Hecke Eigenforms in the Cohomology of
Congruence Subgroups of SL(3,Z)

Bert van Geemen, Wilberd van der Kallen, Jaap Top, and Alain Verberkmoes

CONTENTS

1. Introduction

2. Modular Forms and Hecke Operators
3. Numerical Results
Acknowledgements

References

We list here Hecke eigenvalues of several automorphic forms
for congruence subgroups of SL(3;Z). To compute such tables,
we describe an algorithm that combines techniques developed
by Ash, Grayson and Green with the Lenstra—Lenstra—Lovasz
algorithm. With our implementation of this new algorithm we
were able to handle much larger levels than those treated by
Ash, Grayson and Green and by Top and van Geemen in pre-
vious work. Comparing our tables with results from computa-
tions of Galois representations, we find some new numerical
evidence for the conjectured relation between modular forms
and Galois representations.

1. INTRODUCTION

It is well known that one can associate Galois rep-
resentations to Hecke eigenforms on congruence
subgroups of SL(2,Z). It has been conjectured,
as part of the Langlands program, that one can do
the same for SL(3,Z) and in [van Geemen and Top
1994] we provided some evidence for this.

For any prime number p not dividing the level
of the modular form/conductor of the Galois rep-
resentation, one defines a local L-factor that in the
SL(3,Z) case has the form

(1 _ a/ppfs + C—lpp172s _p373s)71‘

Here a, is the eigenvalue of a Hecke operator E,
on the eigenform/trace of a Frobenius element at
p in a 3-dimensional Gal(Q/Q) representation and
a, is its complex conjugate.

The experimental evidence consists of an eigen-
form and a Galois representation with the same
L-factors (that is, a,’s) for small primes.
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It is actually rather easy to find candidate Galois
representations in the étale cohomology of surfaces.
One family of such surfaces was discussed in [van
Geemen and Top 1994] (see also our Section 3.8);
two other families are constructed in [van Geemen
and Top 1995]. The (computational) problem is
rather to find Hecke eigenforms. (We hasten to add
that none of the authors is an expert on modular
forms, our interests were mainly in Galois represen-
tations and/or Algebraic Geometry and/or compu-
tational aspects).

We list in this paper some Hecke eigenvalues
of several automorphic forms for congruence sub-
groups of SL(3,Z). By combining the methods
from [Ash et al. 1984] with the Lenstra—Lenstra—
Lovasz algorithm, we were able to handle much
larger levels than was the case in [Ash et al. 1984]
and [van Geemen and Top 1994]. Comparing these
tables with results from computations of Galois
representations, we find further evidence for the
conjectured relation between modular forms and
Galois representations; see Theorem 3.9.

In the first section we recall the methods from
[Ash et al. 1984] to determine the spaces of auto-
morphic forms in terms of group cohomology and
we discuss some computational aspects. Since we
do not know a formula that gives the dimensions of
these spaces (as function of the level of the form),
we give a table with the results we found (see Ta-
ble 1 in Section 3). One would also like to have
a table that lists the dimension of the cuspidal
part, but (with exception of the prime level case),
no practical criterion that singles out the cuspidal
forms is known to us.

Next we recall how to compute the action of the
Hecke operators on the space of modular forms. In
view of properties of cusp forms and the examples
of Galois representations we know, we are mostly
interested in Hecke eigenvalues that lie in CM-fields
and that are small (so they satisfy the Ramanujan
hypothesis). The selection criterion upon which
our tables are based is given in Section 2.6.

In contrast with the SL(2,7Z) case, one finds very
few cusp forms of prime level for SL(3,7Z). In fact

the only prime levels < 337 with cusp forms are
the levels 53, 61, 79, 89 and 223. The CM-fields
generated by the eigenvalues were imaginary quad-
ratic with exception of the case of level 245 where
we found a degree 4 extension of Q.

2. MODULAR FORMS AND HECKE OPERATORS

2.1. We briefly recall how to compute the modular
forms under consideration. The standard reference
is [Ash et al. 1984].

In the case of SL(2,Z), the space S»(I") of holo-
morphic modular forms of weight two on a congru-
ence subgroup I' is a subspace of the cohomology
group H*(T',C). This generalizes as follows.

2.2. For N > 1, define the subgroup
I'y(N) C SL(3,%Z)

to consist of all (a;;) such that az; = 0 mod N and
az; = 0 mod N. This group has our primary in-
terest. It is neither normal in SL(3,Z) nor torsion-
free. To compute its cohomology, we introduce the
finite set

P*(Z/N) =11/(Z/N)*,

where I[IC(Z/N)? is the set consisting of all (z, 7, z)
such that zZ/N + yZ/N + zZZ/N = Z/N. When
the elements of P?(Z/N) are viewed as column vec-
tors, there is a natural left action of SL(3,Z) on
P?(Z/N). This action is transitive, and the stabi-
lizer of (1:0:0) equals ['y(NN). Therefore

SL(3,Z)/Ty(N) = P*(Z/N).

Under this correspondence, an element of SL(3,7Z)
is mapped to its first column viewed as homoge-
neous coordinates modulo N.

