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Based on previous results of the two first authors, it is shown
that the combinatorial construction of invariants of compact,
closed three-manifolds by Turaev and Viro as state sums in
terms of quantum 6j-symbols for SLy(2;C) at roots of unity
leads to the unitary representation of the mapping class group
found by Moore and Seiberg. Via a Heegaard decomposition
this invariant may therefore be written as the absolute square
of a certain matrix element of a suitable group element in this
representation. For an arbitrary Dehn surgery on a figure-eight
knot we provide an explicit form for this matrix element in-
volving just one 6j-symbol. This expression is analyzed nu-
merically and compared with the conjectured large k = r — 2
asymptotics of the Chern-Simons-Witten state sum [Witten
1989], whose absolute square is the Turaev-Viro state sum. In
particular we find numerical agreement concerning the values
of the Chern-Simons invariants for the flat SU(2)-connections
as predicted by the asymptotic expansion of the state sum with
analytical results found by Kirk and Klassen [1990].

1. INTRODUCTION

The advent of topological quantum field theories
has stimulated the analysis of compact three-mani-
folds and knot theory. Thus Witten [1989] (see also
[Frohlich and King 1989]) suggested a functional
integral approach using the Chern—Simons action
(with a coupling constant k& € Z, called the level)
to obtain Jones’ polynomial knot invariants [Jones
1985; 1987] as expectation values of Wilson loops.
In particular the partition function 7(M,k) itself
should give rise to new invariants of three-mani-
folds M. The idea of Witten was made rigorous
by Reshetikhin and Turaev [1990; 1991] without
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recourse to the as yet formal functional integral
approach by using the theory of braided ribbon
graphs associated to quantum groups, in particular
for the quantum group SL,(2,C) at roots of unity
q = expmi/r, with r = k 4+ 2. The correct normal-
ization of the Reshetikhin-Turaev invariants was
provided by Kirby and Melvin [1991], who also an-
alyzed these invariants for small r.

Another approach, at first sight seemingly un-
related, was advocated in [Turaev and Viro 1992],
and investigated further by Turaev [1991a; 1991b;
1991c; 1992; 1993]. It uses quantum 6j-symbols,
in particular those of SL,(2,C) at roots of unity.
This approach was generalized by Durhuus, Jakob-
sen, and Nest [Durhuus et al. 1993; Durhuus 1993]
to a large class of algebras (replacing SL,(2,C))
with associated 6j-symbols. Using a triangulation
of a closed three-manifold M, these authors define
an invariant, called a state sum in analogy to par-
tition functions in statistical mechanics, and then
show the independence of the particular triangula-
tion, thus giving rise to an invariant Z(M,r). As
it turned out, for closed, oriented compact three-
manifolds—the case we shall be dealing with ex-
clusively in this article—the Turaev—Viro invari-
ant and the Chern-Simons-Witten invariant are
related as follows [Turaev 1991c; Walker 1991]:

Z(M,r =k +2) = |Zos(M, k)| (1-1)

The construction in [Turaev and Viro 1992] was
extended in [Karowski et al. 1992] to the case where
M is not necessarily closed. Furthermore a direct
proof was given in [Karowski and Schrader 1993]
exhibiting the Turaev—Viro theory as a topological
quantum field theory with a Hilbert space struc-
ture given in terms of a suitably formulated reflec-
tion positivity property [Osterwalder and Schrader
1973; 1975]. See [Beliakova and Durhuus 1995] for
an extension of these results to quantum group ver-
sions of arbitrary semisimple Lie groups and an al-
ternative proof of (1-1).

Using the representations of SL(2,7Z), the map-
ping class group for the torus, given in [Gepner and

Witten 1986], Freed and Gompf [1991] and Jeffrey
[1992] have analyzed the Chern-Simons-Witten in-
variants for lens spaces and torus bundles over S'.
In fact, each of these invariants is then just given
as a certain matrix element of a suitable mapping
class group element in this representation which
is obtained from the appropriate Heegaard decom-
position. It also involves the use of the canonical
framing given by Atiyah [1990].

