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We study the rational points on X{(p) = Xo(p)/ W,,. It is known
that there are rational points corresponding to cusps and ellip-
tic curves with complex multiplication (CM). We use computa-
tional methods to exhibit exceptional rational points on Xj(p) for
p=73,103,137,191 and 311. We also provide the j-invariants
of the corresponding non-CM quadratic Q-curves.

1. INTRODUCTION

Rational points on modular curves have great arith-
metic significance. The most famous result in this
area is the proof [Mazur 1977] that, for N > 13, the
only rational points on X; (IV) are cusps. This result
then provides the classification of torsion subgroups
of elliptic curves over Q.

Mazur also studied the modular curves Xg(p) and
listed all the primes p such that X,(p) has rational
points which are not cusps. His work was continued
in [Kenku 1981], and by others, until the situation
for X, (V) was fully understood. The general philos-
ophy is that the rational points on modular curves
should correspond only to cusps or elliptic curves
with complex multiplication (CM). For most fami-
lies of modular curves there will also be a few cases
where certain unexpected rational points arise. We
call these points exceptional rational points.

The classic example here is the curve X, (37): it is
hyperelliptic and has two rational cusps. The hyper-
elliptic involution maps each cusp to a noncuspidal
rational point and these points do not arise from el-
liptic curves with complex multiplication. We will
see further examples of how the hyperelliptic involu-
tion forces the existence of such exceptional rational
points.

One may consider the modular curves obtained
by taking quotients of Xo(N) by Atkin-Lehner in-
volutions [Atkin and Lehner 1970]. These curves
should also follow the general philosophy outlined
above. Some of these curves have great arithmetic
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significance; thus, for example, the modular curve
Xepiis(p) s isomorphic to

Xo(p*)/Wpe.

Momose [1984; 1986; 1987] has studied the case
X (N) = Xo(N)/Wy when N is composite and has
shown that, if N has a prime factor p > 11 satisfying
certain conditions, there are no exceptional rational
points. The methods of Mazur and Momose do not
apply to the case when N is a prime number. The
case N = p is singled out on page 145 of [Mazur
1977] as “extremely interesting”.

The approach in this paper is to construct explicit
equations for X (p), to locate the predicted ratio-
nal points on these equations, and then to search
for any extra rational points. We find that the
genus 2 curves X, (p), when p = 73, 103 and 191,
have an exceptional rational point which is forced
to exist by the hyperelliptic involution. Elkies has
also studied this situation using similar methods and
has independently found these hyperelliptic exam-
ples (see [Elkies 1998] for his description of the case
XF(191)). Indeed, Elkies conjectured that excep-
tional points on X (p) only arise in the hyperellip-
tic case. In this paper we disprove his conjecture
by finding an exceptional rational point on each of
the nonhyperelliptic genus 4 curves X, (137) and
X (311).

2. ELLIPTIC CURVES AND HEEGNER POINTS

Let N be a positive integer (later we will specialise
to the case N = p prime). The modular curve
Xo(N) parametrises elliptic curves with a cyclic sub-
group of order N.

Over C, elliptic curves are E, = C/(1, 1) where
7€ H :={r € C|Im(r) > 0} and where 7 is deter-
mined up to action by SLy(Z). Consider the con-
gruence subgroup [z (V) = {(Zs) ta,bc, d €
Z,ad —bc = 1,¢ =0 (mod N)} which acts on the
extended upper half plane H* := H U Q U {oo}.
The modular curve Xo(N)(C) is the Riemann sur-
face given by the quotient space I'o(N)\H*. The
points 7 € Q U {oo} correspond to “generalised”
elliptic curves and these points are called “cusps”.
The other points 7 of Xy(N) correspond to ellip-
tic curves B, = C/(1,7) with the fixed cyclic N-
element subgroup C, = (%, 7).