The dual of the vector space H?*(To(N),C) is
H;3(T'y(N),C) and it can be computed as follows:

Theorem 2.3 [Ash et al. 1984, Thm. 3.2, Prop. 3.12].
There is a canonical isomorphism between

H3(F0(N)7 (C)

and the vector space of mappings f : P?*(Z/N) — C
that satisfy
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1. f(z:y:2) = —f(—y:2: 2),
2. f(my:z) = f(z:2:9),
3. f(my:2)+f(—ypz—9:2)+ fly—7: —7: ) = 0.

2.4. For any a € GL(3,Q) one has a (C-linear)
Hecke operator

T, : H*(Ly(N),C) — H*(o(N),C),

which defines an adjoint operator 77 on the dual
space H3(T'y(N),C). We now explain how to de-
termine this adjoint.

Let

T'o(N) aTo(N) = Hﬁi To(N)

be the decomposition of the double coset in a (fi-
nite) disjoint union of left cosets. Such g;’s can be
found in [Ash et al. 1984, p. 430].

First we need the definition of modular symbol
(compare [Ash and Rudolph 1979], where however
column rather than row vectors are used). These
modular symbols are elements of H,(T5s,7Z), with
T3 the Tits building for SL(3,Q), and they give
rise to cohomology classes in H?*(T'o(N),C). For
the purposes of this paper it however suffices to
know the following. For three nonzero row vectors
q1, G2, g3 € Q* we define a modular symbol

Q) = [#]

(where we can view @ as a 3 x 3 matrix with rows
g;) that satisfies the following rules:

1. Permuting the rows of {gé] changes the sign of
the symbol according to the sign of the permu-

tation.
[a1q1 q1
2. az (IZ:| = |:(I2:| .

|a3d3 a3

3. Zé} = 0 when det (Zé) =0.
193 a3

4 '3;] _ [33] 4 [Zf;] _ [Zf;] —0.
K& a3 g3 g2

5. 3] = 5] -

|43 UE]

Here qo,q1,¢2,q95 € Q® are nonzero row vectors,
aj,as,a3 € Q°, a € GL(3,Q) and - denotes the

right action of GL(3,Q) on H,(T3,Z) induced by
its natural right action on T5.

A modular symbol [@Q] is called unimodular if
Q € SL(3,Z). Using these relations, any modular
symbol is equal to the sum of unimodular sym-
bols. An explicit algorithm we used to do this is
given in 2.10. Finally we observe that if [Q)] is
unimodular, then it defines a point of P*(Z/N) =
SL(3,Z)/T4(N), denoted by the same symbol.

We continue the description of the Hecke opera-
tor. Let 3; be a coset representative as above, and
let x € P#(Z/N) be represented by Q, € SL(3,7Z).
Then, as modular symbols, we can write

Q8] = Z [Ri;],
J
with R;; € SL(3,Z). Finally we then have the
formula for T : H3(I'y(N),C) — H3(I'4(N),C),
the adjoint of the Hecke operator T,:

(Hmw=2ﬂ%%

where the R;; on the right-hand side are considered
as elements of P?(Z/N).

2.5. The Hecke algebra T is defined to be the subal-
gebra of End(H?(Ty(N),C)) generated by the T,,’s
with det(«) relatively prime with N. The Hecke al-
gebra is a commutative algebra and H?(Ty(N), C)
may be decomposed as a direct sum of common
eigenspaces of the operators from T:

H3(I‘0(N),(C) = @V)\

where each X is a homomorphism of algebras T —
C, and

Tf=MT)f
for T € Tand f € Vy.
Of particular interest are the Hecke operators

E,, for p prime not dividing N, defined by «, €
GL(3,Q):

0 0
1 0
0 1

Q
bS]
Il
oo
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Given a character A of 7, the number a,, in the local
L-factor of the corresponding Hecke eigenform is

2.6. It is known (compare [Ash et al. 1991, Lem.
1.3, 1.4]) that the field generated by the eigenval-
ues a, of a cuspidal Hecke eigenform is a number
field that is either totally real or a CM-field, that is,
a degree-two imaginary extension of a totally real
field. Moreover, if it is totally real then the eigen-
class corresponds to an essentially selfdual cuspidal
automorphic representation. Conversely, if the as-
sociated automorphic representation is essentially
selfdual, then a Dirichlet character x, exists such
that the numbers xo(p)a, generate a totally real
number field. One may very crudely describe re-
sults of Clozel [1991] by saying that he proves the
existence of selfdual Galois representations closely
related to such selfdual cuspidal automorphic ones.

Clozel [1990, Conjecture 4.5], following Lang-
lands, predicts that the existence of Galois repre-
sentations providing the same local Euler factors as
the automorphic cuspidal ones, is not restricted to
the selfdual case only. We are interested in testing
this conjecture. For this reason, in our calculations
of Hecke eigenclasses, we will restrict attention to
classes whose Hecke eigenvalues generate a CM-
field.

The computer determined and factorized (over
Q) the eigenvalue polynomial of the Hecke opera-
tors E, for the first 5 primes p that do not divide
N. We then considered only those Vy for which at
least one (of the five) numbers A(E,) generated a
CM-field.

Thus we certainly overlooked examples of non-
selfdual modular forms with, say, A(E,) € Q for
the first 5 primes not dividing N, but with A\(E,)
generating a CM-field for the sixth prime. Even
simpler, since our selection criterion will disregard
any eigenclass whose eigenvalues are all real, we
will in general miss cuspidal classes corresponding
to selfdual representations.