One aim of this article is to show in Section 3
that the Turaev—Viro approach for SL,(2,C) and
arbitrary ¢ = exp(in/r) leads to a unitary repre-
sentation of the mapping class group for Riemann
surfaces of arbitrary genus. In fact, these rep-
resentations parametrized by r are exactly those
found by Moore and Seiberg [1989] in the context
of conformal quantum field theory. Via a suitable
Heegaard decomposition, the Turaev—Viro invari-
ant Z(M,r) may be written in accordance with
relation (1-1) as the absolute square of a suitable
matrix element of a mapping class group element
in the given representation. Our discussion so far
does not permit the conclusion that the matrix el-
ement itself defines an invariant. This is related
to the fact that the Turaev—Viro invariant is frame
independent. Our result confirms preliminary find-
ings of Kohno [1992; 1994], who started the op-
posite way, by first defining representations of the
mapping class group and then showing that certain
matrix elements define invariants.

For the reader’s convenience, Section 2 briefly
recapitulates the main concepts and results found
in [Karowski and Schrader 1993]. In particular
we will use certain bases in the topological quan-
tum field theory associated to the Turaev—Viro ap-
proach. These bases are given in terms of invari-
ants of coloured graphs on the boundary of an arbi-
trary oriented, compact three-manifold. The map-
ping class group representations considered in Sec-
tion 3 are then defined in a natural way as linear
transformations on this set of invariants of graphs.
In Section 4 we shall give a more detailed descrip-
tion for the case when M is obtained via an n/m
Dehn surgery on a figure-eight knot. In that case
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Z(M,r) is given as the absolute square of an ex-
pression which involves a 3-fold sum over colours
and with only one 6j-symbol. The resulting ex-
pression for Z(M,r) cannot be simplified further
in an analytic way. In Section 5, however, and
stimulated by the computer calculations on lens
spaces carried out by Freed and Gompf [1991], we
present results from a numerical analysis for man-
ifolds M obtained in this way, which include some
hyperbolic manifolds. In particular, we use our
results to calculate Chern—Simons invariants of as-
sociated flat SU(2)-bundles over these manifolds as
predicted by the conjecture on the asymptotic be-
haviour as kK — oo of the Chern—-Simons—Witten
state sum (see [Witten 1989; Freed and Gompf
1991; Rozansky 1995], for example), and compare
them with the analytic results of Kirk and Klassen
[1990]. The latter authors present tables for five
Dehn surgeries on the figure-eight knot, but it is
easy to extend their calculations of Chern—Simons
invariants to any Dehn surgery. In all cases con-
sidered the calculations based on their method and
our numerical calculation, which is based on a fun-
damentally different approach, give identical re-
sults (up to precision bounds) concerning the val-
ues of the Chern—Simons actions for flat bundles.
Also we confirm the different asymptotic behaviour
of the contributions to the state sum resulting from
the irreducible and the reducible flat connections,
as predicted by stationary phase methods applied
to the formal functional integral. The coefficients
of this asymptotic expansion are related to the Rei-
demeister torsion and the spectral flow of the flat
bundle. In principle our numerical results also per-
mit the evaluation of these coefficients. This could
be another check of the validity of this asymp-
totic expansion which has not been performed so
far. We note that in the case of lens spaces, Jef-
frey [1992] has performed an analytic calculation
of the Chern—Simons action based on Gauss’s reci-
procity theorem and found agreement with the well
known analytic results on the flat SU(2)-bundles.
Ohtsuki [1995] and Murakami [1995] have used the
large k expansion to obtain finite type invariants

of integral homology spheres. This was extended
by Rozansky [1997], Lawrence [1995] and Ohtsuki
[1996] to rational homology spheres.

In the present case the relevance of the Turaev—
Viro invariants of hyperbolic spaces for the asso-
ciated fundamental groups (contained in SL(2,C))
and the associated number theory remains an open
question.

