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We present an enumeration scheme for all blueprints of an

A2(p) building (with p prime). We then provide a computer

based proof that the eAn(Q 2) buildings do not conform to a

blueprint for n � 3.J. Tits ([1955b; 1955a; 1956]; see the introduc-tion of [Tits 1974] for a historical discussion) intro-duced buildings in an attempt to provide a system-atic procedure for producing geometries associatedto semisimple Lie groups. With this procedure,Tits found geometries associated to the exceptionalgroups E6, E7, and E8. One of the early hopesfor buildings was to provide a way to combinato-rially construct the �nite groups of Lie type, andin [Ronan and Tits 1987], this was accomplishedusing blueprints. Ronan and Tits, however, wereunable to �nd blueprints constructing general p-adic a�ne buildings. At the end of their paperthough, they suggested a generalization of a blue-print which might be used.Abramson [� 1998] presented a generalization ofa blueprint like that suggested by Ronan and Tits.He used this to construct the p-adic buildings. Thequestion of whether in general p-adic buildings con-form to blueprints was left unanswered.Currently there is only one known case of a p-adic building with a blueprint. Ronan ([1984]; see[Kantor 1986] for a complete discussion) presentedfour buildings of type eA2 associated to the Frobe-nius group of order 21. P. K�ohler, T. Meixner, andM. Wester proved that one of these correspondedto the classical eA2 building associated to the �eldF 2((t)) [K�ohler et al. 1984] and a second corre-sponded to the 2-adic building of type eA2 over the
c
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392 Experimental Mathematics, Vol. 7 (1998), No. 4�eld Q 2 [K�ohler et al. 1985]. These presentationslead naturally to blueprints.Here we show, using computer evidence, thatmost Q 2 buildings do not conform to blueprints.To do this we �rst prove:
Theorem 1. The only blueprints for the A3(2) build-ing are relabelings of the natural blueprint .From this we obtain:
Theorem 2. The simply-laced a�ne buildings of rankat least 4 (with connected diagram) over Q 2 do notconform to blueprints.
1. DEFINITIONSA chamber system (C; fPigi2I) is a set C of cham-bers and a set fPigi2I of partitions of C. We saythat two chambers C 6= D of C are i-adjacent ifC and D lie in the same part of the partition Pi,and we write C �i D. A gallery from C to D isa sequence of chambers C = C0; C1; : : : ; Cn = D,such that Cj�1 �ij Cj for j = 1; : : : ; n. The typeof the gallery C0 �i1 C1 �i2 : : : �in Cn is the wordi1i2 : : : in, and its length is n. A gallery from C toD is minimal if there exists no shorter gallery fromC to D.Let M = (mij)i;j2I be a symmetric integer ma-trix with diagonal entries 1 having mij � 2 fori 6= j. The associated Coxeter diagram is a graphwhose vertex set is labeled by the elements of I andwhose edge set consists of edges labeled mij for allmij � 3. The diagram is simply-laced if mij � 3for all i and j.Given M as above let W be the Coxeter groupW = 
ri j i 2 I; r2i = (rirj)mij = 1�:We say that W is spherical if jW j < 1 and therank of W is jIj. For w 2 W de�ne the length,l(w), to be the least k such that w = ri1 : : : rik .Given a word f = i1i2 : : : in de�ne rf = ri1 : : : rin .The word f is reduced if l(rf ) = n.

Let W be a Coxeter group with index set I. Achamber system (C; fPigi2I) is a building of typeW if there exists a W -distance function� : C� C! Wsuch that for all reduced words f there exists agallery of type f from C to D if and only if wehave �(C;D) = rf [Tits 1981].Let W be a Coxeter group with index set I, andlet Si be an index set for each i 2 I. A labeled wordof type f is a reduced word f = i1i2 : : : it togetherwith a sequence a = (a1; : : : ; at) where at 2 Sit forall t. We write this asfa = ia11 ia22 : : : iatt :De�ne a chamber complex with C the set of labeledwords and i-adjacency given byfaib �i faic �i fawhere fi is reduced, a is a label for f , and b; c 2 Si.Given a word f , de�ne Cf = ffa 2 Cg.Given i and j, let p(i; j) = : : : ij be the wordof length mij . If I = fi; jg a rank 2 equivalencefor C is a bijection ' : Cp(i;j) ! Cp(j;i). Given arank 2 equivalence ', de�ne C(') to be the cham-ber complex obtained by identifying p(i; j)a with'(p(i; j)a) where for ease of notation, we writep(i; j)'(a) for the latter. More precisely, the cham-bers of C(') are the equivalence classes of chambersof C where two equivalence classes are i-adjacentif they contain i-adjacent elements. The rank 2equivalence ' is a rank 2 blueprint if C(') is abuilding of type W .
Example A. Consider the case where m12 = 2 and'(1a2b) = 2b1a. Then we have 1a2b �1 2b1c for alla; b; c in the appropriate label sets. In this case 'is a rank 2 blueprint.
Example B. Alternatively, if ' is de�ned by '(iajb)=jaib for all labels a and b, then 1a2b �1 2a1c for allc, and ' is not a rank 2 blueprint since the shortestgallery from 1a to 2b1c, is of length 3 when a 6= b.