For any A with the property that at least one
of the A(E,) computed was not a real number, we
computed the values a, := A(E,) for the first 40
prime numbers (that is, all primes p < 173). Ad-
mittedly, the choice to use five primes in this first
test looks rather arbitrary. It reflects a balance
between the need to keep the time spent on the al-
gorithms within certain bounds, versus the desire
not to miss any nonselfdual classes.

Recall that we are interested in relating eigen-
forms to nonselfdual Galois representations, as pre-
dicted by Clozel. In this conjectured relation, the
roots of the polynomial X? — a,X? + G,pX — p*
should be the eigenvalues of a Frobenius element
(in Gal(Q/Q)) in a 3-dimensional representation
(at least if the eigenform is a cusp form). These
eigenvalues of the Frobenius element should have
absolute value p. Therefore we consider only eigen-
forms that satisfy Ramanujan’s conjecture

|ap| < 3p.

Examples where this is not satisfied are not listed
here either, with the exception of the second col-
umn of Table 3. The first example of CM-eigen-
values (the field is Q(v/—3)) that do not satisfy
Ramanujan’s conjecture occurs for NV = 49. Note
that since cuspidal classes (by Clozel’s conjecture)
should satisfy Ramanujan’s conjecture, one expects
that this second restriction on the eigenclasses will
remove only noncuspidal ones.

The two properties of our eigenclasses (the first
five relevant eigenvalues generate a CM-field, and
all eigenvalues that we compute satisfy Ramanu-
jan’s conjecture) are the only ones we consider. In
particular, in general we do not consider the ques-
tion whether our eigenclasses are in fact cuspidal.
In some instances practical criteria are known to
determine whether a given class is cuspidal. If the
level N is prime, this is worked out in detail in [Ash
et al. 1984]. One can construct noncuspidal classes
using for instance Eisenstein liftings; an example
how one uses this to determine that certain classes
are noncuspidal is given in Example 3.4. However,
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for general level we do not know a practical con-
clusive test to determine whether a given class is
cuspidal or not. This implies that at present we are
unable to adapt our programs in such a way that
they might be used to verify Ramanujan’s conjec-
ture for certain levels.

2.7. Dimensions. The computer first determined the
space H3(I'o(N), C) using Theorem 2.3. Table 1 on
page 169 lists the dimension of that space. Rep-
resenting a map f : P?(Z/N) — C by the vector
of its values, the equations listed in 2.3 give a sys-
tem of linear equations. The number of variables
is first reduced using the first two equations and
there remains a sparse linear system with small in-
teger coefficients. This system is reduced further,
roughly by eliminating equations with fewer than
three terms. For example, in case N = 223 (a
prime number) we are left with a system of 7005
equations in 1963 variables. We will use this ex-
ample to explain how we proceed.

2.8. Lattice reduction. In smaller cases we solved the
sparse linear system by Gauss elimination, plus
a Kuclidean algorithm to keep the entries small.
In these smaller cases we observed that the solu-
tion space is always spanned by vectors with re-
markably small coordinates. But for larger sys-
tems like in our example case N = 223 our Pascal
program crashes because of integer overflow dur-
ing the Gauss elimination. Therefore we solve the
system only modulo the prime 32503. (Since 2 X
32503 x 32503 < Maxint in our Pascal implementa-
tion, overflow is now easily avoided without much
change to the program.)

We find that over the field Z/32503Z the solution
space is spanned by a basis of 38 vectors. Now the
trick is to apply the LLL algorithm [Lenstra et al.
1982; Pohst 1987] to the lattice L of integral vec-
tors of length 1963 whose reduction modulo 32503
is spanned by these 38 vectors. The LLL algo-
rithm finds 38 independent vectors with their 1963
integer coordinates all between —42 and 64, and
so that their residues mod 32503 still form a ba-
sis of the solution space of the modular system.

(The program aims for coordinates between —150
and 150. This works in all examples, with some
room to spare.) One now plugs these new vectors
in the original system, to see that we are in luck
and that they satisfy it over Z. (In all cases we
had such luck.) It follows that they span the solu-
tion space over Q, so by this trick we succeeded in
solving the 7005 by 1963 system over Q. Here the
LLL algorithm that we use is 111int in GP/PARI
Calculator Version 1.37.

Actually we do not really apply the LLL algo-
rithm to the lattice L C Z%%3. This Z'% is too
big. But note that, to describe a new basis of the
solution space of the modular system, all one needs
is a 38 by 38 transformation matrix. One can start
looking for a useful matrix using just a small sam-
ple of the 1963 coordinates. We increase the sam-
ple until success is achieved. This finishes the ex-
planation of how we solve our large sparse linear
systems.

2.9. Finding a subspace. Next we compute the 38 by
38 matrix describing the Hecke operator for some
prime p, compute its minimal polynomial and fac-
torize it. There is just one factor that has CM-
eigenvalues and it has degree two. Next we plug the
matrix into this factor of degree two. This results
in a corank-two matrix whose kernel we compute.
From this we get two vectors of length 1963, span-
ning our interesting subspace. Applying LLL once
more, now with the prime 224737, we can get a
new pair, spanning the same subspace over Q (this
we check), and with coordinates between —72 and
90. (At this step we aimed for coordinates between
—4500 and 4500, as in practice the coordinates of
the generators of the subspace are not as small as
those for the full solution space.)

