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We present an enumeration scheme for all blueprints of an
Ay(p) building (with p prime). We then provide a computer
based proof that the Kn(QZ) buildings do not conform to a
blueprint for n > 3.

J. Tits ([1955b; 1955a; 1956]; see the introduc-
tion of [Tits 1974] for a historical discussion) intro-
duced buildings in an attempt to provide a system-
atic procedure for producing geometries associated
to semisimple Lie groups. With this procedure,
Tits found geometries associated to the exceptional
groups Eg, Er, and Eg. One of the early hopes
for buildings was to provide a way to combinato-
rially construct the finite groups of Lie type, and
in [Ronan and Tits 1987], this was accomplished
using blueprints. Ronan and Tits, however, were
unable to find blueprints constructing general p-
adic affine buildings. At the end of their paper
though, they suggested a generalization of a blue-
print which might be used.

Abramson [> 1998] presented a generalization of
a blueprint like that suggested by Ronan and Tits.
He used this to construct the p-adic buildings. The
question of whether in general p-adic buildings con-
form to blueprints was left unanswered.

Currently there is only one known case of a p-
adic building with a blueprint. Ronan ([1984]; see
[Kantor 1986] for a complete discussion) presented
four buildings of type A, associated to the Frobe-
nius group of order 21. P. Kohler, T. Meixner, and
M. Wester proved that one of these corresponded
to the classical A, building associated to the field
F,((¢)) [Kohler et al. 1984] and a second corre-
sponded to the 2-adic building of type A, over the
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field Q, [Kohler et al. 1985]. These presentations
lead naturally to blueprints.

Here we show, using computer evidence, that
most Q, buildings do not conform to blueprints.
To do this we first prove:

Theorem 1. The only blueprints for the A3(2) build-
ing are relabelings of the natural blueprint.

From this we obtain:

Theorem 2. The simply-laced affine buildings of rank
at least 4 (with connected diagram) over Q, do not
conform to blueprints.

1. DEFINITIONS

A chamber system (C,{P;}icr) is a set € of cham-
bers and a set {P;};c; of partitions of €. We say
that two chambers C' # D of € are i-adjacent if
C and D lie in the same part of the partition P;,
and we write C' ~ D. A gallery from C to D is
a sequence of chambers C' = Cy,C,,...,C, = D,
such that C;_, v C; for j = 1,...,n. The type
of the gallery Co ~> O YW C’ is the word
1102 ... Uy, and its length is n. A gallery from C' to
Dis mzmmal if there exists no shorter gallery from
C to D.

Let M = (my;):jer be a symmetric integer ma-
trix with diagonal entries 1 having m,;; > 2 for
1 # j. The associated Coxeter diagram is a graph
whose vertex set is labeled by the elements of I and
whose edge set consists of edges labeled m,; for all
m;; > 3. The diagram is simply-laced if m;; < 3
for all 7 and j.

Given M as above let W be the Coxeter group

W = <ri liel r}= (ryr;)™ = 1>.

We say that W is spherical if |W| < oo and the
rank of W is |I|. For w € W define the length,
[(w), to be the least k such that w = r;, ...7;
Given a word f = 414 ..
The word f is reduced if I(ry) = n.

.-
ip define ry =1y ...y,

n

Let W be a Coxeter group with index set I. A
chamber system (C,{P,}ic;) is a building of type
W if there exists a W-distance function

0:CxC—=>W

such that for all reduced words f there exists a
gallery of type f from C to D if and only if we
have §(C, D) = ry [Tits 1981].

Let W be a Coxeter group with index set I, and
let S; be an index set for each 7 € I. A labeled word
of type f is a reduced word f = i,i5...1; together
with a sequence a = (ay,...,a;) where a; € S, for
all t. We write this as

A1 ;A2 ~Qt
fo=a1"7 gyt

Define a chamber complex with € the set of labeled
words and i-adjacency given by

-b .
fllZ "Z\’ faZC 7 fa

where fi is reduced, a is a label for f, and b, c € S;.
Given a word f, define C; = {f* € C}.

Given 7 and j, let p(é,j) = ...ij be the word
of length m,;. If I = {i,j} a rank 2 equivalence
for € is a bijection ¢ : €,;; — Cu;. Given a
rank 2 equivalence ¢, define C(¢) to be the cham-
ber complex obtained by identifying p(i,j)* with
©(p(i,j)*) where for ease of notation, we write

p(i,§)?@ for the latter. More precisely, the cham-

bers of C(p) are the equivalence classes of chambers
of € where two equivalence classes are i-adjacent
if they contain i-adjacent elements. The rank 2
equivalence ¢ is a rank 2 blueprint if C(p) is a
building of type W.

