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From a modern theta-function identity of G. E. Andrews we de-
rive new representations for the celebrated Madelung constant
and various of its analytic relatives. The method leads to connec-
tions with the modern theory of multiple zeta sums, generates an
apparently entire “n series” representation, and, for the Madel-
ung constant in particular, yields a finite-integral representation.
These analyses suggest variants of the Andrews identity, leading
in turn to number-theoretical results concerning sums of three
squares.

1. OVERVIEW OF THE MADELUNG PROBLEM

The Madelung constant —we shall call it M —of
chemistry and physics enjoys an illustrious yet no-
torious history. Since M is essentially the binding
energy density of an ideal (sodium-chloride) crys-
tal structure, the mathematical problem of assign-
ing a theoretical value for M has direct implications
for the chemical laboratory. It can be argued that
a branch of mathematics —the analysis of lattice
sums and multidimensional zeta functions — grew in
large measure out of fascination with the Madelung
problem. A very brief history of these developments
runs as follows, where we have drawn on previous
overviews, such as the monumental review work of
[Glasser and Zucker 1980] and the interdisciplinary
approach of [Buhler and Wagon 1996].

The science of lattice sums was begun by Appell in
the late 19th century, in the context of periodic solu-
tions to certain differential equations of physics. His
efforts led to expansions for energy density, which
analysis seems to have been overlooked over many
subsequent years. In 1918 Madelung attempted a
theoretical summation over parallel planes of charge,
in this way providing the first reasonable numerical
value M ~ —1.7435..., which rings within 0.2 per
cent of true. In 1921 Ewald worked out a conver-
gent series expansion applicable to arbitrary crys-
tals, about which expansion we have more to say
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below. For the rest of the 20th century, new compu-
tational representations have arisen, usually in the
form of convergent series. However —and here is
the notorious aspect to which we have alluded —
while motivation for both numerical and theoreti-
cal evaluations of M has persisted throughout the
20th century, and though we now possess a numeri-
cal value to thousands of decimal digits, the Madel-
ung constant has never been given a theoretical eval-
uation in any convenient, closed form. Throughout
the present treatment, we take a number to have
been “evaluated” — this is a qualitative term —if it
is represented as a suitable combination of funda-
mental numbers. In particular, specific values of
any L-series such as the one-dimensional Riemann
zeta function may appear, as may explicit algebraic
numbers such as /2, values such as F(i) of standard
special functions, and so on.

We take M to be the analytic continuation, to
s = %, of a specific, three-dimensional Epstein zeta

function:
M(s)= )

T,Y,2€Z

/ (_1)z+y+z

e
where > means that the origin singularity is to
be avoided. The number M = M(31) is the cele-
brated Madelung constant. More precisely, M is the
potential energy of the origin charge in a (sodium-
chloride-type) lattice of charges, calculated as the
sum of potentials +1/r for distances r to various
lattice sites. We point out that other periodic crys-
tal structures give rise to similar constants, again as
analytic continuation evaluations of a relevant Ep-
stein zeta function, and in such cases one may speak
of the “Madelung constant” for a particular crystal
structure. Hereafter we focus on the (sodium chlo-
ride) M (s) function.

Though the sum (1.1) for M(s) converges abso-
lutely for Res > 2, convergence for the Madelung
case s = % is problematic, which is why analytic con-
tinuation must be invoked for physically meaningful
instances. The literal sum, for s = %, definitely
does not converge over ever-expanding spheres, al-
though it does converge over ever-expanding cubes
[Borwein et al. 1985; Borwein and Borwein 1994;
Borwein et al. 1998a]. There is also a now-proven
“Delord conjecture”, saying that the energy contri-
butions from a sphere of radius R can be corrected

in a delicate way —in fact in the same way that na-
ture would neutralize an isolated sphere of lattice
charges —to force convergence as R — oo [Buhler
and Crandall 1990; Buhler and Wagon 1996]. In
some settings, such cancellation ideas lead to con-
nections between crystal energies and the celebrated
Euler and related constants [Kukhtin and Shramko
1993].

Although a closed form for M remains elusive,
various connections have been made between M and
similar entities, such as other Epstein zeta values.
There is much literature on the theory of lattice
sums, in which one can witness closed forms for
analogues of the Madelung constant in dimensions
other than three, functional analytic equations, and
the profound connection with Jacobi theta functions
and elliptic integrals; see [Glasser and Zucker 1980;
Zucker 1984; Crandall 1996; Borwein and Borwein
1987]. It is an astounding fact that literally dozens
of three-dimensional lattice sums are known in closed
form, technically as Dirichlet L-series evaluations
[Zucker 1987; 1990], yet none of these is quite the
Madelung form (1.1). One of many examples is due
to [Forrester and Glasser 1982], which says that if
the origin for the lattice sum (1.1) is displaced by

1 1 1

the vector 7 = (5, 5, 5), then the sum evaluates as

12°L_4(2s—1), where here the L-series is defined by
L ,t)=1"=3"45"=7"+....

