A_{4} \otimes E_{6}, \quad\left(A_{2} \otimes A_{4}\right)^{3}$ |
| $C_{52}$ | 2, 3, 7, 11, 13 | $\left[2 . \mathrm{Co}_{1}\right]_{24}, \quad\left[\mathrm{SL}_{2}(13) \stackrel{2}{\square} \mathrm{D}^{2} \mathrm{SL}_{2}(3)\right]_{24}, \quad A_{12}^{2}$ |
| $C_{56}$ | 2, 3, 7 |  |
| $C_{72}$ | 2, 3 | $\begin{array}{lllll} \hline E_{8}^{3}, & F_{4}^{6}, & {\left[6 . U_{4}(3) \cdot 2 \underset{\sqrt{-3}}{\dot{\otimes}} \mathrm{SL}_{2}(3)\right]_{24}, \quad E_{6}^{4}, \quad\left[\mathrm{Sp}_{4}(3) \underset{\sqrt{-3}}{\underset{-3}{2}}\left(3_{+}^{1+2}: \mathrm{SL}_{2}(3)\right)\right]_{24}, \quad A_{2}^{12},} \\ F_{4} \otimes E_{6}, & {\left[3_{+}^{1+2}: \mathrm{SL}_{2}(3) \underset{\sqrt{-3}}{\stackrel{\rightharpoonup}{V}} \mathrm{SL}_{2}(3)\right]_{12}^{2}, \quad\left(A_{2} \otimes F_{4}\right)^{3}} \end{array}$ |
| $C_{84}$ | 2, 3, 5, 7 |  |

TABLE 2. Supergroups of the irreducible cyclic subgroups of $\mathrm{GL}_{24}(\mathbb{Q})$. The first column gives the irreducible cyclic subgroup $U \leq \mathrm{GL}_{24}(\mathbb{Q})$, the second column contains a set $\Pi$ of primes, and the last column gives the r.i.m.f. supergroups $G$ of $U$ such that either the prime divisors of $|G|$ or those of the determinant of an integral lattice $(L, F) \in Z(G) \times \mathcal{F}_{>0}(G)$ lie in $\Pi$. It turns out that this list of r.i.m.f. supergroups in the third column of the table is complete except for $U \cong C_{56}$, which is also a subgroup of the r.i.m.f. group $\left[2 . J_{2} \stackrel{2}{\square} \mathrm{SL}_{2}(5)\right]_{24}$.
the difficulties. The other six subgroups $U$ can be dealt with similarly. For a detailed discussion of all seven cases see [Nebe 1995].

Let $G$ be an r.i.m.f. supergroup of $U:=C_{78}$ such that either the prime divisors of $|G|$ or those of the determinant of an integral lattice $(L, F) \in$ $\mathcal{Z}(G) \times \mathcal{F}_{>0}(G)$ lie in $\Pi:=\{2,3,7,11,13\}$. Since the class number of $\mathbb{Q}\left[\zeta_{78}\right]$ is 2 [Washington 1982], there are two isomorphism classes of $\mathbb{Z} U$-lattices in $\mathbb{Q}^{1 \times 24}$. Representatives $L$ and $L^{\prime}$ can be chosen such that $L$ contains $L^{\prime}$ of index 13. A convenient method to see that the two lattices $L$ and $L^{\prime}$ are nonisomorphic is to compute the respective Bravais groups, which are $\mathcal{B}(U, L) \cong \pm D_{78}$ and $\mathcal{B}\left(U, L^{\prime}\right)=U$.

One finds a form $F_{0} \in \mathcal{F}_{>0}(U)$ with $\operatorname{det}\left(F_{0}, L\right)=$ $13^{2}$. The space $\mathcal{F}(U)$ may be identified with the maximal totally real subfield $K:=\mathbb{Q}\left[\zeta_{78}+\zeta_{78}^{-1}\right]$ of $\mathbb{Q}\left[\zeta_{78}\right]$ via the $\mathbb{Q}$-isomorphism $K \rightarrow \mathcal{F}(U)$ mapping $c$ to $c F_{0}$. The positive definite forms in $\mathcal{F}(U)$ correspond to the totally positive elements in $K$.

By Corollary 2.3, $G$ is of the form $G=\operatorname{Aut}(F, L)$ or $G=\operatorname{Aut}\left(F, L^{\prime}\right)$ for some $F \in \mathcal{F}_{>0}(U)$ such that
the prime divisors of $\operatorname{det}(F, L)$ or $\operatorname{det}\left(F, L^{\prime}\right)$ lie in the finite set $\tilde{\Pi}:=\tilde{\Pi}(K,|G|)$. With KANT [Pohst et al. 1993] one decides that $\tilde{\Pi}$ may be chosen as $\tilde{\Pi}:=\{2,3,7,11,13,17\}$ if $|G|$ only involves the prime divisors 2, 3, 7, 11 and 13. A more detailed analysis of the decomposition of 17 in the subfields of $K$ shows that the prime 17 can be omitted. The primes 2,7 , and 11 are inert in $K ; 13$ is totally ramified since $13=p_{13}^{12} e$ for some prime element $p_{13}$ and unit $e \in K$, and 3 decomposes as $3=p_{3}^{2}\left(p_{3}^{\prime}\right)^{2}$ for some prime elements $p_{3}, p_{3}^{\prime} \in K$. For both lattices $L$ and $L^{\prime}$ there is an element $n \in N_{\mathrm{GL}_{24}(\mathbb{Z})}(U)$ conjugating the ideal generated by $p_{3}$ into the one generated by $p_{3}^{\prime}$. There is no totally positive prime dividing 3 or 13 , but $p_{3}, p_{3}^{\prime}$ and $p_{13}$ can be chosen such that $p_{3} p_{3}^{\prime}, p_{3} p_{13}$ and $p_{3}^{\prime} p_{13}$ are totally positive. The set $I:=\left\{u F_{0} u^{\text {tr }} F_{0}^{-1} \mid u \in \mathbb{Z}\left[\zeta_{78}\right]^{*}\right\}$ forms a subgroup of index two in the group of all totally positive units of the maximal order of $K$. Note that if - denotes the "complex conjugation" in $\mathbb{Q}\left[\zeta_{78}\right]$, that is, the automorphism defined by $\zeta_{78} \mapsto \zeta_{78}^{-1}$, then $F_{0} u^{\text {tr }} F_{0}^{-1}=\bar{u}$ for all $u \in \mathbb{Q}\left[\zeta_{78}\right]$. Since $u$ is an isometry between the lattices ( $L, u \bar{u} c F_{0}$ ) and

| $F$ | $\operatorname{Aut}(F, L)$ |  | $\operatorname{Aut}\left(v_{0} F, L\right)$ |  |  | $\operatorname{Aut}\left(F, L^{\prime}\right)$ |  |  | $\operatorname{Aut}\left(v_{0} F, L^{\prime}\right)$ |  |  |  |
| ---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $F_{0}$ | $G_{51}$ | 4 | 14976 | $G_{51}$ | 4 | 14976 | $B_{1}$ | 4 | 936 | $B_{1}$ | 4 | 936 |
| $p_{13}^{2} F_{0}$ | $B_{2}$ | 6 | 8424 | $B_{2}$ | 6 | 8424 | $B_{1}$ | 6 | 1248 | $B_{1}$ | 6 | 1248 |
| $p_{13}^{4} F_{0}$ | $B_{2}$ | 6 | 156 | $B_{2}$ | 6 | 156 | $G_{40}$ | 12 | 13104 | $G_{40}$ | 12 | 13104 |
| $p_{13}^{-2} F_{0}$ |  |  |  |  |  |  | $G_{3}$ | 4 | 196560 | $G_{3}$ | 4 | 196560 |
| $p_{3} p_{13} F_{0}$ | $B_{3}$ | 6 | 3588 | $B_{3}$ | 6 | 3588 | $B_{3}$ | 8 | 8190 | $B_{3}$ | 8 | 8190 |
| $p_{3} p_{13}^{3} F_{0}$ | $B_{3}$ | 8 | 468 | $B_{3}$ | 8 | 468 | $B_{3}$ | 10 | 468 | $B_{3}$ | 10 | 468 |
| $p_{3} p_{13}^{5} F_{0}$ | $B_{3}$ | 12 | 468 | $B_{3}$ | 12 | 468 |  |  |  |  |  |  |
| $p_{3} p_{13}^{-1} F_{0}$ | $B_{3}$ | 4 | 7020 | $B_{3}$ | 4 | 7020 | $B_{3}$ | 4 | 468 | $B_{3}$ | 4 | 468 |
| $p_{3}^{2} F_{0}$ | $B_{2}$ | 6 | 2028 | $B_{2}$ | 6 | 2964 | $B_{4}$ | 6 | 312 | $B_{4}$ | 6 | 312 |
| $p_{3}^{2} 3_{13}^{2} F_{0}$ | $B_{2}$ | 8 | 468 | $B_{2}$ | 10 | 3276 | $B_{4}$ | 12 | 2808 | $B_{4}$ | 12 | 2808 |
| $p_{3}^{2} p_{13}^{4} F_{0}$ | $B_{2}$ | 12 | 156 | $B_{2}$ | 12 | 312 | $B_{5}$ | 22 | 13104 | $B_{5}$ | 22 | 13104 |
| $p_{3}^{2} p_{13}^{-2} F_{0}$ |  |  |  |  |  |  | $B_{5}$ | 6 | 26208 | $B_{5}$ | 6 | 26208 |
| $p_{3} p_{3}^{\prime} F_{0}$ | $G_{52}$ | 4 | 468 | $G_{53}$ | 6 | 1560 | $B_{6}$ | 6 | 312 | $B_{6}$ | 6 | 312 |
| $p_{3} p_{3}^{\prime} 3_{13}^{2} F_{0}$ | $B_{7}$ | 8 | 1170 | $G_{53}$ | 8 | 468 | $B_{6}$ | 12 | 2028 | $B_{6}$ | 12 | 2028 |
| $p_{3} p_{3}^{\prime} 3_{13}^{4} F_{0}$ | $B_{7}$ | 12 | 936 | $G_{53}$ | 12 | 156 | $B_{6}$ | 16 | 234 | $B_{6}$ | 16 | 234 |
| $p_{3} p_{3}^{\prime} p_{13}^{-2} F_{0}$ |  |  |  |  |  |  | $B_{6}$ | 4 | 468 | $B_{6}$ | 4 | 468 |

TABLE 3. For each relevant $\mathbb{Z} C_{78}$ lattice, the table shows the corresponding automorphism group, the minimum, and the number of shortest vectors.
( $L, c F_{0}$ ) for all totally positive $c \in K$, one only has to consider representatives of the $I$-orbits on the set of totally positive elements of $K$.

Let $v_{0}$ be any totally positive unit of $K$ not contained in $I$. Taking only normalized lattices, one concludes that $G$ is one of the groups in Table 3.

The subscripts $i$ of the groups $G_{i}$ refer to the number of the r.i.m.f. group $G_{i}$ in Table 1. The groups $B_{i}$ are not maximal finite; we have

$$
\begin{array}{ll}
B_{1}=C_{26} \cdot C_{6}{ }^{2(2)} \stackrel{\mathrm{SL}_{2}}{ }(3), & \\
B_{2}=\left( \pm C_{13}: C_{3} \otimes S_{3}\right) .2 & \text { with algebra } \mathbb{Q}[\sqrt{13}], \\
B_{3}= \pm C_{3} \stackrel{2}{\boxtimes}\left(C_{13}: C_{3}\right) & \text { with algebra } K^{\prime}, \\
B_{4}=C_{26} \cdot C_{6} \bigcirc \mathrm{SL}_{2}(3) & \text { with algebra } \mathbb{Q}[\sqrt{13}], \\
B_{5}=\mathrm{SL}_{2}(13) \bigcirc \mathrm{SL}_{2}(3) & \text { with algebra } \mathbb{Q}[\sqrt{13}], \\
B_{6}= \pm C_{13}: C_{12} \otimes C_{3} & \text { with algebra } \mathbb{Q}[\sqrt{-3}], \\
B_{7}= \pm C_{13}: C_{12} \otimes S_{3} . &
\end{array}
$$

(Here we give, for the not absolutely irreducible groups $B_{i}$, the isomorphism type of the commuting algebra; $K^{\prime}$ means the subfield of $\mathbb{Q}\left[\zeta_{78}+\zeta_{78}^{-1}\right]$ with $\left[K^{\prime}: \mathbb{Q}\right]=4$.)

Note that the isometric lattices ( $L^{\prime}, p_{3}^{2} p_{13}^{-2} F_{0}$ ) and ( $L^{\prime}, v_{0} p_{3}^{2} p_{13}^{-2} F_{0}$ ) are extremal 3-modular lattices.

## 5. ESSENTIALLY SEMISIMPLE GROUPS

In this section we determine the primitive r.i.m.f. groups $G$ such that $G^{(\infty)}$ is an irreducible central product of quasisimple groups.
Table 4 summarizes the information that we need from the classification of finite simple groups. It displays all quasisimple groups having an irreducible rational representation of degree $d$ dividing 24. A list of candidates for quasisimple normal subgroups $N$ of the r.i.m.f. groups $G \leq \mathrm{GL}_{24}(\mathbb{Q})$ can be obtained from this table by taking those groups $N$ that are normal in their generalized Bravais group $\mathcal{B}^{\circ}(N)$ (Definition 2.4); this group is given in the second column. The fourth column fixes the notation for the natural character of $N \leq$ $\mathrm{GL}_{d}(\mathbb{Q})$, used in Section 6. The isomorphism type of the commuting algebra $C_{\mathbb{Q}^{d \times d}}(N)$ is also given.

The last column refers to the page in [Holt and Plesken 1989] where a detailed description of the $\mathbb{Z} N$-lattice in $\mathbb{Q}^{1 \times d}$ may be found.

That the table follows from the classification of finite simple groups and from [Conway et al. 1985] can be seen as follows. In [Landazuri and Seitz 1974; Seitz and Zalesskii 1993] it is shown that most of the finite Chevalley groups having a projective representation of degree at most 24 are contained in [Conway et al. 1985]. The exceptions are:

1. some linear groups that have no representation of degree $d \mid 24$ because of their group order and the formula in [Schur 1905];
2. the group $L_{2}(49)$, whose 24 -dimensional representation has real Schur index 2; and
3. the group $\mathrm{Sp}_{4}(7)$, for which the character field of the two conjugate 24-dimensional representations is $\mathbb{Q}[\sqrt{-7}]$ [Srinivasan 1968].

A case-by-case discussion using Theorem 2.1, Tables 2 and 4, and the inclusions of the finite simple groups from the lists of maximal subgroups in [Conway et al. 1985] yields the following two propositions:

Proposition 5.1. Let $G$ be a primitive r.i.m.f. subgroup of $\mathrm{GL}_{24}(\mathbb{Q})$ such that $G^{(\infty)}$ is irreducible and quasisimple. Then $G$ is conjugate to one of these eight r.i.m.f. groups: $\left[2 . \mathrm{Co}_{1}\right]_{24},\left[6 . \mathrm{Alt}_{7}: 2\right]_{24}, A_{24}$, $\left[ \pm U_{4}(2) .2\right]_{24}, \quad\left[\mathrm{SL}_{2}(7) \bigcirc \tilde{S}_{4}\right]_{24}, \quad\left[\mathrm{SL}_{2}(7) \bigcirc^{2} Q_{16}\right]_{24}$, $\left[\mathrm{SL}_{2}(13)^{2(2)} \mathrm{SL}_{2}(3)\right]_{24}$, or $\left[ \pm L_{2}(11): 2\right]_{24}$.
Proposition 5.2. Let $G$ be a primitive r.i.m.f. subgroup of $\mathrm{GL}_{24}(\mathbb{Q})$ such that $G^{(\infty)}$ is irreducible and a central product of at least two quasisimple groups. Then $G$ is conjugate to one of these r.i.m.f. groups: $\left[\mathrm{SL}_{2}(7) \underset{\sqrt{-7}}{\underset{-7}{\mid}} L_{2}(7)\right]_{24},\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\underset{\rightharpoonup}{2}} \mathrm{Alt}_{5}\right]_{24,2}$, $\left[2 . J_{2} \square^{2} \mathrm{SL}_{2}(5)\right]_{24},\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\underset{2}{\mathrm{D}}} \mathrm{Alt}_{5}\right]_{24,1}$, $A_{4} \otimes E_{6}, A_{4} \otimes A_{6}$, or $A_{4} \otimes A_{6}^{(2)}$.