Abramson and Bennett: Enumerating A3(2) Blueprints, and an Application 393Given W , I, Si, and C as above, a blueprint for Cis the collectionB = f'ij : Cp(i;j) ! Cp(j;i) j i 6= j 2 Igsatisfying 'ij = '�1ji and such that 'ij is a rank 2blueprint for all 2-element subsets fi; jg of I.Given a blueprint B, de�ne the labeled wordshap(j; i)bgc and hap(i; j)'ij (b)gc to be elementarilyB-equivalent. Let � be the transitive closure of thisrelation, and de�ne C(B) = C=�; that is, the cham-bers of C(B) are the equivalence classes of cham-bers of C with two equivalence classes i-adjacentif they contain elements which are i-adjacent in C.Following the notation of [Ronan and Tits 1987],we de�ne a blueprint to be realizable if C(B) is abuilding. Conversely, given a building � = C(B),we say that � conforms to the blueprint B.Associated to any Coxeter group with index setI is a diagram whose vertices correspond to theelements of I and where the vertices i and j areconnected by 0, 1, 2, or 3 bonds, as the order of rirjis two, three, four, or six respectively. If the orderof rirj is some other integer n, then we representthis on the diagram by joining vertices i and j bya bond with the label n.The following special case of [Ronan and Tits1987, Theorem 1] simpli�es checking whether ablueprint is realizable.
Theorem 3 [Ronan and Tits 1987]. A blueprint Bassociated to a simply-laced diagram is realizable ifand only if its restriction to the following subdia-grams is also realizable:
1. A1 �A1 �A1 : d d d
2. A1 �A2 : d d d
3. A3 : d d dMoreover in this case there is a unique building �conforming to B:The natural blueprint of type A2(p) (p a prime) isthe rank 2 blueprint given by'(1a2b1c) = 2c1ac�b2a

where a; b; c 2 F p.The natural blueprint of type (A1 � A1)(p) isgiven by '(1a2b) = 2b1a;where a; b 2 F p.
2. ENUMERATING BLUEPRINTSIn [Ronan and Tits 1987] natural blueprints areused to construct geometries associated to the Che-valley groups and from this the Chevalley groupsthemselves. Other blueprints may also give rise tointeresting groups.For example, the Frobenius group of 21 elementsgives rise to A2(2) blueprints (not natural) whichcan be used to construct a blueprint for the eA2(Q 2)building in the following fashion. De�ne 
 : Z32 !Z32 by
(0; 0; 0) = (1; 0; 0);
(0; 0; 1) = (0; 0; 0);
(0; 1; 0) = (0; 1; 0);
(0; 1; 1) = (1; 1; 1); 
(1; 0; 0) = (0; 1; 1);
(1; 0; 1) = (1; 0; 1);
(1; 1; 0) = (0; 0; 1);
(1; 1; 1) = (1; 1; 0):Now de�ne '1;2 by '1;2(1a2b1c) = 1x2y1z where
(a; b; c) = (x; y; z). De�ne '2;3 and '3;1 analo-gously, and then '2;1, '3;2, and '1;3 are then the re-spective inverses. By [Tits 1990, Remark 2], this isthen a blueprint for the a�ne building of SL3(Q 2).In this paper, our goal is to provide a startingpoint for answering the question of what buildingsconform to blueprints. In particular, we will showthat no buildings over Q 2 with triangle-free simply-laced diagrams conform to a blueprint.By Theorem 3, a blueprint is realizable if andonly if it is realizable on the appropriate subdia-grams. As a result our strategy is to enumerate allrank 2 blueprints, and then check when three suchblueprints combine to form a realizable blueprint.Let I = f1; 2g, and let S1 = S2 = f0; : : : ; ng.Given a non-empty word f = : : : i, let �f denote



