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This article is the result of experiments performed using com-

puter programs written in the GAP language. We describe an

algorithm which computes a set of rational functions attached

to a finite Coxeter group W. Conjecturally, these rational func-

tions should be polynomials, and in the case where W is the

Weyl group of a Chevalley group G defined over IFq, the values

of our polynomials at q should give the number of IFq-rational

points of Lusztig’s special pieces in the unipotent variety of G.

The algorithm even works for complex reflection groups. We

give a number of examples which show, in particular, that our

conjecture is true for all types except possibly Bn and Dn.

1. INTRODUCTIONLet G be a connected reductive algebraic group de-�ned over some algebraically closed �eld k. Let XGbe the partially ordered set of unipotent classes ofG, where we write C � C 0 if and only if C lies in theZariski closure of C 0. Following Spaltenstein [1982]and Lusztig [1997], we can de�ne a partition of XGinto so-called special pieces. To do this, we �rst haveto recall some facts about the Springer correspon-dence and special characters of Weyl groups. (Thesefacts can be found in [Lusztig 1984, (13.1)] for thecase where the characteristic of k is \good" for G,and in [Geck and Malle 1999, Theorem 2.1] for thecase of \bad" characteristic.)Let W be the Weyl group of G (with respect tosome maximal torus). The Springer correspondenceassociates with each irreducible character of W apair (C; ), where C 2 XG and  is an irreduciblecharacter of the group of components of the cen-tralizer of an element in C. This correspondence isinjective but, in general, not surjective. However, itis a fact that all pairs (C; 1) arise in this way. GivenC 2 XG we denote by 'C the irreducible characterof W such that 'C corresponds to (C; 1).Recall from [Lusztig 1984, Chap. 4] that the irre-ducible characters ofW are partitioned into families
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282 Experimental Mathematics, Vol. 8 (1999), No. 3and that each family contains a unique special char-acter. Another known fact is that all special charac-ters are of the form 'C for some C 2 XG. A unipo-tent class C 2 XG is called special if the character'C is special.The required partition of XG is now de�ned asfollows. Each piece of this partition is a union ofsome unipotent classes of G. Two unipotent classesC;C 0 2 XG belong to the same piece if and onlyif 'C ; 'C0 belong to the same family of charactersof W . Since each family contains a unique spe-cial character and each special character is of theform 'C for some class C, we see that each piece ofXG contains a unique special unipotent class. Thesepieces are called the special pieces of XG. One of themain results of [Lusztig 1997] asserts that a specialpiece consists precisely of the unique special unipo-tent class C in it and all unipotent classes in theclosure of C which are not contained in the closureof any strictly smaller special unipotent class.Now assume that k is an algebraic closure of the�nite �eld F q (where q is a power of some prime p)and that G has a split F q-rational structure, withcorresponding Frobenius map F . Then each unipo-tent class is F -stable and, if C is such a class, thereexists a polynomial fC 2 Q [u] (where u is an inde-terminate) such that jCF s j = fC(qs) for all s � 1.Note, however, that the classi�cation of unipotentclasses is di�erent for di�erent primes p. Neverthe-less, Lusztig has shown the following surprising re-sult in [Lusztig 1997] (which appeared as a conjec-ture in [Lusztig 1981a]):
Theorem 1.1 [Lusztig 1997]. Let W be a �nite Weylgroup. Then there exists a collection of polynomialsff'g � Z [u], one for each special character ' ofW , such that the following hold : whenever G is aconnected reductive algebraic group with Weyl groupW and F : G! G is a Frobenius map correspondingto some split F q-rational structure on G (for someprime power q), then jCF j = f'(q) where C is thespecial piece corresponding to '.Lusztig's proof is case by case, using some very elab-orate counting arguments. This paper arose from anattempt to �nd a more conceptual proof. We pro-pose a general algorithm for computing the poly-nomials f'. This algorithm even works for complexreection groups. Several examples of computations

will be given. The algorithm was found by exper-imentation, with the help of programs written inCHEVIE [Geck et al. 1996] or GAP [Sch�onert et al.1994]. See also the section on Electronic Availabilityat the end of this paper.
2. THE ALGORITHMWe will describe an algorithm, which takes as inputa �nite Coxeter system (W;S) and returns a list ofpolynomials, one for each special character of W .This algorithm is a variant of that for computingGreen functions, as explained in Shoji [1987].First, we need to recall the basic de�nitions of thea-invariants and the b-invariants of the irreduciblecharacters of W (see [Lusztig 1979] for more back-ground).Let V be a real vector space and W � GL(V )the standard geometric realization of W , where theelements in S are reections (see [Bourbaki 1968,Chap. V, x 4]). Let u be an indeterminate; we de�ne