Preliminary versions of the results given here
were presented at various conferences, such as the
Schrédinger workshop in Vienna (1993), the AMS—
DMV meeting in Heidelberg (1993), and the AMS—
IMU meeting in Jerusalem (1995).

2. INVARIANTS OF COLOURED GRAPHS

In this section we give a brief review of the con-
struction of coloured graphs in the context of the
Turaev—Viro approach as given in [Karowski and
Schrader 1993]. First we recall the construction
of invariants of graphs on two-manifolds as bound-
aries of three-manifolds. Let |G| be the topolog-
ical space associated to a one-dimensional simpli-
cial complex G (see [Spanier 1966, pp. 108-114],
for example). By assumption on G every vertex
0% € G is contained in the boundary of n = n(¢")
one-simplexes in G with 2 < n <4 and we will call
0% an n-vertex. The notion of being an n-vertex
with n > 3 is independent of the particular tri-
angulation G of |G|. Every 4-vertex o is given
an additional structure by pairing the four one-
simplexes meeting in ¢ into two unordered pairs.
The two one-simplexes in one pair are said to be
opposite to each other. In addition one of the pairs
is given the name “above” and the other pair the
name “below” and is depicted in Figure 1. By the
preceding remark this additional structure is inde-
pendent of the particular triangulation G of |G]|.

/
/

FIGURE 1. The additional structure at a 4-vertex.
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By abuse of notation we continue to denote by |G|
this space equipped with this additional structure.

Let z : o' — z(o') be a map from the set
of nonoriented one- simplexes in G into the set of
“colours” J = {0, 3,1,2,..., £ —1} with the follow-
ing properties.

(1) If two one-simplexes o and o3 join at a 2-vertex,
then x(o}) = z(03).

(2) If two one-simplexes o} and o} are opposite to
each other at a 4-vertex, then x(o}) = z(03)
(compare Figure 1).

If sd G is a subdivision of G, then such a map z
induces a map sdz on sd G with similar properties
by setting sd z(c!') = z(o') whenever |o'| C |0,
for o' €sd @G, o' € G. We say that a map z on G
and a map z’ on G’ with |G| = |G'| are equivalent
if they induce the same map on a common subdi-
vision. The equivalence class is called a coloured
graph, and is denoted by |G|,. Any set L in |G|
homeomorphic to an interval and not containing
any n-vertex, for n > 3, will be called a lzne. For
given |G|,, by condition (1) we may associate to
each line a colour x = z(L). By definition, a col-
oured graph on a two-manifold X is a pair (|G|, ),
where ¢ is a homeomorphism of |G| into ¥ with
the following additional property. Near the image
©(a%) of a 4-vertex o°, the images of the two open
opposite one-simplexes € G in one pair are sepa-
rated by the images of the closed one simplex G in
the other pair for any choice of a triangulation G
of |G| (compare Figure 1). Two coloured graphs
(|Glz, ) and (|G|z, ¢’) on X are called isotopic if
there is a homotopy ¢; (0 < ¢t < 1) between the
maps ¢ and ¢ such that (|G|;, ;) are coloured
graphs on 3 for all 0 < ¢ < 1.

In [Karowski and Schrader 1993] we gave a gen-
eralization of the state sum Z (M, r) of Turaev and
Viro for the case SL,(2,C), for ¢ = expin/r, as-
signing a complex number Z (M, |G|., ¢) (depend-
ing on 1) to each triple (M, |G|, ), where M is an
oriented, compact three-manifold and (|G|;, ) is
a coloured graph on OM. Moreover, Z(M, |G|;, ¢)
defined as a state sum is a homotopy invariant of

the pair (|G|;, ¢). This understood, and by identi-
fying |G| with its image in OM under ¢, the state
sum above is also simply written as Z(M, |G|,).

Example 2.1. Some examples of Viro-Turaev invari-
ants of three-manifolds that will be used in the
sequel are

2(0) =
Z(SB) =w 2,
( 1) =1,
Z(S" x S' x Sl) = (r—1)
Z(M \ D*) = w*Z(M),

where w will be defined in Equation (2-9). For de-
tails, see, for example, [Karowski et al. 1992; Ka-
rowski and Schrader 1993].