394 Experimental Mathematics, Vol. 7 (1998), No. 4the symmetric group on Sj where j 6= i. De�ne Xto be the setX = Sym(S1)� Sym(S2)� Yfa2Cl(f)<m1;2 �f :Ifm1;2 = 3, an arbitrary element of X has the form� = (�1; �2; �10 ; : : : ; �1n ; �21 ; : : : ; �2n ;�1020 ; : : : ; �102n ; �1120 ; : : : ; �1n2n ;�2010 ; �2011 ; : : : ; �2n1n):Let W be a spherical Coxeter group of rank 2,and suppose fS1; S2g is a labeling. Then for � 2 Xas above, de�ne a bijection  � on C by �(iajb : : :) = i�i(a)j�ia (b) : : : :The set 	 = f � j � 2 Xg is then a group undercomposition. Given a rank 2 blueprint ', de�ne �(') = '� by'�(fa) =  �('( �1� (fa)))where f is any reduced word of length mi;j . Thisde�nes an action of G on the set f �(') j  � 2 Gg.
Lemma 4. With W , S1, S2, C, �,  �, and ' asabove, the map '� is a rank 2 blueprint for C.Moreover ,  � induces an isomorphism from C(')to C('�).
Proof. We �rst show that  � maps equivalent ele-ments of C(') to equivalent elements of C('�). Ifthe equivalence class has only one element, there isnothing to check. Else, suppose fa � hb in C(').Then l(f) =m1;2 and '(fa) = hb. By de�nition,'�( �(fa)) =  �('(fa)) =  �(hb):Since  � maps i-adjacent elements of C(') to i-adjacent elements of C('�), it follows that  � in-duces an isomorphism of these two chamber sys-tems. If ' is a rank 2 blueprint then C(') is abuilding and hence so is C('�). �
Lemma 5. GivenW , S1, S2, C, 	, as above, if ' and
 are two rank 2 blueprints and � : C(') ! C(
)

is a type preserving isomorphism of chamber com-plexes �xing the base chamber , (the trivial labeledword ?), then 
 = '� for some  � 2 	 completelydetermined by �. In particular , if � : C(') !C('), then � =  � for some � 2 X with '� = '.
Proof. Let � be as above. Then � lifts to an iso-morphism �̂ on C de�ned by �̂(fa) = f b where�([fa]') = [f b]
 , where [fa]' denotes the equiv-alence class of fa in C('); hence given aj 2 Sij ,there exist bj 2 Sij such that�̂(ia11 ia22 : : :) = ib11 ib22 : : : ;and we have 
 � �̂ = �̂ � '. Let �1 be the permu-tation of S1 such that 1�1(a) = �̂(1a), and let �2be the permutation of S2 such that 2�2(a) = �̂(2a).Given �1(a) = b, de�ne �1a by 1b2�1a (c) = �̂(1a2c).Continue inductively so that if �̂(fa) = f b then �fais de�ned by �̂(faic) = f bi�fa (c), and let � 2 X bethe element with �rst coordinate �1, second coordi-nate �2 and fath coordinate �fa . By the de�nitionof �̂, we have �̂('(1a2b1c)) = 
(�̂(1a2b1c)). By thede�nition of �, we have � =  �. Hence 
 = '�. �What Lemmas 4 and 5 imply is that given a rank 2building � and one blueprint, ', realizing it, everyother blueprint realizing � is of the form '� forsome � 2 X. Moreover, if there is a non-trivial au-tomorphism of the rank 2 building �xing the basechamber then this automorphism corresponds toan element � 2 X such that '� = '. Similarly,given an element � 2 X such that '� = ', themap  � must be an automorphism of the build-ing �xing ?. Let H be the stabilizer in 	 of theblueprint ' under the action  �(') = '�. Thenan e�cient enumeration scheme for blueprints re-alizing C(') would pick out exactly one element ofeach coset of H.
Theorem 6. Let � be a rank 2 building with m1;2 = 3and parameter p a prime. Suppose (fS1; S2g; ') isa rank 2 blueprint realizing �. Then every blue-print realizing � is given by '�, where� = (�1; : : : ) 2 X



Abramson and Bennett: Enumerating A3(2) Blueprints, and an Application 395can be chosen uniquely so that�1(0) = �10(0) = �1020(0) = 0;�1(1) = �10(1) = 1: (2–1)