PW := jSjYi=1 udi � 1u� 1 ;
where d1; d2; : : : are the degrees of W . Let CF(W )be the space of R -valued class functions on W , andlet R : CF(W )! R (u) be the map de�ned byR(f) := PW (u� 1)jSj 1jW j Xw2W "(w)f(w)det(u � idV �w)for f 2 CF(W ), where " denotes the sign charac-ter. Then we have in fact R(f) 2 R [u] and evenR(f) 2 Z [u] if f is a character (see [Carter 1985,Proposition 11.1.1]). If ' 2 Irr(W ), then R(') iscalled the fake degree of '. The b-invariant of 'is de�ned as the largest r � 0 such that ur di-vides R(') or, equivalently, as the smallest r � 0such that ' occurs with nonzero multiplicity in thecharacter of the r-th symmetric power of the W -module V .We de�ne a matrix 
 = (!';'0)';'02Irr(W ) (withentries in Z [u]) by!';'0 = uNR('
 '0 
 ")where N is the number of reections inW . We shallneed the following result:
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Lemma 2.1 (Lusztig). For any ';'0 2 Irr(W ), we have!';'0 = �';'0u2N + remainder;where remainder is a linear combination of strictlysmaller powers of u and �';'0 is the Kronecker sym-bol . Consequently , the determinant of any principalminor of 
 is nonzero.
Proof. Write '
'0 
 " =P'00 c'00'00 where the sumis over all '00 2 Irr(W ) and c'00 are nonnegativeintegers. It is clear that c" = �';'0 . Hence!';'0 = uN�';'0R(") + X'00 6=" c'00uNR('00):
Now the de�nition of R shows that R(1W ) = 1(where 1W denotes the trivial character) and thatR('00) has constant term 0 if '00 6= 1W . Combin-ing this with the formula in [Carter 1985, Proposi-tion 11.1.2], we conclude that R(") = uN and thatR('00) is a polynomial in u of degree < N if '00 6= ".Thus, the �rst statement is proved.Now consider a principal minor of 
 of size k. Thediagonal entries of that minor are all monic polyno-mials of degree 2N , and the o�-diagonal entries arepolynomials in u of degree strictly smaller than 2N .This implies that the determinant of that minor is amonic polynomial in u of degree 2Nk; in particular,it is nonzero. �To de�ne the a-invariants, we need the notion ofthe generic degree of an irreducible character of W(see [Benson and Curtis 1972]). They are de�nedin terms of the 1-parameter generic Iwahori{Heckealgebra H associated with (W;S). This is an asso-ciative algebra over the �eld R (u1=2) (where u1=2 isan indeterminate), with a basis fTw j w 2 Wg suchthat the following relations hold:
1. TwTw0 = Tww0 if l(ww0) = l(w) + l(w0);
2. T 2s = uT1 + (u� 1)Ts for s 2 S.It is known that the algebra H is split semisimple(see [Lusztig 1981b; Kilmoyer and Solomon 1973;Alvis and Lusztig 1982]) and that the values of theirreducible characters of H at basis elements Twlie in R [u1=2]. By Tits' Deformation Theorem (see[Curtis and Reiner 1987, x 68A]), we have in facta bijection between the irreducible characters of Hand those of W . If ' is an irreducible character ofW , we denote by 'u the corresponding character of