In this particular variant, the physical case s = %
evaluates to /3, which is the exact potential at the
point 7, within a full (sodium chloride) charge lat-
tice. It is of interest that this potential is known
exactly while M remains elusive. In this regard,
here is an amusing thought experiment. Remove
the origin charge, in which case we know the poten-
tial at 7, to be exactly /3 — /|7 = V3 —V12 =
—/3 ~ —1.732, which is within one per cent of the
potential at the origin, displaced (—%, —%, —%) away
from 7, (this potential being M itself). So in this
approximate sense, we might say that M “wants to
be” minus the square root of three. There are other
amusing equivalences, including this exact one: M is
precisely the electrostatic energy of a solitary charge
residing at the center of a perfectly conducting unit
cubical box [Crandall and Delord 1987].

We next embark on a brief tour of the computa-

tional developments that have sporadically emerged



throughout the twentieth century. It has long been
known that general Epstein zeta functions—in any
number of dimensions —can be evaluated numeri-
cally via what might these days be called “fast” al-
gorithms. The basic ideas go back to Riemann, and
are relatively easy to apply in actual computations.
An algorithm description from a modern perspec-
tive is [Crandall 1998b]. For crystal structures in
particular, the Riemann approach gives rise to what
is known in chemistry and physics as the Ewald ex-
pansion. For the function M(s) of present concern,
the Riemann formula takes the form of a rapidly
convergent expansion:

I(s) 1 ! (s, mr2)(—1)m+v+s
s M(S) - _; Z (7'('7“2)‘9
T,Y,2€24
L2 —s,mk—c?)
+ : = (1.2)
2 kit

where r denotes the lattice radius /2 + y2 + 22,
¢ is the vector {3,3,%}, and I'(¢,2) is the stan-
dard incomplete gamma function. The Ewald ex-
pansion is essentially the physical case s = % of this
rapidly convergent formula. Though only O(A%/?)
summands are required to yield A good digits, one
generally needs evaluations of the incomplete gamma,
functions in one of the sums; in the M computa-
tion one therefore needs F(%, z), essentially the error
function.

An era of less recondite, and perhaps more ele-
gant, expansions for M started in the 1950’s with
the Benson—Mackenzie formula, an attractive, two-
dimensional sum over positive odd integers:

M= —127 Z sech? %7“7
z,yeOt
where r = /22 + y? is the two-dimensional lattice

radius. Somewhat later, in 1975, emerged the Hau-
tot formula:

T r (—1)* cosech(7r)
M=-2+3) :

r

T, YeEZ

The summands in both of these elegant formulae
converge less rapidly —in the maximum lattice ra-
dius, say —than does the Ewald expansion, but of
course these two younger series can be computation-
ally superior, for two reasons: only elementary func-
tions need be evaluated, and the sums are two-, not
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three-dimensional. Incidentally, there is a certain
type of identity between Epstein zeta evaluations
that typically leads to two-dimensional expansions.
As discovered by [Zucker 1976; 1998] through adroit
application of theta-function identities, it happens,
nontrivially, that (letting  denote the lattice radius

v@? + y? + 2% in the three-dimensional case)

r(=1)%ty
3 %

T,Y,2€24

’ _1)etytz
3 (=1)

2 2 2
= x? 4 29% + 22

e
22 + y? + 2227

T,Yy,2€Z

M =

Ao A]w Jlw

and this is by no means the end of the list of Zucker’s
equivalent forms. In addition, the standard func-
tional equation for Epstein zeta functions gives

4 r1
M=T 2 W

z,y,2€0

a sum over all odd triples, the (not absolutely con-
vergent) sum taken to be as usual the analytic con-
tinuation of 7% to s = 1. One only need Poisson-
transform any of the above right-hand sums— with
respect to just one of the lattice indices—to in-
troduce such decaying functions as cosech or coth,
thereby arriving at rapidly convergent double sums
for M. The first of Zucker’s identities above, for
example, quickly yields in this fashion the Hautot
formula.

In [Crandall and Delord 1987] a two-dimensional
series scheme for the “Madelung constant” of gen-
eral crystal structures is derived, but the typical
summand is rather intricate. In another treatment,
[Crandall and Buhler 1987] exhibit a general pre-
scription for casting any crystal structure’s “Madel-
ung constant” as a fairly simple series of elemen-
tary function evaluations (yet back to the three-
dimensional summation motif).