2.10. Reducing symbols. We now describe the algo-
rithm we used to reduce a modular symbol to a
sum of unimodular symbols. Large parts of it are
borrowed from the algorithm given by Ash and
Rudolph [1979]. We shall constantly refer to the
properties enjoyed by the modular symbol, listed
in Section 2.4.
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By property 2, we may restrict our attention to
modular symbols whose underlying matrices have
integer entries. Let () be a 3 x 3 matrix (with
integer entries), all whose rows are nonzero. By
properties 2 and 3, we may assume that |det Q| >
1. For any nonzero row vector v € Z3 and 1 < i <
3, let @;{v} denote the matrix @ with its i-th row
replaced with v. It follows from properties 1 and 4
that

[Q] = [@:{v}] + [Q=fv}] + [Qs{v}].

A vector v will be constructed such that each ma-
trix Q;{v} has smaller |det| than Q. Let ¢, ¢
and gs denote the rows of ), and write

v =t1q1 + tags + 303 (2.1)

with tl, tz, t3 S Q Since
3
det Ql{v} - Z t]’ det Q@{qj} = tl det Q,
j=1

we need to find ¢; with |¢;| < 1 such that the vector
given in (2.1) has integer coefficients.

In order to do this, we shall find a row vector
x € Z* and an integer m such that

zQ =0 mod m (2.2)

and

z Z 0 mod m. (2.3)

From such a congruence, a suitable vector v can
be constructed as follows. Write z = (z1, Z2, z3).
We may assume that |z;] < L|m| for 1 < i < 3.
It then follows easily from (2.2) and (2.3) that we
may take t; = z;/m.

It remains to find z and m satisfying (2.2) and
(2.3). A Gauss-like elimination procedure is ap-
plied to (2.2), without specifying the value of m
yet. The trick is to choose the modulus m only af-
ter enough elimination steps have been performed.
We begin working on the first row of ). By means

of elementary column operations, (2.2) is trans-
formed into an equivalent congruence relation

mq 00
(x1,22,23) | * * * | =(0,0,0) mod m. (2.4)
Xk %

Since |det @| > 1 and the column operations do
not change | det | of the matrix, m; cannot vanish.
Now if |m;| > 1, we take z = (1,0,0) and m = m,,
and we have found a solution to (2.2) and (2.3). If
|my| = 1, we turn to the second row of the matrix
in (2.4). By elementary column operations we get

+1 0 O
(1,0, 23) | * mo 0] =(0,0,0) mod m. (2.5)
ok %

Again m, cannot vanish. If |my| > 1, we take m =
my and find a solution of the form z = (x,1,0). If
|ms| =1, (2.5) takes the form

+1 0 0
(x1,z2,23) | * £1 0 | =(0,0,0) mod m.
* * Mg

Since mz = +det ), we have |mz| > 1, so we can
take m = my and find a solution of the form z =
(x,%,1).

A close look at the algorithm reveals that

[det Qi{v}| < 2] det Q)

for i = 1,2 and |det Q3{v}| < 1. Also we would
like to point out that our algorithm, like that of
Ash and Rudolph, works over any Euclidean do-
main and for any dimension.

3. NUMERICAL RESULTS

Remark 3.1. For prime level p one knows [Ash et al.
1984, Thm. 3.19] that

dim H? (T (p), C)
= dim H?

cusp

(To(p), C) + 2dim S,(p),
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T = o 1 2 3 4 5 6 7 8 9

N dim

1z 2 2 7 0 4 4 6 2 2
2z 9 4 8 4 17 4 6 6 13 4
3z | 20 4 12 10 10 8 21 4 12 8
4z | 23 6 26 6 21 15 16 8 34 9
5z | 20 14 21 10 25 14 31 14 20 10
6z | 55 10 20 19 26 12 42 10 29 20
7T | 38 12 51 10 22 28 33 18 44 14
8r | 48 23 26 14 71 18 28 24 49 16
9z | 67 16 24 41 32 22 68 14 43 33
10z | 59 16 60 16 51 48 42 18 69 16
11z | 58 28 64 18 66 28 57 35 40 26
122 | 125 29 44 40 53 28 89 20 58 34
13z | 60 22 107 26 44 51 67 22 82 22
14z | 101 40 50 30 111 32 46 55 61 24
15z | 122 24 75 51 76 36 119 24 62 50
16z | 100 36 101 26 69 74 56 28 161 40
17z | 80 53 73 28 106 56 102 50 64 30
18z | 177 28 82 54 93 40 106 40 81 67
19z | 94 32 146 30 62 80 121 32 139 32
20z | 141 54 66 44 155 48 68 67 108 44
21z ?7 34109 60 72 50 163 44 70 58
22z ? 44 7 38 130 107 74 38 7 36
23x ? 94129 38 7?7 56 7 70 7 40
24¢ | 38 38 7 79 117 83 7 46 119 70
25 | 42 42 7 54 8 7 7 42 7 7

TABLE 1. Dimension of H3(I'o(N),C), for all N be-
tween 10 and 209 and for a few more cases. A
question mark indicates that we did not pursue
this level, because time or memory requirements
exceeded some reasonable limit. These require-
ments do not necessarily increase with N. Indeed,
as mentioned in 3.1, for prime IV it was practical
to go all the way to N = 337.

where S, (p) is the dimension of the space of weight
two cusp forms for the congruence subgroup

To(p) C SL(2, 7).