H; this correspondence is uniquely determined bythe condition that �('u(Tw)) = '(w) for all w 2W ,where � : R [u1=2] ! R , u1=2 7! 1. The algebra Hcarries a symmetrizing trace � : H ! R (u) givenby �(T1) = 1 and �(Tw) = 0 for 1 6= w 2 W . Us-ing a specialization argument as above, we see thatevery irreducible character of H appears in � withnonzero multiplicity. The generic degrees D' asso-ciated with the irreducible characters ' of W cannow be de�ned by the equation:� = X'2Irr(W ) PWD' 'u:By [Benson and Curtis 1972; Kilmoyer and Solomon1973; Lusztig 1979; Alvis and Lusztig 1982], we haveD' 2 R [u] for all ' 2 Irr(W ). The a-invariant of 'is de�ned to be the largest s � 0 such that us dividesthe polynomial D'. We always have a' � b', and 'is called special if we have equality.We de�ne a preorder on Irr(W ) by the conditionthat ' � '0 if and only if a' � a'0 . The equiva-lence relation associated with this preorder will bedenoted by ' � '0. Thus, we have ' � '0 if andonly if a' = a'0 . The following result and its proofyield the promised algorithm.
Proposition 2.2. There exist unique elements p';'0 2Q (u) and �';'0 2 Q (u), where ';'0 2 Irr(W ), suchthat the following conditions hold :
1. �';'0 = 0 unless ' � '0;
2. p';'0 = 0 unless ' > '0 or ' = '0;
3. p';' = ua' for all ';
4.

X'1;'012Irr(W ) p';'1�'1;'01p'0;'01 = !';'0 for all ';'0.
The uniqueness is clear. We prove the existence bydescribing an algorithm for solving the system ofequations above. Choose a total ordering on Irr(W )compatible with the preorder � and de�ne matricesof unknowns P = (p';'0) and � = (�';'0). Then thesystem of equations above says that P�P tr = 
.Moreover, � is a block diagonal matrix, with blockscorresponding to the equivalences classes under �,and P is a block lower triangular matrix with diago-nal blocks consisting of identity matrices multipliedby ua' . Assume we have r blocks, of sizes n1; : : : ; nrand with corresponding a-values a1; : : : ; ar; parti-tioning P;�, 
 into blocks, the matrix equation
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I1 0 � � � 0P2;1 I2 ...... . . . 0Pr;1 � � � Pr;r�1 Ir

3777775
2666664
�1 0 � � � 00 �2 ...... . . . 00 � � � 0 �r

3777775
2666664
I1 P tr2;1 � � � P trr;10 I2 ...... . . . P trr;r�10 � � � 0 Ir

3777775
=
2666664


1;1 
1;2 � � � 
1;r
2;1 ...... 
r�1;r
r;1 � � � 
r;r�1 
r;r
3777775 ;

where Ii = uai idni . We can solve this system recur-sively as follows.We begin with the �rst block column. We haveI1�1I1 = 
1;1, which determines �1. For i > 1we have Pi;1�1I1 = 
i;1. By Lemma 2.1, we knowthat det
1;1 6= 0. Hence �1 is invertible, and wecan determine Pi;1. Now consider the j-th blockcolumn, where j > 1. Assume that the �rst j � 1block columns of P and the �rst j�1 diagonal blocksof � have already been determined. We have anequationIj�jIj + Pj;j�1�j�1P trj;j�1 + � � �+ Pj;1�1P trj;1 = 
j;j;which can be solved uniquely for �j. In particu-lar, we have now determined all coe�cients in Pand � which belong to the �rst j blocks. We con-sider the subsystem of equations made up of theseblocks; this subsystem looks like the original systemwritten in matrix form above, with r replaced by j.By Lemma 2.1, the right hand side has a nonzerodeterminant. Hence so have the blocks �1; : : : ;�j.Now we can determine the coe�cients of P in thej-column: for i > j, we have an equationPi;j�jIj + Pi;j�1�j�1P trj;j�1 + � � �+ Pi;1�1P trj;1 = 
i;j :Since �j is invertible, Pi;j is determined. Continuingin this way, the system of equations above is solved.
Remark 2.3. Lusztig [1986, x 24] has described a sim-ilar algorithm for the computation of (generalized)Green functions of �nite reductive groups. But inthat case, it is known in advance that solutions exist(since the equations came from orthogonality rela-tions for Green functions). In our case, we had donesome experiments in GAP (see Proposition 2.8 andthe examples below), and there it always turned outthat solutions exist. Lusztig pointed out that to