Given a point (E,C) of Xo(N) we may consider
the unique isogeny having kernel C', namely, 7 :
E — E' = E/C. For (E.,C;) one finds that £’
is Ew, (- where Wy is the Atkin-Lehner involution
Wy = (5o ). We define X; (V) = Xo(INV)/Wy.

There are cusps of X,(V) for each d dividing N
and they correspond to generalised elliptic curves.
On X (p) there are just two cusps and they are both
rational. We refer to [Ogg 1973] for further details.

The endomorphism ring of an elliptic curve E, =
C/{L,r)is End(E) ={Ae C: X1,7) C(1,7)}. It
is easily seen that End(F) is either Z or an order in
an imaginary quadratic field.

A Heegner point (see [Birch 1969] or [Gross 1984])
is a noncusp point of X, (V) represented by (E,C)
where E has complex multiplication by some order
O and where E' = E/C also has complex multipli-
cation by the same order O.

Orders in imaginary quadratic fields are uniquely
determined by their discriminant D via O = Z[(D +
vD)/2] in K = Q(v/D). The conductor of an order
Oin K is f =[O : O] and this may be shown to be
the largest integer f such that D/f? =0,1 (mod 4).

If E. has complex multiplication by an order of
discriminant D then 7 is an imaginary quadratic
number satisfying some equation A7?+B7+C where
(A,B,C) =1 and B* —4AC = D. The isomor-
phism classes of such CM elliptic curves E, cor-
respond to SL,(Z)-equivalence classes of quadratic
forms AX?+ BXY + CY?. It follows that the num-
ber of isomorphism classes of elliptic curves with
complex multiplication by O is the class number
ho of Pic(O) (here Pic(0) is the group of classes of
invertible O-submodules of K, which is simply the
ideal class group of K when O is a maximal order).

The following result is well-known and we refer to
[Gross 1984] (also consult [Lang 1987, p. 90]) for the
details.

Theorem 2.1. The pair (E,,C;) = (C/(1,7),(%,7))
represents a Heegner point on Xo(N) with complex
multiplication by O if and only if there are integers
A, B,C such that (NA,B,C) = (A,B,NC) = 1,
disc(Q) = B* —4NAC and NAT® + BT+ C = 0.

Suppose E has complex multiplication by the order
O of discriminant D in K = Q(v/D). Let Hy/K be
the ring class field asociated with O (i.e., Hy/K is
the Hilbert class field when O is a maximal order).



Then Hy/Q is a Galois extension and the theory of
complex multiplication states that F is defined over
Hy and that

[Ho : K] =[Q(j(E)) : Q] = ho.

It is necessary to study the action of Gal(Hy/Q)
on Heegner points (E,C). For this purpose it is
best to use the notation of [Gross 1984], and hence
we restrict attention to the case where the conductor
f of O is coprime to N (which is no restriction for
square-free V).

Gross writes a Heegner point as (O, n, [a]), where
n is an invertible O-module such that O/n = Z/NZ,
and where [a] is the class of an invertible O-module
in the class group Pic(0). Translating (O,n,[a]) to
the notation (E,C) used earlier in this paper is ac-
complished by setting £ = C/a and C' = n~'a/a.
Note that the condition O/n = Z/NZ combined
with the condition (f, N) = 1 implies that every
prime p dividing N must split or ramify in K.

Complex conjugation (which we denote by p €
Gal(K/Q)) maps (O,n,[a]) to (O,n”,[a] !). To ana-
lyse the action of Gal(Hy/K) we need to utilise the
Artin symbol o : Pic(0) = Gal(Ho/K). One sees
from [Gross 1984, (4.2)] that

(Ovnv [a])a[b] = (Ovnv [abil])'

3. RATIONAL POINTS FROM HEEGNER POINTS

The involution Wy maps (O, n, [a]) to (O, n”, [an™1]).
Therefore Heegner points give rise to Hy-points on
XF(N). To obtain rational points in this way it
follows that the elements of Gal(Hy/Q) must fix
the pair {(O,n, [a]), (O, n”, [an"*])}. This condition
severely restricts the possibilities for O. The cate-
gorisation is given in the following theorem.