Example A. Consider the case where m;» = 2 and
©(1%2°) = 2°1%. Then we have 192" ~ 2°1¢ for all
a, b, c in the appropriate label sets. In this case ¢
is a rank 2 blueprint.

Example B. Alternatively, if ¢ is defined by ¢(i%5°) =
j*i" for all labels a and b, then 1#2° ~ 2°1¢ for all
¢, and ¢ is not a rank 2 blueprint since the shortest
gallery from 1¢ to 2°1¢, is of length 3 when a # b.
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Given W, I, S;, and C as above, a blueprint for C
is the collection

B ={pij: Cplijy = Cpiyp) | 1 #J €I}

satisfying ¢;; = cp]-_il and such that ¢;; is a rank 2
blueprint for all 2-element subsets {4, j} of I.

Given a blueprint B, define the labeled words
hep(j,i)tg° and hep(i, )¢ g to be elementarily
B-equivalent. Let ~ be the transitive closure of this
relation, and define C(B) = €/~; that is, the cham-
bers of C(B) are the equivalence classes of cham-
bers of € with two equivalence classes i-adjacent
if they contain elements which are i-adjacent in €.
Following the notation of [Ronan and Tits 1987],
we define a blueprint to be realizable if C(B) is a
building. Conversely, given a building A = €(B),
we say that A conforms to the blueprint B.

Associated to any Coxeter group with index set
I is a diagram whose vertices correspond to the
elements of I and where the vertices ¢ and j are
connected by 0, 1, 2, or 3 bonds, as the order of r;r;
is two, three, four, or six respectively. If the order
of r;r; is some other integer n, then we represent
this on the diagram by joining vertices ¢+ and j by
a bond with the label n.

The following special case of [Ronan and Tits
1987, Theorem 1] simplifies checking whether a
blueprint is realizable.

Theorem 3 [Ronan and Tits 1987]. A blueprint B
associated to a simply-laced diagram is realizable if
and only if its restriction to the following subdia-
grams 1s also realizable:

1. Ay x A, x A, : O O O
2. A x A, 0O 0—0
3. A;: 0—0—o0

Moreover in this case there is a unique building A
conforming to B.

The natural blueprint of type Ax(p) (p a prime) is
the rank 2 blueprint given by

S0(10‘2b1c) — 201acfb2a

where a,b,c € F,,.
The natural blueprint of type (A; x A;)(p) is
given by

p(1°2") = 217,

where a,b € IF,,.

2. ENUMERATING BLUEPRINTS

In [Ronan and Tits 1987] natural blueprints are
used to construct geometries associated to the Che-
valley groups and from this the Chevalley groups
themselves. Other blueprints may also give rise to
interesting groups.

For example, the Frobenius group of 21 elements
gives rise to A,(2) blueprints (not natural) which
can be used to construct a blueprint for the A,(Q,)
building in the following fashion. Define ~y : Z3 —
73 by

~(0,0,0) = (1,0,0), ~(1,0,0) =(0,1,1),
~(0,0,1) = (0,0,0), ~(1,0,1) =(1,0,1),
~(0,1,0) = (0,1,0), ~(1,1,0) =(0,0,1),
~(0,1,1) = (1,1,1), ~(1,1,1) = (1,1,0).

Now define ;5 by ¢ 2(192°1¢) = 172¥1* where
v(a,b,¢) = (z,y,2). Define py3 and @3, analo-
gously, and then ¢, 1, 32, and ¢, 3 are then the re-
spective inverses. By [Tits 1990, Remark 2], this is
then a blueprint for the affine building of SL3(Q,).

In this paper, our goal is to provide a starting
point for answering the question of what buildings
conform to blueprints. In particular, we will show
that no buildings over Q, with triangle-free simply-
laced diagrams conform to a blueprint.

By Theorem 3, a blueprint is realizable if and
only if it is realizable on the appropriate subdia-
grams. As a result our strategy is to enumerate all
rank 2 blueprints, and then check when three such
blueprints combine to form a realizable blueprint.