The next lemma gives factorization formulas for
the invariants of three-manifolds equipped with col-
oured graphs, derived in [Karowski et al. 1992;
Karowski and Schrader 1993] (see also [Karowski
1992]).

Lemma 2.2. (a) If a three-manifold consists of two
disconnected parts MNM' = & such that |G|, C
OM and |G'|, C OM', then

Z(MUM', |G,U|G ) =2 (M, |Gl) Z(M', |Gy )

(b) If |G|, s planar, that is, if |G| is contained
in an open set of OM homeomorphic to a disc,
then Z(M,|G|,) factorizes:

Z(M,|Gl,) = Z(M) 2(|Gl.)

[Karowski and Schrader 1993, Theorem 4.2]. In
this equality Z(|G|,) is independent of M and
is called the invariant of the planar graph |G|,.
Since Z(D®) = 1 for the unit ball D* in R* with
boundary = S? (see Example 2.1), we have

Z(|G|g) =

This expression is not only homotopy invariant
but also invariant under Reidemeister moves.

Z(D%)|G|,). (2-1)
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(¢) If a graph consists of disconnected planar parts
|G1|a N G2y, = @ we have

Z(|G1la U1Galy) = Z(1G1]a) Z(|Gly)-

We also recall some examples of invariants of pla-
nar graphs that will be used later. The invariant
of the circle with colour ¢ € J, namely

2(O )=~

yields (—1)*" times the g-dimension of the irre-
ducible representation of SL,(2,C) associated to
the colour i. The fusion matrix N}, for 4,j,k €,
is obtained by

(D)=

g2+l =201
(_1)21 q q_l ’ (2_2)
q9—q

1 if k<i+j, j<i+k,
1<k-+j, and
r—2>i+j+ke,

0 otherwise,

(2-3)
with N, = 0. The invariant
a1
as
- Oareranz,_,
Z| A . B - Z w? w2

For n =1 the single colour a; has to be zero. Us-
ing this cutting rule any planar graph may be cut
into pieces of the form of Equations (2-2)-(2-5).
Therefore:

Lemma 2.3. The wnvariant of any planar graph is
the sum of products of invariants of the simple
graphs of Equations (2-2)—(2-5); that s, it can be
expressed in terms of w?,q; and the 6j-symbols.

In [Karowski and Schrader 1993] the construction
of Z(M,|G|,) was also extended to coloured graphs
in the interior of the three-manifold M as follows:

Definition 2.4. Let M be a compact three-manifold.
A coloured graph G, in M is a triple

(C(gz)a TSy |G|z)

satisfying these conditions:

sz, A

) (2-4)
n

with 4,...,n € J, is equal to the ¢g-Racah—Wigner
67-symbol, and

71 b _ qaqp
qcqdd

is equal to the R-matrix (in the path basis) repre-
senting the 4-vertex of Figure 1. Here

o = (—1)7g"*Y

14 ¢

jibd

(2-5)

for a € J, correcting a misprint in [Karowski and
Schrader 1993, (2.11)].

Various relations of invariants of graphs [Karow-
ski and Schrader 1993] such as completeness, or-
thogonality, Yang—Baxter’s relation, Racah’s rela-
tion, and Biedenharn-Elliot’s relation (also called
the Fierz transformation) are obtained from a cut-
ting rule for graphs, given by the Wigner—Eckart
relation

(2-6)

(@) ¢(G;) is a finite one-dimensional simplicial com-
plex embedded in M and called the core of S..

(b) Tg, is an open tubular neighborhood of ¢(9,) in
M with smooth boundary 0T, .

0) |G|, is a coloured graph on 97, .