Recall that dim Sy(p) = k — 1, k, k, k + 1 when
p =12k +r and r = 1,5, 7, 11. Thus in this
case it is easy to determine if HZ, is nonzero.
We checked that the only prime levels below 338
for which dim H?(I'y(p), C) differs from 2 dim S, (p)
are the levels 53, 61, 79, 89 and 223.

Remark 3.2. In case there is a newform of level NV,
then in level pN we find 3 copies of it (for example,
the form of level 53 appears 3 times in level 106 and
3 times in level 159). It appears 6 times in level
212 = 2% . 53. Such old forms, especially for levels
N = pF, were studied in [Reeder 1991].

3.3. We now exhibit the data about eigenclasses
satisfying our criteria, in cases where the field gen-
erated by the eigenvalues is not Q(i). The case
Q(4) is treated in Section 3.6. Table 2 lists the
Hecke eigenvalues a, for Hecke operators E,, with
2 < p < 173, of eigenforms of certain levels. The
eigenvalues for small p and level 53, 61 and 79 were
already given in [Ash et al. 1984]. Moreover, it
seems that the form of level 223 we found has al-
ready been predicted by P. Green in 1986; his un-
published computations are mentioned in [Ash and
McConnell 1992].

Example 3.4. At level 245 we found two four-dimen-
sional spaces, V, and V,, invariant under the Hecke
action, and the eigenvalue polynomial of the E,’s,
for p € {2, 3, 11, 13, 17} on each space is an irre-
ducible polynomial of degree 4, listed in Table 3 on
page 171. The field K generated by the roots of
these polynomials is the same for both spaces:

K = Q[X]/(z" +22” +4)
=~ Q(\/—l +V=3) =Q(V2, v-3).

The four roots of each of these polynomials X*—
¢, X+ - - are the eigenvalues of £, and by the Ra-
manujan conjecture for cusp forms their absolute
value should be at most 3p, so |c,| < 12p. The ¢,
we found on Vj, do not satisfy this condition, those
listed for V, do. Of course, this condition on ¢, is
weaker than the one on a, given in 2.6. For in-
stance, taking p = 11, two of the eigenvalues of E,
on V, have absolute value 23 + 22v/2 > 3p = 33.

In fact, following a suggestion made to us by
Ash, it is easy to give a precise description of V,
and Vj, in terms of classical modular forms. This
description shows that neither space contains any
cusp forms. Namely, using (unpublished) tables of



170 Experimental Mathematics, Vol. 6 (1997), No. 2

N = 53 58 61 79 88 153 223

p eigenvalue

2 —-2-96 ®k -0 -1 *% 1 1

3 —146 -1+~ -3+24 —1+¢ -1+ *% -3+

5 1 —4 -2y 20 —4 —2¢ —4 -2y 1 1

7 -3 142y -3-30 -3—c¢ 1—2y -3 + 6« 1

11 1 T—x —-1+p 1+ 2¢ *x -5 + 6a 1—1

13 —8 — 64 —6 — 2y —4-24 —6 — 2¢ 1+4y -9 - 12« -1

17 22 13 —-15+ 44 -1 -1 *% —2—-4

19 11+ 36 —11 — 4y 17+ 43 5 +4e —11 — 4y 9 -3

23 —11+9 -7+ 8y 5—-94 17+ 2¢ 21 — 5 —11 + 6« 11—
29 16 + 20 *% T+48 -9 —11 — 4y 13 22

31 -7 —15—11x 17— 44 142 —15—7v —15 — 6« -3+ 6¢
37 —24 4+ 60 21 + 4y 1-164 -1 —14 4+ 18~ -15 -2

41 -17 15 —22 - 360 43 1-—8y 31 -32—4
43 29466 —25+ Ty —27+ 1683 —11-8¢ 17— 6y 33 + 12a —11+46¢
47 1-149 -39+ 13y 33+4p -39 — 5¢ 17 4+ 16y —-11 - 12« —11—-6¢
53 —38 + 146 56 — 2y —25 —15—4¢ —21 + 8y 19 — 12« —44 — 12
59 1-149 69 19-p3 15—¢ —14+7y 49 + 12« 25— 11
61 -7 17+ 4~ 30 + 308 9+44e —39 — 28~ 9 17