prove this in general, it is necessary to use Lemma2.1, which he kindly communicated to us.
Remark 2.4. Instead of the preorder � de�ned above,we could have also used any re�nement of it suchthat the equivalence classes are precisely the fami-lies of Irr(W ) (in the sense of [Lusztig 1979; 1982];see also [Lusztig 1984, Chapter 4]). Since the a-function is constant on families, this would just yielda �ner partition of Irr(W ), but otherwise the algo-rithm would be the same. But is not clear that theresult would also be the same; for this it would berequired that the following condition is satis�ed:�';'0 = 0 unless ';'0 belong to the same family: (�)In all examples that we computed, this conditionturns out to be satis�ed.Similarly to [Lusztig 1986, Theorem 24.8], we expectthat the algorithm above actually yields polynomi-als:
Conjecture 2.5. We have p';'0 2 Z [u] and �';'0 2 Z [u]for all ';'0 2 Irr(W ). Moreover, the coe�cients ofp';'0 are nonnegative.To each irreducible character ' of W , we can asso-ciate a rational function f' 2 R (u) by f' = �';'.We expect that the rational functions associatedwith the special characters will be of particular im-portance:
Conjecture 2.6. We have P' f' = u2N , where thesum is over all special characters ' of W .
Conjecture 2.7. Assume that W is a Weyl group, andlet G be a connected reductive algebraic group suchthatW is the Weyl group of G with respect to somemaximal torus. Assume, moreover, that F : G !G is a Frobenius map corresponding to some splitF q-rational structure on G (where q is some primepower). Let ' be a special character of W and let Cbe the corresponding special piece of the unipotentvariety of G. Then we have jCF j = f'(q).
Proposition 2.8. The three conjectures above are trueif (W;S) is irreducible of type An (any n � 1), G2,F4, E6, E7, or E8. Moreover , condition (�) in Re-mark 2.4 holds in these cases.
Proof. If (W;S) is of exceptional type, we have usedan implementation of our algorithm in GAP andCHEVIE to compute explicitly all elements p';'0



Geck and Malle: On Special Pieces in the Unipotent Variety 285and �';'0 . By inspection, Conjectures 2.5 and 2.6,and condition (�) are veri�ed. In order to verifyConjecture 2.7, one has to compare the results ofour algorithm with the existing tables of unipotentclasses for exceptional Chevalley groups (due to Mi-zuno and Shoji; see [Carter 1985] for references). Inprinciple, this could be done by hand, but we areindebted to Frank L�ubeck for doing this comparisonusing his data �les on a computer.Finally, let (W;S) be of type An�1 so that thecorresponding Chevalley group is G = GLn. In thiscase, all irreducible characters ofW are special, andthe special pieces are just the unipotent classes of G.Hence it would be su�cient to show that our algo-rithm produces the same result as that for comput-ing the Green functions of G; see [Shoji 1987]. Inthe latter algorithm, we have to consider a systemof matrix equationsQ�0Qtr = 
;where the matricesQ;�0 satisfy similar requirementsas in Proposition 2.2 but they are partitioned intoblocks of size 1 (since all characters are special).Thus, by the uniqueness of solutions, it is enough toshow that Q;�0 are automatically partitioned intoblocks as required by our algorithm. This is clearfor �0 (since this is a diagonal matrix). As far asQ is concerned, we must show that if a' = a'0(for ' 6= '0) then q';'0 = 0. Assume, if possible,that this is not the case. Let C;C 0 be unipotentclasses in G such that ' = 'C , '0 = 'C0 . The con-dition ' 6= '0 implies C 6= C 0. Now it is known thatq';'0 = 0 unless C is contained in the closure of C 0(see [Shoji 1987, Sect. 5]). But if a' = a'0 , thendimC = dimC 0 and hence C = C 0, a contradic-tion. The positivity of the coe�cients of the p';'0asserted in Conjecture 2.5 follows from the corre-sponding statement for the entries of Q; see [Lusztig1981a, Theorem 1]. �We have also checked that the conjectures are truefor all Weyl groups of classical types of low rank.For noncrystallographic �nite Coxeter groups, thealgorithm yields the following results:
Lemma 2.9. Let W = hs; ti be a dihedral group suchthat st has order m � 3. Then there are preciselythree special characters, namely the trivial character1W , the sign character ", and the character � of the