This brief overview of historical attempts brings
us to an anecdote: a near-miss, if you will, in the
quest for closed-form evaluation. In [Crandall and
Buhler 1987] it is observed that one can come close
to exact evaluations, in the sense that sufficiently
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acute knowledge of the asymptotic behavior of a cer-
tain sum over odd triples, namely

Z cosech(mt|u|) 0

|u| t—0

S(t) =
ue0?

yields the Madelung constant as

i T

M = lim <4tS(t) - ﬁ)
This limit rule is by no means computationally vac-
uous— the authors were able to apply certain theta-
function identities as in [Glasser and Zucker 1980;
Borwein and Borwein 1987; Zucker 1998], to arrive

at values such as
3

5<L> = V302 (V) = LEIE)

/3 93/4,:3/2
/25 T(HT(3)V2
1y _ —7V2 —7/V2) _ 8 8
S(Z) - 3292(6 )03(6 / ) - 3/2 ’
where 6., 05 are standard Jacobi theta functions. On
the basis of the ¢t = i evaluation, the Madelung
constant can be cast, through known connections
between theta values and elliptic integrals, as a pe-
culiar display of fundamental constants plus a final,
minuscule, term:

1\ 3
L(HNE)V2
73/2
where the constant Y is a rapidly converging lattice

sum

M= —2r+ +Y,

' (_1)z+y+z 2
Y = .
Z r 647rr +]_
z,Y,2€Z

Because Y is of order e™*" (in fact, it is approxi-

mately —0.00004152...) we obtain five good deci-
mals of M even if Y be ignored. One could say that
Y is the “Madelung constant” for a potential law of
the short-range, or “Yukawa class,” exhibiting ex-
ponential decay with distance as in nuclear physics
models. In this sense, M has been cast precisely
in terms of another constant itself bestowed with a
physical interpretation. It would be a grand achieve-
ment to evaluate S(t) for even smaller ¢, thereby
constricting the residual constant even further.
Any of these historical convergent series repre-
sentations can be used to resolve hundreds—even
thousands— of decimal digits of the Madelung con-
stant. During computation, it is often required to
evaluate either r3(n) or rz(n), where r,(n) is the
number of representations of n as a sum of ¢ squares.

The interesting computational details are discussed
in [Buhler and Wagon 1996]. For the record, a Mad-
elung value is

M = M(3) ~ —1.747564594633182190636212\
03554439740348516143662474175815282.. . . .

In addition, one may use the incomplete-gamma ex-
pansion (1.2) to include analytic relatives of M:

M(1) ~ —2.51935615208944531334273065641 .. .,
M(2) ~ —3.2386247660517770978468809845 .. . ,

2

M(2) ~ —3.8631638071965854864231037521 ...,

M(50) ~ —5.9999999999999893418589747421 .. . ,

and so on. The s = 50 instance reminds us that
M (s) for large s is asymptotic to minus six, because,
of course, there are six negative charges facing at
unit distance in the defining sum (1.1). Such as the
numerical values above are invaluable in the testing
of any new computational scheme for M(s).

The rest of the present treatment is reminiscent
of the historical approaches, but stems from a rela-
tively new theta-function identity and leads us ac-
cordingly in new directions. We shall heretofore con-
centrate not on the time-honored challenge of com-
putational efficiency, rather on the introduction of
new theoretical relations.

2. ANALYTIC CONSEQUENCES OF THE ANDREWS
IDENTITY

All the new representations to follow originate in the
beautiful identity of [Andrews 1986a; 1986b] for the
cube of the Jacobi theta function 6,:

nez
— (=1)"¢"
=1+4
(L= ) (-1
-2 . (2.1
Z I+ g 21)
n=1,[j|<n

As Andrews points out, not every power of g appears
in the (expanded) right-hand side, because not ev-
ery integer is a sum of three squares. Andrews also
derived a cubic identity for sums of triangle num-
bers, from which identity one may infer the classical



Gauss theorem that every natural number is a sum
of three triangle numbers. We shall have more to
say about sums of squares in a later section.

From one point of view, it has been the paucity
of such cubic relations that explains the relatively
low population of evaluations of Madelung and re-
lated constants in the physically meaningful, three-
dimensional settings. Conversely, exact evaluations
for certain Epstein zeta values in 2, 4, 8 dimensions
have arisen from long-known identities for powers
i

So, in pursuit of the Madelung constant, let us
attempt a time-honored expedient, which is to use
a theta-function identity within a Mellin transform.
It is evident from the very structure of 6, that (here
and beyond we assume that Re s > 0 until otherwise
specified):

1

M(s) = m/Ooo 5703 (e7) — 1) dt.  (2.2)

Inserting the Andrews identity (2.1) into this trans-

form and rescaling the variable of integration results
in

1 =1 [ t7tdt
M(s) = —
() ['(s) nzzjl ns /0 l14+et

x (4(—1)ne—t —2(1—et) > (—1)fe—<n—j2/n>t).

