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We list here Hecke eigenvalues of several automorphic forms

for congruence subgroups of SL(3; ZZ). To compute such tables,

we describe an algorithm that combines techniques developed

by Ash, Grayson and Green with the Lenstra–Lenstra–Lovász

algorithm. With our implementation of this new algorithm we

were able to handle much larger levels than those treated by

Ash, Grayson and Green and by Top and van Geemen in pre-

vious work. Comparing our tables with results from computa-

tions of Galois representations, we find some new numerical

evidence for the conjectured relation between modular forms

and Galois representations.

1. INTRODUCTIONIt is well known that one can associate Galois rep-resentations to Hecke eigenforms on congruencesubgroups of SL(2;Z). It has been conjectured,as part of the Langlands program, that one can dothe same for SL(3;Z) and in [van Geemen and Top1994] we provided some evidence for this.For any prime number p not dividing the levelof the modular form/conductor of the Galois rep-resentation, one de�nes a local L-factor that in theSL(3;Z) case has the form(1� app�s + �app1�2s � p3�3s)�1:Here ap is the eigenvalue of a Hecke operator Epon the eigenform/trace of a Frobenius element atp in a 3-dimensional Gal( �Q =Q ) representation and�ap is its complex conjugate.The experimental evidence consists of an eigen-form and a Galois representation with the sameL-factors (that is, ap's) for small primes.
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164 Experimental Mathematics, Vol. 6 (1997), No. 2It is actually rather easy to �nd candidate Galoisrepresentations in the �etale cohomology of surfaces.One family of such surfaces was discussed in [vanGeemen and Top 1994] (see also our Section 3.8);two other families are constructed in [van Geemenand Top 1995]. The (computational) problem israther to �nd Hecke eigenforms. (We hasten to addthat none of the authors is an expert on modularforms, our interests were mainly in Galois represen-tations and/or Algebraic Geometry and/or compu-tational aspects).We list in this paper some Hecke eigenvaluesof several automorphic forms for congruence sub-groups of SL(3;Z). By combining the methodsfrom [Ash et al. 1984] with the Lenstra{Lenstra{Lov�asz algorithm, we were able to handle muchlarger levels than was the case in [Ash et al. 1984]and [van Geemen and Top 1994]. Comparing thesetables with results from computations of Galoisrepresentations, we �nd further evidence for theconjectured relation between modular forms andGalois representations; see Theorem 3.9.In the �rst section we recall the methods from[Ash et al. 1984] to determine the spaces of auto-morphic forms in terms of group cohomology andwe discuss some computational aspects. Since wedo not know a formula that gives the dimensions ofthese spaces (as function of the level of the form),we give a table with the results we found (see Ta-ble 1 in Section 3). One would also like to havea table that lists the dimension of the cuspidalpart, but (with exception of the prime level case),no practical criterion that singles out the cuspidalforms is known to us.Next we recall how to compute the action of theHecke operators on the space of modular forms. Inview of properties of cusp forms and the examplesof Galois representations we know, we are mostlyinterested in Hecke eigenvalues that lie in CM-�eldsand that are small (so they satisfy the Ramanujanhypothesis). The selection criterion upon whichour tables are based is given in Section 2.6.In contrast with the SL(2;Z) case, one �nds veryfew cusp forms of prime level for SL(3;Z). In fact

the only prime levels � 337 with cusp forms arethe levels 53; 61; 79; 89 and 223. The CM-�eldsgenerated by the eigenvalues were imaginary quad-ratic with exception of the case of level 245 wherewe found a degree 4 extension of Q .
2. MODULAR FORMS AND HECKE OPERATORS

2.1. We brie
y recall how to compute the modularforms under consideration. The standard referenceis [Ash et al. 1984].In the case of SL(2;Z), the space S2(�) of holo-morphic modular forms of weight two on a congru-ence subgroup � is a subspace of the cohomologygroup H1(�; C ). This generalizes as follows.
2.2. For N � 1, de�ne the subgroup�0(N) � SL(3;Z)to consist of all (aij) such that a21 � 0 mod N anda31 � 0 mod N . This group has our primary in-terest. It is neither normal in SL(3;Z) nor torsion-free. To compute its cohomology, we introduce the�nite set P2(Z=N) = �=(Z=N)�;where ��(Z=N)3 is the set consisting of all (�x; �y; �z)such that �xZ=N + �yZ=N + �zZ=N = Z=N . Whenthe elements of P2(Z=N) are viewed as column vec-tors, there is a natural left action of SL(3;Z) onP2(Z=N). This action is transitive, and the stabi-lizer of (�1: �0: �0) equals �0(N). ThereforeSL(3;Z)=�0(N) �= P2(Z=N):Under this correspondence, an element of SL(3;Z)is mapped to its �rst column viewed as homoge-neous coordinates modulo N .The dual of the vector space H3(�0(N); C ) isH3(�0(N); C ) and it can be computed as follows:
Theorem 2.3 [Ash et al. 1984, Thm. 3.2, Prop. 3.12].There is a canonical isomorphism betweenH3(�0(N); C )and the vector space of mappings f : P2(Z=N)! Cthat satisfy
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1. f(�x: �y: �z) = �f(��y: �x: �z),
2. f(�x: �y: �z) = f(�z: �x: �y),
3. f(�x: �y: �z)+f(��y: �x� �y: �z)+f(�y� �x:��x: �y) = 0.
2.4. For any � 2 GL(3;Q ) one has a (C -linear)Hecke operatorT� : H3(�0(N); C ) �! H3(�0(N); C );which de�nes an adjoint operator T �� on the dualspace H3(�0(N); C ). We now explain how to de-termine this adjoint.Let �0(N)��0(N) =ai �i �0(N)be the decomposition of the double coset in a (�-nite) disjoint union of left cosets. Such �i's can befound in [Ash et al. 1984, p. 430].First we need the de�nition of modular symbol(compare [Ash and Rudolph 1979], where howevercolumn rather than row vectors are used). Thesemodular symbols are elements of H1(T3;Z), withT3 the Tits building for SL(3;Q ), and they giverise to cohomology classes in H3(�0(N); C ). Forthe purposes of this paper it however su�ces toknow the following. For three nonzero row vectorsq1; q2; q3 2 Q 3 we de�ne a modular symbol[Q] = hq1q2q3i(where we can view Q as a 3� 3 matrix with rowsqi) that satis�es the following rules:
1. Permuting the rows of hq1q2q3ichanges the sign ofthe symbol according to the sign of the permu-tation.
2.
ha1q1a2q2a3q3i = hq1q2q3i.