standard reection representation. The associatedpolynomials are given as follows.' b' f'" m 1� 1 (um�2 + 1)(um � 1)1W 0 um�2(u2 � 1)(um � 1)The sum of these three polynomials is u2m, as itshould be.
Proof. We solve the system of equations de�ning Pand � along the lines of the proof of Proposition 2.2.We label the irreducible characters of W such thatthe �rst is the sign character, the second the re-ection character and the last the trivial character.This ordering is compatible with the preorder intro-duced above. Then P;� have the shapes
P = 0@ um 0 0p uIk�2 0pk1 qtr 1

1A ; � = 0@�11 0 00 �0 00 0 �kk
1A ;

with p = (p21; : : : ; pk�1;1)tr, q = (pk2; : : : ; pk;k�1)tr,while 
 = 0@ u2m umRtr umumR 
0 um ~Rum um ~Rtr u2m
1A ;

with R = (R('2); : : : ; R('k�1))tr;~R = (R('2 
 "); : : : ; R('k�1 
 "))tr:The upper left 2 by 2 block of P�P tr equals� u2m�11 um�11p21um�11p21 p221�11 + u2�22�while the upper leftmost part of 
 equals� u2m um(um�1 + u)um(um�1 + u) um(1 + um + um�2 + u2)�by the de�nition of !ij. The assertion on the �rstand second line of the table follows.More generally, this leads to the equations p = R,pk1 = 1 and thenRRtr + u2�0 = 
0;R+ u�0q = um ~R;1 + qtr�0q + �kk = u2m:Clearly this determines �0 = u�2(
0 � RRtr). In-serting this into the next equation givesR+ u�1(
0 �RRtr)q = um ~R:



286 Experimental Mathematics, Vol. 8 (1999), No. 3We claim that q = (1; 0; : : : ; 0)tr is a solution to this.Then the last equation simpli�es to 1 + �22 + �kk =u2m and the lemma is proved. Thus it remains tocheck thatR(') + um�1R(�
 '
 ")� u�1R(�)R(')= umR('
 ")for all irreducible characters ' of W lying in thesame family as �, i.e., di�erent from 1 and ". Thisis an easy exercise. �
Example 2.10. Let (W;S) be a Coxeter system ofnoncrystallographic type H3 or H4. Using an im-plementation of the algorithm above in GAP andCHEVIE, we �nd the following polynomials f' cor-responding to special characters '. We label an ir-reducible character of W by a pair (m; e), where mdenotes the degree and e is the b-invariant. Theresults are given in Tables 1 and 2; to abbreviatenotation, we let :i stand for the factor ui � 1. TheH3 f''1;15 1'3;6 (u8 + u4 + 1):10'5;5 u4 :6 :10'4;3 u8 :6 :10'5;2 u10 :6 :10'3;1 u10 :2 :6 :10'1;0 u12 :2 :6 :10

TABLE 1. Polynomials for special pieces in type H3.In all the tables and in the text, the notation :istands for a factor ui � 1.H4 f''1;60 1'4;31 (u28 + u18 + u10 + 1):30'9;22 u10(u16 + u8 + 1):20 :30'16;18 u28(u6 + 1):20 :30'25;16 u26 :12 :20 :30'36;15 u38(u10 + 1):12 :30'24;6 u34(u12 + u4 + 1):12 :20 :30'36;5 u48 :12 :20 :30'25;4 u48 :2 :12 :20 :30'16;3 u50 :2 :12 :20 :30'9;2 u52 :2 :12 :20 :30'4;1 u54 :2 :12 :20 :30'1;0 u56 :2 :12 :20 :30
TABLE 2. Polynomials for special pieces in type H4.