[j]<n

(2.3)

It is useful at this juncture to introduce some

nomenclature. The Lerch-Hurwitz eta function is
taken to be
— (—1)*
n(s,a) =) ——,
kz:; (k+a)

where all through our treatment a will be a positive
real number. Immediate properties of 7 include

(s, 1) =17"=27"43 " 4...

= (]- - 2175)((8)7
1

77(57@) +n(57a + 1) = E?

and the integral representation

1 /°° ts~temot dt
I'(s) ), 14et’

77(37(1) =
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which follows immediately by expanding 1/(1+¢e ")
in binomial series in ™!, then integrating term-by-
term. Equipped with these 7-relations, we can cast
(2.3) in the form

M(s) = —47(s)

2% Z(_l)j<(n2_2j2)s _477(8,nn—sj2/n))_

nez+ |jl<n

(2.4)

Now we embark on an intricate reduction task,
whose steps include separating off the 5 = 0 terms,
pairing the + instances of j, introducing an extra
summation index for the final 7 function in (2.4),
and some reindexing/rearrangement. This proce-
dure results in a representation

M(s) = —6n*(s) — 45(s) — 8T(s),

where we define

—1)7
5= Gy

(2.5)

n>j
(_1)m+n+j
T(S) = Z (mn _ j2)s’
m>n>j

with all summation indices for both S and 1" deemed
positive. Happily, perhaps surprisingly, the S func-
tion admits of exact evaluation. Write

-1 m+n
S6) = Y. G
1 1 (—1)mtn
B _EC@S) 3 mgn (2n —m)sms

Now the relevant sum is a convolution, and we might
expect simplification. Indeed, breaking up this con-
volution into even-m and odd-m parts, it is not hard
to establish the closed form

S(s) = 327207 (s) + () — C(29))

where (3 is another standard L-series, [5(s) = 17% —
37° 457 —77%+..- so that representation (2.5) is
not the last word. Inserting our closed-form S, we
get

M(s) = —(6+2"")n*(s)
—26%(s) + 2¢(2s) — 8T(s), (2.6)

of which only the T" function stands in the way of

what might be called a complete evaluation of M (s).

Incidentally, the apparent pole at s = % in the ¢
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function is specious; a cancellation can be extracted
from within the 7' function, as we shall see.

There is a fascinating, alternative line of analysis,
starting with (2.5) but thinking of 7" in the form

(_1)a+b+j

T6) =2 (@r 6+ =7

a>b

where all implicit summation indices a, b, j are pos-
itive. An immediate relation is then

2T(s) + S(s) = U(s),

where the new function U is defined by
(—1)vs
Ul(s) =
() Z (zy + yz + z2)s’

in which all implicit summation indices z,y, z are
deemed positive. Accordingly, a compact compan-
ion representation to (2.5), (2.6) is

M(s) = —6n*(s) — 4U(s). (2.7)

One might remark that yes, either (2.6) or (2.7)
has just one remaining function to evaluate, but
these new functions 7', U involve triple sums over
quadratic-form denominators, and so little is gained.
That remark would be well taken, except that these
new representations give rise to connections with
several other fields of analysis, as we shall see. In
particular, the quadratic form zy + yz + zz within
the U function is linear with respect any one coordi-
nate, and this brings considerable advantage during
analysis. For another thing, the indicial constraints
in the T sum lead naturally to a connection with
what are called multiple zeta sums.

3. CONNECTION WITH MULTIPLE ZETA SUMS

Relation (2.6) motivates us to establish representa-
tions for the 7" function. It is desirable to cancel the
specious singularity ({(1)) in (2.6), and we shall be
able to do so in what follows. From the definition

T(S): Z (_1)m+n+j

— 12
oy (M= J7)°

we contemplate a formal binomial expansion for the
(—s)-th power:

T(s)=Y_ <_S> (=1)"C™ (s + py s + p, —2p).
(3.1)

where the triple sum is defined

(""" (a,b,c) = Z

m>n>j

(_1)m+n+j
manb]’c
being a particular, three-dimensional instance of a
generalized “multiple zeta sum” denoted
(D)™ (£1)"

) = Z nil n;z

ny>ng>---

CEE (51, 59, . .

Now, these multiple zeta sums have enjoyed consid-
erable modern interest. The study of such sums goes
back to Euler, who evaluated certain instances alge-
braically. Much research of today is concerned with
open conjectures and new results, some of which ob-
tainable through sheer numerical experiment (and
then to be proven, if possible, later). The notion of
mixing theory and experiment in the quest for ex-
act evaluations has been carried out in spectacular
fashion by a group of researchers, as in [Bailey et al.
1994]. The sums enjoy connections with knot the-
ory and with high-energy physics, such connections
having been pioneered by D. J. Broadhurst and col-
leagues. The literature is already diverse, ranging
across the numerical-theoretical spectrum [Crandall
and Buhler 1994; Crandall 1998a; Borwein et al.
1998b]. There is actually an elegant algebraic treat-
ment of triple sums in particular [Borwein and Gir-
gensohn 1996]. That treatment concerns multiple
zetas with positive integer arguments, and reveals
that (*7%(a,b,c) is reducible to lower-dimensional
zetas if a + b+ ¢ be even. The methods therein may
well apply in our present case, where ¢ will be zero
or negative as in (3.1).