Theorem 3.1. Let O be an order in K of discriminant
D and conductor f. Suppose (N, f) = 1. Then a
Heegner point on X (N) associated to O is a ratio-
nal point if and only if one of the following condi-
tions holds.

1. ho =1 and every prime p dividing N either splits
or ramifies in K.

2. ho = 2 and every prime p dividing N ramifies
in K (i.e., p divides D), and the corresponding
tdeal n 1s not a principal ideal.
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Proof. The ideal class group acts transitively and
so the class number hy must be at most 2. When
ho = 1 then E and E' are defined over Q and it
follows that £ = E'.

When hy = 2 then any nontrivial element o €
Gal(Hy/K) maps (O,n,[a]) to (O,n,[ab™"]) where
b is nonprincipal in Pic(O). It follows that n = n”?
or, in other words, that IV is ramified in K. O

For future reference we list all the discriminants D
of orders O having class number 1 and 2. The class
number 1 discriminants are {—3, —4, =7, —8, —11,
—12,-16,—19, —27, —28, —43, —67, —163}, whereas
the class number 2 discriminants are D € {—15,
—20, —24, —32, —35, —36, —40, —48, —51, —52, —60,
—64, =72, =75, —88, —91, —99, —100, —112, —115,
—123, —147, —148, —187, —232, —235, —267, —403,
—427}.

We now specialise to the case where N is a prime
number p. Note that X (p) always has one rational
cusp so that, when the genus of X (p) is zero, there
will always be an infinite number of rational points.
This is the case for p € {2,3,5,7,11,13,17,19, 23,
29,31,41,47,59,71}.

The genus of X (p) is one for p € {37,43, 53,
61,79,83,89,101,131} and it is well-known (see, for
instance, [Cremona 1992]) that X (p) is a rank one
elliptic curve in these cases.

Theorem 3.2. Let p be a prime such that the genus of
X (p) is at least 2. Then X (p) has no Q-rational
Heegner points associated with orders of class num-
ber 2. Furthermore, if a noncuspidal Q-rational
point of X (p) is neither a Heegner point nor the
image of a rational point on X,(p) then the cor-
responding elliptic curves E and E' = E/C do not
have complex multiplication and are not defined over

Q.

Proof. By theorem 3.1, a class number 2 Heegner
point will arise only for those D with p dividing D.
From the list above of class number 2 discriminants
one sees that this never occurs for primes p such
that X (p) has genus at least 2.

To prove the second claim, let (E, C) correspond
to such a Q-rational point of X; (p). In other words,
we have a p-isogeny 7 : E — E' = E/C such that
each 0 € Gal(Q/Q) maps E = E' to either E = E’
or B' 5 E.
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If E is defined over QQ then it follows that we have
either a Heegner point of class number 1 or a rational
point of Xy(p).

If F is not defined over Q then both E and E'
must be conjugate and defined over a quadratic field.
They cannot have CM, as the first half of the theo-
rem shows there are no Heegner points of class num-

ber 2. O

From [Mazur 1977] it is known that X,(p) has non-
cuspidal rational points only when p € {2,3,5,7,11,
13,17,19,37,43,67,163}. Of these, when p € {19,
43,67,163} there is just one noncuspidal rational
point and it is a Heegner point.

A rational point on X (p) which is not a cusp,
a Heegner point or rational point of Xy(p) will be
called exceptional.

4. EQUATIONS FOR X! (p)

In [Galbraith 1996], many explicit equations (over
Q) for modular curves Xy(N) and their quotients
by Atkin-Lehner involutions were computed. Meth-
ods for dealing with the hyperelliptic cases are fairly
well-known (see any of [Murabayashi 1992; Hase-
gawa 1995; Galbraith 1996]), so we omit the details.