Proof. By Lemma 5 every blueprint realizing � is ofthe form '� for some �. It remains to show that �can be uniquely chosen satisfying equations (2{1).Suppose � satis�es these equations and '� = '.Then the map  � �xes the apartment of C(') con-taining the chambers [?], [10], [1020], [102010], [11],and [1021]. Moreover, since this is the A2(p) build-ing and  � �xes [11] and [1021], then  � �xes everychamber of form [1a] and every chamber of form[102a]. By [Tits 1974, Theorem 4.1.1], this impliesthat  � is the identity on �. In fact, the require-ment that  � �xes the given apartment and thebase chamber implies  � is a diagonal matrix un-der the appropriate basis for F 3p. The requirementsthat [11] and [1021] are �xed imply that  � corre-sponds to the matrix kI for some k 2 F p. Butthen  g acts as the identity on �. As a result, if
 is any blueprint for �, then there exists at mostone element � 2 X satisfying equations (2{1) with
 = '�.Alternatively, if 
 is a blueprint, Lemma 5 im-plies that 
 =  �(') for some � 2 X. SincePSL3(p) is transitive on apartments of C(') (whichfollows from [Ronan 1989, Theorem 5.3]), there ex-ists an automorphism � such that �(?) = ? and�( �(102010)) = 102010. Since the stabilizer of anapartment is transitive on ordered pairs of cham-bers of the form ([1a]; [102a]), with a; b 6= 0, we canchoose � such that �(?) = ?, �( �(102010)) =102010, �( �(11)) = 11, and �( �(1021)) = 1021.By Lemma 5, � =  � for some � 2 X and  �(
) =
. Since 	 is a group,  � � � =  � for some � 2 X.Hence 
 = '� where � satis�es (2{1). �Since there exist e�cient algorithms for producingpermutations (in [Rosen 1991, p. 284], for exam-ple), this theorem together with such an algorithmprovides a way of enumerating all the blueprintsof A2(p), where p is a prime. The following corol-

lary provides a count for the number of A2(p) blue-prints:
Corollary 7. The number of blueprints for the A2(p)building is (p!)(2p2+2p+2)p3(p� 1)2 :
Proof. The number of blueprints is clearly j	j=jHj,where H is the stabilizer of the natural blueprint.Above, we proved that the stabilizer ofH has orderp3(p� 1)2. �For p = 2 this number is 2048, for p = 3 the num-ber is approximately 1:57� 1018. As a result, pureenumeration schemes are only reasonable for thep = 2 case.One can generalize Theorem 6 to other build-ings, but the results are not as easily stated. Forthis paper, we also need the (A1 �A1)(p) case. Inthis case the building corresponds to the completebipartite graph Kp+1;p+1, and the stabilizer of achamber in the automorphism group is isomorphicto Sp � Sp. The number of blueprints is (p!)2p giv-ing 16 blueprints for p = 2.We now turn to the question of blueprints forhigher-rank buildings. If we are given a blueprintB for the building �, then corresponding to any el-ement of `i Sym(Si) we get a blueprint simply bypermuting the elements of Si, that is by mappingia11 : : : iakk to the element i�i1 (a1)1 : : : i�ik (ak)k . In gen-eral, this blueprint will not be equal to the originalblueprint, although in the natural A1 � A1 case itis. Consider the case of the natural blueprint 'for A2(p), and let � 2 Sym(S1) and � 2 Sym(S2).Since '(1a2b1c) = 2c1ac�b2a;for (�; �) to �x ' would require �(a) = �(a) for alla 2 Si, and hence that � = � . Moreover, we wouldhave �(ac � b) = �(a)�(c) � �(b) for all a; b; c 2S1 = S2, implying � is a �eld automorphism of F p.Hence � is trivial. We have shown:
Theorem 8. There are (p!)3 distinct relabelings ofthe natural A3(p) blueprint .
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3. APPLICATIONSIn this section we summarize results from com-puter analysis on A3(2)-blueprints. All programswere run using MATLAB on a Silicon GraphicsIndy computer. To �nd all A3(2) blueprints, weenumerated the rank 2 blueprints of type A2(2)and A1(2) � A1(2). We then checked all triples('1;2; '2;3; '1;3), where '1;2 and '2;3 are A2(2) blue-prints and '1;3 is an (A1�A1)(2) blueprint. Thesemaps then produce a blueprint B. To see if thisblueprint realizes the A3(2) building, by [Ronan1989, Theorem 7.2] it su�ces to check that if fais equivalent to f b in C(B) then a = b. In turnto check this it su�ces as in [Ronan 1989, p. 93]to see that the following self-homotopy induces aself-equivalence:1a2b1c3d2e1f � 2a11b12c13d2e1f(where '12(1a2b1c) = 2a11b12c1)� 2a11b13c22d13e11f(where '23(2c13d2e) = 3c22d13e1)� 2a13b21c32d11e23f1(where '13(1b13c2) = 3b21c3 , etc.)� 2a13b22c41d22e33f1� 3a22b33c51d22e33f1� 3a22b31c63d32e33f1� 3a22b31c62d43e42f2� 3a21b42c71d53e42f2� 1a33b52c73d61e52f2� 1a32b63c82d71e52f2� 1a32b63c81d82e61f3� 1a32b61c93d92e61f3 :Since this word has length 6, 26 checks must beperformed to prove a particular blueprint realizesthe A3(2) building. From our results we obtained:
Theorem 1. The only blueprints realizing the A3(2)building are relabelings of the natural blueprint forA3(2).This theorem is proved by exhaustive computersearch. Given our basic algorithm this case re-quired roughly 120 hours of computer time on a