67 —11-126 —35+ 8y 71+ 343 —43+4e  —21+23y —-27-—36a 25 -9

71 13 — 54 17 — 14~ —15+ 44 —67 + 31e 101 + v —35 — 30« 25— 4

73 -39 —126 13 — 24~ —42 — 44 27 13 4+ 8y —33 + T2« 20 + 12,

79 -39+ 90 —7—17y -7+ 313 41 —17¢ —63 — 10~ 33 — 18« 25

83 67 -0 —27 — 367 13 + 3243 33 4 10e 1— 6y —47 4+ 12a —23+22
89 —29+166 —53 — 167 —-19+ 843 —-18-12¢  —60 — 4y —89 + 96« 16 — 44
97 —58 —69 + 48y 34328 —58 + 16 106 + 167 27 — 24« —81 424
101 43 — 206 —43 + 4y —15—483 46 — 6¢ 27+ 8y 35 —33 + 16¢
103 —99 + 336 129 + 6 —67 - 7208 —51 + 15¢e -39 69 — 36a —79+ 15
107 85 — 186 —63 — 387 81+ 3883 -89 —41e —-63+18y -89+ 114 —11-24,
109 101 + 126 84 + 18y 14 — 144 —61 -8  —T7—-40y —63+ 72« 63
113 —68 + 246 3 —94 4+ 808 69 — 16¢ 122 + 8y 115 — 24« —41 424
127 —-7-216 129 5 — 460 —15+9¢ —-95—-8y —99 — 144« —79 + 6¢
131 —107 — 506 45 + 16y —127 — 643 25 + 22¢ -39+6y —53 —-102c 25+ 10¢
137 25 +120 21+ 8y 90 — 3653 1174 8¢ 70 — 4~ 43 —149 + 44,
139 —19—-126 —83 + 4y —21-133 115 —-23¢ 113 + 267 39 — 6a 3+ 6L
149 46 — 386 14 — 30~ —10 — 583 —-1—-32¢ 231 -16y —137+ 12« 175+ 8
151 —35 — 456 49 — 26y —75—5703 —79 4 58¢ 49 + 34y 27— N2« —11-15
157 —51 + 486 —113 221 -85+ 8 104 + 18« —57 — 96« —45
163 277 — 66 91 — 25y 85 — 665 -19 189 — 24~ 39 + 54a 125 — 12,
167 157 + 156 1422y —147-1368 —31+4+6e =55+ 12y —107 —150a —155—59
173 —53—560 —109 + 567 19 4 560 —135 — 12¢ 3 — 8y 13 4+ 24« 181 -8

TABLE 2. Hecke eigenvalues a, for Hecke operators F,, with 2 < p < 173, of eigenforms of certain levels. For
each column of the table we fix an algebraic integer with the following property:

2

(07

_27 /62 =

_3; 72 = _77

5% = —11,

2 = 15,

12 = —23.
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P Va Vo
2 44+ 62° + 3522 +62+1 ot 41023 4+ 7722 + 2302 + 529

o+ 873 + 6622 — 162 +4 214 202° 4 30222 + 1960z + 9604
11 ot 4+462° 4 255522 — 20194z + 192721 24 42462 + 4539527 + 37197662 + 228644641
13 2% 410023 + 104622 — 727002 + 528529 2% —6682% + 16731822 — 18624508z + 777350161
17 ot 47023 + 598722 — 76090z + 1181569 o 458223 + 25405142 + 492796862 + 7169516929

TABLE 3. Eigenvalue polynomial of the £,’s on each of the two four-dimensional spaces Vg, V; invariant under

the Hecke action.

Cohen, Skoruppa and Zagier it turns out that there
exists a unique newform f = q + byg®> + bsg® + - - -
of weight 2, level 245 and with trivial character,
having by = 1 +v/2, by =1 — /2, by =2 —2V2
and b;; = —2 — 2¢/2. Such a newform lifts in two
different ways to eigenclasses in our H?. One has
eigenvalue pb, +1 at E,; the other b, +p?. (On the
Galois side of the Langlands correspondence, if f
corresponds to a 2-dimensional representation V,
the two lifts are V(—1) @ Q, and V & Q,(—2); the
(—1) and (—2) denote Tate twists and Q, is the
trivial representation.)

Now take xo to be a nontrivial cubic Dirich-
let character modulo 7. Twisting the lifted eigen-
classes by xo and by the complex conjugate char-
acter, one again finds eigenclasses that in our case
are still of level 245. In terms of Galois representa-
tions, this means one takes x to be the character of
Gal(Q/Q) corresponding to X, and one considers
(V(-1)® Q) ® x and (V & Q;(—2)) ® x, respec-
tively.

Running over f and its conjugate, and x, and
its complex conjugate one finds in this way 4 lifted
eigenclasses of the first type, exactly generating V,,
and similarly 4 lifts of the other type generating V;.
It is well known that the space of such “Eisenstein
lifts” contains no nonzero cuspidal classes.

3.5. Within the range of our search, we found at
precisely one level eigenclasses satisfying our selec-
tion criteria, with eigenvalues generating a quar-
tic totally complex field. This occurs at level 244.
The CM-field in this case is generated by a root of
X*+9X2+12.

The following short table presents eigenvalues
for Hecke operators E, acting on one of these eigen-
classes. The eigenvalues are given in terms of 7,
which satisfies 47* + 972 + 3 = 0. Although 7 is
not integral, the entries in the table of course are.

p= eigenvalue
3 1
5 —8 + 147 — 872 + 87
7 —3—37—473
11 —5— 157 — 473
13 —67 — 873
17 —5 + 287 + 1673
19 45 + 67 + 3277 + 873
23 13 + 277 + 2073
31 —15 — 1673
37 | —45+ 841 — 3272 4+ 4873
41 —14 + 607 + 1673
43 | =51 — 1567 — 1672 — 9673
47 | —47 — 1407 — 3272 — 8073
53 79 + 4872

3.6. Finally, Table 4 lists the Hecke eigenvalues for
Hecke operators E,, with 2 < p < 173, of eigen-
forms with eigenvalues a, € Z[i]. The form for
level N = 89 here already appeared in [Ash et al.
1984].