In order to obtain equations for the nonhyperellip-
tic curves, the canonical embedding associated with
the holomorphic differentials is used. This method
of constructing equations for X,(/N) has also been
used by [Shimura 1995]. The canonical embedding
(see [Hartshorne 1977, IV.5]) of a nonhyperelliptic
curve C' of genus g > 2 is the map

p: C — P97Y
P +— [wi(P),...,w,(P)],

where {w,...,w,} is a C-basis for the vector space
Q(C) of holomorphic differentials on C'. In the case
of Xo(N) it is well-known (see [Shimura 1971]) that
the vector space Q'(Xy(NV)) is isomorphic to the
space Sy(['y(IV)) of weight 2 cusp forms of level N.
Suppose now that Xy(N) is a nonhyperelliptic curve
of genus g > 2 and choose a basis {f1(7),..., f,(7)}
for S»2(I'o(NN)). Then the canonical embedding of
Xo(NV) is the map

@ Do(N)\FH
T —>

— P9 H(C),
[fi(r) -0 fo(T)]

(4-1)

If the forms f;(7) are represented as g-expansions
(i.e., taking the local parameter ¢(7) = exp(2miT)
at the cusp oo and writing f = ., a,q(7)") then
the right hand side of equation (4-1) is a curve given
by some equations in the f;. These equations may
be thought of as giving relations between the coeffi-
cients of the g-expansions.

The method used in [Galbraith 1996] is to be-
gin by taking a basis for S»(I'o(/V)) consisting of
forms whose g-expansions at infinity have rational
integer coefficients (so that the model we obtain is
defined over Q). There are various methods avail-
able to construct such a basis; the easiest way to
proceed is to consult the tables [Cohen et al. 1992]
or [Stein n.d.] (I have also used some data kindly
provided by Michael Miiller in Essen). Once we pos-
sess a suitably represented choice of {f1,... f,} as
truncated g-expansions, it is necessary to find lin-
ear relations between the monomials of degree d in
the f; (for choices of d between 2 and 4, depending
on the genus). This computation may be performed
by formally manipulating the g-expansions, and the
relations may be found by linear algebra on the ¢-
expansion coefficients. The relations obtained give
projective equations for the image of the canonical
map of Xy(N).

Equations for X (p), or, more generally, any

XO(N)/<WP17‘ c ’me>7

may be found using the methods described above, by
restricting to the subset of S5(I'g(IN)) consisting of
those forms which have eigenvalue +1 with respect
to W,.

As an example, to compute an equation for the
genus 4 curve X (137), we take a basis for the weight
2 cusp forms on I'g(137) which have eigenvalue +1
under Wi37;. The g-expansions (as taken from [Co-
hen et al. 1992]) are

w=q-¢"+¢ —q" =3¢+,
r=q¢ —2¢° —2¢" +3¢° + - -,
y==-2¢"+¢"+3¢"+3¢+---,
2=q"—2¢° = 2¢° +---.

We expect the canonical embedding of a genus 4
curve to be the complete intersection of a quadric



surface with a cubic surface in P3. Hence we find

the formal relations
wy + 2wz + zy + vz + 2y* + 6yz + 322 =0,
and
w?y+w?z +wr’ +wrz + 3wy’ + 3wy z — dwz* + 2
+62% 2 —2xy* —Sryr+1322° +2y° —6y2*+142° = 0.

For further details of these computations we refer
to [Galbraith 1996]. Note that we obtain equations
with very small coefficients using this method.

When the genus is large, the image in P9~! may
become quite complicated to describe. In [Galbraith
1996] we demonstrated that the image of the canoni-
cal map of the genus 5 curves X (181) and X (227)
is not a complete intersection. When the genus is
6 or more the image of the canonical embedding is
never a complete intersection. Hence we restrict at-
tention, in this paper, to the case of genus 2, 3, 4
and 5.

The image of the canonical embedding is a non-
singular curve. The hyperelliptic curves we consider
will always be given in the form

y* =p(z),
where p(z) is a monic polynomial with integer coef-
ficients and degree 2g + 2. Above the singular point
oo on the projective model there are two rational
points.