As a referee pointed out, one might think that other elements of the Suzuki chain in the Conway group might give rise to r.i.m.f. groups $G$ isoclinic to a maximal subgroup of $\left[2 . \mathrm{Co}_{1}\right]_{24}$. That only the

| $N$ | $\mathcal{B}^{\circ}(N)$ | $d$ | character | comm. alg. | page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Alt}_{5}$ | $\pm S_{5}$ | 4 | $\chi_{4}$ | Q | 272 |
| Alt ${ }_{5}$ | $\pm \mathrm{Alt}_{5}$ | 6 | $\chi_{3 a}+\chi_{3 b}$ | $\mathbb{Q}[\sqrt{5}]$ | 273 |
| $\mathrm{SL}_{2}(5)$ | $\mathrm{SL}_{2}(5)$ | 8 | $2\left(\chi_{2 a}+\chi_{2 b}\right)$ | $Q_{\sqrt{5}, \infty, \infty}$ | 275 |
| $\mathrm{SL}_{2}(5)$ | $\mathrm{SL}_{2}(9)$ | 8 | $2 \chi_{4}$ | $Q_{\infty, 3}$ | 274 |
| $\mathrm{SL}_{2}(5)$ | $\mathrm{SL}_{2}(5)$ | 12 | $2 \chi_{6}$ | $Q_{\infty, 2}$ |  |
| $L_{2}(7)$ | $\pm L_{2}(7)$ | 6 | $\chi_{3 a}+\chi_{3 b}$ | $\mathbb{Q}[\sqrt{-7}]$ | 290 |
| $L_{2}(7)$ | $\pm L_{2}(7)$ | 6 | $\chi_{6}$ | $\mathbb{Q}$ | 291 |
| $L_{2}(7)$ | $\pm L_{2}(7): 2$ | 8 | $\chi_{8}$ | Q | 293 |
| $\mathrm{SL}_{2}(7)$ | $\mathrm{SL}_{2}$ (7) | 8 | $\chi_{4 a}+\chi_{4 b}$ | $\mathbb{Q}[\sqrt{-7}]$ | 295 |
| $\mathrm{SL}_{2}(7)$ | $\mathrm{SL}_{2}(7)$ | 24 | $2\left(\chi_{6 a}+\chi_{6 b}\right)$ | $Q_{\sqrt{2}, \infty, \infty}$ |  |
| $\mathrm{SL}_{2}(9)$ | $\mathrm{SL}_{2}(9)$ | 8 | $2 \chi_{4 a}$ or $2 \chi_{4 b}$ | $Q_{\infty, 3}$ | 311 |
| 3. Alt $_{6}$ | $\pm 3$. Alt $_{6}$ | 12 | $\chi_{3 a}+\chi_{3 a}^{\prime}+\chi_{3 b}+\chi_{3 b}^{\prime}$ | $\mathbb{Q}[\sqrt{5}, \sqrt{-3}]$ |  |
| 3. Alt ${ }_{6}$ | $\pm 3$. Alt $_{6}$ | 12 | $\chi_{6}+\chi_{6}^{\prime}$ | $\mathbb{Q}[\underline{\sqrt{-3}}]$ |  |
| 6. Alt ${ }_{6}$ | $6 . \mathrm{Alt}_{6}$ | 24 | $\chi_{6 a}+\chi_{6 a}^{\prime}+\chi_{6 b}+\chi_{6 b}^{\prime}$ | $\mathbb{Q}[\sqrt{2}, \sqrt{-3}]$ |  |
| $L_{2}(8)$ | $2 . O_{8}^{+}(2) .2$ | 8 | $\chi_{8}$ | Q | 328 |
| $L_{2}(11)$ | $\pm L_{2}(11): 2$ | 24 | $\chi_{12 a}+\chi_{12 b}$ | $\mathbb{Q}[\sqrt{5}]$ |  |
| $\mathrm{SL}_{2}(11)$ | $\mathrm{SL}_{2}(11)$ | 12 | $\chi_{6 a}+\chi_{6 b}$ | $\mathbb{Q}[\sqrt{-11}]$ |  |
| $\mathrm{SL}_{2}(13)$ | $\mathrm{SL}_{2}(13)$ | 24 | $2\left(\chi_{6 a}+\chi_{6 b}\right)$ | $Q_{\sqrt{13}, \infty, \infty}$ |  |
| $\mathrm{Alt}_{7}$ | $\pm S_{7}$ | 6 | $\chi_{6}$ | Q | 316 |
| $2 . \mathrm{Alt}_{7}$ | $2 . \mathrm{Alt}_{7}$ | 8 | $\chi_{4 a}+\chi_{4 b}$ | $\mathbb{Q}[\sqrt{7}]$ | 317 |
| $3 . \mathrm{Alt}_{7}$ | $6 . U_{4}(3) .2$ | 12 | $\chi_{6}+\chi_{6}^{\prime}$ | $\mathbb{Q}[\sqrt{-3}]$ |  |
| $6 . \mathrm{Alt}_{7}$ | $6 . \mathrm{Alt}_{7}$ | 24 | $\chi_{6 a}+\chi_{6 a}^{\prime}+\chi_{6 b}+\chi_{6 b}^{\prime}$ | $\mathbb{Q}[\sqrt{2}, \sqrt{-3}]$ |  |
| $L_{3}(3)$ | $\pm L_{3}(3)$ | 12 | $\chi_{12}$ | Q |  |
| $U_{3}(3)$ | $\pm U_{3}(3)$ | 12 | $2 \chi_{6}$ | $\mathcal{Q}_{\infty, 3}$ |  |
| $\mathrm{SL}_{2}(23)$ | $\mathrm{SL}_{2}(23)$ | 24 | $\chi_{12 a}+\chi_{12 b}$ | $\mathbb{Q}[\sqrt{-23}]$ |  |
| $\mathrm{SL}_{2}(25)$ | $\mathrm{SL}_{2}(25)$ | 24 | $2 \chi_{12}$ | $Q_{\infty, 5}$ |  |
| 2. Alt $_{8}$ | $2 . O_{8}^{+}(2) .2$ | 8 | $\chi_{8}$ | Q | 320 |
| $6 . L_{3}(4)$ | $6 . L_{3}(4)$ | 12 | $\chi_{6}+\chi_{6}^{\prime}$ | $\mathbb{Q}[\sqrt{-3}]$ |  |
| $U_{4}(2)$ | $\pm U_{4}(2): 2$ | 6 | $\chi_{6}$ | Q | 336 |
| $U_{4}(2)$ | $\pm U_{4}(2): 2$ | 24 | $\chi_{24}$ | Q |  |
| $\mathrm{Sp}_{4}(3)$ | $\mathrm{Sp}_{4}(3) \bigcirc C_{3}$ | 8 | $\chi_{4 a}+\chi_{4 b}$ | $\mathbb{Q}[\sqrt{-3}]$ | 338 |
| $U_{3}(4)$ | 2. $G_{2}(4)$ | 24 | $2 \chi_{12}$ | $Q_{\infty, 2}$ |  |
| $2 . M_{12}$ | 2. $M_{12}$ | 12 | $\chi_{12}$ | Q |  |
| Alt $_{9}$ | $2 . O_{8}^{+}(2) .2$ | 8 | $\chi_{8}$ | Q | 323 |
| 2. Alt ${ }_{9}$ | $2 . O_{8}^{+}(2) .2$ | 8 | $\chi_{8}$ | Q | 324 |
| 2. $\mathrm{J}_{2}$ | 2. $\mathrm{J}_{2}$ | 24 | $2\left(\chi_{6 a}+\chi_{6 b}\right)$ | $Q_{\sqrt{5}, \infty, \infty}$ |  |
| 2. $\mathrm{Sp}_{6}(2)$ | $2 . O_{8}^{+}(2) .2$ | 8 | $\chi_{8}$ | $\stackrel{\mathbb{Q}}{ }$ | 340 |
| $6 . U_{4}(3)$ | $6 . U_{4}(3) .2$ | 12 | $\chi_{6}+\chi_{6}^{\prime}$ | $\mathbb{Q}[\sqrt{-3}]$ |  |
| $2 . O_{8}^{+}(2)$ | $2 . O_{8}^{+}(2) .2$ | 8 | $\chi_{8}$ | Q | 341 |
| 2. $G_{2}(4)$ | 2. $G_{2}(4)$ | 24 | $2 \chi_{12}$ | $Q_{\infty, 2}$ |  |
| Alt $_{13}$ | $\pm S_{13}$ | 12 | $\chi_{12}$ | Q |  |
| $6 . \mathrm{Suz}$ | $6 . \mathrm{Suz}$ | 24 | $\chi_{12}+\chi_{12}^{\prime}$ | $\mathbb{Q}[\sqrt{-3}]$ |  |
| 2. $\mathrm{Co}_{1}$ | 2. $\mathrm{Co}_{1}$ | 24 | $\chi_{24}$ | Q |  |
| Alt $_{25}$ | $\pm S_{25}$ | 24 | $\chi_{24}$ | Q |  |

TABLE 4. The quasisimple irreducible rational matrix groups of degree $d \mid 24$. The meaning of the columns is explained in the second paragraph of Section 5.
group $\left[2 . J_{2} \stackrel{2}{\square} \mathrm{SL}_{2}(5)\right]_{24}$ turns up is explained by Lemma 1.12 , since the unique subgroup of index two in the other absolutely irreducible maximal subgroups of $\left[2 . \mathrm{Co}_{1}\right]_{24}$ corresponding to elements of the Suzuki chain is uniform.

## 6. PROOF OF THEOREM 3.1

We now complete the proof of the classification in Theorem 3.1. The primitive r.i.m.f. groups are built up using normal subgroups. Therefore the proof is organized according to the possibilities for
normal $p$-subgroups of the r.i.m.f. groups. The different primes $p$ are dealt with in decreasing order, always assuming that $p$ is the biggest prime with $O_{p}(G) \neq 1$. The ordering of the case-by-case discussion is adapted to the one in Table 5. In particular, the first eight possibilities for $O_{2}(G)$ are excluded in Lemma 6.14 by a uniform argument.

Theorem 6.1. Let $G$ be a primitive r.i.m.f. group in $\mathrm{GL}_{24}(\mathbb{Q})$ and let $p$ is a prime such that $N:=O_{p}(G)$ is nontrivial. Then $N$ is one of the groups listed in Table 5.

| $N$ | $\mathcal{B}^{\circ}(N)$ | $\mathrm{deg}_{Q}$ | comm. alg. | Out( $N$ ) |
| :---: | :---: | :---: | :---: | :---: |
| $C_{13}$ | $\pm N$ | 12 | $\mathbb{Q}\left[\zeta_{13}\right]$ | $C_{12}$ |
| $C_{7}$ | $\pm N$ | 6 | $\mathbb{Q}\left[\zeta_{7}\right]$ | $C_{6}$ |
| $C_{5}$ | $\pm N$ | 4 | $\mathbb{Q}\left[\zeta_{5}\right]$ | $C_{4}$ |
| $C_{9}$ | $\pm N$ | 6 | $\mathbb{Q}\left[\zeta_{9}\right]$ | $C_{6}$ |
| $3_{+}^{1+2}$ | $\pm N: \mathrm{SL}_{2}(3)$ | 6 | $\mathbb{Q}[\sqrt{-3}]$ | $\mathrm{GL}_{2}(3)$ |
| $C_{3}$ | $\pm N$ | 2 | $\mathbb{Q}[\sqrt{-3}]$ | $C_{2}$ |
| $Q_{8} \bigcirc Q_{8} \otimes D_{8}$ | $N$. Alt $_{8}$ | 8 | Q | $S_{8}$ |
| $Q_{8} \bigcirc Q_{8} \otimes C_{4}$ | $N . S_{6}$ | 8 | $\mathbb{Q}[\sqrt{-1}]$ | $S_{6} \times C_{2}$ |
| $Q_{16} \bigcirc Q_{8}$ | $N . S_{3}$ | 8 | $\mathbb{Q}[\sqrt{2}]$ | $S_{3} \times C_{2} \times C_{2}$ |
| $Q D_{16} \otimes_{\text {V-2 }} Q_{8}$ | $N . S_{3}$ | 8 | $\mathbb{Q}[\sqrt{-2}]$ | $S_{3} \times C_{2}$ |
| $Q_{8} \otimes_{\sqrt{-1}}^{\otimes C_{8}}$ | $N . S_{3}$ | 8 | $\mathbb{Q}\left[\zeta_{8}\right]$ | $S_{3} \times C_{2} \times C_{2}$ |
| $D_{32}{ }^{\text {V-1 }}$ | $N$ | 8 | $\mathbb{Q}\left[\zeta_{16}+\zeta_{16}^{-1}\right]$ | $C_{4} \times C_{2}$ |
| $Q D_{32}$ | $N$ | 8 | $\mathbb{Q}\left[\zeta_{16}-\zeta_{16}^{-1}\right]$ | $C_{4}$ |
| $C_{16}$ | $N$ | 8 | $\mathbb{Q}\left[\zeta_{16}\right]$ | $C_{4} \times C_{2}$ |
| $D_{8} \otimes Q_{8}$ | $N . \mathrm{Alt}_{5}$ | 8 | $Q_{\infty, 2}$ | $S_{5}$ |
| $Q_{8} \bigcirc Q_{8}$ | $N:\left(S_{3} \times S_{3}\right)=\operatorname{Aut}\left(F_{4}\right)$ | 4 | Q | $S_{3} 1 C_{2}$ |
| $Q_{8} \bigcirc C_{4}$ | $N . S_{3}$ | 4 | $\mathbb{Q}[\sqrt{-1}]$ | $S_{3} \times C_{2}$ |
| $Q_{16}$ | $N$ | 8 | $Q_{\sqrt{2}, \infty, \infty}$ | $C_{2} \times C_{2}$ |
| $D_{16}$ | $N$ | 4 | $\mathbb{Q}[\sqrt{2}]$ | $C_{2} \times C_{2}$ |
| $Q D_{16}$ | $N$ | 4 | $\mathbb{Q}[\sqrt{-2}]$ | $C_{2}$ |
| $C_{8}$ | $N$ | 4 | $\mathbb{Q}\left[\zeta_{8}\right]$ | $C_{2} \times C_{2}$ |
| $Q_{8}$ | $N: C_{3}$ | 4 | $Q_{\infty, 2}$ | $S_{3}$ |
| $D_{8}$ | $N$ | 2 | Q | $C_{2}$ |
| $C_{4}$ | $N$ | 2 | $\mathbb{Q}[\sqrt{-1}]$ | $C_{2}$ |
| $C_{2}$ | $N$ | 1 | $\mathbb{Q}$ | 1 |

TABLE 5. The first column shows the possibilities for the normal $p$-subgroups $N$ of $G$. The second gives the group $\mathcal{B}^{\circ}(N)$ (Definition 2.4), which is, according to Proposition 2.5, also a normal subgroup of $G$. Columns 3 and 4 allow us to restrict the possibilities for the centralizer $C_{G}(N)=C_{G}\left(\mathcal{B}^{\circ}(N)\right)$. Since $G / N C_{G}(N)$ embeds in the outer automorphism group $\operatorname{Out}(N)$ of $N$, this group is given in the last column.

Proof. Let $G \leq \mathrm{GL}_{24}(\mathbb{Q})$ be primitive and let $p$ be a prime such that $N:=O_{p}(G) \neq 1$. It follows from Remark 1.15 that all abelian characteristic subgroups of $N$ are cyclic. The possible $p$-groups with this property were classified by P . Hall [Huppert 1967, p. 357], and are either cyclic, extraspecial of exponent $p$, or central products of a cyclic and an extraspecial group. For $p=2$ there also occur dihedral, quasidihedral, and quaternion groups, and central products of these groups with extraspecial groups. Remark 1.15 also implies that $p-1$ divides 24 , so that $p \in\{2,3,5,7,13\}$. Since 24 is not divisible by 5,7 , or 13 , one has $N=C_{p}$, if $p=5,7$, or 13 . In the case $p=3$, either the degree of the irreducible constituents of the natural representation of $N$ is 2 and $N \cong C_{3}$, or the degree is 6 and $N$ is isomorphic to $C_{9}$ or $3_{+}^{1+2}$. In the case $p=2$ the degree of the irreducible constituents of the natural representation of $N$ divides 8 and the Theorem of P. Hall implies that $N$ is one of the 2 -groups in Table 5 . The groups $\mathcal{B}^{\circ}(N)$ can be obtained by considering the lattice of invariant lattices in the irreducible constituent module of the natural $\mathbb{Q} N$-module in the respective cases.

We now consider the various possibilities for primitive r.i.m.f. groups $G$, according to the highest $p$ such that $O_{p}(G) \neq 1$.