sum of the polynomials f' (for ' special) is u30 andu120, respectively. Moreover, we have checked thatcondition (�) in Remark 2.4 is satis�ed.We think that the polynomials above for noncrystal-lographic �nite Coxeter groups are those on whoseexistence was speculated in [Lusztig 1997, (6.10)].For this note that the �rst, second and last polyno-mial in each case coincides with the value predictedin that reference.
Remark 2.11. Lusztig [1997, (6.10)] gives a formulafor the size of the special piece corresponding to thespecial character � 
 ". Namely, let d1; : : : ; dl bethe degrees of W , m1; : : : ;ml the coexponents (seefor example [Orlik and Solomon 1980]). Then weshould have f�
" = (uh � 1) lXi=1 umi�1
where h = maxfd1; : : : ; dlg is the Coxeter number ofW . A short calculation shows that this is the resultgiven by our algorithm if and only ifR(�
 �) = R(�) (R(�) + u�1 � uh�1) :This can be checked for the irreducible �nite Cox-eter groups. Unfortunately we do not see an a prioriproof of this formula. (The fake degree of the anti-symmetric square �2(�) was computed in [Orlik andSolomon 1980, Corollary 3.2].)
3. AN EXTENSIONRecall that our algorithm is a variant of that forcomputing Green functions. Now the latter admitsa generalization to the computation of generalizedGreen functions; see [Lusztig 1986, x 24]. Lusztigsuggested that our algorithm should admit a similargeneralization.What we have to do is to consider another Cox-eter system (W1; S1) such that S is a subset of S1and the relations forW are determined from those inW1 by the scheme explained in [Lusztig 1993, (1.3)].The choice of W1 is subject to the requirement thatthe parabolic subgroup of W1 generated by S1 n Sshould admit a \cuspidal unipotent character" (see[Lusztig 1993, (2.4)]) and hence a cuspidal family ofcharacters in the sense of [Lusztig 1984, (8.1)]. We



Geck and Malle: On Special Pieces in the Unipotent Variety 287then consider essentially a similar system of equa-tions as before, but with some modi�cations takinginto account the presence of W1.We de�ne a new matrix ~
 = (~!';'0)';'02Irr(W ) by~!';'0 = uN1�NujSj�jS1j(u� 1)jS1j�jSjPW1PW !';'0 ;where N1 is the number of reections in W1 andPW1 is de�ned in terms of the degrees of W1. (Thisis analogous to the de�nition given in [Lusztig 1986,(24.3.4)].)We also have to modify the a-invariants attachedto the irreducible characters ofW . The pair (W;W1)determines a function f : S ! f1; 2; : : :g such thatf(s) = f(t) whenever s; t 2 S are conjugate in W(see [Lusztig 1993, 2.4(b)]). We consider the genericIwahori{Hecke algebra Hf de�ned in a similar wayas before, but now the quadratic relations read:T 2s = uf(s)T1 + (uf(s) � 1)Ts for s 2 S:Again, we have corresponding generic degrees Df'(which are not necessarily polynomials!). The newa-invariants are now de�ned byaf' = a0 + (order of the pole at u = 0 of Df');where a0 is the (usual) a-invariant of the charactersbelonging to the cuspidal family of characters of theparabolic subgroup of W1 generated by S1 n S.Taking these data, we can formulate an analogousversion of Proposition 2.2, and one might expectthat Conjecture 2.5 still holds. We have checkedthat this is in fact true for all (W;W1) where W1is a �nite Coxeter group of exceptional type. Notethat no new cases arise for W1 of type An�1.
Example 3.1. Let (W1; S1) be of type H4. Accordingto [Lusztig 1993, x 3.3], we have three possibilitiessuch that the requirements for the setting above aresatis�ed: (W;S) of type ?, A1 or I2(10). The �rstcase is trivial; we consider the other two possibilities.If (W;S) is of type A1, the function f takes value15, and we have a0 = 3. The modi�ed a-invariantsof the sign and the trivial character are 18 and 3,respectively. The matrix � consists of two 1 � 1-blocks with entries u22 :12 :20 :30 and u50 :12 :20 :30. Wehave P = � u18 :u17 u3 � :