Silicon Graphics Indy computer, and the computerproduced exactly the 8 blueprints that are relabel-ings of the natural blueprint.From this theorem we obtain:
Corollary 9. Let � be a simply-laced building . Sup-pose the Coxeter diagram of � is connected , con-tains at least 4 vertices, and contains no trian-gles. If every panel of � lies on exactly 3 chambers(the p = 2 case), and � conforms to a blueprintB = f'i;jg, then all 'i;j are natural up to possiblerelabelings of the Si's.
Proof. If the vertices i and j in the Coxeter diagramare connected, then there is a vertex k such thati, j, and k form an A3 diagram. Hence by Theo-rem 1, 'i;j is natural up to a relabeling. Moreover,if k and k0 are both adjacent to i, then the relabel-ing of i must be the same since i, k, and k0 forman A3-subdiagram. Next, suppose i and j are notconnected. The vertices i and j are connected by apath of length m. Inducting on m; if m = 2, then iand j are part of an A3 subdiagram and Theorem 1yields the result. Else, consider the vertex k adja-cent to i at distance m�1 from j. Then i, j, and kform an A1 �A2 subdiagram. Moreover, we knowthat 'i;k and 'j;k are natural by the induction hy-pothesis. It remains to show that 'i;j is natural.Without loss of generality, assume i = 1, k = 2,and j = 3 and consider the labeled word 1a2b1c3d.Then, 2a3d ' 3d2a since the '2;3 blueprint is nat-ural. Similarly, 1a2b1c ' 2a1ac�b2a since the '1;2blueprint is natural. Hence we obtain the followingchain of elementary equivalences:1a2b1c3d ' 2c1ac�b2a3d' 2c1b03d2a (b0 = ac� b)' 2c3d01b002a (3–1)' 3d02a1b002c' 3d01a2b0001c (b000 = ac� b00)' 1a03d002b0001c (3–2)' 1a02b0003d001c' 1a02b0001c03d000 : (3–3)



Abramson and Bennett: Enumerating A3(2) Blueprints, and an Application 397Since we have a blueprint, by [Ronan 1989, The-orem 7.2] a = a0, b = b000, c = c0, and d = d000. Sincec0 = c and d000 = d, equation (3{3) implies for all athat 1a3x ' 3y1a. In turn we obtain b0 = b00 fromequation (3{1). Let b = ac � a. Since b0 = a,by equation (3{1) 1a3d ' 3d01a. Now in equa-tion (3{2) we have 3d01a ' 1a3d00 . This impliesd = d00. But then the last line implies 1c3d ' 3d1c.Since c and d are free, we obtain that '1;3 is nat-ural. This completes the proof that B must be arelabeling of a natural blueprint. �As a Corollary to this we obtain Theorem 2.
Proof of Theorem 2. By the above, if there existsa simply-laced a�ne building over Q 2 of rank atleast 4 (with connected diagram) conforming to ablueprint then this buildings would conform to thenatural blueprint. From [Ronan and Tits 1987,Example 6.1], we know that these blueprints realizethe a�ne buildings over F 2((t)). Hence they do notrealize the Q 2 buildings. �One result of this last corollary is that to use theidea of blueprints to construct Q 2 buildings re-quires some generalization of the idea as was donein [Abramson � 1998]. An interesting questionraised by this is whether the lack of such blue-prints is due to the smallness of 2 or the restrictionsplaced on a blueprint by the building.
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