Case $\mathrm{O}_{13}(\mathrm{G}) \neq 1$
Proposition 6.2. If $G$ is a primitive r.i.m.f. group of degree 24 with $O_{13}(G) \neq 1$, then $G$ is conjugate to $\left[\left( \pm D_{78}\right) \cdot C_{12}\right]_{24}$ and has a presentation

$$
\begin{aligned}
& G=\langle a, b, c| \\
& \left.\quad a^{78}, b^{2}, a^{b}=a^{-1}, c^{12}, a^{c}=a^{67},[b, c]=a^{23}\right\rangle
\end{aligned}
$$

Proof. Let $G$ be a primitive r.i.m.f. group of degree 24 with $O_{13}(G) \neq 1$. Theorem 6.1 implies that $O_{13}(G) \cong C_{13}$. Since the centralizer $C:=$ $C_{G}\left(O_{13}(G)\right)$ embeds in $\mathrm{GL}_{2}\left(\mathbb{Q}\left[\zeta_{13}\right]\right)$, it is soluble. Moreover $O_{p}(G)=1$ for $p \neq 2,3,13$ and $O_{2}(G)$. $O_{3}(G)=O_{2}(C) \cdot O_{3}(C)$ is one of these groups: $C_{2}$, $C_{4}, D_{8}, Q_{8}$, or $C_{6}$. Hence the prime divisors of $|G|$ are contained in $\{2,3,13\}$. If $O_{2}(G) \cdot O_{3}(G) \neq \pm 1$
then $G$ contains an irreducible subgroup $\cong C_{52}$ or $C_{78}$. Table 2 implies $G=\left[\left( \pm D_{78}\right) \cdot C_{12}\right]_{24}$ in this case.

Otherwise $O_{2}(G) \cdot O_{3}(G)= \pm 1$ and $C \cong C_{26}$ is a reducible normal subgroup of $G$. The factor group $G / C$ is isomorphic to a subgroup of $C_{12}=$ Aut $\left(C_{13}\right)$. The split extension $C_{26}: C_{12}$ is reducible and the unique maximal nonsplit extension $C_{26}$. $C_{12}$ is a proper subgroup of $\left[\mathrm{SL}_{2}(13) \stackrel{2(2)}{\square} \mathrm{SL}_{2}(3)\right]_{24}$.

Case $\mathrm{O}_{7}(\mathrm{G}) \neq 1, \mathrm{O}_{13}(\mathrm{G})=1$
Proposition 6.3. All primitive r.i.m.f. groups $G \leq$ $\mathrm{GL}_{24}(\mathbb{Q})$ satisfy $O_{7}(G)=1$.

Proof. Let $G$ be a primitive r.i.m.f. group of $\mathrm{GL}_{24}(\mathbb{Q})$ with $O_{7}(G) \neq 1$. Theorem 6.1 implies $O_{7}(G) \cong$ $C_{7}$. The centralizer $C:=C_{G}\left(O_{7}(G)\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Q}\left[\zeta_{7}\right]\right)$ and hence $O_{p}(G)=O_{p}(C)=1$ for all primes $p>7$.

If $C$ is insoluble, $C$ contains one of these five groups as its normal subgroup $C^{(\infty)}$ : $\mathrm{Alt}_{5}, \mathrm{SL}_{2}(5)$, $\mathrm{SL}_{2}(7), \mathrm{SL}_{2}(9)$, or $2 . \mathrm{Alt}_{7}$ (see Table 4). In the first, second, and fourth cases $G$ contains an irreducible subgroup $\cong C_{70}$ and the prime divisors of $|G|$ are 2 , 3,5 , and 7 . Table 2 then shows that $O_{7}(G)=1$. In the third case $G$ contains an irreducible subgroup $\cong C_{56}$ and the prime divisors of $|G|$ are 2,3 , and 7. Table 2 then shows that $O_{7}(G)=1$ again.

Also in the last case $G$ contains an irreducible subgroup $\cong C_{56}$ but 5 divides the order of $G$. Since $O_{7}(G) C^{(\infty)}$ is irreducible modulo 5 , the determinants $\operatorname{det}(F, L)$ are not divisible by 5 for all

$$
(L, F) \in \mathcal{Z}\left(O_{7}(G) C^{(\infty)}\right) \times \mathcal{F}\left(O_{7}(G) C^{(\infty)}\right)
$$

with $F$ primitive on $L$. Hence Table 2 shows that $O_{7}(G)=1$ also in this case.

Now assume that $O_{5}(C)=O_{5}(G)>1$. Then $O_{5}(G) \cong C_{5}$ and $G$ contains an irreducible selfcentralizing normal subgroup $\cong C_{70}$. Hence the only primes dividing $|G|$ are $2,3,5$, and 7 , and again Table 2 shows that $O_{7}(G)=1$.

Now let $O_{3}(C)=O_{3}(G)>1$. Then $O_{3}(G) \cong C_{3}$ and $G$ contains a normal subgroup $N \cong C_{21}$. The
centralizer $C_{G}(N)$ embeds in $\mathrm{GL}_{2}\left(\mathbb{Q}\left[\zeta_{21}\right]\right)$, hence is soluble, and $O_{2}(G)=O_{2}\left(C_{G}(N)\right)$ is one of $C_{2}, C_{4}$, $D_{8}$, or $Q_{8}$.
In the last three cases, $G$ contains an irreducible subgroup $\cong C_{84}$. Since $|G|$ is only divisible by the primes 2, 3, and 7, Table 2 shows that $O_{7}(G)=1$.
If $O_{2}(G)=C_{2}, G$ contains a self-centralizing normal subgroup $Z \cong C_{42}$. The factor group $G / Z$ is isomorphic to a subgroup of $C_{6} \times C_{2}$. Since the split extension $Z$ : $\left(C_{6} \times C_{2}\right)$ is reducible, the primitivity of $G$ implies that $2^{2}$ divides $G: Z$ and every subgroup of index 2 of $G$ is nonsplit over $Z$. But the unique maximal extension with these properties is imprimitive too, since it contains the reducible normal subgroup $C_{7}: C_{3} \otimes \tilde{S}_{3}$ of index 2 .

Next assume that $C$ is soluble and $O_{5}(C)=$ $O_{3}(C)=1$. Then $O_{2}(G)=O_{2}(C)$ is one of $C_{2}, C_{4}$, $D_{8}, Q_{8}, C_{8}, D_{16}, Q_{16}, Q D_{16}, Q_{8} \bigcirc C_{4}$, or $Q_{8} \bigcirc Q_{8}$.
In the first case $C_{14}$ is a reducible self-centralizing normal subgroup of $G$ and $G$ is reducible. In cases $5-8, G$ contains a self-centralizing irreducible normal subgroup $\cong C_{56}$ and is not maximal finite by Table 2. In the second and third cases, $O_{7}(G) \times$ $O_{2}(G)=: N \unlhd G$ is a reducible normal subgroup of index $\leq 6$ in $G$. Since the unique extension $N$ : $C_{3}$ is reducible this contradicts the primitivity of $G$.

Now assume that $N:=O_{2}(G) \times O_{7}(G)$ is isomorphic to $Q_{8} \otimes C_{7}$. Since $\mathbb{Q}\left[\zeta_{7}\right]$ does not split the quaternion algebra $Q_{\infty, 2}, N$ is irreducible with commuting algebra $C_{\mathbb{Q}^{24 \times 24}}(N) \cong Q_{\zeta_{7}, 2,2}$ and has a 12 -dimensional space of invariant forms. The Bravais group $B$ of a normal critical lattice is $B:=$ $C_{7} \otimes \mathrm{SL}_{2}(3)$ and has the same commuting algebra as $N$. Consider two cases:
(a) $3^{2}$ divides $|G|$ : Then $O_{2,7,3}(G)$ is conjugate to $C_{7}: C_{3} \otimes \mathrm{SL}_{2}(3)$ and has a 4 -dimensional space of invariant forms. The Bravais group of a normal critical lattice is $L_{2}(7) \otimes \mathrm{SL}_{2}(3)$, contradicting the assumption $O_{7}(G)=C_{7}$.
(b) $3^{2}$ does not divide $|G|$ : Then $B$ is a normal subgroup of $G$ with $G / B \leq C_{2} \times C_{2}$. If $G / B \cong C_{2}$, $G$ is not maximal, since we have, for example,
$G<G: C_{3} \leq \mathrm{GL}_{24}(\mathbb{Q})$. Hence $G / B \cong C_{2} \times C_{2}$ and $G$ contains an irreducible subgroup $\cong C_{56}$. Since the prime divisors of $|G|$ are 2,3 , and 7 , Table 2 shows that $O_{7}(G)=1$.

Next assume that $O_{2}(G) \times O_{7}(G)=D_{8} \otimes C_{28}=$ : $N \unlhd G$. Then $\mathcal{B}^{\circ}(N)=C_{7} \otimes\left(\mathrm{SL}_{2}(3) \bigcirc C_{4}\right) .2 \unlhd G$ and hence $G$ contains an irreducible subgroup $\cong$ $C_{84}$. Since the prime divisors of $|G|$ are 2,3 , and 7, Table 2 shows that $O_{7}(G)=1$.

If $O_{2}(G) \times O_{7}(G)=Q_{8} \bigcirc Q_{8} \otimes C_{7}=: N \unlhd G$, then $\mathcal{B}^{\circ}(N)=F_{4} \otimes C_{7} \unlhd G$ and $G$ contains an irreducible subgroup $\cong C_{84}$. Since the prime divisors of $|G|$ are 2,3 , and 7 , Table 2 shows that $O_{7}(G)=1$.

Case $\mathrm{O}_{5}(\mathrm{G}) \neq 1, \mathrm{O}_{13}(\mathrm{G})=\mathrm{O}_{7}(\mathrm{G})=1$
Lemma 6.4. Let $G$ be an r.i.m.f. group of degree 24 containing a subgroup $U$ conjugate to $C_{15} \underset{\sqrt{5}}{\otimes} \mathrm{Alt}_{5}$. Assume that the prime divisors of $|G|$ lie in the set $\{2,3,5,7\}$, or that there is a lattice $(L, F) \in$ $\mathcal{Z}(G) \times \mathcal{F}_{>0}(G)$ with $F$ integral on $L$, such that the prime divisors of $\operatorname{det}(F, L)$ lie in $\{2,3,5,7\}$. Then $G$ is one of the following six r.i.m.f. groups:

$$
\begin{aligned}
& {\left[2 . \mathrm{Co}_{1}\right]_{24},\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\otimes} \mathrm{Alt}_{5}\right]_{24,2},} \\
& {\left[2 . J_{2} \square^{2} \mathrm{SL}_{2}(5)\right]_{24},\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\left.\underset{\sqrt{5}}{ } \mathrm{Alt}_{5}\right]_{24,1},}\right.} \\
& A_{2} \otimes\left[ \pm D_{10} \stackrel{2}{\sqrt{5}} \mathrm{Alt}_{5}\right]_{12}, \text { or }\left[ \pm 3 . \mathrm{PGL}_{2}(9) \underset{\sqrt{5}}{\underset{5}{5}} D_{10}\right]_{24} .
\end{aligned}
$$

Proof. The commuting algebra of $U$ is isomorphic to $\mathbb{Q}\left[\zeta_{15}\right]$ and $U$ fixes up to isomorphism four lattices $L_{1}, \ldots, L_{4}$. The Bravais group $\mathcal{B}\left(U, L_{1}\right)=\mathcal{B}\left(U, L_{4}\right)$ is conjugate to $\pm D_{30} \stackrel{2}{\underset{\sqrt{5}}{2}} \mathrm{Alt}_{5}$, and $\mathcal{B}\left(U, L_{2}\right)$ and $\mathcal{B}\left(U, L_{3}\right)$ are both conjugate to $\pm 3 . \mathrm{Alt}_{6} \stackrel{2}{\sqrt{5}} C_{5}$. Using the 4 -parameter argument (see Corollary 2.3 and the paragraph before it), one finds that the r.i.m.f. supergroups of $U$ are conjugate to $A_{2} \otimes$ $\left[ \pm D_{10} \stackrel{2}{\sqrt{5}} \mathrm{Alt}_{5}\right]_{12},\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\stackrel{2}{\otimes}} \mathrm{Alt}_{5}\right]_{24,1}$, or $\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\stackrel{\rightharpoonup}{5}} \mathrm{Alt}_{5}\right]_{24,2}$ (on $L_{1}$ and $L_{4}$ ), or $\left[2 . \mathrm{Co}_{1}\right]_{24},\left[2 . J_{2} \stackrel{2}{\square} \mathrm{SL}_{2}(5)\right]_{24}$, or $\left[ \pm 3 . \mathrm{PGL}_{2}(9) \stackrel{2}{\boxtimes}\right.$ $\left.D_{10}\right]_{24}$ (on $L_{2}$ and $L_{3}$ ).

Lemma 6.5. Let $G$ be an r.i.m.f. group of degree 24 containing a subgroup $U$ conjugate to $C_{20} \otimes$ Alt $_{5}$. Assume that the prime divisors of $|G|$ lie in the set $\{2,3,5,7\}$, or that there is a lattice $(L, F) \in$ $\mathcal{Z}(G) \times \mathcal{F}_{>0}(G)$ with $F$ integral on $L$, such that the prime divisors of $\operatorname{det}(F, L)$ lie in $\{2,3,5,7\}$. Then $G$ is one of these five r.i.m.f. groups: $\left[2 . \mathrm{Co}_{1}\right]_{24}$, $\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\stackrel{2}{5}} \mathrm{Alt}_{5}\right]_{24,2},\left[2 . J_{2} \square_{\square}^{2} \mathrm{SL}_{2}(5)\right]_{24}$, $\left[ \pm D_{10} \underset{\sqrt{5}}{\stackrel{2}{\sqrt{5}}} \mathrm{Alt}_{5}\right]_{12}^{2}$, or $\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\sqrt{5}} \mathrm{Alt}_{5}\right]_{24,1}$.
Proof. Similar to the proof of Lemma 6.4.
Proposition 6.6. Let $G \leq \mathrm{GL}_{24}(\mathbb{Q})$ be a primitive r.i.m.f. group with $O_{5}(G)>1$. Then $O_{5}(G)=C_{5}$ and $G$ is conjugate to either $A_{2} \otimes\left[ \pm D_{10} \stackrel{2}{\sqrt{5}} \mathrm{Alt}_{5}\right]_{12}$ or $\left[ \pm 3 . \mathrm{PGL}_{2}(9) \underset{\sqrt{5}}{\underset{\wedge}{2}} D_{10}\right]_{24}$.

Proof. Let $G \leq \mathrm{GL}_{24}(\mathbb{Q})$ be a primitive r.i.m.f. group with $O_{5}(G)>1$. Theorem 6.1 implies that $O_{5}(G) \cong C_{5}$. Moreover the centralizer $C_{G}\left(O_{5}(G)\right)$ embeds in $\mathrm{GL}_{6}\left(\mathbb{Q}\left[\zeta_{5}\right]\right)$.

Because of Proposition 6.3 one has $O_{7}(G)=1$. Hence $O_{p}(G)=1$ for all primes $p>5$.

Assume first that $O_{3}(G)>1$. Then Theorem 6.1 implies that $O_{3}(G) \cong C_{3}, C_{9}$, or $3_{+}^{1+2}$.

In the second case $G$ contains an irreducible selfcentralizing normal subgroup $\cong C_{90}$, and Table 2 then shows that $O_{5}(G)=1$.

In the third case $G$ has a normal subgroup

$$
\mathcal{B}^{o}\left(O_{5}(G) \otimes O_{3}(G)\right) \cong \pm C_{5} \otimes 3_{+}^{1+2}: \mathrm{SL}_{2}(3)
$$

Hence $G$ contains an irreducible subgroup $\cong C_{90}$. Since the prime divisors of $|G|$ are 2,3 , and 5 , Table 2 then shows that $O_{5}(G)=1$.

Now assume $O_{3}(G) \cong C_{3}$. Since

$$
C:=C_{G}\left(O_{3}(G) \times O_{5}(G)\right)
$$

embeds in $\mathrm{GL}_{3}\left(\mathbb{Q}\left[\zeta_{15}\right]\right)$, the last term of the derived series $C^{(\infty)}$ of $C$ is one of $1, \mathrm{Alt}_{5}$, or 3 . $\mathrm{Alt}_{6}$ (see Table 4). Furthermore $G / C$ is isomorphic to a subgroups of $\operatorname{Aut}\left(C_{15}\right)=C_{4} \times C_{2}$.

In the first case $C$ is soluble, hence equal to $\cong$ $C_{30}$, and its irreducible constituents are of degree 8. Since $G / C$ is a 2 -group, $G$ is reducible.