Let I = {1,2}, and let S; = S, = {0,...,n}.
Given a non-empty word f = ..., let X, denote
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the symmetric group on S; where j # i. Define X

to be the set
I =-

feee
(f)<miz

X = Sym(sl) X Sym(SZ) X

If m; » = 3, an arbitrary element of X has the form

o = (0'1,0'2,0'10,... ,O1n,0921,...,09n,
01090, ...,0109n,071120,...,01n2n,
02010,020711, .. .,0'2n1n.).

Let W be a spherical Coxeter group of rank 2,
and suppose {S}, S, } is a labeling. Then for 0 € X
as above, define a bijection 1, on € by

Yo (i ...

The set ¥ = {¢, | 0 € X} is then a group under
composition. Given a rank 2 blueprint ¢, define

1/)0((,0) = ¢’ by
@ (f*) = o (e ()

where f is any reduced word of length m, ;. This
defines an action of G on the set {1, (¢) | ¢, € G}.

Lemma 4. With W, Sy, S, €, o, ¥,, and ¢ as
above, the map ©° is a rank 2 blueprint for C.
Moreover, 1, induces an isomorphism from C(y)

to C(p7).

Proof. We first show that v, maps equivalent ele-
ments of C(¢) to equivalent elements of C(p”). If
the equivalence class has only one element, there is
nothing to check. Else, suppose f% ~ h’ in C(p).
Then I(f) = m, 5 and ¢(f*) = h®. By definition,

07 (%o (F)) = 1o (0(f*)) = o (R).

Since 1, maps i-adjacent elements of C(y) to i-
adjacent elements of C(¢7), it follows that v, in-
duces an isomorphism of these two chamber sys-
tems. If ¢ is a rank 2 blueprint then C(p) is a
building and hence so is C(¢7). O

) _ Z'ai(a)jg,;a (b)

Lemma 5. Given W, Sy, S5, C, U, as above, if ¢ and
v are two rank 2 blueprints and « : C(p) — C(v)

15 a type preserving isomorphism of chamber com-
plexes fizing the base chamber, (the trivial labeled
word @), then v = ¢ for some 1, € ¥ completely
determined by «. In particular, if o : C(p) —
C(yp), then oo = 1), for some o € X with ¢ = .

Proof. Let « be as above. Then « lifts to an iso-
morphism & on € defined by &(f*) = f° where
a([f,) = [f*],, where [f*], denotes the equiv-
alence class of f* in C(y); hence given a; € 5,
there exist b; € S;; such that
Qi) =,

and we have v o & = & o ¢. Let o, be the permu-
tation of S; such that 171(®) = &(1%), and let o,
be the permutation of S, such that 272( = 4(2%).
Given o (a) = b, define 0,. by 1°2712(9) = §(192°).
Continue inductively so that if &(f*) = f* then o.
is defined by &(fi¢) = f*i°r*(9), and let o € X be
the element with first coordinate o;, second coordi-
nate o, and f“th coordinate os.. By the definition
of &, we have a(p(1%2°1°)) = y(&(172°1¢)). By the
definition of o, we have o = 1),. Hence v = ¢?. [

What Lemmas 4 and 5 imply is that given a rank 2
building A and one blueprint, p, realizing it, every
other blueprint realizing A is of the form ¢” for
some g € X. Moreover, if there is a non-trivial au-
tomorphism of the rank 2 building fixing the base
chamber then this automorphism corresponds to
an element ¢ € X such that ¢ = ¢. Similarly,
given an element ¢ € X such that ¢ = ¢, the
map 1, must be an automorphism of the build-
ing fixing @. Let H be the stabilizer in ¥ of the
blueprint ¢ under the action ¥, (¢) = ¢?. Then
an efficient enumeration scheme for blueprints re-
alizing C(y) would pick out exactly one element of
each coset of H.

Theorem 6. Let A be a rank 2 building with m, » = 3
and parameter p a prime. Suppose ({Si,S2},p) is
a rank 2 blueprint realizing A. Then every blue-
print realizing A is given by ¢, where

o= (0,...)€X
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can be chosen uniquely so that