Given G,, we denote by M \ Tg, the compact ori-
ented three-manifold obtained by deleting Tg, from
M. By construction the boundary of M \Tg, is the
disjoint union of dTg, and M. By definition, the
invariant of the three-manifold M equipped with a
coloured graph in its interior is

Z(M(S:)) =

Of course this definition may be extended to the
case where there is another coloured graph |G'|,/
on dM. This notion of a coloured graph G, in M

Z(M\Ts,,|Glz)- (2-7)
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allows the introduction of what we called a merid-
san m in [Karowski and Schrader 1993]:

Definition 2.5. Consider a subset in Tg, that looks
like D? x I (D? the unit disc in R?, I = [0,1] the
unit interval), and such that its intersection with
07T, has the form (S* = 0D*)xI. A meridian m is
any circle of the form S*x{Q}, with @ € (0,1) C I.
Such a meridian will be equipped with a colour y
and combined with |G|, to give a coloured graph
denoted by |G Um|,,. Given several such meridi-
ans written as m = m;U- - -Um,, and equipped with
colours y = (y1,...,¥»), by definition the invariant
of the three-manifold M containing the graph

Sz = (C(Sz)a:rsga |G U m|§,g)

with meridians m is

2

Z(M(92) = S [] -5 Z(M\ Tg,, |G Unl,.,),
y =1

(2-8)
where

—2r .

2 _ 4 _ _ iw/r

w=Swi= 2 g=e"l (29
27;: (q _ q—1)2

and w? is given by Equation (2-2). A line of §™
is called oriented if it intersects a meridian once
transversally. It is called left (right) handed if
it undercrosses (overcrosses) the meridian in the
sense of Figure 1, looking from the exterior of T,
onto the 4-vertex.

Graphically a left-handed and a right-handed line
look locally like

’ M respectively.

We will need later the following projecting and
branching properties of meridians [Karowski and
Schrader 1993, Corollaries 5.5, 5.6 and 6.5].

Lemma 2.6. (i) If one of the colours x in x happens
to be simultaneously left- and right-handed, the
invariant (2-8) vanishes unless x = 0.

- 5 _.|._ r

w; w;, ............. Y

w2 w2 | y
vy "

(ii) If m and m' are two meridians of the same left-
handed (say) line, one of them may be omitted:

mUm' =m  or m = H

(iii) If three left-handed (say) lines with meridians
m, m' and m" branch at a three vertex, one of
the meridians may be omitted: mUm' Um" =

mUm/, or
T

Similar relations hold for right-handed lines. The
relations above have to be understood in the sense
that both sides will give the same invariant in for-
mula (2-8).

In the following results all lines will be assumed
to be oriented. We write for short Z(M,§,5) if
the graph has left-handed lines with colours ¢ and

right-handed ones with colours b.

(2-10)

Lemma 2.7 [Karowski and Schrader 1993]. The rel-
ative braiding of a left- and a right-handed line is

A Ay

Corollary 2.8. A graph G, 3 in S* with oriented lines
can be decomposed as G, U G such that G, C D3,
G C D3 and D3ND3 = @. Therefore the invariant
factorizes

Z(5°(Sup)) = w* Z(5°(S4)) Z(5*(Sp))-

In addition, in [Karowski and Schrader 1993] for-
mulas were derived that express the change of the
invariants of three-manifolds equipped with graphs
under specific changes M — M’ of the manifolds.
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Lemma 2.9 (Cutting full cylinders). If the three-mani-
fold M contains a cylinder D?* x [0,1] such that
dD?* x [0,1] C OM and if, for a point P € 0D?,
P x [0,1] is part of a line (of colour a) of a graph
G, then the cylinder may be removed using the

formula
MI .
Sk
L A

=0a0——

c--
O

Lemma 2.10 (Introducing hollow tubes). If the three-
manifold M contains a cylinder D* x [0,1] such
that D* x {0,1} C OM, then the cylinder may be
removed (that is, a tube may be introduced) using
the formula

:ZwiZ
f ’ M’

where the circle 0D*x {3} with colour x is a merid-
wan.

Finally we have a relation between invariants of
graphs in the internal of three-manifolds and the
invariants of planar graphs. For the simple case of
S3 this is given by the following theorem.