In the other two cases, $G$ contains a subgroup $U$ conjugate to $C_{15} \underset{\sqrt{5}}{\otimes \mathrm{Alt}_{5} \text {. Hence Lemma } 6.4 \text { implies }}$ that $G$ is conjugate to $A_{2} \otimes\left[ \pm D_{10} \underset{\sqrt{5}}{\stackrel{\otimes}{5}} \mathrm{Alt}_{5}\right]_{12}$ or $[ \pm 3$. $\left.\mathrm{PGL}_{2}(9) \underset{\sqrt{5}}{\underset{5}{5}} D_{10}\right]_{24}$.

Now let $O_{3}(G)=1$. Then, by Theorem 6.1, $O_{2}(G)$ is isomorphic to $C_{2}, C_{4}, D_{8}$, or $Q_{8}$. In all cases the centralizer $C:=C_{G}\left(O_{2}(G) \times O_{5}(G)\right)$ is not soluble, because otherwise $G$ contains a selfcentralizing normal subgroup $B:=\mathcal{B}^{\circ}\left(O_{2}(G)\right) \times$ $O_{5}(G)$ conjugate to $C_{10}, C_{20}, C_{5} \otimes D_{8}$, or $C_{5} \underset{\sqrt{5}}{\otimes}$ $\mathrm{SL}_{2}(3)$. The irreducible constituents of $B$ are of degree 4 or 8 over $\mathbb{Q}$. Since $B$ is of 2 -power index in $G$ this implies that $G$ is reducible.

If $O_{2}(G) \neq C_{2}$, then $C$ embeds in $\mathrm{GL}_{3}\left(\mathbb{Q}\left[\zeta_{20}\right]\right)$ or $\mathrm{GL}_{3}\left(\mathbb{Q}\left[\zeta_{5}\right]\right)$, and $G$ contains a subgroup $C_{20} \otimes \mathrm{Alt}_{5}$, contradicting Lemma 6.5.

Hence $O_{2}(G)= \pm 1 \cong C_{2}$ and

$$
C:=C_{G}\left(O_{5}(G)\right) \hookrightarrow \mathrm{GL}_{6}\left(\mathbb{Q}\left[\zeta_{5}\right]\right)
$$

is a normal subgroup of index 1,2 , or 4 in $G$. Table 4 implies that $C^{(\infty)}$ is one of the matrix groups $\mathrm{Alt}_{5}, \mathrm{SL}_{2}(5)$ (2 groups), $\mathrm{Alt}_{5} \underset{\sqrt{5}}{\otimes} \mathrm{SL}_{2}(5), L_{2}(7)$ (2 groups), $\mathrm{Alt}_{7}, U_{3}(3), U_{4}(2)$, or $2 . J_{2}$. We take the cases separately.

Assume first $C^{(\infty)} \cong \mathrm{Alt}_{5}$. Then $N:= \pm O_{5}(G) \times$ $C^{(\infty)}$ is reducible. The outer automorphism group of $N$ is isomorphic to $C_{4} \times C_{2}$. Since $G$ is primitive, $N$ is of index 4 or 8 in $G$. In particular, there is an element $x \in G$ (of order 2 or 4) centralizing $C^{(\infty)}$ and inducing the automorphism of order 2 on $O_{5}(G)$.

If $x$ is of order 2, the group $\langle N, x\rangle \sim \pm \mathrm{Alt}_{5} \otimes$ $D_{10}$ is still reducible. Hence $G: N=8$ and $U:=$ $\pm \mathrm{Alt}_{5} \otimes\left(C_{5}: C_{4}\right)$ is an irreducible normal subgroup of index 2 in $G$. The Bravais group of a normal critical $\mathbb{Z} U$-lattice is conjugate to $\left( \pm \mathrm{Alt}_{5} \otimes D_{\sqrt{5}}\right)\left\langle C_{2}\right.$ contradicting the primitivity of $G$.

Hence $x$ is of order 4 and $G$ contains an irreducible subgroup $U:=\langle N, x\rangle \sim \operatorname{Alt}_{5} \otimes{ }_{\sqrt{5}} Q_{20}$. Using Theorem 2.1 one gets a contradiction to $C^{(\infty)} \cong \mathrm{Alt}_{5}$.
Now assume that $C^{(\infty)}$ is conjugate to $\mathrm{SL}_{2}(5)$, where the restriction of the natural character of $G$ to $C^{(\infty)}$ is $6\left(\chi_{2 a}+\chi_{2 b}\right)$. Then $G$ contains the reducible normal subgroup $N:=O_{5}(G) \times C^{(\infty)}$ with index a 2 -power. Since the irreducible constituents of $N$ are of degree $8, G$ is reducible.

If instead $C^{(\infty)}$ is conjugate to $\mathrm{SL}_{2}(5)$, where the restriction of the natural character of $G$ to $C^{(\infty)}$ is $4 \chi_{6}$, then $N:=O_{5}(G) \times C^{(\infty)}$ is an irreducible normal subgroup of $G$. The Bravais group of $N$ of a normal critical lattice is conjugate to $\mathrm{Alt}_{5} \underset{\sqrt{5}}{ }$ $\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2$, contradicting the fact that $C^{(\infty)} \cong \mathrm{SL}_{2}(5)$.

If $C^{(\infty)}$ is conjugate to $\mathrm{Alt}_{5} \underset{\sqrt{5}}{\otimes} \mathrm{SL}_{2}(5)$ or $2 . J_{2}$, then $G^{(\infty)}$ is irreducible and Proposition 5.2 or 5.1 yield a contradiction to $O_{5}(G)=C_{5}$.

If $C^{(\infty)}=U_{4}(2)$, then $N:=O_{5}(G) \times C^{(\infty)}$ is already irreducible with commuting algebra

$$
C_{\mathbb{Q}^{24 \times 24}}(N) \cong \mathbb{Q}\left[\zeta_{5}\right] .
$$

Using the 2-parameter argument one finds that $G$ is a proper subgroup of $A_{4} \otimes E_{6}$.
In the remaining cases $G$ contains an irreducible subgroup $\cong C_{70}$. Since $2,3,5$, and 7 are the only prime divisors of $|G|$, one gets a contradiction with Table 2.

Case $\mathrm{O}_{3}(\mathrm{G}) \neq 1, \mathrm{O}_{13}(\mathrm{G})=\mathrm{O}_{7}(\mathrm{G})=\mathrm{O}_{5}(\mathrm{G})=1$
Proposition 6.7. All primitive r.i.m.f. groups $G \leq$ $\mathrm{GL}_{24}(\mathbb{Q})$ satisfy $O_{3}(G) \neq C_{9}$.

Proof. Let $G$ be an r.i.m.f. group of degree 24 with $O_{3}(G)=C_{9}$. Because of Proposition 6.6 one has $O_{p}(G)=1$ for all primes $p>3$. Since the centralizer $C:=C_{G}\left(O_{3}(G)\right)$ embeds in $\mathrm{GL}_{4}\left(\mathbb{Q}\left[\zeta_{9}\right]\right)$, the possibilities for $C^{(\infty)}$ are $1, \mathrm{Alt}_{5}, \mathrm{SL}_{2}(5), \mathrm{SL}_{2}(9)$, or $\mathrm{Sp}_{4}(3)$ (see Table 4).
In all cases where $C^{(\infty)} \neq 1$, the group $G$ contains an irreducible subgroup $\cong C_{90}$. Since 2,3 , and 5
are the only prime divisors of $|G|$, the assumption $O_{3}(G) \cong C_{9}$ contradicts Table 2.
If $C^{(\infty)}=1$ then $G$ is soluble and the possibilities for $O_{2}(G)$ are $C_{2}, C_{4}, D_{8}, Q_{8}, C_{8}, D_{16}, Q_{16}, Q D_{16}$, $Q_{8} \bigcirc C_{4}, Q_{8} \bigcirc Q_{8}$, and $D_{8} \otimes Q_{8}$.

In the last seven cases the normal subgroup

$$
\mathcal{B}^{\circ}\left(O_{2}(G)\right) \times O_{3}(G) \unlhd G
$$

contains an irreducible subgroup $\cong C_{72}$ (or $\cong C_{90}$ in the last case). Since the prime divisors of $|G|$ are 2 and 3 (also 5 in the last case) one gets a contradiction to Table 2.

If $O_{2}(G)$ is isomorphic to $C_{2}, C_{4}$, or $D_{8}$, then $\operatorname{Aut}\left(O_{2}(G)\right)$ is a 2-group. Therefore $G$ contains the reducible normal subgroup $O_{2}(G) \times O_{3}(G)$ of index 2 and hence is imprimitive.

Finally assume that $O_{2}(G) \cong Q_{8}$. Then $B:=$ $\mathcal{B}^{\circ}\left(O_{2}(G)\right) \underset{\sqrt{-3}}{\otimes} C_{9} \unlhd G$ is a reducible normal subgroup of $G$. The factor group $G / B$ is isomorphic to a subgroup of $\operatorname{Out}(B) \cong C_{2} \times S_{3}$. Since $O_{3}(G) \cong C_{9}$ and $O_{3}(G / B)$ centralizes the normal subgroup $\mathcal{B}^{\circ}\left(O_{2}(G)\right)$ it follows that $3 \nmid[G: B]$. Hence the primitivity of $G$ implies that $G / B \cong$ $C_{2} \times C_{2}$. Therefore $C_{G}\left(O_{3}(G)\right)$ is isomorphic to one of $\mathrm{GL}_{2}(3) \times C_{9}$ or $\tilde{S}_{4} \times C_{9}$. In particular $G$ contains an irreducible subgroup $\cong C_{72}$. Since 2 and 3 are the only prime divisors of $|G|$, one gets a contradiction to Table 2.

Proposition 6.8. Let $G \leq \mathrm{GL}_{24}(\mathbb{Q})$ be a primitive r.i.m.f. group with $O_{3}(G) \cong 3_{+}^{1+2}$. Then $G$ is either $\left[\mathrm{Sp}_{4}(3) \underset{\sqrt{-3}}{\stackrel{2}{V}}\left(3_{+}^{1+2}: \mathrm{SL}_{2}(3)\right)\right]_{24}$ or $\left[\mathrm{SL}_{2}(5) \underset{\infty, 3}{\underset{\infty}{\otimes}}\left( \pm 3_{+}^{1+2}\right)\right.$. $\left.\mathrm{GL}_{2}(3)\right]_{24}$.

Proof. Let $G$ be an r.i.m.f. group of degree 24 with $O_{3}(G)=3_{+}^{1+2}$. Since $\mathcal{B}^{\circ}\left(O_{3}(G)\right)=3_{+}^{1+2}: \mathrm{SL}_{2}(3) \unlhd G$ contains a subgroup $\cong C_{9}$, the same arguments as in the proof of Proposition 6.7 show that $G$ is conjugate to one of the two desired groups.

Lemma 6.9. Let $G$ be a primitive r.i.m.f. group of degree 24 with $O_{3}(G)=C_{3}$. Then $O_{2}(G)$ is one of $C_{2}, C_{4}, D_{8}$, or $Q_{8}$.

Proof. Let $G$ be a primitive r.i.m.f. group of degree 24 with $O_{3}(G)=C_{3}$. The centralizer $C:=$ $C_{G}\left(O_{3}(G)\right)$ embeds in $\mathrm{GL}_{12}\left(\mathbb{Q}\left[\zeta_{3}\right]\right)$ and is a normal subgroup of index $\leq 2$ in $G$. The primitivity of $G$ implies that $C$ is irreducible. According to Theorem 6.1, the possibilities for $O_{2}(G)=O_{2}(C)$ are $C_{2}, C_{4}, D_{8}, Q_{8}, C_{8}, D_{16}, Q D_{16}, Q_{8} \bigcirc C_{4}, Q_{8} \bigcirc Q_{8}$, $Q_{16}$, or $D_{8} \otimes Q_{8}$.

Let $B:=\mathcal{B}^{\circ}\left(O_{2}(G)\right) \times O_{3}(G)$. If $O_{2}(G)$ is not conjugate to one of the four groups of the lemma, $N:=C_{G}(B)$ embeds in $\mathrm{GL}_{3}\left(\mathbb{Q}\left[\sqrt{-3}, \zeta_{8}\right]\right)$. In particular, $N$ is soluble and $O_{p}(N)=1$ for all primes $p>3$. Hence $N \leq B$ and $B$ is a normal subgroup of 2 -power index in $G$. Since 3 does not divide the degrees of the irreducible constituents of the natural representation of $B$, this implies that $G$ is reducible.

Using the 2-parameter argument one gets the following two lemmas:

Lemma 6.10. Let $G \leq \mathrm{GL}_{24}(\mathbb{Q})$ be an r.i.m.f. group. If $G$ contains a subgroup conjugate to $\mathrm{SL}_{2}(5): 2 \otimes$ $C_{3}$, then $G$ is one of these three groups: [( $\mathrm{SL}_{2}(5) \bigcirc$ $\left.\left.\mathrm{SL}_{2}(5)\right): 2 \stackrel{2}{\otimes} \mathrm{Alt}_{5}\right]_{24,1},\left[\mathrm{SL}_{2}(5){ }^{2(2)} \mathrm{SL}_{2}(3)\right]_{12}^{2}$, or $A_{2} \otimes$ $\left[\mathrm{SL}_{2}(5)^{2(2)} \mathrm{SL}_{2}(3)\right]_{12}$.

Lemma 6.11. Let $G \leq \mathrm{GL}_{24}(\mathbb{Q})$ be an r.i.m.f. group. If $G$ contains a subgroup conjugate to $\mathrm{SL}_{2}(5) .2 \otimes C_{3}$ (nonsplit extension), then $G$ is one of these five groups: $\left[2 . \mathrm{Co}_{1}\right]_{24},\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\stackrel{2}{\otimes}} \mathrm{Alt}_{5}\right]_{24,2}$, $\left[6 . \mathrm{Alt}_{7}: 2\right]_{24},\left[\mathrm{SL}_{2}(5)^{2(2)} \mathrm{SL}_{2}(3)\right]_{12}^{2}$, or $\left[\mathrm{SL}_{2}(5){ }_{\infty, 2}^{2(2)} 2_{-}^{1+4^{\prime}} . \mathrm{Alt}_{5}\right]_{24}$.

Proposition 6.12. Let $G$ be a primitive r.i.m.f. group of degree 24 with $O_{3}(G) \cong C_{3}$ and $O_{2}(G)> \pm 1$. The possibilities for $G$ are $\left[6 . U_{4}(3) .2 \underset{\sqrt{-3}}{\stackrel{2}{\otimes}} \mathrm{SL}_{2}(3)\right]_{24}$, $\left[( \pm 3) . \mathrm{PGL}_{2}(9)^{2(2)} \mathrm{SL}_{2}(3)\right]_{24},\left[3 . S_{6}{ }^{2(2)} D_{8}\right]_{24}$, $\left[6 . L_{3}(4) .2^{2(2)} D_{8}\right]_{24},\left[3 . M_{10} \underset{\sqrt{-3}}{\stackrel{2}{\otimes}} \mathrm{SL}_{2}(3)\right]_{24}$,
$A_{2} \otimes\left[\mathrm{SL}_{2}(5)^{2(2)} \mathrm{SL}_{2}(3)\right]_{12},\left[\mathrm{Alt}_{5} \stackrel{2}{\otimes}\left(C_{3} \stackrel{2(2)}{\boxtimes} D_{8}\right)\right]_{24}$,
$\left[3 . M_{10} \stackrel{2(2)}{\otimes} D_{8}\right]_{24}, A_{2} \otimes\left[L_{2}(7)^{2(2)} \otimes D_{8}\right]_{12}$, or $A_{2} \otimes\left[L_{2}(7) \stackrel{2(2)}{\otimes} D_{8}\right]_{12}$.

Proof. Because of Proposition 6.2 and 6.3 we have $O_{p}(G)=1$ for all primes $p>3$. Lemma 6.9 implies that $O_{2}(G)$ is one of the three groups $C_{4}, D_{8}$, or $Q_{8}$. Let $N:=O_{2}(G) \times O_{3}(G)$. As in the proof of Lemma 6.9 one gets that $C:=C_{G}(N)$ is not soluble. Hence $C^{(\infty)}$ is one of $\mathrm{Alt}_{5}, \mathrm{SL}_{2}(5), L_{2}(7)$ (2 matrix groups), $3 . \mathrm{Alt}_{6}$ ( 2 matrix groups), $\mathrm{Alt}_{7}$, $3 . \mathrm{Alt}_{7}, U_{3}(3), 6 . L_{3}(4), U_{4}(2)$, or $6 . U_{4}(3)$ (see Table 4).