Proof. By Lemma 5 every blueprint realizing A is of
the form ¢ for some o. It remains to show that o
can be uniquely chosen satisfying equations (2-1).
Suppose o satisfies these equations and ¢7 = .
Then the map 1), fixes the apartment of C(y) con-
taining the chambers [@], [1°], [1°2°], [1°2°1°], [1}],
and [1°2']. Moreover, since this is the A, (p) build-
ing and v, fixes [1'] and [1°2'], then ¢, fixes every
chamber of form [1?] and every chamber of form
[1°2¢]. By [Tits 1974, Theorem 4.1.1], this implies
that 1, is the identity on A. In fact, the require-
ment that 1, fixes the given apartment and the
base chamber implies 1, is a diagonal matrix un-
der the appropriate basis for Fi. The requirements
that [1'] and [1°2'] are fixed imply that v, corre-
sponds to the matrix kI for some k € [F,. But
then 1, acts as the identity on A. As a result, if
v is any blueprint for A, then there exists at most
one element o € X satisfying equations (2-1) with
v =7

Alternatively, if v is a blueprint, Lemma 5 im-
plies that v = ¢,(¢) for some ¢ € X. Since
PSL;(p) is transitive on apartments of C(y) (which
follows from [Ronan 1989, Theorem 5.3]), there ex-
ists an automorphism « such that a(@) = @ and
a1, (192°19)) = 1°2°1°. Since the stabilizer of an
apartment is transitive on ordered pairs of cham-
bers of the form ([1%],[1°2]), with a,b # 0, we can
choose « such that a(@) = @, a(y,(1°2°1%)) =
192°1°, a(y, (1%)) = 1%, and (i), (1°21)) = 1921
By Lemma 5, o = 1), for some 7 € X and ¢, (vy) =
7. Since ¥ is a group, 1, o1, = 1, for somen € X.
Hence v = ¢ where 7 satisfies (2-1). O

Since there exist efficient algorithms for producing
permutations (in [Rosen 1991, p. 284], for exam-
ple), this theorem together with such an algorithm
provides a way of enumerating all the blueprints
of A,(p), where p is a prime. The following corol-

lary provides a count for the number of A,(p) blue-
prints:

Corollary 7. The number of blueprints for the A,(p)
building 1s
(p!) @ +2p+2)
pip—1)°
Proof. The number of blueprints is clearly |¥|/|H],

where H is the stabilizer of the natural blueprint.
Above, we proved that the stabilizer of H has order
pip — 1) O
For p = 2 this number is 2048, for p = 3 the num-
ber is approximately 1.57 x 10'®. As a result, pure
enumeration schemes are only reasonable for the
p = 2 case.

One can generalize Theorem 6 to other build-
ings, but the results are not as easily stated. For
this paper, we also need the (A; x A;)(p) case. In
this case the building corresponds to the complete
bipartite graph K, ,+1, and the stabilizer of a
chamber in the automorphism group is isomorphic
to S, x S,. The number of blueprints is (p!)** giv-
ing 16 blueprints for p = 2.

We now turn to the question of blueprints for
higher-rank buildings. If we are given a blueprint
B for the building A, then corresponding to any el-
ement of [ [, Sym(S;) we get a blueprint simply by
permuting the elements of §;, that is by mapping
itt .. i7" to the element i) ..i;ik(ak). In gen-
eral, this blueprint will not be equal to the original
blueprint, although in the natural A; x A; case it
is. Consider the case of the natural blueprint ¢
for As(p), and let o € Sym(S;) and 7 € Sym(Ss).
Since

p(192°1°) = 2°1°°7"27,

for (o, 7) to fix ¢ would require o(a) = 7(a) for all
a € 5;, and hence that o = 7. Moreover, we would
have o(ac — b) = o(a)o(c) — o(b) for all a,b,c €
S1 = S5, implying o is a field automorphism of IF,.
Hence o is trivial. We have shown:

Theorem 8. There are (p!)? distinct relabelings of
the natural As(p) blueprint.
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3. APPLICATIONS

In this section we summarize results from com-
puter analysis on Aj(2)-blueprints. All programs
were run using MATLAB on a Silicon Graphics
Indy computer. To find all A3(2) blueprints, we
enumerated the rank 2 blueprints of type A,(2)
and A;(2) x A;(2). We then checked all triples
(p1,2, P2.3, P1.3), where ¢ » and ¢, 3 are A,(2) blue-
prints and ¢ 3 is an (A; X A;)(2) blueprint. These
maps then produce a blueprint B. To see if this
blueprint realizes the A3(2) building, by [Ronan
1989, Theorem 7.2] it suffices to check that if f°
is equivalent to f’ in C(B) then a = b. In turn
to check this it suffices as in [Ronan 1989, p. 93]
to see that the following self-homotopy induces a
self-equivalence:
19201°392¢1F ~ 2011721 372¢1 7
(where ;5(192°1¢) = 20110121
~ 2173722431/
(where (p,3(2°1342¢) = 3°22913¢1)
~ 20 3b2 oM 230
(where ¢15(1°13°2) = 321 etc.)
~ 201 3P29ca 142003 3N
~ 3%22bs 3014220331
~ 3029bs1cegdsges 31
~ 3022100 2% 30422
~ J0z1ba9crqds Jeanfo
~ 1933bs9crgde (€59 f2
~ 1082703050 0 )2
~ 1939bsgcs1ds e fs
~ 1932Pe 030 0e0 /5,