3.

hq1q2q3i = 0 when det�q1q2q3� = 0.
4.

hq1q2q3i� hq0q2q3i+ hq0q1q3i� hq0q1q2i = 0.
5.

hq1�q2�q3�i = hq1q2q3i � �.Here q0; q1; q2; q3 2 Q 3 are nonzero row vectors,a1; a2; a3 2 Q� , � 2 GL(3;Q ) and � denotes the

right action of GL(3;Q ) on H1(T3;Z) induced byits natural right action on T3.A modular symbol [Q] is called unimodular ifQ 2 SL(3;Z). Using these relations, any modularsymbol is equal to the sum of unimodular sym-bols. An explicit algorithm we used to do this isgiven in 2.10. Finally we observe that if [Q] isunimodular, then it de�nes a point of P2(Z=N) =SL(3;Z)=�0(N), denoted by the same symbol.We continue the description of the Hecke opera-tor. Let �i be a coset representative as above, andlet x 2 P2(Z=N) be represented by Qx 2 SL(3;Z).Then, as modular symbols, we can write[Qx�i] =Xj [Rij ];with Rij 2 SL(3;Z). Finally we then have theformula for T �� : H3(�0(N); C ) ! H3(�0(N); C ),the adjoint of the Hecke operator T�:(T ��f)(x) =Xij f(Rij);where the Rij on the right-hand side are consideredas elements of P2(Z=N).
2.5. The Hecke algebra T is de�ned to be the subal-gebra of End(H3(�0(N); C )) generated by the T�'swith det(�) relatively prime withN . The Hecke al-gebra is a commutative algebra and H3(�0(N); C )may be decomposed as a direct sum of commoneigenspaces of the operators from T:H3(�0(N); C ) =M� V�where each � is a homomorphism of algebras T!C , and Tf = �(T )ffor T 2 T and f 2 V�.Of particular interest are the Hecke operatorsEp, for p prime not dividing N , de�ned by �p 2GL(3;Q ): �p := 0@ p 0 00 1 00 0 11A :



166 Experimental Mathematics, Vol. 6 (1997), No. 2Given a character � of T, the number ap in the localL-factor of the corresponding Hecke eigenform isap := �(Ep):
2.6. It is known (compare [Ash et al. 1991, Lem.1.3, 1.4]) that the �eld generated by the eigenval-ues ap of a cuspidal Hecke eigenform is a number�eld that is either totally real or a CM-�eld, that is,a degree-two imaginary extension of a totally real�eld. Moreover, if it is totally real then the eigen-class corresponds to an essentially selfdual cuspidalautomorphic representation. Conversely, if the as-sociated automorphic representation is essentiallyselfdual, then a Dirichlet character �0 exists suchthat the numbers �0(p)ap generate a totally realnumber �eld. One may very crudely describe re-sults of Clozel [1991] by saying that he proves theexistence of selfdual Galois representations closelyrelated to such selfdual cuspidal automorphic ones.Clozel [1990, Conjecture 4.5], following Lang-lands, predicts that the existence of Galois repre-sentations providing the same local Euler factors asthe automorphic cuspidal ones, is not restricted tothe selfdual case only. We are interested in testingthis conjecture. For this reason, in our calculationsof Hecke eigenclasses, we will restrict attention toclasses whose Hecke eigenvalues generate a CM-�eld.The computer determined and factorized (overQ ) the eigenvalue polynomial of the Hecke opera-tors Ep for the �rst 5 primes p that do not divideN . We then considered only those V� for which atleast one (of the �ve) numbers �(Ep) generated aCM-�eld.Thus we certainly overlooked examples of non-selfdual modular forms with, say, �(Ep) 2 Q forthe �rst 5 primes not dividing N , but with �(Ep)generating a CM-�eld for the sixth prime. Evensimpler, since our selection criterion will disregardany eigenclass whose eigenvalues are all real, wewill in general miss cuspidal classes correspondingto selfdual representations.