If $C^{(\infty)}$ is isomorphic to one of $L_{2}(7), \mathrm{Alt}_{7}, 3$. $\mathrm{Alt}_{7}, U_{3}(3), 6 . L_{3}(4)$, or $6 . U_{4}(3)$, the group $G$ contains an irreducible subgroup $\cong C_{84}$. Since all primes dividing $|G|$ are $\leq 7$, Table 2 implies that $G$ is conjugate to one of $\left[6 . U_{4}(3) .2 \underset{\sqrt{-3}}{\stackrel{2}{\otimes}} \mathrm{SL}_{2}(3)\right]_{24}$, $\left[6 . L_{3}(4) .2^{2(2)} D_{8}\right]_{24}, A_{2} \otimes\left[L_{2}(7) \stackrel{2(2)}{\otimes} D_{8}\right]_{12}$, or $A_{2} \otimes$ $\left[L_{2}(7) \stackrel{2(2)}{\boxtimes} D_{8}\right]_{12}$.

Now assume that $C^{(\infty)} \cong \mathrm{Alt}_{5}$. If $O_{2}(G) \cong$ $C_{4}$ or $D_{8}$, then $G$ contains an irreducible normal subgroup conjugate to $\mathrm{Alt}_{5} \otimes C_{12}$. Using the 4 parameter argument one finds that $G$ is conjugate to $\left[\operatorname{Alt}_{5} \underset{\sqrt{5}}{\underset{2}{2}}\left(C_{3} \stackrel{2(2)}{\otimes} D_{8}\right)\right]_{24}$. If $O_{2}(G) \cong Q_{8}$, then $G$ contains an irreducible normal subgroup conjugate to $\mathrm{Alt}_{5} \otimes \mathrm{SL}_{2}(3) \bigcirc C_{3}$. The Bravais group of a normal critical lattice is conjugate to $F_{4} \otimes \mathrm{Alt}_{5}$ contradicting $O_{3}(G)>1$.

Now let $C^{(\infty)} \cong \mathrm{SL}_{2}(5)$. If $O_{2}(G) \cong C_{4}$, or $D_{8}$, then $G$ contains an irreducible normal subgroup conjugate to $\mathrm{SL}_{2}(5) \underset{\sqrt{-1}}{\otimes} C_{12}$. The Bravais group of a normal critical lattice is conjugate to $2^{10}$. $\mathrm{Alt}_{6} \cdot 2^{2} \stackrel{2}{\otimes}$ $C_{12}$, contradicting the primitivity of $G$. If, on the other hand, $O_{2}(G) \cong Q_{8}$, then $G$ contains a uniform normal subgroup conjugate to $\mathrm{SL}_{2}(5) \bigotimes_{\sqrt{-3}} \mathrm{SL}_{2}(3) \bigcirc$ $C_{3}$. In this case one finds that $G$ is conjugate to $A_{2} \otimes\left[\mathrm{SL}_{2}(5) \stackrel{2(2)}{\bigcirc} \mathrm{SL}_{2}(3)\right]_{12}$

Next assume that $C^{(\infty)} \cong 3$. $\mathrm{Alt}_{6}$, where the natural character of $C^{(\infty)}$ is $2\left(\chi_{3 a}+\chi_{3 a}^{\prime}+\chi_{3 b}+\chi_{3 b}^{\prime}\right)$. Then $G$ contains a subgroup $3 . \mathrm{Alt}_{6} \otimes C_{4}$. An application of the 4 -parameter argument yields the
conclusion that $G$ is one of $\left[3 . M_{10} \underset{\sqrt{-3}}{\frac{2}{\otimes}} \mathrm{SL}_{2}(3)\right]_{24}$ or $\left[3 . M_{10}{ }^{2(2)} D_{8}\right]_{24}$.

Assume instead that $C^{(\infty)} \cong 3 . \mathrm{Alt}_{6}$, where the natural character of $C^{(\infty)}$ is $2\left(\chi_{6}+\chi_{6}^{\prime}\right)$. If $O_{2}(G) \cong$ $C_{4}$ or $D_{8}$, then $G$ has an irreducible normal subgroup 3 . $\mathrm{Alt}_{6} \otimes C_{4}$. With the 2-parameter argument one finds that $G$ is conjugate to $\left[3 . S_{6}{ }^{2(2)} D_{8}\right]_{24}$. If $O_{2}(G) \cong Q_{8}$, then $G$ has a uniform normal subgroup $3 . \mathrm{Alt}_{6} \otimes_{\sqrt{-3}} \mathrm{SL}_{2}(3)$. One finds that $G$ is conjugate to $\left[( \pm 3) . \mathrm{PGL}_{2}(9)^{2(2)} \mathrm{SL}_{2}(3)\right]_{24}$.

Finally assume that $C^{(\infty)} \cong U_{4}(2)$. If $O_{2}(G) \cong C_{4}$ or $D_{8}$, then $G$ has an irreducible normal subgroup $U_{4}(2) \otimes C_{12}$. The Bravais group of a normal critical lattice is $6 . U_{4}(3) .2 \stackrel{2}{\square} C_{4}$ contradicting $C^{(\infty)} \cong$ $U_{4}(2)$. If $O_{2}(G) \cong Q_{8}$, then $G$ has a uniform normal subgroup $U_{4}(2) \otimes \mathrm{SL}_{2}(3) \bigcirc C_{3}$, whose r.i.m.f. supergroups are $E_{6} \otimes F_{4}$ and $\left[6 . U_{4}(3) .2 \underset{\sqrt{-3}}{\underset{\Sigma}{2}} \mathrm{SL}_{2}(3)\right]_{24}$, a contradiction with either $O_{3}(G) \cong C_{3}$ or $C^{(\infty)} \cong$ $U_{4}(2)$.

Proposition 6.13. If $G \leq \mathrm{GL}_{24}(\mathbb{Q})$ is a primitive r.i.m.f. group with $O_{3}(G) \cong C_{3}$ and $O_{2}(G)= \pm 1$, then $G$ is conjugate to one of these six groups: [6. $\left.\mathrm{Alt}_{7}: 2\right]_{24},\left[ \pm 3 . \mathrm{PGL}_{2}(9) \underset{\sqrt{5}}{\stackrel{2}{\boxtimes}} D_{10}\right], A_{2} \otimes\left[ \pm D_{10} \stackrel{2}{\sqrt{5}} \mathrm{Alt}_{5}\right]_{12}$, $\left[\left( \pm L_{3}(3)\right) .2 \stackrel{2}{\square} C_{3}\right]_{24}, A_{2} \otimes A_{12}$, or $\left[\left( \pm D_{78}\right) . C_{12}\right]_{24}$.

Proof. If $O_{13}(G)>1$, Proposition 6.2 implies that $G$ is conjugate to $\left[\left( \pm D_{78}\right) \cdot C_{12}\right]_{24}$. Because of Proposition 6.3 one has $O_{7}(G)=1$. If $O_{5}(G)>1$, Proposition 6.6 implies that $G$ is conjugate to either $[ \pm 3$. $\left.\mathrm{PGL}_{2}(9) \underset{\sqrt{5}}{\stackrel{2}{\otimes}} D_{10}\right]$ or $A_{2} \otimes\left[ \pm D_{10} \underset{\sqrt{5}}{\stackrel{2}{\otimes}} \mathrm{Alt}_{5}\right]_{12}$. Assume for the rest of the proof that $O_{p}(G)=1$ for all primes $p>3$. The centralizer $C:=C_{G}\left(O_{3}(G)\right)$ embeds in $\mathrm{GL}_{12}\left(\mathbb{Q}\left[\zeta_{3}\right]\right)$ and, being a normal subgroup of index $\leq 2$ in $G$, it is an irreducible subgroup of $\mathrm{GL}_{24}(\mathbb{Q})$. The last term of the derived series $C^{(\infty)}$ is a central product of quasisimple groups with center $\leq C_{6}$. Let $\Delta$ denote the natural representation of $G$. The primitivity of $G$ implies that $\left.\Delta\right|_{C(\infty)}=k \cdot \Gamma$ for some rational irreducible representation $\Gamma: C^{(\infty)} \rightarrow \mathrm{GL}_{d}(\mathbb{Q})$ with $d=24 / k$.

Since all subgroups of $\mathrm{GL}_{3}(\mathbb{Q})$ are soluble, $d>3$.
If $d=4$, then $C^{(\infty)}$ is conjugate to $\mathrm{Alt}_{5}$ and $C$ is reducible.

If $d=6$, the possibilities for $C^{(\infty)}$ are $\mathrm{Alt}_{5}, L_{2}(7)$ ( 2 matrix groups), $\mathrm{Alt}_{7}$, or $U_{4}(2)$.

In all cases the index of $N:=\mathcal{B}^{\circ}\left(C^{(\infty)}\right) \otimes O_{3}(G)$ divides the order of $\operatorname{Out}\left(C^{(\infty)} O_{3}(G)\right)$, which divides 4 . Hence $G: N=4$, and all proper supergroups of $N$ (in particular $C$ ) are irreducible. Since $C^{(\infty)} \otimes S_{3}$ is reducible, $G$ contains the irreducible normal subgroup

$$
M:=C^{(\infty)} C_{G}\left(C^{(\infty)}\right) \cong C^{(\infty)} \times \tilde{S}_{3}
$$

of index 2 .
If $C^{(\infty)} \cong \mathrm{Alt}_{5}$, then $C \cong\left( \pm \mathrm{Alt}_{5}\right) .2 \times C_{3}$ is reducible and hence $G$ is imprimitive.

Now assume $C^{(\infty)} \cong L_{2}(7)$, where the natural character of $C^{(\infty)}$ is $4\left(\chi_{3 a}+\chi_{3 b}\right)$. Since $\mathbb{Q}[\sqrt{-7}]$ splits the quaternion algebra $Q_{\infty, 3}$ the group $M$ is reducible and hence $G$ is imprimitive.

If $C^{(\infty)} \cong L_{2}(7)$, where the natural character of $C^{(\infty)}$ is $4 \chi_{6}$, then $M$ is conjugate to $L_{2}(7) \otimes \tilde{S}_{3}$ and already uniform. One finds that the r.i.m.f. supergroups are $\left[6 . U_{4}(3) .2^{2}\right]_{12}^{2},\left(A_{2} \otimes A_{6}\right)^{2}$, and $A_{2} \otimes\left[L_{2}(7)^{2(2)} D_{8}\right]_{12}$, contradicting $O_{2}(G) O_{3}(G)=$ $C_{6}$.

In the last two cases, $C^{(\infty)} \cong \mathrm{Alt}_{7}$ or $U_{4}(2)$, we get $N \cong \pm S_{7} \times C_{3}$ or $N \cong \pm U_{4}(2): 2 \times C_{3}$, respectively, so $N$ is reducible and $G$ is imprimitive.

Now consider the case $d=8$. Table 4 implies that $C^{(\infty)}$ is conjugate to one of $\mathrm{SL}_{2}(5), \mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)$, $\mathrm{SL}_{2}(9)$, or $\mathrm{Sp}_{4}(3)$. In all cases $\mathrm{Out}\left(O_{3}(G) \times C^{(\infty)}\right)$ is a 2 -group, and therefore $G$ is reducible.

If $d=12$, Table 4 implies that the possibilities for $C^{(\infty)}$ are $\mathrm{SL}_{2}(5), 3 . \mathrm{Alt}_{6}$ (2 matrix groups), $\mathrm{SL}_{2}(11), L_{3}(3), U_{3}(3), 6 . L_{3}(4), 2 . M_{12}, 6 . U_{4}(3)$, or $\mathrm{Alt}_{13}$.

If $C^{(\infty)} \cong \mathrm{SL}_{2}(5)$, then $C$ is conjugate to either $\mathrm{SL}_{2}(5): 2 \otimes C_{3}$ or $\mathrm{SL}_{2}(5) .2 \otimes C_{3}$. Using Lemma 6.10 or 6.11 , respectively, we obtain a contradiction with $C^{(\infty)} \cong \mathrm{SL}_{2}(5)$.

If $C^{(\infty)} \cong 3 . \mathrm{Alt}_{6}$ then $C^{(\infty)}=O_{3}(G) C^{(\infty)}$ and $G / \pm C^{(\infty)}$ is isomorphic to a subgroup of the group
$\operatorname{Out}\left(C^{(\infty)}\right) \cong C_{2} \times C_{2}$. If the natural character of $C^{(\infty)}$ is $2\left(\chi_{3 a}+\chi_{3 a}^{\prime}+\chi_{3 b}+\chi_{3 b}^{\prime}\right)$, then $C^{(\infty)}$ is reducible and the primitivity of $G$ implies that $G /\left( \pm C^{(\infty)}\right)$ is isomorphic to $C_{2} \times C_{2}$. In particular $G$ contains one of the isoclinic groups $\pm\left(3 . S_{6}\right)$ or $\pm 3 . S_{6}$ of index 2 . Since both groups are reducible this contradicts the primitivity of $G$.

If the natural character of $C^{(\infty)}$ is $2\left(\chi_{6}+\chi_{6}^{\prime}\right)$, then again $C^{(\infty)}$ is reducible and as above $G$ contains one of the isoclinic groups $\pm\left(3 . S_{6}\right)$ or $\pm 3 . S_{6}$ of index 2. Since the split extension $\pm\left(3 . S_{6}\right)$ is reducible, $G$ contains the uniform group $U:= \pm 3 . S_{6}$. The only primitive r.i.m.f. supergroup of $U$ is [3. $\left.S_{6}{ }^{2(2)} D_{8}\right]_{24}$, contradicting $O_{2}(G)= \pm 1$.

Now assume that $C^{(\infty)} \cong \mathrm{SL}_{2}(11)$. Then $N:=$ $C^{(\infty)} O_{3}(G)=\mathrm{SL}_{2}(11) \otimes C_{3}$ is an irreducible normal subgroup of $G$. Using the 2-parameter argument one gets that the r.i.m.f. supergroups of $N$ are conjugate to $\left[2 . \mathrm{Co}_{1}\right]_{24}, A_{2}^{12}$, or $\left[\mathrm{SL}_{2}(11) \stackrel{2(2)}{\sqrt{D}-11} \mathrm{SL}_{2}(3)\right]_{24}$, contradicting $O_{3}(G) \cong C_{3}$.

If $C^{(\infty)} \cong L_{3}(3)$, then $C^{(\infty)} \otimes C_{3}$ is already uniform and its r.i.m.f. supergroups are conjugate to $\left[2 . \mathrm{Co}_{1}\right]_{24}, A_{2} \otimes A_{12}$, or $\left[\left( \pm L_{3}(3)\right) .2 \square_{\square}^{2} C_{3}\right]_{24}$. Hence $G$ is conjugate to $\left[\left( \pm L_{3}(3)\right) .2 \square_{\square}^{2} C_{3}\right]_{24}$ in this case.

In the case $C^{(\infty)} \cong U_{3}(3)$ the group $C$ has to be isomorphic to the nonsplit extension $\left( \pm U_{3}(3)\right)$. $2 \times C_{3}$, because the split extension $U_{3}(3): 2 \times C_{6}$ is reducible. Using the 2-parameter argument one finds that the r.i.m.f. supergroups of $C$ are conjugate to $\left[2 . \mathrm{Co}_{1}\right]_{24},\left[6 . U_{4}(3) .2^{2}\right]_{12}^{2},\left[\left(\mathrm{SL}_{2}(3) \bigcirc C_{4}\right)\right.$. $\left.2 \underset{\sqrt{-1}}{\stackrel{2(3)}{\otimes}} U_{3}(3)\right]_{24}$, or $\left[6 . U_{4}(3) \cdot 2 \underset{\sqrt{-3}}{\underset{2}{2}} \mathrm{SL}_{2}(3)\right]_{24}$, which is a contradiction.

Next assume that $C^{(\infty)} \cong 6 . L_{3}(4)$. Then $C^{(\infty)}=$ $C^{(\infty)} O_{3}(G)$ is reducible and $G / C^{(\infty)} \cong C_{2} \times C_{2}$. Hence $G$ contains one of the isoclinic groups $U_{1}:=$ 6. $L_{3}(4): 2_{2}$ or $U_{2}:=6 . L_{3}(4) .2_{2}$ (nonsplit extension). Since the commuting algebra of $U_{1}$ is isomorphic to $Q_{\infty, 3}$ the group $U_{1}$ is uniform. The $\mathbb{Z} U_{1}$-lattices having a maximal order as endomorphism ring, they are imprimitive, whereas the automorphism groups of the other $\mathbb{Z} U_{1}$-lattices are conjugate to $\left[6 . L_{3}(4) \cdot 2^{2(2)} D_{8}\right]_{24}$-a contradiction.