5. METHODS

We have obtained equations for X (p) which are
parametrised by modular forms or functions with
explicit expansions in ¢(7) = exp(27iT). We may lo-
cate the cusp simply by considering the order of van-
ishing of the various forms at co. We then search for
rational points of small height on the model. Com-
paring the number of points found with the number
of Heegner points reveals whether an exceptional ra-
tional point has been found.

If so, we find the Heegner points on the model by
evaluating the modular forms at suitable values of 7
(i-e., roots of NAT? + BT+ C as described in Theo-
rem 2.1) and then taking ratios and rounding to get
rational numbers. We use 150 to 1000 terms in the
g-expansion to recognise the rational points (when
|D| is small the convergence of the g-expansions is
poor).
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Our search method is very crude, merely trying
all rational points of naive projective height less
than some chosen bound B. For the genus 2 curves
Colin Stahlke has kindly searched up to B = 109,
for the genus 3 curves we search over coprime inte-
gers |z|, ly|, |z| < B = 300 (the choice for B is de-
termined by considerations of computer time rather
than any theoretical ideas). For the genus 4 cases
we eliminate a variable to get a plane curve and then
perform the search as above with B = 300. For the
genus 5 cases we also eliminate variables as above,
and search with B = 300, except for the case of
p = 227, for which the geometry is more compli-
cated, where we took B = 100. Searching for points
on curves of genus 6 or more would be very diffi-
cult and this explains why we restrict to the case of
genus at most 5 in this article.

In some cases we find exceptional rational points
using this search strategy. We expect that we have
found all the rational points on our models for X(p),
but since the rank of J;"(p) is equal to the genus of
X (p), there are no general computational methods
available to prove that we have found all points.

To compute the j-invariant of the corresponding
Q-curve we use the method of [Elkies 1998] and a
fair amount of computational effort.

6. RESULTS

Table 1 lists the cases where exceptional rational
points have been found. For a more complete list of
Heegner points on X (p), see [Galbraith 1996]. We
have checked, in total, the 23 cases p € {67, 73,97,
103, 107, 109, 113, 127, 137, 139, 149, 151, 157, 167,
173,179, 181, 191, 227, 239, 251, 263, 311}, which are
all the values of p for which X (p) has genus 2 <
g <5.

There are strong similarities between the j-invar-
iants shown in Table 1 and the j-invariants of the
CM Q-curves. In analogy with the results of [Gross
and Zagier 1985] for singular moduli, the norms
N(j) over Q are “nearly cubes”, whereas the norms
N (j—1728) are squares; see [Gonzalez 1998] for par-
tial results in this context. Moreover, if we write

j=a+bVd,

the coefficients b are very smooth and are divisible
by p; see Table 2.
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y? =28 +22° + 2% 4+ 62° + 222 —4dx + 1 P=(,-9

cusp 00 D=-8 (0,-1) D=-19 (0,1)

D=-3 (3,2) D=-12 00 D= -27 (-1,1)
Xf(73) | D=-4 (-1,-1) D=-16 (1,-3) D= —67 (1,3)

j = (81450017206599109708140525 + 14758692270140155157349165,/—127) /27*
N(j) =27 .35.52.13967% - 331913
N(j—1728) =274 .36.74.192 . 234 . 948439332

y? = 2% + 62° + 5zt + 22 + 222 + 1 P =(2,19)

cusp 0

D=-3 (2,-19) D=-12 (0,-1) D =-43 (-1,-1)
X (103) | D=-11 (0,1) D= -27 (-1,1) D = —67 00

J = 35982263935929364331785036841779200 £ 669908635472124980731701532753920/5 - 577
N(j) =23°.3%.5%.19%.173% - 1583413 - 9990493
N(j —1728) = 212 312. 231 . 683584872 - 15947995498069>