The p = 0 term in the expansion (3.1) is special
for various reasons, so we analyze it first. We have

a0 =Y Sy

— —30 (5,5 — 3¢ H

Thus the triple zeta sum in question reduces to dou-
ble sums. From a symmetry argument (actually,
swapping summation indices at the right moment)
it is not hard to see that

¢ (5,8) = —5(¢*(2s) —m*(s)),

5,8).



and we conclude

¢ (5,5,0) = =07 (s) + £C(2s) = 53¢ (s, 9).
Putting all of this together with (2.6) we have a
representation

M(s) = —(4+2'7°)*(s) — 26°(s) + 4¢7 (s, )
-8 ; (‘j) (=1)PC (s, s+p,—21).  (3.2)

Now, on the assumption that the (=T term is a reg-
ular function —admittedly an unproven assumption
in our treatment — there is no evident singularity in
the s-plane because the one-dimensional ¢ has been
effectively removed from (2.6). As to questions of
convergence, we can say that (3.2) converges ab-
solutely for sufficiently large Res, on the basis of
growth estimates for the triple zeta sum. The issue
of precise domain of convergence for the u series is
open.

An intriguing special case of (3.2), namely s = 1
(not the Madelung case) enjoys a certain “serial
evaluation” property: every summand will admit of
exact evaluation. Because (~7(1,1) can be evalu-
ated easily (via partial fraction decomposition, say)
we can use the result

¢ (1,1) = Llog®2
to obtain

M(1) = —in* — 2log®2

—8) CTTT(p+Lu+1,-2u). (3.3)

Now we argue that every triple zeta sum in (3.3) can
be evaluated. Take yu =1 as example, in which case

-1 m+n o
> S X

m?n? 4
m>n <n

_ 1 (_1)m+n 2
Y Z 2

5 ()" —n)

m?2n?
= —5(=n(1) +n(2) — ¢ (2,1)).
But we are not stuck here, for the double zeta sum
in question has been evaluated. One may use ei-
ther the algebraic approach of [Bailey et al. 1994] or
the integral representation theory of [Crandall and
Buhler 1994] to prove

¢ T(2,1) = g(3).

C777(27 27 _2) =
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Therefore the first summand in (3.3) is

@22 =+ g2 O

2

~ 0.0104... .

In like manner, one can obtain the next (u = 2)
summand of (3.3) as

C___(3737_4)
=—2n’+1log2+3((3) + &7°((3) — &
~ 0.000371... .

(5)

One may continue this procedure ad infinitum; in
fact the “serial evaluation” property enjoyed by the
M (1) expansion is that the u-th summand can be
evaluated if ¢~ (p+1, u+1,—2p) can, and this in
turn follows from evaluation of (" (u + 1,u), as
above for g = 1,2. The final part of the argument
is that (~* can be evaluated when the “odd-weight
rule” is in effect; i.e., the sum of the two integer
arguments is odd, as 2 + 1 is.

During analysis of our particular triple zeta sums,
we require sums of (—1)75% for j € [1,...,n—1]. We
observe that for p = 0 this sum is —(1 + (—1)")/2,
and then generally, for integers p > 0, is

S = - g,

j<n
where FE;, is the Euler polynomial of index k. It
follows from this identity that the left-hand sum is
a polynomial of degree 2u in n, and except for the
highest term all other powers are odd powers of n.
It is this very last property that allows certain of the
(™~ to be evaluated on the basis of the odd-weight
rule.

There may well be other s for which each sum-
mand of (3.2) admits evaluation in the above style.
However, some difficulty can certainly be expected,
given the following evidence. For the case s = 2,
we expect to evaluate (~1(2,2) at some point, yet
this can be achieved through some results of [Bailey
et al. 1994], namely

13

¢(2,2) = %TIA + 177 log? 2
—Llog"'2—I¢(3)log2 —4Liu(}),

which is certainly a stultifying expression, what with
appearance of the polylogarithm function Liy. What
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is more, those authors argue, on the basis of ex-
tensive numerical evidence, that certain double zeta
sums probably cannot be written in terms of ( se-
ries, even with polylogarithm components. Thus it
may turn out that s values for which serial evalua-
tion is possible, summand by summand, are sparse.

4. AN 1-SERIES FOR M(s)

Observations of the previous section notwithstand-
ing, it is possible to exhibit a different series for
M (s) that patently adheres to the serial evaluation
principle, that is, every series term can be given an
exact evaluation. Each term will in fact be a super-
position of finitely many 7 values.