Theorem 2.11. For any graph G, C S® (of only left-
handed lines) the invariant of S*(G,) may be writ-
ten in terms of the invariant of a corresponding
planar graph |G|, on S*

Z(8%(Ss)) = w72 Z(|Gly),

i P

7

where x(9,) is the Euler characteristic of the graph
G, and |G|, is some projection of G, C S* onto an

S% C S8,

The exact form of the planar graph |G|, follows
from the construction in the proof.

Proof. We use homotopy invariance, apply itera-
tively the Wigner-Eckart relation (2-6), and then
change the graph G, C S? in such a way that its
projection onto R? may be decomposed into local
pieces that look like those of Figure 2.

All meridians may be shifted by Lemma 2.6 so
that they only appear at pieces of type (e). Now
we use properties of the meridians [Karowski and
Schrader 1993, Lemma 5.4] to change pieces (a)
and (b) of Figure 2 as follows:

SNCHANG]

Creating a hole in S* such that its projection lies
completely below the the projection of the graph,
the invariant changes by a factor w™?: indeed,

Z(5%(8)) = w* Z((5°\ D*)(S.))

(see Example 2.1). Now we deform the hole so
that in the end the original position of the graph
lies completely inside the hole. During this proce-
dure we perform step by step several changes of the
graph and the manifold. At the end the tubular
neighborhood has disappeared and only the hole
remains with the graph |G|, on its boundary S*.
If, during this procedure, we reach a piece of type

ZAS[S

¢ (f) g)

FIGURE 2. The building blocks of any graph G,.
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(d), we apply Lemma 2.10 to connect it with the
hole:

~— 2
K—J 2 wCL‘
- w E —=£
w?

T

N
e
(In second step we have used Lemma 2.6 again.)
Thus the invariant has changed by a factor of w?.
Passing pieces of type (a), (b), (f), and (g) the

invariant will not change. In the case of (f) we use
again [Karowski and Schrader 1993, Lemma 5.4] to

Al At

R

and analogously for case (g). If we reach a piece of
type (e) we apply Lemma 2.9:

2

w? (AN - Dos o /7

T T

1
w0
The invariant changes by a factor w2, Finally the
graph G, has disappeared and instead we have the
new planar graph |G|, on the boundary 2 S* where
each piece of G, as depicted in Figure 2 is replaced

by the corresponding piece of |G|,, as depicted in
Figure 3.

CIT A

Since Z(S5% \ D?) = 1 and twice the number of
pieces of type (e) minus twice the number of pieces
of type (d) is the Euler characteristic of G,, the
claim follows. g

For a graph G; C S® with only right-handed lines
the result is quite similar. The only difference is
that for the resulting planar graph |G|; C 5%, in
cases (a), (b), (f), and (g), overcrossings and un-
dercrossings are exchanged. This means that the
invariant has the complex conjugate value com-
pared to the corresponding left-handed case.

We now define basic graphs in the interior of
handle bodies. We use here a slight modification
of [Karowski and Schrader 1993, Definition 7.5],
since this turns out to be more convenient for our
construction of the representation of the mapping
class group.

Consider the handlebody (gefillte pretzel) My
associated to a Riemann surface ¥ of genus g > 2.
Let (ou,...,a4,01,...,3,) be a canonical homol-
ogy basis of X realized by simple closed curves on
¥ such that oy, ..., a, are contractible in My,. We
depict this basis in Figure 4, together with an ad-
ditional curve og.

Definition 2.12. For the handlebody My the canon-
ical coloured graph

9? = (C(S_e)a 7957 |G U Tg|§,§)
is defined as follows. Its core is as depicted in
Figure 5. The coloured graph |G*|. with colours
e = (eg,...,e3_3) for (¢ > 1) on the boundary of
the tubular neighbourhood of the core is depicted
in Figure 6. In addition there are the meridians
T..,... T, , such that all lines of G are left-

handed. '

~

(9)

FIGURE 3. The building stones of the planar graph |G|, that correspond to G, C S3.
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FIGURE 4. A canonical homology basis (a1,...,a4,01,. ..