The group $U_{2}$ is reducible and hence $G$ is imprimitive in this case.

If $C^{(\infty)} \cong 2 \cdot M_{12}$, then $G$ contains a uniform normal subgroup isomorphic to $2 . M_{12} \times C_{3}$ whose r.i.m.f. supergroups are $\left[2 . \mathrm{Co}_{1}\right]_{24}$ and $A_{2}^{12}$.

If $C^{(\infty)} \cong 6 . U_{4}(3)$, then $O_{3}(G) C^{(\infty)}=C^{(\infty)}$ is reducible and therefore $G / C^{(\infty)} \cong C_{2} \times C_{2}$. In particular $G$ contains one of the isoclinic groups 6 . $U_{4}(3): 2_{1}$ or $6 . U_{4}(3) .2_{1}$ (nonsplit extension). Since the first group contains the group $U_{1}$ of the case $C^{(\infty)} \cong 6 . L_{3}(4)$ and the second group is reducible, one gets a contradiction to the primitivity of $G$.

If $C^{(\infty)} \cong \mathrm{Alt}_{13}$, then $\mathrm{Alt}_{13} \otimes C_{3}$ is a uniform normal subgroup of $G$ and $G$ is conjugate to $A_{2} \otimes$ $A_{12}$.

In the case $d=24$, the group $G^{(\infty)}$ is already irreducible. Using Propositions 5.1 and 5.2 one gets the statement of Proposition 6.13.

## Case $\mathrm{O}_{\mathrm{p}}(\mathrm{G})=1$ for All Odd Primes p

Lemma 6.14. If $G \leq \mathrm{GL}_{24}(\mathbb{Q})$ is a primitive r.i.m.f. group then $O_{2}(G)$ is one of $D_{8} \otimes Q_{8}, Q_{8} \bigcirc Q_{8}$, $Q_{8} \bigcirc C_{4}, C_{8}, D_{16}, Q D_{16}, Q_{16}, Q_{8}, C_{4}, D_{8}$, or $C_{2}$. Moreover, $C_{G}\left(O_{2}(G)\right) \notin O_{2}(G)$.

Proof. Set $B:=\mathcal{B}^{\circ}\left(O_{2}(G)\right)$. If $O_{2}(G)$ is conjugate to one of the other 2-groups of Table 5 , then $N:=$ $C_{G}(B)$ embeds in $\mathrm{GL}_{3}\left(Q\left[\zeta_{16}\right]\right)$. In particular $N$ is soluble and $O_{p}(N)=1$ for all odd primes $p$. Hence $N \leq B$. Since $\operatorname{Out}(B)$ is a 2 -group, $B$ is of 2-power index in $G$ and therefore $G$ is reducible. Also in the other cases, $\operatorname{Out}(B)$ is a 2-group and therefore $C_{G}\left(O_{2}(G)\right) \not \leq O_{2}(G)$.

To finish the proof of Theorem 3.1 it remains to determine those primitive r.i.m.f. groups $G$ such that $O_{2}(G)$ is one of the 11 groups listed in Lemma 6.14. The same lemma also implies that the centralizer $C_{G}\left(O_{2}(G)\right)$ contains a normal subgroup that is a central product of some of the quasisimple groups listed in Table 4. For the rest of this section, assume that $G$ is a primitive r.i.m.f. group with $O_{p}(G)=1$ for all odd primes $p$.

Proposition 6.15. If $O_{2}(G) \cong D_{8} \otimes Q_{8}$, then $G$ is conjugate to $\left[\mathrm{SL}_{2}(5)_{\infty, 2}^{2(2)} 2_{-}^{1+4^{\prime}} . \mathrm{Alt}_{5}\right]_{24}$.
Proof. The normal subgroup $B:=\mathcal{B}^{\circ}\left(O_{2}(G)\right)$ is conjugate to $2_{-}^{1+4^{\prime}}$. $\mathrm{Alt}_{5}$. The centralizer

$$
\pm 1 \neq C_{G}(B)
$$

embeds in $\mathrm{GL}_{3}\left(Q_{\infty, 2}\right)$. Table 4 implies that

$$
C_{G}(B)^{(\infty)} \cong \mathrm{SL}_{2}(5)
$$

Hence $G$ contains the uniform normal subgroup $\mathrm{SL}_{2}(5) \underset{\infty, 2}{\otimes} 2_{-}^{1+4^{\prime}} . \mathrm{Alt}_{5}$ and is conjugate to $\left[\mathrm{SL}_{2}(5)_{\infty, 2}^{2(2)}\right.$ $\left.2_{-}^{1+4^{\prime}} . \mathrm{Alt}_{5}\right]_{24}$.

Lemma 6.16. The r.i.m.f. supergroups of

$$
U:=\mathrm{Alt}_{7} \otimes C_{8}
$$

are $A_{6} \otimes F_{4}$ and $A_{6}^{4}$.
Proof. $U$ fixes four lattices up to isomorphism. The Bravais groups are conjugate to $S_{7} \otimes D_{16}$. The Lemma follows with the 2-parameter argument.

Proposition 6.17. If $O_{2}(G) \cong Q_{8} \bigcirc Q_{8}$, then $G$ is conjugate to one of $F_{4} \otimes E_{6}, F_{4} \otimes M_{6,2},\left[L_{2}(7)^{2(2)}\right.$ $\left.F_{4}\right]_{24},\left[L_{2}(7) \stackrel{2(2)}{\otimes} F_{4}\right]_{24}, F_{4} \otimes A_{6}$, or $F_{4} \otimes A_{6}^{(2)}$.

Proof. The normal subgroup $B:=\mathcal{B}^{\circ}\left(O_{2}(G)\right)$ of $G$ is conjugate to $F_{4}$. The centralizer $\pm 1 \neq C_{G}(B)=$ : $C$ embeds in $\mathrm{GL}_{6}(\mathbb{Q})$. With Table 4 one finds that $C^{(\infty)}$ is one of $\mathrm{Alt}_{5}, L_{2}(7)$ (2 matrix groups), $\mathrm{Alt}_{7}$, or $U_{4}(2)$.

If $C^{(\infty)} \cong L_{2}(7)$, then $C^{(\infty)} B$ contains an irreducible subgroup $\cong C_{56}$. Since 2,3 and 7 are the only primes dividing $|G|$, Table 2 implies that $G$ is conjugate to $\left[L_{2}(7)^{2(2)} F_{4}\right]_{24},\left[L_{2}(7) \stackrel{2(2)}{\otimes} F_{4}\right]_{24}$, or $F_{4} \otimes A_{6}^{(2)}$.

If $C^{(\infty)} \cong \mathrm{Alt}_{7}$, then $C^{(\infty)} B$ contains an irreducible subgroup $\mathrm{Alt}_{7} \otimes C_{8}$. From Lemma 6.16 one concludes that $G$ is conjugate to $F_{4} \otimes A_{6}$.

If $C^{(\infty)} \cong \mathrm{Alt}_{5}$, then $C^{(\infty)} B$ is irreducible with commuting algebra $\cong \mathbb{Q}[\sqrt{5}]$. With the 2-parameter argument one gets that $G$ is conjugate to $F_{4} \otimes M_{6,2}$.

If $C^{(\infty)} \cong U_{4}(2)$, then $C^{(\infty)} B$ is uniform and lattice sparse and hence has a unique r.i.m.f. supergroup. This is $F_{4} \otimes E_{6}$.

Proposition 6.18. If $O_{2}(G) \cong Q_{8} \bigcirc C_{4}$, then $G$ is conjugate to $\left[\left(\mathrm{SL}_{2}(3) \bigcirc C_{4}\right) \cdot 2 \underset{\sqrt{-1}}{2(3)} U_{3}(3)\right]_{24}$.

Proof. The normal subgroup $B:=\mathcal{B}^{\circ}\left(O_{2}(G)\right)$ is conjugate to $\left(\mathrm{SL}_{2}(3) \bigcirc C_{4}\right) .2$. The centralizer $\pm 1 \neq$ $C_{G}(B)=: C$ embeds in $\mathrm{GL}_{6}(\mathbb{Q}[\sqrt{-1}])$. Hence $C^{(\infty)}$ is one of $\mathrm{Alt}_{5}, \mathrm{SL}_{2}(5), L_{2}(7)$ (2 matrix groups), $\mathrm{Alt}_{7}, U_{3}(3)$, or $U_{4}(2)$.

If $C^{(\infty)} \cong L_{2}(7)$ or $U_{3}(3)$, the group $C^{(\infty)} B$ contains an irreducible subgroup $\cong C_{56}$. Since 2,3 , and 7 are the only prime divisors of $|G|$, Table 2 implies that $G$ is conjugate to $\left[\left(\mathrm{SL}_{2}(3) \bigcirc C_{4}\right) \cdot 2 \underset{\sqrt{-1}}{\stackrel{2(3)}{\triangle}}\right.$ $\left.U_{3}(3)\right]_{24}$.

If $C^{(\infty)} \cong \mathrm{Alt}_{7}$, then $C^{(\infty)} B$ contains the subgroup $\mathrm{Alt}_{7} \otimes C_{8}$ contradicting Lemma 6.16.

If $C^{(\infty)} \cong \mathrm{Alt}_{5}$, then $C^{(\infty)} B$ is already irreducible. The Bravais group $\mathcal{B}\left(C^{(\infty)} B, L\right)$ of a normal critical lattice $L$ is conjugate to $F_{4} \otimes \mathrm{Alt}_{5}$, contradicting $O_{2}(G) \cong Q_{8} \bigcirc C_{4}$.

If $C^{(\infty)} \cong \mathrm{SL}_{2}(5)$ or $\cong U_{4}(2)$, the group $C^{(\infty)} B$ is uniform and one arrives at a contradiction.

Proposition 6.19. If $O_{2}(G) \cong C_{8}, D_{16}, Q D_{16}$, or $Q_{16}$, then $G$ is conjugate to $\left[\mathrm{SL}_{2}(7) \stackrel{2}{\circ} Q_{16}\right]_{24}$.

Proof. In all cases, $G$ contains a normal subgroup $N \cong C_{8}$. The centralizer $\pm 1 \neq C_{G}(N)=: C$ embeds in $\mathrm{GL}_{6}\left(\mathbb{Q}\left[\zeta_{8}\right]\right)$. Table 4 implies that $C^{(\infty)}$ is one of $\mathrm{Alt}_{5}, \mathrm{SL}_{2}(5), L_{2}(7)$ (2 matrix groups), $\mathrm{Alt}_{7}, U_{3}(3)$, or $U_{4}(2)$.

If $C^{(\infty)} \cong L_{2}(7)$ or $U_{3}(3)$, then $C^{(\infty)} N$ contains an irreducible subgroup $\cong C_{56}$. Since the prime divisors of $|G|$ are 2,3 , and 7 , one concludes from Table 2 that $G$ is conjugate to $\left[\mathrm{SL}_{2}(7) \stackrel{2}{\bigcirc} Q_{16}\right]_{24}$.

If $C^{(\infty)} \cong \mathrm{Alt}_{7}$, then $C^{(\infty)} N$ is conjugate to $\mathrm{Alt}_{7} \otimes C_{8}$ contradicting Lemma 6.16.

If $C^{(\infty)} \cong \mathrm{Alt}_{5}$, then $C^{(\infty)} N$ is irreducible. Applying the 4 -parameter argument one gets a contradiction.

If $C^{(\infty)} \cong \mathrm{SL}_{2}(5)$, the Bravais group of $C^{(\infty)} N$ of a normal critical lattice is conjugate to $\mathrm{SL}_{2}(5)$. $C_{2} \bigcirc \tilde{S}_{4}$, contradicting the fact that $N \unlhd G$.

If $C^{(\infty)} \cong U_{4}(2)$, then $C^{(\infty)} N$ is irreducible. An application of the 2-parameter argument yields a contradiction.

Lemma 6.20. Let $U:=L_{2}(7) \otimes \mathrm{SL}_{2}(3)$, and assume that the commuting algebra of $U$ is isomorphic to $Q_{\infty, 2}$. Then the r.i.m.f. supergroups of $U$ are conjugate to $\left[2 . \mathrm{Co}_{1}\right]_{24},\left[6 . U_{4}(3) \cdot 2 \underset{\sqrt{-3}}{\stackrel{\rightharpoonup}{-3}} \mathrm{SL}_{2}(3)\right]_{24},\left[L_{2}(7)^{2(2)}\right.$ $\left.F_{4}\right]_{24}$, or $F_{4} \otimes A_{6}$.

Proof. Since $U$ is already uniform, the lemma follows by an easy inspection of the $\mathbb{Z} U$-lattices.

Proposition 6.21. If $O_{2}(G) \cong Q_{8}$, then $G$ is conjugate to $\left[\mathrm{SL}_{2}(7) \bigcirc \tilde{S}_{4}\right]_{24},\left[\mathrm{SL}_{2}(11) \underset{\sqrt{-11}}{\stackrel{2(2)}{区}} \mathrm{SL}_{2}(3)\right]_{24}$, or $\left[\mathrm{SL}_{2}(13){ }^{2(2)} \mathrm{SL}_{2}(3)\right]_{24}$.

Proof. $G$ has a normal subgroup $B:=\mathcal{B}^{\circ}\left(O_{2}(G)\right)$ conjugate to $\mathrm{SL}_{2}(3)$. Since the centralizer $\pm 1 \neq$ $C_{G}(B)=: C$ embeds in $\mathrm{GL}_{6}\left(Q_{\infty, 2}\right)$ the group $C^{(\infty)}$ is one of $\mathrm{Alt}_{5}, \mathrm{Alt}_{5} \otimes \mathrm{SL}_{2}(5), \mathrm{SL}_{2}(5), L_{2}(7)$ (2 matrix groups), $\mathrm{SL}_{2}(7), \mathrm{SL}_{2}(11), \mathrm{SL}_{2}(13), \mathrm{Alt}_{7}, U_{3}(3)$, $U_{4}(2), U_{3}(4), 2 . J_{2}$, or $2 . G_{2}(4)$ (see Table 4).

If $C^{(\infty)} \cong \operatorname{Alt}_{5} \otimes_{\sqrt{5}} \mathrm{SL}_{2}(5), \mathrm{SL}_{2}(7), \mathrm{SL}_{2}(13), U_{3}(4)$, 2. $J_{2}$, or $2 . G_{2}(4)$, then $G^{(\infty)}=C^{(\infty)}$ is already irreducible. Propositions 5.2 and 5.1 imply that $G$ is conjugate to either $\left[\mathrm{SL}_{2}(7) \bigcirc \tilde{S}_{4}\right]_{24}$ or $\left[\mathrm{SL}_{2}(13) \stackrel{2(2)}{\square}\right.$ $\left.\mathrm{SL}_{2}(3)\right]_{24}$.

If $C^{(\infty)} \cong \mathrm{Alt}_{5}$, then $C^{(\infty)} B$ is irreducible with commuting algebra isomorphic to $Q_{\sqrt{5}, \infty, \infty}$. The Bravais group on a normal critical lattice is conjugate to $2 . J_{2} \bigcirc \mathrm{SL}_{2}(5)$, contradicting $O_{2}(G) \cong Q_{8}$.

If $C^{(\infty)} \cong \mathrm{SL}_{2}(5)$, then $G$ is imprimitive, because it contains the reducible normal subgroup $\mathcal{B}^{\circ}\left(C^{(\infty)} B\right)=\mathrm{SL}_{2}(5)^{2(2)} \mathrm{SL}_{2}(3)$ of index two.

Now assume that $C^{(\infty)} \cong L_{2}(7)$, where the natural character of $C^{(\infty)}$ is $4\left(\chi_{3 a}+\chi_{3 b}\right)$. Since $\mathbb{Q}[\sqrt{-7}]$ does not split the quaternion algebra $Q_{\infty, 2}$, the group $C^{(\infty)} B$ is an irreducible subgroup of $\mathrm{GL}_{24}(\mathbb{Q})$ with commuting algebra $Q_{\sqrt{-7}, 2,2}$. Moreover, $G$ con-
tains $C^{(\infty)} B$ of index $\leq 4$ and one of the following possibilities occurs:
(i) $G$ is conjugate to one of the three groups $L_{2}(7)$ : $2 \otimes \mathrm{SL}_{2}(3),\left( \pm L_{2}(7) .2\right) \underset{-1}{\otimes \mathrm{SL}_{2}(3) \text {, or the split ex- }}$ tension $L_{2}(7){ }^{2} \mathrm{SL}_{2}(3)$.
(ii) $G$ is conjugate to the nonsplit extension $L_{2}(7){\underset{\bigotimes}{2}}^{2}$ $\mathrm{SL}_{2}(3)$.
(iii) $G$ contains a subgroup conjugate to $L_{2}(7) \otimes$ $\mathrm{GL}_{2}(3)$ or $L_{2}(7) \underset{\sqrt{-7}}{\otimes} \tilde{S}_{4}$.
In the first case $G$ is a subgroup of $F_{4} \otimes A_{6}^{(2)}$, and in the second case $G$ is a subgroup of $\left[L_{2}(7)^{2(2)} \otimes F_{4}\right]_{24}$. In the last case $G$ contains an irreducible subgroup $\cong C_{56}$, contradicting Table 2 .