For any � with the property that at least oneof the �(Ep) computed was not a real number, wecomputed the values ap := �(Ep) for the �rst 40prime numbers (that is, all primes p � 173). Ad-mittedly, the choice to use �ve primes in this �rsttest looks rather arbitrary. It re
ects a balancebetween the need to keep the time spent on the al-gorithms within certain bounds, versus the desirenot to miss any nonselfdual classes.Recall that we are interested in relating eigen-forms to nonselfdual Galois representations, as pre-dicted by Clozel. In this conjectured relation, theroots of the polynomial X3 � apX2 + �appX � p3should be the eigenvalues of a Frobenius element(in Gal( �Q =Q )) in a 3-dimensional representation(at least if the eigenform is a cusp form). Theseeigenvalues of the Frobenius element should haveabsolute value p. Therefore we consider only eigen-forms that satisfy Ramanujan's conjecturejapj � 3p:Examples where this is not satis�ed are not listedhere either, with the exception of the second col-umn of Table 3. The �rst example of CM-eigen-values (the �eld is Q (p�3)) that do not satisfyRamanujan's conjecture occurs for N = 49. Notethat since cuspidal classes (by Clozel's conjecture)should satisfy Ramanujan's conjecture, one expectsthat this second restriction on the eigenclasses willremove only noncuspidal ones.The two properties of our eigenclasses (the �rst�ve relevant eigenvalues generate a CM-�eld, andall eigenvalues that we compute satisfy Ramanu-jan's conjecture) are the only ones we consider. Inparticular, in general we do not consider the ques-tion whether our eigenclasses are in fact cuspidal.In some instances practical criteria are known todetermine whether a given class is cuspidal. If thelevel N is prime, this is worked out in detail in [Ashet al. 1984]. One can construct noncuspidal classesusing for instance Eisenstein liftings; an examplehow one uses this to determine that certain classesare noncuspidal is given in Example 3.4. However,



van Geemen, van der Kallen, Top, and Verberkmoes: Hecke Eigenforms in the Cohomology of Subgroups of SL(3, ZZ) 167for general level we do not know a practical con-clusive test to determine whether a given class iscuspidal or not. This implies that at present we areunable to adapt our programs in such a way thatthey might be used to verify Ramanujan's conjec-ture for certain levels.
2.7. Dimensions. The computer �rst determined thespace H3(�0(N); C ) using Theorem 2.3. Table 1 onpage 169 lists the dimension of that space. Rep-resenting a map f : P2(Z=N) ! C by the vectorof its values, the equations listed in 2.3 give a sys-tem of linear equations. The number of variablesis �rst reduced using the �rst two equations andthere remains a sparse linear system with small in-teger coe�cients. This system is reduced further,roughly by eliminating equations with fewer thanthree terms. For example, in case N = 223 (aprime number) we are left with a system of 7005equations in 1963 variables. We will use this ex-ample to explain how we proceed.
2.8. Lattice reduction. In smaller cases we solved thesparse linear system by Gauss elimination, plusa Euclidean algorithm to keep the entries small.In these smaller cases we observed that the solu-tion space is always spanned by vectors with re-markably small coordinates. But for larger sys-tems like in our example case N = 223 our Pascalprogram crashes because of integer over
ow dur-ing the Gauss elimination. Therefore we solve thesystem only modulo the prime 32503. (Since 2 �32503�32503 < Maxint in our Pascal implementa-tion, over
ow is now easily avoided without muchchange to the program.)We �nd that over the �eld Z=32503Z the solutionspace is spanned by a basis of 38 vectors. Now thetrick is to apply the LLL algorithm [Lenstra et al.1982; Pohst 1987] to the lattice L of integral vec-tors of length 1963 whose reduction modulo 32503is spanned by these 38 vectors. The LLL algo-rithm �nds 38 independent vectors with their 1963integer coordinates all between �42 and 64, andso that their residues mod 32503 still form a ba-sis of the solution space of the modular system.

(The program aims for coordinates between �150and 150. This works in all examples, with someroom to spare.) One now plugs these new vectorsin the original system, to see that we are in luckand that they satisfy it over Z. (In all cases wehad such luck.) It follows that they span the solu-tion space over Q , so by this trick we succeeded insolving the 7005 by 1963 system over Q . Here theLLL algorithm that we use is lllint in GP/PARICalculator Version 1.37.Actually we do not really apply the LLL algo-rithm to the lattice L � Z1963. This Z1963 is toobig. But note that, to describe a new basis of thesolution space of the modular system, all one needsis a 38 by 38 transformation matrix. One can startlooking for a useful matrix using just a small sam-ple of the 1963 coordinates. We increase the sam-ple until success is achieved. This �nishes the ex-planation of how we solve our large sparse linearsystems.
2.9. Finding a subspace. Next we compute the 38 by38 matrix describing the Hecke operator for someprime p, compute its minimal polynomial and fac-torize it. There is just one factor that has CM-eigenvalues and it has degree two. Next we plug thematrix into this factor of degree two. This resultsin a corank-two matrix whose kernel we compute.From this we get two vectors of length 1963, span-ning our interesting subspace. Applying LLL oncemore, now with the prime 224737, we can get anew pair, spanning the same subspace over Q (thiswe check), and with coordinates between �72 and90. (At this step we aimed for coordinates between�4500 and 4500, as in practice the coordinates ofthe generators of the subspace are not as small asthose for the full solution space.)
2.10. Reducing symbols. We now describe the algo-rithm we used to reduce a modular symbol to asum of unimodular symbols. Large parts of it areborrowed from the algorithm given by Ash andRudolph [1979]. We shall constantly refer to theproperties enjoyed by the modular symbol, listedin Section 2.4.