If (W;S) is of type I2(10), the function f takes values1; 5, and we have a0 = 1. The modi�ed a-invariantsare given by' '1;10 '01;5 '2;1 '2;2 '2;3 '2;4 '001;5 '1;0af' 31 22 6 6 6 6 2 1The matrix � has 5 blocks, of sizes 1; 1; 4; 1; 1: theentries are u6(u10+1):12 :30, u14 :12 :20 :30,2664 u46 :12 :20 :30 u45 :12 :20 :30 u44 :12 :20 :30 u43 :12 :20 :30u45 :12 :20 :30 u46 :12 :20 :30 u45 :12 :20 :30 u44 :12 :20 :30u44 :12 :20 :30 u45 :12 :20 :30 u46 :12 :20 :30 u45 :12 :20 :30u43 :12 :20 :30 u44 :12 :20 :30 u45 :12 :20 :30 u46 :12 :20 :30
3775;

and u52 :2 :12 :30 :30, u54 :2 :12 :20 :30. We have
P =

266666666664

u31 : : : : : : :u26 u22 : : : : : :u30 + u22 u18 u6 : : : : :u29 + u23 u19 : u6 : : : :u28 + u24 u20 : : u6 : : :u27 + u25 u21 : : : u6 : :u26 : : : : u5 u2 :u21 u17 u5 : : : : u

377777777775
In particular, we see that all entries in these matricesare polynomials.
4. COMPLEX REFLECTION GROUPSLet now V be a complex vector space and W �GL(V ) be a �nite group generated by pseudoreec-tions. In order to describe a generalization of thealgorithm put forward in the previous section to Wwe mimic the approach in the real case.First note that the de�nition of R : CF(W ) !C [u] given byR(f) := PW (u� 1)dim(V ) 1jW j Xw2W detV (w)f(w)detV (u � idV �w)for f 2 CF(W ), where detV denotes the determi-nant character of W on V , makes sense for com-plex reection groups and generalizes the de�nitionof R in Section 2. We let N� be the number ofpseudoreections in W and de�ne a matrix 
 by!';'0 := uN�R('
 '0 
 detV ) as in Section 2.To de�ne the a-invariant of an irreducible char-acter of W , we now work with H = H(W;u), thecyclotomic Hecke algebra for W over C [u; u�1] withone single parameter u (see [Brou�e and Malle 1993;Brou�e et al. 1999]). Let K be a su�ciently large



288 Experimental Mathematics, Vol. 8 (1999), No. 3extension of C (u) and HK the algebra obtained byextending scalars from C [u; u�1] to K. A deforma-tion argument shows again that we have a bijection,' $ 'u, between the irreducible characters of Wand those of HK . The de�nition of generic degreesis more subtle in the present situation: it is conjec-tured in [Brou�e and Malle 1993; Brou�e et al. 1999](and has now been proved in [Malle and Mathas1998] for all but �nitely many irreducible W ) thatH carries a canonical symmetrizing form � : H !C [u; u�1], which in particular vanishes on all ele-ments of a suitable basis (except the identity ele-ment), and which specializes to the usual trace formon the group ring of W . Hence, in a similar way asbefore, we see that every irreducible character ofHKappears in � with nonzero multiplicity, and we mayde�ne generic degrees by the equation:� = X'2Irr(W ) PWD' 'u:Assume that W is irreducible and generated bydimV = nreections of order 2. Then it is expected that D'is a polynomial in C [u]. We can then de�ne a' tobe the precise power of u dividing D'. A character' 2 Irr(W ) is called special if a' is also the precisepower of u dividing R(').Let W be an irreducible complex reection groupsatisfying the assumptions made above. Then ei-ther W is real, or W = G(e; e; n) for some e � 3,n � 3, (here, the special characters have been iden-ti�ed in [Malle 1995, Lemma 5.16]), or W is oneof the primitive complex reection groups Gi, fori 2 f24; 27; 29; 33; 34g, in the notation of [Shephardand Todd 1954]. For such W the algorithm put for-ward in Section 2 still makes perfect sense. We be-lieve that the analogues of Conjectures 2.5 and 2.6remain valid in this more general situation.
Example 4.1. We have used an implementation of thealgorithm in GAP and CHEVIE to verify the conjec-tures on all the primitive complex reection groupsGi, i 2 f24; 27; 29; 33; 34g. The a-values of the irre-ducible characters of these groups were determinedin [Malle 1999]. Our algorithm yields polynomialentries for P and �. The diagonal entries of � cor-responding to special characters (the lengths of the