,Bg) plus the additional curve agy;.

FIGURE 5. The core ¢(G7) (dotted line).

The tubular neighbourhood Tgs of the core is a
deformation retract of My and lies in a tubular
neighborhood of ¥ = 0Ms in My. On 07Tgs, which
is diffeomorphic to X* (where * means the opposite
orientation), the family of curves o, ..., az,—3 (ex-
tending the family oy,...,a,41) forms a maximal
set of disjoint pairwise nonisotopic, nonintersect-
ing smooth circles, noncontractible in dJg» but
contractible in Tg». Thus they define a marking
whose dual graph (see [Kohno 1992; 1994], for ex-
ample) is given by Figure 5. Note that |G*|, is not
uniquely fixed by the dual graph (whose homeo-
morphic image it is), but we shall agree that a
given choice has been made in such a way that,

for 1 <4 < 3g — 3, the line corresponding to the
colour e; intersects the curve «; exactly once, and
intersects no other a;. Now all lines with colours

€1,...,e34—3 are assumed to be left-handed with
respect to the meridians T,,,, ..., Ty,,_, defined by

the curves ai,...,ass_3.

Let 9? be another canonical graph in My of
the same form. However, now all the colours f =
(fi,. .- fag_3) are right-handed with respect to the
corresponding meridians. The tubular neighbour-
hoods Tgz and ‘J’g% may be taken to be disjoint.
Alternatively, they may be identified, written as
Tg=, and the invariant (2-8) will change by a fac-
tor w™29%2 only. In the following we will assume

b))
Go e g
B Xg+1
€29—1 '
e
g+1
— — TOtg
e.g.
€393

T

Q2g

FIGURE 6. The graph |G*|. and the meridians Ty, ..., Ta,,_,-
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the second choice. For short we write the invariant
of any three-manifold equipped with the canonical
graph as

Z(M(QEI—)) where if = 9? U gfz—
In particular we have
Z(M(S3,)) = w20 Z(M)  @-11)

for all colours equal to zero. Here we have used the
rule for filling empty tubes given by Lemma, 2.9 and
Equations (2-8) and (2-10). See also Appendix A.
Finally the colours e and f are only restricted by
the fusion rules; that is, we are supposed to have

e __ nre _

N6216g+2 - N6g3+269+3 -
ho _NbB — = _
fafare = 7 favafors - 1’ (2-12)

where N/, is the fusion matrix of Equation (2-3).

We introduce the handlebody M5, with the op-
posite orientation, equipped with the mirror graph
952 7 such that gluing My; and My, along 3 we have

(Mi\Tger) U (M \Tge) 2T xT (2413

(where I =[0,1]) and

x PR |G2* ey UT;/ e F Y x {0}7
|G2|§7f@ = |GE UG*U Tg|§,f,§ C ¥ x {1},

where both graphs are homotopic in ¥ x [0,1]. In
Appendix A we prove the orthogonality relation

Z((MZ*)UME)( o USer)

393

_Z H w; m'Z( ef r’U|G2| f@)

z',x =1

3g—3

= w2, S H wiwe?, (2-14)
=1

with 56 = H3g i) e (for g > 1) and analogously

for 67 7. Here and in similar situations below, we
make the convention that 9 lies in My, and 9? 7
lies in M. -

In the context of a topological quantum field the-
ory, any oriented compact three-manifold M, with

OM, = X gives rise to a vector | M, ) in a finite-
dimensional vector space V*. Its dual (V)" is
canonically isomorphic to V> with elements

(M| (OM; =%7)

such that the canonical pairing in V" x V¥ is given
as

(M, | My ) :Z(MIFLEJM2)-

Furthermore, if we consider a handlebody equipped
with its canonical graph, we have the maps

ci e f)=w " [ Ms(S0p) €VE, (2-15)
G5, > (e, f| = w'™ (M ()| € V™
such that
3g—3
(Myle, f)=w" 11_[w6 wr, Z M UME)(SQEf))
3_(] 3

and by Equation (2-14)

(¢, [ e f)=0u.0p ;.