168 Experimental Mathematics, Vol. 6 (1997), No. 2By property 2, we may restrict our attention tomodular symbols whose underlying matrices haveinteger entries. Let Q be a 3 � 3 matrix (withinteger entries), all whose rows are nonzero. Byproperties 2 and 3, we may assume that jdetQj >1. For any nonzero row vector v 2 Z3 and 1 � i �3, let Qifvg denote the matrix Q with its i-th rowreplaced with v. It follows from properties 1 and 4that [Q] = [Q1fvg] + [Q2fvg] + [Q3fvg]:A vector v will be constructed such that each ma-trix Qifvg has smaller jdet j than Q. Let q1, q2and q3 denote the rows of Q, and writev = t1q1 + t2q2 + t3q3 (2.1)with t1; t2; t3 2 Q . SincedetQifvg = 3Xj=1 tj detQifqjg = ti detQ;we need to �nd ti with jtij < 1 such that the vectorgiven in (2.1) has integer coe�cients.In order to do this, we shall �nd a row vectorx 2 Z3 and an integer m such thatxQ � 0 mod m (2.2)and x 6� 0 mod m: (2.3)From such a congruence, a suitable vector v canbe constructed as follows. Write x = (x1; x2; x3).We may assume that jxij � 12 jmj for 1 � i � 3.It then follows easily from (2.2) and (2.3) that wemay take ti = xi=m.It remains to �nd x and m satisfying (2.2) and(2.3). A Gauss-like elimination procedure is ap-plied to (2.2), without specifying the value of myet. The trick is to choose the modulus m only af-ter enough elimination steps have been performed.We begin working on the �rst row of Q. By means

of elementary column operations, (2.2) is trans-formed into an equivalent congruence relation(x1; x2; x3)0@m1 0 0� � �� � �1A � (0; 0; 0) mod m: (2.4)Since jdetQj > 1 and the column operations donot change jdet j of the matrix, m1 cannot vanish.Now if jm1j > 1, we take x = (1; 0; 0) and m = m1,and we have found a solution to (2.2) and (2.3). Ifjm1j = 1, we turn to the second row of the matrixin (2.4). By elementary column operations we get(x1; x2; x3)0@�1 0 0� m2 0� � �1A � (0; 0; 0) mod m: (2.5)Again m2 cannot vanish. If jm2j > 1, we take m =m2 and �nd a solution of the form x = (�; 1; 0). Ifjm2j = 1, (2.5) takes the form(x1; x2; x3)0@�1 0 0� �1 0� � m31A � (0; 0; 0) mod m:Since m3 = �detQ, we have jm3j > 1, so we cantake m = m3 and �nd a solution of the form x =(�; �; 1).A close look at the algorithm reveals thatjdetQifvgj � 12 jdetQjfor i = 1; 2 and jdetQ3fvgj � 1. Also we wouldlike to point out that our algorithm, like that ofAsh and Rudolph, works over any Euclidean do-main and for any dimension.
3. NUMERICAL RESULTS

Remark 3.1. For prime level p one knows [Ash et al.1984, Thm. 3.19] thatdimH3(�0(p); C )= dimH3cusp(�0(p); C ) + 2dimS2(p);



van Geemen, van der Kallen, Top, and Verberkmoes: Hecke Eigenforms in the Cohomology of Subgroups of SL(3, ZZ) 169x = 0 1 2 3 4 5 6 7 8 9N dim1x 2 2 7 0 4 4 6 2 7 22x 9 4 8 4 17 4 6 6 13 43x 20 4 12 10 10 8 21 4 12 84x 23 6 26 6 21 15 16 8 34 95x 20 14 21 10 25 14 31 14 20 106x 55 10 20 19 26 12 42 10 29 207x 38 12 51 10 22 28 33 18 44 148x 48 23 26 14 71 18 28 24 49 169x 67 16 24 41 32 22 68 14 43 3310x 59 16 60 16 51 48 42 18 69 1611x 58 28 64 18 66 28 57 35 40 2612x 125 29 44 40 53 28 89 20 58 3413x 60 22 107 26 44 51 67 22 82 2214x 101 40 50 30 111 32 46 55 61 2415x 122 24 75 51 76 36 119 24 62 5016x 100 36 101 26 69 74 56 28 161 4017x 80 53 73 28 106 56 102 50 64 3018x 177 28 82 54 93 40 106 40 81 6719x 94 32 146 30 62 80 121 32 139 3220x 141 54 66 44 155 48 68 67 108 4421x ? 34 109 60 72 50 163 44 70 5822x ? 44 ? 38 130 107 74 38 ? 3623x ? 94 129 38 ? 56 ? 70 ? 4024x 38 38 ? 79 117 83 ? 46 119 7025x 42 42 ? 54 84 ? ? 42 ? ?
TABLE 1. Dimension of H3(�0(N); C ), for all N be-tween 10 and 209 and for a few more cases. Aquestion mark indicates that we did not pursuethis level, because time or memory requirementsexceeded some reasonable limit. These require-ments do not necessarily increase with N . Indeed,as mentioned in 3.1, for prime N it was practicalto go all the way to N = 337.where S2(p) is the dimension of the space of weighttwo cusp forms for the congruence subgroup�0(p) � SL(2;Z):Recall that dimS2(p) = k � 1, k, k, k + 1 whenp = 12k + r and r = 1; 5; 7; 11. Thus in thiscase it is easy to determine if H3cusp is nonzero.We checked that the only prime levels below 338for which dimH3(�0(p); C ) di�ers from 2dimS2(p)are the levels 53, 61, 79, 89 and 223.