Yy +wy + 2y? + 2wz + x2 + 6yz + 322 =0
% + wa? + 62%2 — 2xy? — Swyz + r2Ww
+ 13222 + 23 + 3wy? + w2y + 3wyz — 6yz? + zw? — 422w + 1423 =0 P =[19:2:—16:4]

cusp [1:0:0:0] D=-8 [—1:1:0:0] D=-19 [1:—2:—1:1]
D=-4 [2:—4:-3:2] D=-11 [1:1:—1:0] D =-28 [0:1:2:—1]
+
X (137) D=-7 [2:—1:—2:1] D =-16 [2:0:—1:0]
Jj= (—423554849102365349285527612080396097711989843
+ 9281040308790916967443095886224534005155665\/—31159) /2138
N(j) =2"138.36.113 - 2038342552998593
N(j — 1728) = 27138 . 312 52 . 74 . 112 1032 - 8237 - 1961147685203
y? =28 + 22* + 223 + 522 — 6z + 1 P=(2,-11)
cusp % D=-11 (0,-1) D=-28  (2,11)
=7 (0,1) D=-19 oo
X+ 191 .............................................................
o (191) J = 2891249511562231668955764266428063102082570956800000
+ 64074939271375546714155254091066566840131584000+/61 - 229 - 145757
N(j) =239-35-55-44213 - 253876253183601617>
N(j — 1728) = 212 . 312 74 . 559312 - 6600132 - 492752627182042323168292
2?2 +wy — 2xy + 2y? + Trz — 8yz + 1322 =0
wz? — 2wzy + 2%y — wy? — zy?® — 293 + w?z + bwxz
— 222 —wyz + Sryz + dy?z + Twz? — 4x2? — 223 =0 P =1[6:8:—1:-2]
cusp [1:0:0:0]
X (311) =-11 [—1:1:1:0] =-19 [1:2:—1:—1] D =-43 [2:0:—1:0]

J = 31244183594433270730990985793058589729152601677824000000

+ 156581053899805171539733968949219503507755126784000/11 - 17 - 9011 - 23629
N(j) =23-3%.55-17%.2087% - 3138793 - 117699713 - 89781862973
N(j—1728) =212.312.74. 112 . 19% - 20872 - 43392 - 543068481424247323239808720460292

TABLE 1. Exceptional rational points found. For each modular curve we give an equation for the curve (for details
on what modular forms the variables correspond to, see [Galbraith 1996]); the coordinates of the exceptional
point P, as found during the search; the coordinates of the cusp and those of each rational Heegner point; the
j-invariant of the Q-curve corresponding to the exceptional point, and the norms of j and j — 1728.
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j=73 2°7.35.5.72.13-17-23%2-29-31-41-53-59 - 73 - 151 - 1669

Jj =103 216.37.5.7-17-19-23%-31-41-43-47-83-103 - 107 - 487 - 683

j=137 | 27138.3%.5.72.13-17-23-29-31-71-83-97-131-137-151-157-199 - 563 - 683 - 2593 - 26183
j =191 216.37.5%.72.11-13-17-19-29-31-41-59-83-103 - 139 - 181 - 191 -499 - 1151 - 3769 - 8171

j =311 215.37.5%.72.11-13-17-192-29-31-41-61-71-89-101-227-271-311-349- 521 - 661 - 123191

TABLE 2. Factorisation of the coefficient of the radical in the expression of j.

7. CONCLUSION

We have shown that exceptional rational points do
exist on X (p) when its genus is at least 2. Three of
these examples are due to the action of the hyperel-
liptic involution. In [Hasegawa and Hashimoto 1996]
it is shown that X (p) will not be hyperelliptic when
it has genus at least 3, so we do not expect any fur-
ther occurrences of rational points arising from the
action of involutions. We have also provided two
examples of exceptional rational points on nonhy-
perelliptic curves X (p). We have only studied the
case when the genus of X (p) is at most 5, and we do
not go so far as to suggest that there are no further
values of p for which exceptional rational points on
X (p) occur. It would be very interesting to have
an argument which shows, for instance, that excep-
tional rational points on X (p) do not arise for all
p greater than some bound.
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