Remark 3.7. The numbers q, listed are conjectured
to be the traces of the automorphisms through
which a Frobenius element at p acts on three-di-
mensional Q; vector spaces. Note that the trace of
the identity map on such a vector space is equal to
three.



172 Experimental Mathematics, Vol. 6 (1997), No. 2
N = 89 106 =2-53 116 =22-29 128=27 160=2°-5 205=5-41 212=2%2-53 221 =13-17
p eigenvalue
2 -1-2 *% K% *% *% -1 K% -1+ 2
3 -1+ -1+ -1+ 1+2 1+2 1+2 -1+ -1+ 4
) 2—2 —4 -5 2—2 -1 -4 *k *%k —1+4s -1 -4
7 -7+ 14 245 1—4s 1+ 4 1—2 1+2 54+ 2 3—4
11 -3 —-10¢ 6+ 5i —5+ 91 —7—10:¢ -3—-12; —7—10: -3 — 10z b)
13 —1—4: -8+ 41 —6 — 141 -1+ 4 —5—-8 3-8 16 — 2 *%
17 —6+ 8 —8 — 10z =17+ 244 7 -5 -5 -2 — 161 *%
19 11—14 -9+ 13 1+2 1—14: 13+ 8 —15— 142 941 21+ &
23 —11—-19% —-1-9 —7—10z 17— 4 —15+26¢0 —7—205 —19+ 3 37— 44
29 —19+ 32 6 — 28 Kk -9 —-12 15 — 167 —13 + 244 6 + 26¢ —19 — 3%
31 17 — 51 -7 —15 4 25¢ 1 33+ 4 1 —7—30z —1—20:z
37 15+ 32: 26 — 244 33+ 44 —25+ 28 11 + 244 —13+8; —10— 18 3+ 361
41 25 — 202 —7+ 50z —27 -5 47 — 167 *k =37 — 40 —35—40¢
43 19+ —26 — 19 35 — 231 —74+300 —31-—22 53 — 8i —23 — 160 25+ 8
47 13 — 162 1+ 163 57 — 51 17 + 402 1+ 54: 17+ 142 —23 + 10¢ 9+ 32¢
53 —22—10¢z sk 20 — 38: 23 — 20z —45 — 244 83 — & *% 3+ 40:
59 41 + 30¢ —49—-34 —-39-30: —39+22¢ —11-—16¢ —43+ 16¢ 41 + 14 41 — 32¢
61 15 + 20z 18 — 25¢ —49 + 40¢ 63 + 20z —21+4+24¢ 31 — 162 -9+ 20: -7
67 —7—"1761 —11—-62: 37 + 201 65 — 22¢ —23—-58 —23+22r —23+4+T70¢ —55 + 48
71 —55—10c —-67+125¢ —-31—-50¢ —31+20¢ —-23-—-28 —31+38& 774 351 11 4 20z
73 60 — 28 86 — Ti —354+72c —-57—-80¢ —-45—32tc —-33+80¢ -8 —148 —-35—-72
79 41 — 461 41 4+ 192 41 + 37e 81 — 2414 —15—-88 —63— T4 41 — 35¢ —59 — 52
83 —47 4+ 1304 7+ 49 57 — 61 —63 +106: 174 58 —43 + 28& 103 + 25¢ —11 — 56¢
89 x5 51 + 6¢ —59 — 644 -9+ 16 107 —-21 —69 11+ 243
97 —12 - 162 72 — 401 45 + 721 7 —T77+640 —77—128; —24 — 64 13 — 642
101 45 58 + 251 77—20i —105—100¢ —33+464: 115 —40: 61+ 40: —25 4 40:
103 —27+ 85 —69—137¢ —-63 —126¢0 —127 —220¢ 1134 50: —39— 40 1174+ 19¢  —59 4+ 1524
107 33 — 261 40+ 172 =27+ 124¢ —-7+86: —39—130¢ 109 — 361 —95 + 32 35 + 681
109 —74—-94 -39+ 92 6 + 90z —9+68 —21—40¢ 59 + 40z 21 + 20¢ —69 — 36¢
113 87 — 7612 222 — 161 —57 —61 + 642 11 — 642 —1+64: —78+ 1042 91 + 32
127 | —111 4+ 183: 3—1 33 — 126¢ 161 — 16¢ 1— 34 161 —44¢ —87+4+119¢ —19+4 64:
131 —-31—-20c —-82—-125 —-87—-50c —63— 70z 69 + 12¢ —91—-52¢ —79—80: —25 —60¢
137 | —1254+72¢ —-30+77c —99—184¢ 235—32t —13+160i —-45+96¢ —57+44¢ —37+ 17617
139 —59 —8i 81 + 284 1+ 461 121 — 502 37—16¢ —155—224¢ —39+ 166¢ —149 + 180:
149 101 + 36¢ —124+ 2 26 — 138: —49 + 76¢ 259 4 8i 99 + 561 146 + 861 11 + 642
151 —47 —-50¢ —145— 175t —95—20¢ 17+60; =714 148 —-63+126¢ 101 —115: 5 — 801z
157 | —141 448 —146 — 197 —179 — 324: —113 — 140: 19 4 136: 155 + 8i =77+ 1244 31 — 562
163 | —141+31¢ —138+ 149 19+ 1312 1+2 —143 — 707 —139+ 164: —63+ 104¢ —79+ 152¢
167 | —175 — 188: 77+ 51 —47—260 —95— 172 1— 34 65+ 50 —163 —205¢ 7+ 100¢
173 54 — 541 87 + 141 11+ 8 —49 — 1887 994 104; —153 —288; —189 + 248; 49 — 136:

TABLE 4. Hecke eigenvalues a, for Hecke operators E,, with 2 < p < 173, of eigenforms with eigenvalues

ap € ZL[i).
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For p < 173 we verified that the a,’s for the mod-
ular form of level 128 are such traces. R. Schoof
observed that as far as the table goes we have

dmod4 for p= 1mod4
a,=¢ 1+2tmod8 for p= 3 mod8
1mod8 for p= 7modS8

and that moreover a, = 3 mod 8 when p = a* +
32b°. (Note that 41 = 3*+32-1%, 113 = 9*+32-12,
and 137 = 3% 4+ 32 2%))

3.8. The background for this paragraph can be
found in [van Geemen and Top 1994]. There a 3-
dimensional (compatible system of [-adic) Galois
representation V; was constructed in H?*(S,, Q)
(étale cohomology) of the (smooth, minimal, pro-
jective) surface S, defined by the (affine) equation:

= zy(e® —1)(y* — 1)(¢® — y* + axy)

After a twist by the nontrivial character

x : Gal(Q/Q) — Gal(Q(v'-2)/Q) = £1,

the L-factors of the Galois representation on V; for
a = 2 coincide with the L-factors of a modular form
of level 128 (the one also listed in the table here)
for all primes < 173. With similar computations
we found two more examples:

Theorem 3.9. For all odd primes p < 173 the L-
factors of the modular form of level 160 listed here

coincide with the twist by the nontrivial character
e : Gal(Q/Q) — Gal(Q(v/~1)/Q) = +£1 of the
L-factors of the Galois representation V; from the
surface S, with a = 1. A similar statement holds
for the modular form of level 205, with a = 1 re-
placed by a = 1/16.

3.10. It may be expected that more examples of
the kind given in Theorem 3.9 can be found. There
is no particular reason why the family of surfaces
S, given above will provide such examples. In fact,
in [van Geemen and Top 1995] different families
of surfaces were used to compute tables of traces
of Frobenius for the corresponding 3-dimensional
Galois representations V;. Table 5 shows similar
data, giving for various values a € Z the traces
of Frobenius on a V; in the cohomology of S, for
good primes p < 29. “Good primes” here means
primes p that do not divide 2a(a® + 4); our table
displays the symbol (x) for primes that do divide
this quantity. The method by which traces are
computed is explained in [van Geemen and Top
1994, (3.6-9)]. For amusement, and to stress the
point that it is indeed easy to do such calculations
for many primes, the prime p = 173 is included as
well.

To illustrate Theorem 3.9, note that the numbers
in the column a = 1, for primes = 3 mod 4 multi-
plied by —1, exactly equal the complex conjugates

a= 1 2 3 4 ) 6 7 8 9
p trace
3 —1+4+2 1424 (%) —1+2 1424 (%) -1+ 2 1424 (%)
) (%) 1+ 44 1-4: (%) (%) (%) 1+ 4 1—-4d (%)
7 —-1-—2 -1-4 1+ 2 -1+ 2 1-4: 1 -2 (%) —-1-2% —1—4
11 3—-12s —-7-100 —-9+6¢ —-13 T+14i -7+ 144 13 9 + 6¢ 7— 102
13 -5+ & 1—-4d (%) 3—8i 9—8i -3-8i -3+ 8 9+8i 3+ 8i
17 -5 7 o —8& 34160 —-15+4i 9420 148 (%) (%)
19 —13+8 1—-14 -7 —18: 3+ 20¢ -9-2t 15—-14 154 18 ) —21 — 44
23 154260 —17+ 44 —-17 15-260 —-74+12¢ —1—10¢ 33+ 2¢ 15— 2¢ 15+ 244
29 15+ 163 9+ 12 -7+ 16¢ 23+ 164¢ (%) —13 -8 21424 1—44 —13 +24¢
173 99 — 1047 494 188; —43—96¢ —93 —561 99+ 56¢ 27 -T2 —1354+68 —79—68 2954 48

TABLE 5. Traces of Frobenius on the Galois representation V; for various a.
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of the numbers listed for N = 160 in Table 3.6.
So far we did not find eigenclasses corresponding
to other columns in the above table. The case
a = 1/16 may also be partially verified using the
above table, by noting ¢ mod 3 =1, a mod 7 = 4,
etc.

It would be very interesting to compute a “con-
ductor” of these spaces V;, and to predict a rela-
tion with the level of a hypothetical corresponding
eigenclass.
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