We have seen, as in relation (2.7), that M (s) can
be resolved whenever

B (_1)x+y+z
Uls) = Z (xy +yz +a2)®

can be. We proceed formally, without regard to con-
vergence issues as yet, invoking the particular bino-
mial expansion
(_1)w+y+z
U(s) =2°
() Z(($+y+z)2—x2—y2—z2)s

-2y () oy S

©n=0 n=1

where we introduce a combinatorial function

Flnyp)= Y (@ +y*+2)"

T+y+z=n

We observe that F' is generally a polynomial of de-
gree 2u + 2 in n, so we proceed to define coefficients
implicitly as

2p+2

F(TL,,LL) = Z fﬂknk'
k=0

For example,

n n? an*  Tn®  2nS

Fn2)=—+—-n"+— — — +-—

) =gt "ty T T e
which shows the degree, and the tendency for all
powers except constant term to appear in F. In
fact, f,o = 0 for all 4 > 0, but one must take care

during analysis, since F(n,0) =1 — 2n 4 in®

The f,; coefficients can be inserted directly to
yield an expansion for M (s), which we call the “n
series”:

M(s) = —6n°(s) + 2772 " W(p,s), (4.1)

with the assignment

s 2ut2
W) = (7)1 X (s + 20— 0),

k=0

which is manifestly a finite superposition of n val-
ues. That the W summands are rational (when s is)
follows from the fact that the f,;, can be written —
albeit in a complicated way —in terms of Bernoulli
numbers. We remind ourselves that the 1 series (4.1)
is merely formal. However, on the basis of numerical
experiments it is natural to conjecture that, ordered
as written (i.e., initialize p = 0, perform the k sum,
then advance p, and so on) this 7 series converges
for all complex s. Such conjecture needs be stated
in this way, because other tempting reorderings may
not converge. For example, one looks longingly at
the n series and considers, say, collecting all terms
in n(t) for fixed ¢. It turns out, unfortunately, that
the coeflicient of such a fixed n diverges in general.
However, to exemplify the conjectured convergence
of (4.1) as ordered, note that the example of Mad-
elung constant M = M (%) has the following series
terms, for cases u = 0, 1, 2 respectively of the y sum-
mand:

W(0,3) = —2+1log2 ~ 0.0681...,

W(l,1)=—-L—En*+32log2~0.00885...,

W(2,3) =—3 —5ml+ 5o + 2 log 2+ 55:¢(3)
~0.00169....

The precise rate of convergence is unknown, but the
value for the sum over p € [0,15] is

M ~ —1.747564597 . ..,

correct to nine good decimals.

It is an interesting exercise to show from the 7 se-
ries the known analytic behavior that M (n) vanishes
for all negative integers n; for such arguments the
i sum terminates. Even simpler is to establish the
known analytic continuation value M (0), as there



is only one term in the g sum, and we obtain the
known evaluation

M(0) = —617°(0) + 4n(0) — 6n(—1) +2n(-2) = —1.

5. INTEGRAL REPRESENTATIONS FOR THE MADELUNG
CONSTANT

We have seen that
M(s) = —6n*(s)

= —6n°(s) —

which expression allows interesting integration pro-
cedures, at least in the physical case s = % Observe
first that, from the aforementioned integral repre-
sentation for the n function, n? can be cast as an
integral over the two-dimensional plane R?, and for

s = % the integration goes:

, L[ (®dtdu 1 1
t0=2[ | Gherrer
B dt du
T /R (e +1)(e*® +1)
Surprisingly enough, the remaining piece U(%) also

admits of an area-integral representation. Observe
first that

/ dt du e~ 2(z42)—u? (y+2)+2utz —
R2

—4U(s)
(_1)x+y+z

Z (zy +yz + x2)s’

|-

™

VIytyz +az

Then we exploit the unusual quadratic form zy +
yz + xz whose origin lies in the Andrews identity.
Summation over the full (z,y, z) lattice is now (for-
mally) possible within the integral, and we obtain

(L) = _l/ dt du
2w Jre (e + 1) (e + 1) (et-w? +1)°
(5.1)
Using these area integrals, and changing to root-

polar coordinates (/p,#), we obtain the Madelung

constant as
(5.2)
If one insists on a finite domain, then setting p =
—log 7 results in a finite integral representation, a
certain average value over the unit disk:

(cos §—sin §)%\—1
wo Ll / / " 6+41+2r .2)
]_+ cos 0)(]_ + psin 0)

(5.3)

6+4 1—|—6p (cos f—sin §)?2 )
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Though these results may only be of theoretical in-
terest, the integrands are well-behaved; nothing pre-
vents one from performing the finite-area integral,
say, to obtain a reasonable numerical value.