If $C^{(\infty)} \cong L_{2}(7)$, where the natural character of $C^{(\infty)}$ is $4 \chi_{6}$, then $G$ contains the subgroup $U$ of Lemma 6.20 and one gets a contradiction to $O_{2}(G) \times O_{3}(G) \cong Q_{8}$.

If $C^{(\infty)} \cong \mathrm{SL}_{2}(11)$, then $C^{(\infty)} B$ is uniform fixing the same lattices as its unique r.i.m.f. supergroup $\left[\mathrm{SL}_{2}(11) \stackrel{2(2)}{\stackrel{\otimes}{\sqrt{-11}}} \mathrm{SL}_{2}(3)\right]_{24}$. Hence $G$ is conjugate to this latter group.

If $C^{(\infty)} \cong \mathrm{Alt}_{7}$, then $G$ contains the subgroup $U$ of Lemma 6.20 and one gets a contradiction to $O_{2}(G) \times O_{3}(G) \cong Q_{8}$.

Now assume $C^{(\infty)} \cong U_{3}(3)$. Then $C^{(\infty)} B$ is an irreducible normal subgroup of $G$ with commuting algebra $\cong Q_{2,3}$. Moreover $\left|G / C^{(\infty)} B\right| \leq 4$, and one of the following possibilities occurs:
(i) $G$ is conjugate to $U_{3}(3): 2 \underset{\sqrt{-3}}{\otimes} \mathrm{SL}_{2}(3)$.
(ii) $G$ is conjugate to $\left( \pm U_{3}(3) .2\right) \bigcirc \mathrm{SL}_{2}(3)$ or to the split extension $U_{3}(3) \underset{\sqrt{-1}}{2} \mathrm{SL}_{2}(3)$.
(iii) $G$ is conjugate to the nonsplit extension

$$
U_{3}(3) \underset{\sqrt{-1}}{\otimes} \mathrm{SL}_{2}(3) .
$$

(iv) $G$ has a subgroup conjugate to $U_{3}(3) \underset{\sqrt{-2}}{\otimes} \mathrm{GL}_{2}(3)$ or $U_{3}(3) \otimes_{\infty, 3} \tilde{S}_{4}$.
In the last case $G$ contains an irreducible subgroup $\cong C_{56}$. Since 2,3 , and 7 are the only prime divisors
of $|G|$, this contradicts Table 2. In the first case $G$ is a proper subgroup of $\left[6 . U_{4}(3) .2 \underset{\sqrt{-3}}{\stackrel{2}{\otimes}} \mathrm{SL}_{2}(3)\right]_{24}$, in the second case a subgroup of $\left[\left(\mathrm{SL}_{2}(3) \bigcirc C_{4}\right)\right.$. $\left.2 \stackrel{2(3)}{\sqrt{-1}} U_{3}(3)\right]_{24}$, and in the third case a subgroup of $\left[2 . \mathrm{Co}_{1}\right]_{24}$, contradicting the maximality of $G$.

In the last case $C^{(\infty)} \cong U_{4}(2)$, the group $C^{(\infty)} B$ is already uniform fixing three lattices up to isomorphism. Since their automorphism groups are conjugate to $F_{4} \otimes E_{6}$ and $\left[6 . U_{4}(3) .2 \underset{\sqrt{\bigotimes}}{\stackrel{2}{\otimes}} \mathrm{SL}_{2}(3)\right]_{24}$, this is a contradiction to $O_{2}(G) \times O_{3}(G) \cong Q_{8}$.

Proposition 6.22. $O_{2}(G)$ is not isomorphic to $C_{4}$ or $D_{8}$.

Proof. In both cases $G$ contains a normal subgroup $N \cong C_{4}$. The centralizer $C:=C_{G}(N)$ embeds in $\mathrm{GL}_{12}(\mathbb{Q}[\sqrt{-1}])$. Let $\Delta$ denote the natural representation of $G$. The primitivity of $G$ implies that $\left.\Delta\right|_{C(\infty)}=k \cdot \Gamma$ for some rational irreducible representation $\Gamma: C^{(\infty)} \rightarrow \mathrm{GL}_{d}(\mathbb{Q})$ with $d=24 / k$.

Since all subgroups of $\mathrm{GL}_{3}(\mathbb{Q})$ are soluble, $d>3$.
If $d=4$, then $C^{(\infty)}$ is conjugate to $\mathrm{Alt}_{5}$, and $C$ is reducible.

If $d=6$, the possibilities for $C^{(\infty)}$ are $\mathrm{Alt}_{5}, L_{2}(7)$ ( 2 matrix groups), $\mathrm{Alt}_{7}$, or $U_{4}(2)$. In all cases, $O_{2}(G) C^{(\infty)}$ is reducible and $\left[G: O_{2}(G) C^{(\infty)}\right] \leq 2$; therefore $G$ is imprimitive.

If $d=8$, then $C^{(\infty)}$ is conjugate to one of $\mathrm{SL}_{2}(5)$ or $\mathrm{SL}_{2}(9)$ (see Table 4). Since $\operatorname{Out}\left(C^{(\infty)}\right)$ is a 2 group, $G$ is reducible.

If $d=12$, then $C^{(\infty)}$ is conjugate to one of $\mathrm{SL}_{2}(5), \mathrm{SL}_{2}(11), L_{3}(3), U_{3}(3), 2 . M_{12}$, or $\mathrm{Alt}_{13}$ (see Table 4).

In the first case, $C^{(\infty)} \cong \operatorname{SL}_{2}(5)$, the group $C^{(\infty)} N$ is reducible. The primitivity of $G$ implies $O_{2}(G) \cong$ $D_{8}$ and $G$ contains the uniform normal subgroup $C^{(\infty)} O_{2}(G)$ of index 2 . Since the automorphism group on a normal critical lattice is conjugate to $\left[\mathrm{SL}_{2}(5)_{\infty, 2}^{2(2)} 2_{-}^{1+4^{\prime}} . \mathrm{Alt}_{5}\right]_{24}$, this is a contradiction.

If $C^{(\infty)} \cong \mathrm{SL}_{2}(11)$, then $C^{(\infty)} N$ is irreducible with commuting algebra isomorphic to

$$
\mathbb{Q}[\sqrt{11}, \sqrt{-1}]
$$

Applying the 2-parameter argument one gets a contradiction to $N \unlhd G$.

If $C^{(\infty)} \cong L_{3}(3)$, then $C^{(\infty)} N$ is already uniform. Its unique r.i.m.f. supergroup is conjugate to $A_{12}^{2}$ contradicting the primitivity of $G$.

If $C^{(\infty)} \cong U_{3}(3)$, then $C^{(\infty)} N$ is reducible. The primitivity of $G$ implies that $O_{2}(G) \cong D_{8}$ and the uniform group $C^{(\infty)} O_{2}(G)$ is of index 2 in $G$. The group $C^{(\infty)} O_{2}(G)$ fixes up to isomorphism three lattices and its unique primitive r.i.m.f. supergroup is conjugate to $\left[\left(\mathrm{SL}_{2}(3) \bigcirc C_{4}\right) \cdot \underset{\sqrt{-1}}{\stackrel{2(3)}{\otimes}} U_{3}(3)\right]_{24}$ contradicting $O_{2}(G) \cong D_{8}$.

If $C^{(\infty)} \cong 2 . M_{12}$, then $C^{(\infty)} N$ is already uniform. Since the automorphism group of a normal critical lattice is imprimitive, one gets a contradiction.

In the last case, $C^{(\infty)} \cong \mathrm{Alt}_{13}$, the group $C^{(\infty)} N$ is uniform fixing up to isomorphism four lattices. Its unique r.i.m.f. supergroup is conjugate to $A_{12}^{2}$ and imprimitive.

If $d=24$, then $C^{(\infty)}=G^{(\infty)}$ is already irreducible. Propositions 5.1 and 5.2 yield a contradiction to the assumption on $O_{2}(G)$.

Proposition 6.23. If $G \leq \mathrm{GL}_{24}(\mathbb{Q})$ is a primitive r.i.m.f. group with largest soluble normal subgroup $\pm 1$, then $G$ is conjugate to one of these 12 r.i.m.f. groups: $\left[2 . \mathrm{Co}_{1}\right]_{24},\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\underset{2}{2}} \mathrm{Alt}_{5}\right]_{24,1}$, $\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\stackrel{2}{\otimes}} \mathrm{Alt}_{5}\right]_{24,2},\left[\mathrm{SL}_{2}(13) \stackrel{2(2)}{\square} \mathrm{SL}_{2}(3)\right]_{24}$, $\left[ \pm L_{2}(11): 2\right]_{24},\left[2 . J_{2} \stackrel{2}{\square} \mathrm{SL}_{2}(5)\right]_{24},\left[\mathrm{SL}_{2}(7) \stackrel{2}{\stackrel{\rightharpoonup}{-7}} L_{2}(7)\right]_{24}$, $\left[ \pm U_{4}(2) .2\right]_{24}, A_{24}, A_{4} \otimes A_{6}, A_{4} \otimes A_{6}^{(2)}$, or $A_{4} \otimes E_{6}$.

Proof. Let $\Delta$ denote the natural representation of $G$. The primitivity of $G$ implies that $\left.\Delta\right|_{C(\infty)}=$ $k \cdot \Gamma$ for some rational irreducible representation $\Gamma$ : $C^{(\infty)} \rightarrow \mathrm{GL}_{d}(\mathbb{Q})$ with $d=24 / k$. The assumption on the Fitting group of $G$ implies that $C_{G}\left(G^{(\infty)}\right) \subseteq$ $\pm G^{(\infty)}$.

Since all subgroups of $\mathrm{GL}_{3}(\mathbb{Q})$ are soluble, $d>3$.
If $d=4$, then $C^{(\infty)}$ is conjugate to $\mathrm{Alt}_{5}$, and $C$ is reducible.

If $d=6$, one has the following possibilities for $C^{(\infty)}: \mathrm{Alt}_{5}, L_{2}(7)$ (two matrix groups), $\mathrm{Alt}_{7}$, or
$U_{4}(2)$. In all cases the group $O_{2}(G) C^{(\infty)}$ is reducible and $\left[G: O_{2}(G) C^{(\infty)}\right] \leq 2$; therefore $G$ is imprimitive.

If $d=8$, then $C^{(\infty)}$ is conjugate to one of $\mathrm{SL}_{2}(5)$ or $\mathrm{SL}_{2}(9)$ (see Table 4). Since $\operatorname{Out}\left(C^{(\infty)}\right)$ is a 2 group, $G$ is reducible.

If $d=12$, then $C^{(\infty)}$ is conjugate to one of $\mathrm{SL}_{2}(5)$, $\mathrm{SL}_{2}(11), L_{3}(3), U_{3}(3), 2 . M_{12}$, or $\mathrm{Alt}_{13}$ (see Table 4. In all cases one has $\left|\operatorname{Out}\left(G^{(\infty)}\right)\right|=2$ and hence $G$ is imprimitive.

If $d=24$, then $G^{(\infty)}$ is already $\mathbb{Q}$-irreducible and the statement of the proposition follows from Proposition 5.1 and 5.2.

## ACKNOWLEDGEMENTS

I would like to thank Eamonn O'Brien for numerous suggestions that helped improve the exposition of the material in this article.

## REFERENCES

[Bayer-Fluckiger 1984] E. Bayer-Fluckiger, "Definite unimodular lattices having an automorphism of given characteristic polynomial", Comment. Math. Helvet. 59 (1984), 509-538.
[Benz and Zassenhaus 1985] H. Benz and H. Zassenhaus, "Über verschränkte Produktordnungen", J. Number Theory 20 (1985), 282-298.
[Buser 1985] P. Buser, "A geometric proof of Bieberbach's theorems and crystallographic groups", L'enseignement mathématique 31 (1985), 137-145.
[Cannon 1984] J. J. Cannon, "An introduction to the group theory language Cayley", pp. 145-183 in Computational Group Theory (Durham, 1982), edited by M. D. Atkinson, Academic Press, London, 1984.
[Conway et al. 1985] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Oxford, 1985.
[Conway and Sloane 1993] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 2nd ed., Springer, New York, 1993.
[DeMeyer et al. 1989] F. DeMeyer, D. Harrison, and R. Miranda, "Quadratic forms over $\mathbb{Q}$ and Galois extensions of commutative rings", Memoirs Amer. Math. Soc. 77, no. 394 (1989).
[Feit 1974] W. Feit, "On integral representations of finite groups", Proc. London Math. Soc. (3) 29 (1974), 633-683.
[Schönert et al. 1994] M. Schönert et al., GAP: Groups, Algorithms, and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, Germany, 1994. Available by anonymous ftp, together with the GAP system, on the servers dimacs.rutgers.edu or math. rwth-aachen.de.
[Hasse 1963] H. Hasse, Zahlentheorie, 2nd. ed., Akade-mie-Verlag, Berlin, 1963.
[Holt and Plesken 1989] D. F. Holt and W. Plesken, Perfect Groups, Oxford University Press, Oxford, 1989.
[Huppert 1967] B. Huppert, Endliche Gruppen I, Grundlehren der Math. Wiss. 134, Springer, Berlin, 1967.
[Jansen et al. 1995] C. Jansen, K. Lux, R. A. Parker and R. A. Wilson, An Atlas of Brauer Characters, Oxford University Press, Oxford, 1995.
[Pohst et al. 1993] M. Pohst et al, "KANT-V2", pp. 212-218 in Computeralgebra in Deutschland (1993), edited by Fachgruppe Computeralgebra der GI, DMV und GAMM.
[Lang 1970] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading (MA), 1970.
[Landazuri and Seitz 1974] V. Landazuri and G. M. Seitz, "On the minimal degrees of projective representations of the finite Chevalley groups", $J$. Algebra 32 (1974), 418-443.
[Nebe 1995] G. Nebe, "Endliche rationale Matrixgruppen vom Grad 24", Dissertation, RWTH Aachen (1995).
[Nebe and Plesken 1995] G. Nebe and W. Plesken, "Finite rational matrix groups", Memoirs Amer. Math. Soc. 116 (1995), no. 556.
[O'Meara 1973] O. T. O'Meara, Introduction to Quadratic Forms, Grundlehren der Math. Wiss. 117, 3rd. printing, Springer, 1973.
[Plesken and Hanrath 1984] W. Plesken and W. Hanrath, The lattices of six-dimensional Euclidean space, Math. Comp. 43 (1984), 573-587.
[Plesken 1985] W. Plesken, "Finite unimodular groups of prime degree and circulants", J. Algebra 97 (1985), 286-312.
[Plesken 1991] W. Plesken, "Some applications of representation theory", pp. 477-496 in Representation Theory of Finite Groups and Finite-Dimensional Algebras (Bielefeld, 1991), edited by G. O. Michler and C. M. Ringel, Progr. Math. 95, Birkhäuser, Basel, 1991.
[Plesken and Nebe 1995] W. Plesken and G. Nebe, "Finite rational matrix groups", Memoirs Amer. Math. Soc. 116 (1995), no. 556.
[Plesken and Pohst 1985] W. Plesken and M. Pohst, "Constructing integral lattices with prescribed minimum, I", Math. Comp. 45 (1985), 209-221.
[Plesken and Souvignier 1996] W. Plesken and B. Souvignier, "Computing isometries of lattices", to appear in J. Symb. Comp.
[Reiner 1975] I. Reiner, Maximal Orders, London Math. Soc. Monographs 5, Academic Press, London, 1975.
[Schur 1905] I. Schur, "Über eine Klasse von endlichen Gruppen linearer Substitutionen", pp. 128-142 in Gesammelte Abhandlungen, Springer, Berlin, 1973.
[Seitz and Zalesskii 1993] G. M. Seitz and A. E. Zalesskii, "On the minimal degrees of projective representations of the finite Chevalley Groups, II", J. Algebra 158 (1993), 233-243.
[Souvignier 1994] B. Souvignier, "Irreducible finite integral matrix groups of degree 8 and 10 ", Math. Comp. 63 (1994), 335-350.
[Srinivasan 1968] B. Srinivasan, "The characters of the finite symplectic group $\operatorname{Sp}(4, q)$ ", Trans. Amer. Math. Soc. 131 (1968), 488-525.
[Washington 1982] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 85, Springer, New York, 1982.
[Watson 1962] G. L. Watson, "Transformations of a quadratic form which do not increase the classnumber", Proc. London Math. Soc. (3) 12 (1962), 577-587.