special pieces) are collected in Tables 3{5. Theirsums equal u42, u90, u80, u90, u252 respectively. Notethat for each of the complex reection groups above,the size of the second special piece is again given bythe formula in Remark 2.11. Here, the special irre-ducible characters are labeled by pairs (m; e), wherem denotes the degree and e is the a-invariant.
ACKNOWLEDGEMENTSWe thank George Lusztig for informing us aboutLemma 2.1. We also thank Toshiaki Shoji for severalremarks concerning a possible proof of our conjec-tures for the case of Weyl groups in the frameworkof character sheaves; see [Shoji 1998].We started work on this paper while participatingin the special semester on representations of alge-braic groups and related �nite groups at the Isaac
G24'1;21 1'3;8 (u10 + u8 + 1):14'7;6 u8(u2 + 1):6 :14'8;4 u12(u2 + 1):6 :14'7;3 u12 :4 :6 :14'3;1 u14 :4 :6 :14'1;0 u18 :4 :6 :14

G27'1;45 1'3;16 (u24 + u18 + 1):30'10;12 u18(u6 + 1):12 :30'9;9 u30 :12 :30'15;8 u30 :12 :30'8;6 u30 :6 :12 :30'15;5 u30 :6 :12 :30'9;4 0'10;3 u36 :6 :12 :30'3;1 0'1;0 u42 :6 :12 :30G29'1;40 1'4;21 (u16 + u12 + u8 + 1):20'10;18 u8(u4 + 1):12 :20'16;13 2u16(u4 + 1):12 :20'15;12 u24 :12 :20'15;12 u16 :8 :12 :20'20;9 2u20 :8 :12 :20'24;6 u24(u4 + 1):8 :12 :20'20;5 u28 :8 :12 :20'15;4 u28 :4 :8 :12 :20'15;4 u32 :8 :12 :20'16;3 0'10;2 u32 :4 :8 :12 :20'4;1 0'1;0 u36 :4 :8 :12 :20
TABLE 3. Polynomials for special pieces in type G24,G27, and G29.



Geck and Malle: On Special Pieces in the Unipotent Variety 289G33'1;45 1'5;28 (u14+u12+u8+u6+1):18'15;23 u6(u10+u8+u6+u4+u2+1):10 :18'30;18 u10(u16+u14+2u12+2u10+u8+u6+u4�1) :10 :18'30;13 u14(u8+2u6+u4+u2+1):10 :12 :18'15;12 u26 :10 :12 :18'81;11 u22(u6+2u4+2u2+1):10 :12 :18'60;10 u22(u2+1):6 :10 :12 :18'45;10 u24 :4 :10 :12 :18'15;9 u28 :4 :10 :12 :18'64;8 u26(u2+1):6 :10 :12 :18'60;7 u28(u2+1):6 :10 :12 :18'45;7 u26(u2+1):6 :10 :12 :18'81;6 u28 :4 :6 :10 :12 :18'30;4 u28(u2+1):4 :6 :10 :12 :18'30;3 u36(u2+1):6 :10 :12 :18'15;2 u36 :4 :6 :10 :12 :18'5;1 0'1;0 u40 :4 :6 :10 :12 :18
TABLE 4. Polynomials for special pieces in type G33.Newton Institute (Cambridge, U.K.) from Januaryto July 1997. It is a pleasure to thank the organis-ers, Michel Brou�e, Roger Carter and Jan Saxl, forthis invitation and the Isaac Newton Institute forits hospitality.The paper was completed while the �rst authorwas holding a CNRS research position at the Uni-versity Paris VII (France).

ELECTRONIC AVAILABILITYA �le containing the programs and examples men-tioned at the end of Section 1 can be obtained fromthe `contributions' directory of the home page ofCHEVIE under http://www.math.rwth-aachen.de/~CHEVIE.
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