Incidentally, there are yet other ways to arrive at
integral representation for U(s). One approach is to
write

U( ) Z (_1)z+y+z 1
S) =
(xyz)* (L/z+1/y+1/z)°
1 ® s s
= § A4
[ e (5.4
where y is the peculiar sum
o0 _1 n
=> S (5.5)
n=1 n

which differs from typical theta functions in the form
of the exponent (witness the inversion of n). An-
other method is to cast (5.1) in the form of a spectral

integral:
v =-% | e

where f is the Fourier transform

fo=[ =8

o e+ 1

Similar but more complicated spectral integrals can
be achieved for general s.

It is evidently difficult to derive from these in-
tegral representations a general, fast computational
algorithm —in the style of the Riemann—Ewald for-
mula (1.2) say — for nontrivial M(s) values. It hap-
pens, however, that an elementary-function expan-
sion can be obtained whenever s is half an odd in-
teger. Take the example s = %, for which we may,
by analogy with standard Poisson transformation of
theta functions, obtain the following form for the y
function:

e —yV2mdt

—Giy e

ae0

(5.6)

l\J|>—l

where v = 1 — 4, the sum being taken over all odd
integers d, with negative d handled according to the

branch rule /—|d| := iy/|d|. Then in (5.4) we par-
tition the domain of integration into intervals (0, \)
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and (), 00), using the form (5.6) for the second in-
terval only, to get a convergent representation:

) 1 e (_1)N>\N+1/2
=== (SN
(a+3) nb+3) nlc+3)
DI na! bl el : )
a+b+c=N
1 o= (Vmty/nty/p)V2rX .
.2 Vv vty O

m,n,peO

with the a,b,c indices each nonnegative and the
aforementioned neagtive-radicand rule in effect. In
this way we have (via the pathway of the Andrews
identity) at least one rapidly convergent expansion
for the Madelung constant M = —67°(3) — 4U(3).
It is not too troublesome to obtain a hundred or so
digits of precision in this manner, say for A = 1. The
free parameter X is a powerful practical tool: chang-
ing the value of A must, in practice, yield an invari-
ant result. Finally, we address the claim that half-
odd s allow elementary-function expansions. For
general s one may proceed by establishing a Pois-
son form such as (5.6), but involving values of the
Hankel-Bessel function H,_;, which, for any half-
odd value s € {3,2,5,1 ...} is elementary.

6. NUMBER-THEORETICAL IMPLICATIONS:
SUMS OF THREE SQUARES

The representation (2.7) can be thought of as an
analytic form of a modified Andrews identity, which
variant we now state as

0i(g) =1 -6 (~1)""vg"
_ 4z:(_1)ac+y+zqa:y-i-yz%-a:z7 (6.1)

where all summation indices are positive. This iden-
tity can be obtained via indicial manipulations of
the original identity (2.1); but truth is, this new
form (6.1) was first found by the author in the con-
text of the Madelung problem. We can write the
essential content of the new identity as an expres-
sion for r3(N), the number of representations of N
as a sum of three squares. For NV > 1 we obtain

(=D)Nrg(N) = =6 > (1)

zy=N

—4 > (=), (6.2)

zy+yzt+rz=N

where every summation index x,y or z is deemed
positive. The first term on the right hand side,
thought of as arising from an analytic form —67(s)?,
can be analyzed by observing that

m*(s) = (1 =277+ 27 2)¢%(s),

so that

> (—1)*TY = d(N) —4d(N/2) +4d(N/4) = A(N),
zy=N

where the divisor function d(m) is defined here as
the number of divisors of n, except d(m) = 0 if m is
not a positive integer. Note that for odd f we have
the doubling formula d(2°f) = (a + 1)d(f). If N

be decomposed into even/odd factors, we arrive at
these results:

Lemma 1. Let a positive integer N = 2°f with [ odd.
If N be odd then A(N) = d(N), while for N even

we have

A(N) = (a - 3)d(f).

Lemma 2. The representation number r3(N) can be
written, for the decomposition N = 2°f with f odd,
as

(= 1D)Nrs(N) = —6(a — 3 4 4040) d(f)

_42

zy+yzt+rz=N

(1),

In particular, the coefficient of d(f) vanishes if and
only if N is an odd multiple of eight, in which cases
rs(N) is a multiple of four.

The intriguing analytic phenomenon behind the last
sentence in Lemma 2 is that if one squares the n
function 1/1° — 1/2° 4+ 1/3° — - - symbolically, and
regroups into a Dirichlet series, then the coefficients
of 1/8°%,1/24°,1/40°, ... are the only vanishing ones.