Gabriele Nebe, Lehrstuhl B für Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany (gabi@willi.math.rwth-aachen.de)

Received June 30, 1995; accepted in revised form March 11, 1996


TABLE 6. Notations used in this article.

$\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\stackrel{2}{\mathrm{D}}} \mathrm{Alt}_{5}\right]_{24,2}$

$$
\left[6 . U_{4}(3) .2 \underset{\sqrt{-3}}{\stackrel{2}{\boxtimes}} \mathrm{SL}_{2}(3)\right]_{24}
$$

$\left[\mathrm{Sp}_{4}(3) \stackrel{2}{\otimes} \underset{\sqrt{-3}}{\stackrel{1}{+2}}\left(3_{+}^{1+2}: \mathrm{SL}_{2}(3)\right)\right]_{24}$
421021112212211211111101 41021202112121111111111 $4 \quad 4112222110212112112122$ 24401110010211211111121 22442112211111111011211 22244221110211111122222 22214411121221102122122 22122441210211122122121 22222244211112111011111 12222224411101121011111 11102121442210102222011 21222222144111111211100 22122122124411212122112 11111121211442211211211 11111121211244221101211 12011221211224421211211 22222212022010441111210 11111121111222044122020 12102121201222124411111 12011221111222122442120 12111121201222022244120 11111121211221112214411 12111120211122112212441 12101121211212012222244 11111121221222021212224 121111111111221222212224

412112211112222111121121 42012110110110111111111 44121111211111222110011 14421122112111111111111 21442012111001111101101 12044101101111011011110 10104641212222111020020 10100441121110211212212 01011044121112121111101 00010124411111222110010 10100001441211111212212 $0101 \overline{1} 000 \overline{1} 44222211021120$ $001000112 \overline{1} 4422121121121$ $0101 \overline{1} \overline{1} 00 \underline{0} 01442112120120$ 00011000101000441111020100 10000011000004422111111 $0001 \overline{1} 100 \overline{1} 00001442111011$ 00010100010100101044110111 $101000 \overline{1} \overline{1} 0001 \overline{1} 01 \overline{1} 44402212$ $101000 \overline{1} 10100100 \overline{1} 0440101$ $001000 \overline{1} 0 \underline{0} 1 \underline{0} 00010 \underline{2} 044212$ $01010100 \overline{1} 0 \overline{1} 02100 \overline{1} \underline{0} 14402$ 01010100100001000110440 $0001 \overline{1} 1001010010001 \overline{1} 0044$ $001002211010 \overline{1} \overline{1} 0110000 \overline{1} 04$


$$
\left[( \pm 3) \cdot \mathrm{PGL}_{2}(9)^{2(2)} \mathrm{SL}_{2}(3)\right]_{24}
$$

TABLE 7. The invariant forms of the primitive r.i.m.f. subgroups of $G L_{d}(\mathbb{Q})$ with $d$ dividing 24 that are not tensor products of forms of smaller dimension. For compactness, we write $-x$ as $\bar{x}$.

$$
\left[6 \cdot L_{3}(4) \cdot 2^{2(2)} D_{8}\right]_{24}
$$

844424422404224244412131
84444442444224444434222 88443324323334442314121 38824444444224444423343 41883344343230442332121 33488423444223344422234 $33238 \quad 823444123344433244$ 42313884222310440223232 44323288343230442313333 43422438844343344423422 23243343884022444432313 43424344488123344442121 $23234342438833411 \overline{1} 31323$ 33421333132883322213211 44223342442388424322212 32442234332118844334434 43342143422342884403212 23432314320422488422424 24430244322442348813331 42333341224441423882323 43243342422441433488343 24223343424241424248824 43234222342342442421884 42433424341342244243488 42233243434123211220328 433244242341141213122228

$$
\left[\left(\mathrm{SL}_{2}(3) \bigcirc C_{4}\right) \cdot 2 \underset{\sqrt{-1}}{\frac{2(3)}{\otimes}} U_{3}(3)\right]_{24}
$$

$$
\left[\mathrm{SL}_{2}(5) \underset{\infty, 3}{\underset{\otimes}{\otimes}}\left( \pm 3_{+}^{1+2}\right) \cdot \mathrm{GL}_{2}(3)\right]_{24}
$$

822244242124211222124222 84421244222141022222001 48241242221241222124222 24812242244141400221001 $11482 \overline{2} 20112220140212140$ 22148120144122222122442 12114844121211204124212 11101482242220422012110 $1112004811202 \overline{1} 0141241 \overline{1} 1$ 12111124821122422211002 21010122482242411121221 12112101048221200142221 $12111122214882402 \overline{2} 140224$ $1112111000048100 \underline{0} 142221$ $2112111001 \overline{1} 24821 \overline{1} 221424$ 11211111011114882201220 12101200111111482402142 12101112211001248004110 121210111110221004810022 22121021111111111481422 11120110010222102148112 12112101021110111104824 22012101121110111002481 112102110111121111210488 11220110000221102121014 111111110102200021121024

$$
\left[L_{2}(7)^{2(2)} F_{4}\right]_{24}
$$

$A_{24}$

211111111111111111111111 21111111111111111111111 $8 \quad 2111111111111111111111111111$ $48 \quad 211111111111111111111$ $348 \quad 21111111111111111111$ $3448 \quad 2111111111111111111$ $34438 \quad 211111111111111111$ $234428 \quad 21111111111111111$ $4342448 \quad 2111111111111111$ $14444448 \quad 211111111111111$ $244423448 \quad 21111111111111$ 4443344348 2111111111111 34444234438211111111111 $343443444128 \quad 21111111111$ $3343444424238 \quad 2111111111$ 34441444443348211111111 44433443343124821111111 $3243244234314448 \quad 2111111$ 44442444444344248 211111 23434224234333243821111 32434424244143343482111 34334122434443132338211 32234144414433332434821 43424444223342423242482 14443423314423233423218 334444433444442444442248

$$
\left[2 . J_{2} \stackrel{2}{\square} \mathrm{SL}_{2}(5)\right]_{24}
$$

$$
\left[L_{2}(7) \stackrel{2(2)}{\boxtimes} F_{4}\right]_{24}
$$

831344244443324232322222 82422221241412124414414 C 8122224223142412142241 $6 \mathrm{C} \quad 833232311313342112212$ $46 \mathrm{C} 8444442322023 \overline{1} 221112$ 564 C 8444423224222320112 6461 C 820211120340221113 62662 C 84423244201231122 $446646 \mathrm{C} \quad 8443144111241141$ $6665625 \mathrm{C} \quad 823204211031021$ $44644662 \mathrm{C} 8 \overline{1} 032 \overline{1} 24434432$ $534466424 \mathrm{C} 811331 \overline{1} 01 \overline{1} \overline{1} 11$ 6666466664 C 802412202202 41464656465 C 82221341343 555436356656 C 8202120030 $4666462356646 \mathrm{C} \quad 831021122$ 65636444642266 C 82214212 564626444642666 C 8434412 $4646243644656666 \mathrm{C} \quad 834212$ 44436405264646456 C 82140 664564460624455646 C 8410 $5446342333462210242 \mathrm{C} \quad 8 \overline{1} 4$ 66563564464445564154 C 81 244634564544633552326 C 8 2663534662446665664133 C 66662664546256462130652 C

$$
\left[\mathrm{SL}_{2}(13) \stackrel{2(2)}{\square} \mathrm{SL}_{2}(3)\right]_{24} \quad(\mathrm{C}=12)
$$

$\left[\mathrm{SL}_{2}(5) \stackrel{2(2)}{\otimes} 2_{-}^{1+4^{\prime}} \cdot \mathrm{Alt}_{5}\right]_{24}$
633333122232121131111322 61311211101112212211111 86133212233210132022321 18612111111211111122211 12863311232222132220323 42286112232022133120322 $33138 \quad 611222333323321232$ 42243863333312111133213 32412186323312232033233 $42220218 \quad 623332222130323$ 42222414862212232232312 34211141186311012033223 $33132222018 \quad 612221133223$ $3312232231486332331 \overline{1} 232$ 24443424423386323320233 42242214213048633321131 33124023212433862121332 31322013221233486331132 22223410013144118620002 31334310221132243863113 31321312322430241286010 24122112123024312108622 31302213322132122421862 31331212024233123241486 33104223314232212212428 423232322133123111141138

$$
\left[\left(\mathrm{SL}_{2}(5) \bigcirc \mathrm{SL}_{2}(5)\right): 2 \underset{\sqrt{5}}{\stackrel{2}{\otimes}} \mathrm{Alt}_{5}\right]_{24,1}
$$

$$
\left[\mathrm{SL}_{2}(7) \underset{\underset{-7}{\underset{~}{\mid}} \underset{2}{2}}{2}(7)\right]_{24}
$$

411212211222222222221222 42212112112121221122122 $4 \quad 4121212221112221212212$ 14412112222221122121212 01441122211212222211211 10144221112222120122122 11114422121212121212112 $0121114 \quad 421111122121211100$ 10122244121212122211101 01211214421222222121212 11110112442212122221212 11112111044121121121222 11112222114412122121112 11110221101442221121111 11111221012244221211111 21011120112124422222121 21012121012122442222221 12101111101211144221211 11111120001211114412211 12101101201100021442122 01211111101111021144122 12102000021011111214442 11112010101001012222442 11112120002112112111244 10122121012111201011124 111111110011111211201214

TABLE 7 (continued)

## $\left[3 . M_{10} \underset{\sqrt{-3}}{\stackrel{2(2)}{\otimes}} \mathrm{SL}_{2}(3)\right]_{24}$

$81222142440131242212224 \overline{1}$ 82442121024222221423102 A 8242222424222412034402 1 A 821224113113241242321 10 A 82003222444311203414 $5 \overline{1} 2 \mathrm{~A} 8240244022122422114$ 1302 A 842302001242142220 25013 A 81424222134222012 $0113 \overline{1} 2 \mathrm{~A} 8221213422024442$ 2331002 A 822422224212220 32131151 A 82131214324223 $200130 \overline{2} 0 \overline{1} A \quad 8204212244102$ 1001531023 A 842123202230 03000310130 A 82212401224 205100201003 A 8311212112 $0030 \underline{0} \frac{3}{1} 0 \overline{2} 3 \underline{0} 53$ A 800142201 $3120 \overline{2} \overline{1} \underline{0} 1001 \frac{0}{2} 1 \overline{1} \mathrm{~A} 82221240$ $100200 \overline{1} 01 \overline{3} 00302 \mathrm{~A} 8204041$ $3213 \overline{1} 10 \underline{1} 00 \overline{1} \overline{1} \frac{2}{2} 51 \mathrm{~A} 811012$ $0200013 \overline{1} \underline{0} 1 \underline{1} 10 \overline{2} \underline{1} \overline{1} 0 \mathrm{~A} 82300$ $\underline{2} 001 \overline{3} 0 \overline{2} 0 \overline{1} 0 \overline{3} 303 \overline{1} 31 \overline{1} \mathrm{~A} \quad 8222$ $1001300 \overline{3} 000 \overline{3} 0013220 \mathrm{~A} \quad 822$ $\overline{3} 20 \overline{3} 0101010102010012 \mathrm{~A} \quad 81$ $0100020 \overline{2} \frac{1}{3} 21013135 \overline{2} 10 \mathrm{~A} 8$ $3013100101 \overline{2} \overline{1} \frac{1}{2} 00001 \overline{2} 03 \mathrm{~A}$ $01 \overline{1} 0 \overline{1} 202 \overline{3} 01 \overline{1} \overline{2} 1010021303 \mathrm{~A}$

$$
\begin{gathered}
{\left[\operatorname{Alt}_{5} \underset{\sqrt{5}}{\frac{2}{5}}\left(C_{3}{ }^{2(2)} D_{8}\right)\right]_{24} \quad(\mathrm{~A}=10)} \\
{\left[ \pm U_{4}(2) \cdot 2\right]_{24}}
\end{gathered}
$$

633233322133231233220332 63333331122331133120303 46333221123332233201312 14632332133331123121312 11463332132231132121303 11146231132332133101313 111146632133331233120203 $111024610333211331013 \overline{1} 3$ 21012246202013301120112 20112224610112101112020 110122214663331023121312 210112222466332133111313 11121122124630133201213 11112221222461232221302 $21101121211146630102 \overline{1} 132$ 11122122112214601320011 11111111111111462001303 21111222122211146000302 11012122211122214662011 01121111211112102460121 12012221221212212146101 21111122121112222124613 11021122222111112211460 11112122112112212122246 101110011111110201100104 110210011111011011102124

$$
\left[3 \cdot M_{10} \stackrel{2(2)}{\boxtimes} D_{8}\right]_{24} \quad(\mathrm{G}=16)
$$

G685564485565255111448115 G6303668088433038430058 4 G165841161114555554521 24 G56661606436580443253 224 G 4000880554850346840 2224 G585842661446354452 22224 G45135614555660536 222224 G5435265045068006 2222224 G458855008554458 22222224 G54665850045841 222222224 G5584303333545 1111121004 G466030504428 22211110024 G56514 15 5 2648 211211001224 G83320153501 1212120102224 G550626416 12112100122224 G8458588 112112001222224 G345153 $\overline{3}$ 1121210102222224 G560060 11122110022222224 G54362 222222222212111214 G6482 2222222222111211124 G535 21111101022222222124 G41 221111110121210111124 G $\overline{1}$ 1121111102211012121114 G 12211011012111021211224 211111210221110111222114

$$
\left[\left( \pm L_{3}(3)\right) \cdot 2 \square_{\square}^{2} C_{3}\right]_{24}
$$

$$
\left[\mathrm{SL}_{2}(7) \bigodot^{2} Q_{16}\right]_{24}
$$

$401111110110111101110 \overline{1} 10$ $41111111101101111 \overline{1} 01111$ C 4010111111011011011111 1 C 411111100010111111001 46 C 41101111001001100001 621 C 4110101110110101011 $3333 \mathrm{C} 4111 \overline{1} 1110 \overline{1} 01011111$ 44366 C 41100100101110100 $164224 \mathrm{C} 4011 \overline{1} 01010100101$ 2216233 C 400101001010011 34330126 C 41001111101011 246021223 C 4111111101101 2633214264 C 411111010011 44433231264 C 41011111110 632403324466 C 4111001001 6123232144264 C 411111011 62222114622266 C 40001100 364464366241202 C 4101001 $4216232621426124 \mathrm{C} 41 \overline{1} 101$ 26610163666662443 C 41111 331163402366624224 C 4100 4663666232410116142 C 401 64644643241234464316 C 40 626022122432442322034 C 4 $2024001641214262622 \overline{1} 30 \mathrm{C}$ 42123223606226432042133 C

$$
\left[\left( \pm D_{78}\right) \cdot C_{12}\right]_{24}
$$

$62020110 \overline{1} 200121101012001$ 60011211102210111222122 86331003021022022311212 48611101021132222202000 34862112001120022320212 $3448 \quad 6212203100323011 \overline{1} 12$ $24228 \quad 620202311122211122$ 23333861321201122200211 32441486022012212120211 32424328611301021020121 02334333862002220111211 32124412386210122112120 $32214324348600 \overline{1} 11221332$ $232332344338611102111 \overline{1} 1$ $3442234232438602212233 \overline{1}$ $22334443433338611001 \overline{2} \overline{1} 1$ 34242221342343862200122 43433332233032386212120 41122322244223248602212 $3122224432432213486033 \overline{1}$ 32244324342313234486120 33433432243233243338630 23233234323432423330860 10223224323204120110286 22241341422443424223308 $3213121204310 \overline{1} 2312321218$
$\left[ \pm 3 . \mathrm{PGL}_{2}(9) \underset{\sqrt{5}}{\stackrel{2}{\otimes}} D_{10}\right]_{24}$

6
36
226
2336
11216
233326
2122326
31321226
331220226
3111213236
12112211226
221321123226
2233233322006
32323322112126
113222322211316
2111211223322126
12223321233132226 123332112223222336 0001201111221013116 22221113112223121126 322213231211323311026 2210112111200101102206 21111021111101001022136 2303111120002110000221226

$$
\left[\mathrm{SL}_{2}(7) \bigcirc \tilde{S}_{4}\right]_{24}
$$

$$
\left[ \pm L_{2}(11): 2\right]_{24}
$$

## TABLE 7 (continued)