Remark 3.2. In case there is a newform of level N ,then in level pN we �nd 3 copies of it (for example,the form of level 53 appears 3 times in level 106 and3 times in level 159). It appears 6 times in level212 = 22 � 53. Such old forms, especially for levelsN = pk, were studied in [Reeder 1991].
3.3. We now exhibit the data about eigenclassessatisfying our criteria, in cases where the �eld gen-erated by the eigenvalues is not Q (i). The caseQ (i) is treated in Section 3.6. Table 2 lists theHecke eigenvalues ap for Hecke operators Ep, with2 � p � 173, of eigenforms of certain levels. Theeigenvalues for small p and level 53, 61 and 79 werealready given in [Ash et al. 1984]. Moreover, itseems that the form of level 223 we found has al-ready been predicted by P. Green in 1986; his un-published computations are mentioned in [Ash andMcConnell 1992].
Example 3.4. At level 245 we found two four-dimen-sional spaces, Va and Vb, invariant under the Heckeaction, and the eigenvalue polynomial of the Ep's,for p 2 f2; 3; 11; 13; 17g on each space is an irre-ducible polynomial of degree 4, listed in Table 3 onpage 171. The �eld K generated by the roots ofthese polynomials is the same for both spaces:K = Q [X ]=(x4 + 2x2 + 4)�= Q (q�1 +p�3) = Q (p2; p�3):The four roots of each of these polynomialsX4�cpX3+� � � are the eigenvalues of Ep, and by the Ra-manujan conjecture for cusp forms their absolutevalue should be at most 3p, so jcpj � 12p. The cpwe found on Vb do not satisfy this condition, thoselisted for Va do. Of course, this condition on cp isweaker than the one on ap given in 2.6. For in-stance, taking p = 11, two of the eigenvalues of Epon Va have absolute value 23 + 22p2 > 3p = 33.In fact, following a suggestion made to us byAsh, it is easy to give a precise description of Vaand Vb in terms of classical modular forms. Thisdescription shows that neither space contains anycusp forms. Namely, using (unpublished) tables of



170 Experimental Mathematics, Vol. 6 (1997), No. 2N = 53 58 61 79 88 153 223p eigenvalue2 �2� � �� �� �1 �� 1 13 �1 + � �1 + 
 �3 + 2� �1 + " �1 + 
 �� �3 + �5 1 �4� 2
 2� �4� 2" �4� 2
 1 17 �3 1 + 2
 �3� 3� �3� " 1� 2
 �3 + 6� 111 1 7� 
 �1 + � 1 + 2" �� �5 + 6� 1� �13 �8� 6� �6� 2
 �4� 2� �6� 2" 1 + 4
 �9� 12� �117 22 13 �15 + 4� �1 �1 �� �2� 4�19 11 + 3� �11� 4
 17 + 4� 5 + 4" �11� 4
 9 �323 �11 + � �7 + 8
 5� 9� 17 + 2" 21� 5
 �11 + 6� �11� �29 16 + 2� �� 7 + 4� �9 �11� 4
 13 2231 �7 �15� 11
 17� 4� 1 + 2" �15� 
 �15� 6� �3 + 6�37 �24 + 6� 21 + 4
 1� 16� �1 �14 + 18
 �15 �241 �17 15 �22� 36� 43 1� 8
 31 �32� 4�43 29 + 6� �25 + 7
 �27 + 16� �11� 8" 17� 6
 33 + 12� �11 + 6�47 1� 14� �39 + 13
 33 + 4� �39� 5" 17 + 16
 �11� 12� �11� 6�53 �38 + 14� 56� 2
 �25 �15� 4" �21 + 8
 19� 12� �44� 12�59 1� 14� 69 19� � 15� " �1 + 7
 49 + 12� 25� 11�61 �7 17 + 4
 30 + 30� 9 + 4" �39� 28
 9 1767 �11� 12� �35 + 8
 71 + 3� �43 + 4" �21 + 23
 �27� 36� 25� 9�71 13� 5� 17� 14
 �15 + 4� �67 + 31" 101 + 
 �35� 30� 25� 4�73 �39� 12� 13� 24
 �42� 4� 27 13 + 8
 �33 + 72� 20 + 12�79 �39 + 9� �7� 17
 �7 + 31� 41� 17" �63� 10
 33� 18� 2583 67� � �27� 36
 13 + 32� 33 + 10" 1� 6
 �47 + 12� �23 + 22�89 �29 + 16� �53� 16
 �19 + 8� �18� 12" �60� 4
 �89 + 96� 16� 4�97 �58 �69 + 48
 3 + 32� �58 + 16" 106 + 16
 27� 24� �81 + 24�101 43� 20� �43 + 4
 �15� 48� 46� 6" 27 + 8
 55 �53 + 16�103 �99 + 33� 129 + 6
 �67� 72� �51 + 15" �39 69� 36� �79 + 15�107 85� 18� �63� 38
 81 + 38� �89� 41" �63 + 18
 �89 + 114� �11� 24�109 101 + 12� 84 + 18
 14� 14� �61� 8" �77� 40
 �63 + 72� 63113 �68 + 24� 3 �94 + 80� 69� 16" 122 + 8
 115� 24� �41 + 24�127 �7� 21� 129 5� 46� �15 + 9" �95� 8
 �99� 144� �79 + 6�131 �107� 50� 45 + 16
 �127� 64� 25 + 22" �39 + 6
 �53� 102� 25 + 10�137 25 + 12� 21 + 8
 90� 36� 117 + 8" 70� 4
 43 �149 + 44�139 �19� 12� �83 + 4
 �21� 13� 115� 23" 113 + 26
 39� 6� 5 + 6�149 46� 38� 14� 30
 �10� 58� �1� 32" 231� 16
 �137 + 12� 175 + 8�151 �35� 45� 49� 26
 �75� 57� �79 + 58" 49 + 34
 �27� 72� �11� 15�157 �51 + 48� �113 221 �85 + 8" 104 + 18
 �57� 96� �45163 277� 6� 91� 25
 85� 66� �19 189� 24
 39 + 54� 125� 12�167 157 + 15� 1 + 22
 �147� 136� �31 + 6" �55 + 12
 �107� 150� �155� 59�173 �53� 56� �109 + 56
 19 + 56� �135� 12" 3� 8
 13 + 24� 181� 8�
TABLE 2. Hecke eigenvalues ap for Hecke operators Ep, with 2 � p � 173, of eigenforms of certain levels. Foreach column of the table we �x an algebraic integer with the following property:�2 = �2; �2 = �3; 
2 = �7; �2 = �11; "2 = �15; �2 = �23:



van Geemen, van der Kallen, Top, and Verberkmoes: Hecke Eigenforms in the Cohomology of Subgroups of SL(3, ZZ) 171p Va Vb2 x4+6x3+35x2+6x+1 x4+10x3+77x2+230x+5293 x4+8x3+66x2�16x+4 x4+20x3+302x2+1960x+960411 x4+46x3+2555x2�20194x+192721 x4+246x3+45395x2+3719766x+22864464113 x4+100x3+1046x2�72700x+528529 x4�668x3+167318x2�18624508x+77735016117 x4+70x3+5987x2�76090x+1181569 x4+582x3+254051x2+49279686x+7169516929
TABLE 3. Eigenvalue polynomial of the Ep's on each of the two four-dimensional spaces Va, Vb invariant underthe Hecke action.Cohen, Skoruppa and Zagier it turns out that thereexists a unique newform f = q + b2q2 + b3q3 + � � �of weight 2, level 245 and with trivial character,having b2 = 1 +p2; b3 = 1 �p2; b11 = 2 � 2p2and b13 = �2 � 2p2. Such a newform lifts in twodi�erent ways to eigenclasses in our H3. One haseigenvalue pbp+1 at Ep; the other bp+p2. (On theGalois side of the Langlands correspondence, if fcorresponds to a 2-dimensional representation V ,the two lifts are V (�1)� Q ` and V � Q `(�2); the(�1) and (�2) denote Tate twists and Q ` is thetrivial representation.)Now take �0 to be a nontrivial cubic Dirich-let character modulo 7. Twisting the lifted eigen-classes by �0 and by the complex conjugate char-acter, one again �nds eigenclasses that in our caseare still of level 245. In terms of Galois representa-tions, this means one takes � to be the character ofGal( �Q =Q ) corresponding to �0 and one considers(V (�1)� Q `) 
 � and (V � Q `(�2)) 
 �, respec-tively.Running over f and its conjugate, and �0 andits complex conjugate one �nds in this way 4 liftedeigenclasses of the �rst type, exactly generating Va,and similarly 4 lifts of the other type generating Vb.It is well known that the space of such \Eisensteinlifts" contains no nonzero cuspidal classes.

3.5. Within the range of our search, we found atprecisely one level eigenclasses satisfying our selec-tion criteria, with eigenvalues generating a quar-tic totally complex �eld. This occurs at level 244.The CM-�eld in this case is generated by a root ofX4 + 9X2 + 12.

The following short table presents eigenvaluesfor Hecke operators Ep acting on one of these eigen-classes. The eigenvalues are given in terms of � ,which satis�es 4� 4 + 9� 2 + 3 = 0. Although � isnot integral, the entries in the table of course are.p = eigenvalue3 15 �8 + 14� � 8�2 + 8�37 �3� 3� � 4�311 �5� 15� � 4�313 �6� � 8�317 �5 + 28� + 16�319 45 + 6� + 32�2 + 8�323 13 + 27� + 20�331 �15� 16�337 �45 + 84� � 32�2 + 48�341 �14 + 60� + 16�343 �51� 156� � 16�2 � 96�347 �47� 140� � 32�2 � 80�353 79 + 48�2
3.6. Finally, Table 4 lists the Hecke eigenvalues forHecke operators Ep, with 2 � p � 173, of eigen-forms with eigenvalues ap 2 Z[i]. The form forlevel N = 89 here already appeared in [Ash et al.1984].
Remark 3.7. The numbers ap listed are conjecturedto be the traces of the automorphisms throughwhich a Frobenius element at p acts on three-di-mensional Q l vector spaces. Note that the trace ofthe identity map on such a vector space is equal tothree.