It has long been known that NV is a sum of three
squares if and only if NV is not of the exceptional
form 4°(8k + 7). Since N = 8f with f odd can
never be of that form, Lemma 2 reveals that the
x,y, z sum cannot be empty for such an NV, and we
have proved:

Theorem 1. Fuvery positive integer can be represented
as x2 +y? + 2% or xy +yz + w2

An explicit example of the workings of the theorem
is this: 1308732 is not a sum of three squares, yet
1308732 = 426 -950 + 426 - 657 + 950 - 657. On the



other hand, 78 = 5% + 7? + 22 cannot be written in
the form xy + yz 4+ xz. Though many integers enjoy
both types of representation, it is— perhaps surpris-
ingly — the case that the zy + yz + xz form is more
common, in the following sense [Borwein and Choi
2000]. It can be shown by class field theory that
only finitely many integers cannot be represented
xy + yz + xz, with x,y,z > 0. Specifically, the ex-
ceptions are: 1, 4, 2, 6, 10, 18, 22, 30, 42, 58, 70,
78, 102, 130, 190, 210, 330, 462, in addition to at
most one more exceptional value that would have to
be larger than 10*'. The idea of the proof is that a
square-free N is not represented if and only if —V is
a disjoint discriminant (i.e., the complex quadratic
field Q(v/—N) has exactly one ideal class in each
genus). It is known that if the generalized Riemann
hypothesis (GRH) is true then there is no such ex-
ceptional N > 10!, In any case either 18 or 19 total
instances are not representable. In particular, this
line of argument settles in the positive a previous
conjecture of the present author, that every odd in-
teger N > 1 is representable. This result may seem
to deflate somewhat our Theorem 1, but of course
the present approach, based as it is on the Andrews
identity, does not rely upon the intricacies of class
field theory.

Such results as the modified theta-function iden-
tity, subsequent Theorem, and observations from
class field theory compel us to analyze sums over
zy + yz + xz = N in earnest. We observe a com-
binatorial decomposition, written in operator form
as

RTINS

cy+tyzt+rz=N zy+yzt+rz=N
T>Y>z

+3 )

z242z2=N
TFz

+ > .

3z2=N

Thus for example the final sum vanishes unless NV
is three time a square, the penultimate sum is two-
dimensional, and in the analytic mode we are moved
to consider functions such as

(1)t

Z (xy +yz + z2)5

T>Y>z

Vis) =

It can be expected that representations based on
this function converge, due to the extra indicial con-
straints, somewhat better than those based on the
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U function. For example, the Madelung constant
might be cast in terms of an integral:
V(L) = _l dt du

27 R2 (6t2+1)(6t2+u2+1)(et2+u2+(t—u)2+1)’
which may well exhibit superior convergence prop-
erties when compared to previous integrals.

7. OPEN PROBLEMS

A computational issue is: can integral representa-
tions of Sections 5,6 be used in a computational al-
gorithm for general arguments s, of efficiency com-
peting, say, with the historical methods of Section 17
In some integral representation involving a term

(ez + 1)—1
one might insert the known Bernoulli expansion
1 2" —1
— _ Bn n—l‘
et +1 ; n! ¢

Note that this Bernoulli decomposition is only valid
for |z| < m, so that we still would need a second
integral over larger x values.

Another question is: can either the triple-zeta se-
ries (3.2) or the 7 series (4.1) be reordered with a
view to simplicity? With a view to faster conver-
gence? We remind ourselves of the conjecture that
the 7 series converges as written, for all complex s;
which conjecture is so far based on numerical evi-
dence.

Noting that the U function appearing in (2.7) is
a variant of Epstein zeta functions, in that a quad-
ratic form xy + yz + xz appears, we expect some
manner of functional equation exists for U. One
could fuse together the established functional equa-
tions for M and 7. The question would be, what in-
formation —about quadratic-form representations,
perhaps —could be gleaned from such a functional
equation?

As for number-theoretical questions per se, can an
efficient algorithm for computation of r3(/N) make
use of the new variant of the Andrews identity, in the
guise of Lemma 2, Section 67 One promising avenue
would be the establishment of recursion relations
attendant to the quadratic form zy + yz + zz.

We conclude by indicating yet another intrigu-
ing arena of potential applications for the Andrews
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identity: lattice-sum estimation. For example, con-
sider the three-dimensional variant of the celebrated
Gauss “circle problem,” which variant is to bound
rigorously the fluctuation of |#(r) — 477 /3|, where
#(r) is the number of lattice points within a sphere
of radius r. If we denote
! 1
2)= ). Ty
2 2 2)s’?
o (22 4+ y% + 22)
then for real » > 0, 7% not an integer, the lattice-
point count is given exactly by such representations

. 1 d
#r) =5 | a7

271 (o) S

where the contour integral is along the line s = o +
iT, with o > 2 fixed. It is possible that the Andrews
identity, when applied to such representations (with
q replaced by —¢q), would yield error terms of a new
form, and perhaps of unprecedented tractability.
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