Since this word has length 6, 2° checks must be
performed to prove a particular blueprint realizes
the A3(2) building. From our results we obtained:

Theorem 1. The only blueprints realizing the A3(2)
building are relabelings of the natural blueprint for
A3(2).

This theorem is proved by exhaustive computer
search. Given our basic algorithm this case re-
quired roughly 120 hours of computer time on a

Silicon Graphics Indy computer, and the computer
produced exactly the 8 blueprints that are relabel-
ings of the natural blueprint.

From this theorem we obtain:

Corollary 9. Let A be a simply-laced building. Sup-
pose the Cozeter diagram of A is connected, con-
tains at least 4 wvertices, and contains no trian-
gles. If every panel of A lies on exactly 3 chambers
(the p = 2 case), and A conforms to a blueprint
B ={pi;}, then all o, ; are natural up to possible
relabelings of the S;’s.

Proof. If the vertices ¢ and j in the Coxeter diagram
are connected, then there is a vertex k such that
i, 7, and k form an Ay diagram. Hence by Theo-
rem 1, o, ; is natural up to a relabeling. Moreover,
if k£ and k" are both adjacent to %, then the relabel-
ing of ¢ must be the same since 7, k, and k' form
an Az-subdiagram. Next, suppose ¢ and j are not
connected. The vertices ¢ and j are connected by a
path of length m. Inducting on m; if m = 2, then i
and j are part of an A3 subdiagram and Theorem 1
yields the result. Else, consider the vertex k adja-
cent to ¢ at distance m —1 from 5. Then 4, j, and k
form an A; x A, subdiagram. Moreover, we know
that o; , and ¢, are natural by the induction hy-
pothesis. It remains to show that ¢; ; is natural.
Without loss of generality, assume i = 1, k = 2,
and j = 3 and consider the labeled word 1¢2°1¢3¢.
Then, 2°3% ~ 392 since the ¢, 3 blueprint is nat-
ural. Similarly, 12°1¢ ~ 291%¢7°2% since the ¢ »
blueprint is natural. Hence we obtain the following
chain of elementary equivalences:

1a2b1c3a’ ~ 2c1ac7b2a3d
~ 21392 (V = ac—b)
~ 2¢3% 1Y 90 (3-1)
~ 34'901"" 9¢
~3%1°2""1¢ (V" = ac—b")
~ 1939 90" 1¢ (3-2)
~ 192" 34" ¢
~ 1921434 (3-3)
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Since we have a blueprint, by [Ronan 1989, The-
orem 7.2 a =a',b="0",c=¢,and d = d". Since
¢ =cand d" = d, equation (3-3) implies for all a
that 1#3* ~ 3¥1%. In turn we obtain ' = b" from
equation (3-1). Let b = ac — a. Since V' = a,
by equation (3-1) 1°3? ~ 3%1°. Now in equa-
tion (3-2) we have 3%1° ~ 1°3%". This implies
d = d". But then the last line implies 1¢3¢ ~ 3%1¢,
Since ¢ and d are free, we obtain that ¢, 3 is nat-
ural. This completes the proof that B must be a
relabeling of a natural blueprint. 0

As a Corollary to this we obtain Theorem 2.

Proof of Theorem 2. By the above, if there exists
a simply-laced affine building over Q, of rank at
least 4 (with connected diagram) conforming to a
blueprint then this buildings would conform to the
natural blueprint. From [Ronan and Tits 1987,
Example 6.1], we know that these blueprints realize
the affine buildings over F,((¢)). Hence they do not
realize the Q, buildings. g

One result of this last corollary is that to use the
idea of blueprints to construct Q, buildings re-
quires some generalization of the idea as was done
in [Abramson > 1998]. An interesting question
raised by this is whether the lack of such blue-
prints is due to the smallness of 2 or the restrictions
placed on a blueprint by the building.
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