172 Experimental Mathematics, Vol. 6 (1997), No. 2N = 89 106 = 2 � 53 116 = 22 � 29 128 = 27 160 = 25 � 5 205 = 5 � 41 212 = 22 � 53 221 = 13 � 17p eigenvalue2 �1� 2i �� �� �� �� �1 �� �1 + 2i3 �1 + i �1 + i �1 + i 1 + 2i 1 + 2i 1 + 2i �1 + i �1 + 4i5 2� 2i �4� 5i 2� 2i �1� 4i �� �� �1 + 4i �1� 4i7 �7 + 14i 2 + 5i 1� 4i 1 + 4i 1� 2i 1 + 2i 5 + 2i 3� 4i11 �3� 10i 6 + 5i �5 + 5i �7� 10i �3� 12i �7� 10i �3� 10i 513 �1� 4i �8 + 4i �6� 14i �1 + 4i �5� 8i 3� 8i 16� 2i ��17 �6 + 8i �8� 10i �17 + 24i 7 �5 �5 �2� 16i ��19 11� i �9 + 13i 1 + 2i 1� 14i 13 + 8i �15� 14i �9 + i 21 + 8i23 �11� 19i �1� 9i �7� 10i 17� 4i �15 + 26i �7� 20i �19 + 3i 37� 4i29 �19 + 32i 6� 28i �� �9� 12i 15� 16i �13 + 24i 6 + 26i �19� 32i31 17� 5i �7 �15 + 25i 1 33 + 4i 1 �7� 30i �1� 20i37 15 + 32i 26� 24i 33 + 4i �25 + 28i 11 + 24i �13 + 8i �10� 18i 3 + 36i41 25� 20i �7 + 50i �27 �5 47� 16i �� �37� 40i �35� 40i43 19 + i �26� 19i 35� 23i �7 + 30i �31� 22i 53� 8i �23� 16i 25 + 8i47 13� 16i 1 + 16i 57� 5i 17 + 40i 1 + 54i 17 + 14i �23 + 10i 9 + 32i53 �22� 10i �� 20� 38i 23� 20i �45� 24i 83� 8i �� 3 + 40i59 41 + 30i �49� 34i �39� 30i �39 + 22i �11� 16i �43 + 16i 41 + 14i 41� 32i61 15 + 20i 18� 25i �49 + 40i 63 + 20i �21 + 24i 31� 16i �9 + 20i �767 �7� 76i �11� 62i 37 + 20i 65� 22i �23� 58i �23 + 22i �23 + 70i �55 + 48i71 �55� 10i �67 + 125i �31� 50i �31 + 20i �23� 28i �31 + 38i 77 + 35i 11 + 20i73 60� 28i 86� 7i �35 + 72i �57� 80i �45� 32i �33 + 80i �85� 148i �35� 72i79 41� 46i 41 + 19i 41 + 37i 81� 24i �15� 88i �63� 74i 41� 35i �59� 52i83 �47 + 130i 7 + 49i 57� 6i �63 + 106i 17 + 58i �43 + 28i 103 + 25i �11� 56i89 �� 51 + 6i �59� 64i �9 + 16i 107 �21 �69 11 + 24i97 �12� 16i 72� 40i 45 + 72i 7 �77 + 64i �77� 128i �24� 64i 13� 64i101 45 58 + 25i 77� 20i �105� 100i �33 + 64i 115� 40i 61 + 40i �25 + 40i103 �27 + 85i �69� 137i �63� 126i �127� 220i 113 + 50i �39� 40i 117 + 19i �59 + 152i107 33� 26i 40 + 17i �27 + 124i �7 + 86i �39� 130i 109� 36i �95 + 32i 35 + 68i109 �74� 94i �39 + 92i 6 + 90i �9 + 68i �21� 40i 59 + 40i 21 + 20i �69� 36i113 87� 76i 222� 16i �57 �61 + 64i 11� 64i �1 + 64i �78 + 104i 91 + 32i127 �111+ 183i 3� i 33� 126i 161� 16i 1� 34i 161� 44i �87 + 119i �19 + 64i131 �31� 20i �82� 125i �87� 50i �63� 70i 69 + 12i �91� 52i �79� 80i �25� 60i137 �125 + 72i �30 + 77i �99� 184i 235� 32i �13 + 160i �45 + 96i �57 + 44i �37 + 176i139 �59� 8i 81 + 28i 1 + 46i 121� 50i 37� 16i �155� 224i �39 + 166i �149 + 180i149 101 + 36i �124 + 2i 26� 138i �49 + 76i 259 + 8i 99 + 56i 146 + 86i 11 + 64i151 �47� 50i �145� 175i �95� 20i 17 + 60i �71 + 148i �63 + 126i 101� 115i 5� 80i157 �141 + 48i �146� 197i �179� 324i �113� 140i 19 + 136i 155 + 8i �77 + 124i 31� 56i163 �141 + 31i �138+ 149i 19 + 131i 1 + 2i �143� 70i �139+ 164i �63 + 104i �79 + 152i167 �175� 188i 77 + 5i �47� 26i �95� 172i 1� 34i 65 + 50i �163� 205i 7 + 100i173 54� 54i 87 + 14i 11 + 8i �49� 188i 99 + 104i �153� 288i �189 + 248i 49� 136i
TABLE 4. Hecke eigenvalues ap for Hecke operators Ep, with 2 � p � 173, of eigenforms with eigenvaluesap 2 Z[i].



van Geemen, van der Kallen, Top, and Verberkmoes: Hecke Eigenforms in the Cohomology of Subgroups of SL(3, ZZ) 173For p � 173 we veri�ed that the ap's for the mod-ular form of level 128 are such traces. R. Schoofobserved that as far as the table goes we haveap � 8<: 3 mod 4 for p � 1 mod 41 + 2i mod 8 for p � 3 mod 81 mod 8 for p � 7 mod 8and that moreover ap � 3 mod 8 when p = a2 +32b2. (Note that 41 = 32+32 �12, 113 = 92+32 �12,and 137 = 32 + 32 � 22.)
3.8. The background for this paragraph can befound in [van Geemen and Top 1994]. There a 3-dimensional (compatible system of l-adic) Galoisrepresentation Vl was constructed in H2(Sa;Q l )(�etale cohomology) of the (smooth, minimal, pro-jective) surface Sa de�ned by the (a�ne) equation:t2 = xy(x2 � 1)(y2 � 1)(x2 � y2 + axy)After a twist by the nontrivial character� : Gal( �Q =Q ) ! Gal(Q (p�2)=Q ) �= �1;the L-factors of the Galois representation on Vl fora = 2 coincide with the L-factors of a modular formof level 128 (the one also listed in the table here)for all primes � 173. With similar computationswe found two more examples:
Theorem 3.9. For all odd primes p � 173 the L-factors of the modular form of level 160 listed here

coincide with the twist by the nontrivial character" : Gal( �Q =Q ) ! Gal(Q (p�1)=Q ) �= �1 of theL-factors of the Galois representation Vl from thesurface Sa with a = 1. A similar statement holdsfor the modular form of level 205, with a = 1 re-placed by a = 1=16.
3.10. It may be expected that more examples ofthe kind given in Theorem 3.9 can be found. Thereis no particular reason why the family of surfacesSa given above will provide such examples. In fact,in [van Geemen and Top 1995] di�erent familiesof surfaces were used to compute tables of tracesof Frobenius for the corresponding 3-dimensionalGalois representations Vl. Table 5 shows similardata, giving for various values a 2 Z the tracesof Frobenius on a Vl in the cohomology of Sa, forgood primes p � 29. \Good primes" here meansprimes p that do not divide 2a(a2 + 4); our tabledisplays the symbol (�) for primes that do dividethis quantity. The method by which traces arecomputed is explained in [van Geemen and Top1994, (3.6{9)]. For amusement, and to stress thepoint that it is indeed easy to do such calculationsfor many primes, the prime p = 173 is included aswell.To illustrate Theorem 3.9, note that the numbersin the column a = 1, for primes � 3 mod 4 multi-plied by �1, exactly equal the complex conjugatesa = 1 2 3 4 5 6 7 8 9p trace3 �1 + 2i 1 + 2i (�) �1 + 2i 1 + 2i (�) �1 + 2i 1 + 2i (�)5 (�) 1 + 4i 1� 4i (�) (�) (�) 1 + 4i 1� 4i (�)7 �1� 2i �1� 4i 1 + 2i �1 + 2i 1� 4i 1� 2i (�) �1� 2i �1� 4i11 3� 12i �7� 10i �9 + 6i �13 7 + 14i �7 + 14i 13 9 + 6i 7� 10i13 �5 + 8i 1� 4i (�) 3� 8i 9� 8i �3� 8i �3 + 8i 9 + 8i 3 + 8i17 �5 7 5� 8i 3 + 16i �15 + 4i 9 + 20i 1 + 8i (�) (�)19 �13 + 8i 1� 14i �7� 18i 3 + 20i �9� 2i 15� 14i 15 + 18i 5 �21� 4i23 15 + 26i �17 + 4i �17 15� 26i �7 + 12i �1� 10i 33 + 2i 15� 2i 15 + 24i29 15 + 16i 9 + 12i �7 + 16i 23 + 16i (�) �13� 8i �21 + 24i 1� 4i �13 + 24i173 99� 104i 49 + 188i �43� 96i �93� 56i 99 + 56i 27� 72i �135 + 68i �79� 68i 295 + 48i

TABLE 5. Traces of Frobenius on the Galois representation V` for various a.



174 Experimental Mathematics, Vol. 6 (1997), No. 2of the numbers listed for N = 160 in Table 3.6.So far we did not �nd eigenclasses correspondingto other columns in the above table. The casea = 1=16 may also be partially veri�ed using theabove table, by noting a mod 3 � 1, a mod 7 � 4,etc.It would be very interesting to compute a \con-ductor" of these spaces Vl, and to predict a rela-tion with the level of a hypothetical correspondingeigenclass.
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