In particular, Equation (2-11) gives

| Ms) = w'™[0,0) = w™? [ Ms(S5,) ). (2-16)

One of the main results in [Karowski and Schrader
1993] was the completeness relation in terms the
following surgery formula

(M| My) =Y (Mg, f) (e f| M,

£

). (2-17)

.

In other words, the vectors |e, f) and (e, f| form
a system of dual bases in V* and V*', respectively.

Remark 2.13. This completeness relation also ex-
tends to the case when M; and (or) M, contains
coloured graphs (with meridians) and (or) if M,
and M, contain additional boundary components
along which no gluing takes place.
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Lemma E of [Karowski and Schrader 1993], com-
bined with (2-14) and the fact that w; = (—1)*w;,
shows that the antilinear extension of the map

le, f) = (e[l

(for g > 1) gives a map 7 from V> onto V*" with
Ts, | My ) = (M, | and such that the resulting her-
mitian form (note that (M, |My)* = (M, | M,))
is positive definite.

Finally, by the results in [Karowski and Schrader
1993] for the dimensions of these spaces, we have

g—1+ 2
dim V> = (trace(Z(N“)2) ) ,
a€y

where the N® are the fusion matrices given by
(2-3). The square on the right-hand side of this
equation also suggests the introduction of the fol-
lowing structure. Let V;* and V,* be the subspaces

of V* spanned by elements of the form

le):=1e,0) and |f):=[0,f), (19

respectively, such that
dim V,* = dim V> = trace(N?)¢~L.

Then there is a canonical linear isomorphism be-
tween V;*®¢ V> and V* by which |e)® | f) corre-
sponds to |e, f). Also VZ(ET) = (Vi)™ The Hilbert
space structure induced by 7x is obviously compat-
ible with this isomorphism. In the next section we
show that the representation of the mapping class
group defined on V* also is compatible with this
isomorphism; that is, it factorizes with respect to
the left- and right-handed spaces.

3. FINITE-DIMENSIONAL UNITARY REPRESENTATIONS
OF THE MAPPING CLASS GROUP

The aim of this section is to show that the results in
[Karowski and Schrader 1993] on the Turaev—Viro
theory, as outlined in Section 2, lead to a unitary
representation on V* of the mapping class group
MCG? for X. It suffices to consider the case g >
2, since for ¢ = 1 the construction is well-known

[Gepner and Witten 1986; Karowski and Schrader
1993, Appendix A]. Let ¢ be a diffeomorphism of
Y. We define the linear transformation 7(p) on V>
by its matrix elements

3g—3
(¢ f'Im(@) e f)=w?? [] wewe, wywy,
=1

xZ((Mg(EU Ms) (G2 7 UGr 7). (3-1)
P - -

)

Here the symbol (X, ¢) means that we glue M to
Ms. by identifying x € X* of Mj, with o *(z) € B
of My. Similarly to Equation (2-14), the invariant
in (3-1) equals

39—3 wZ’ U)2
DI =+
z'z =1
xZ((Z x I)( U )(z: xI), |G® g ;o UIGT|ofa)-
X, s e
(3-2)

In particular, by Equation (2-14), 7 (id) is the iden-
tity transformation on V=,

Proposition 3.1. The map ¢ — 7(p) defines a rep-
resentation of the diffeomorphism group of . Its
kernel contains the identity component; hence
descends to a representation of the mapping class
group MCGY also denoted by .

Proof. By the basic construction of state sums with
coloured graphs in [Karowski and Schrader 1993]
it is easy to see that one may move ¢ to the right;
that is, the partition function in (3-2) equals

Z(Ex I, |G*

e f o U ‘P(|G2|§,f7§))a (3-3)
with the following notation: ¢(|G*|, 7.) is the one-
dimensional simplicial complex in ¥ x {1} that is
the image of |G*|. 7, under ¢ and is equipped
with the corresponding colours. Inserting (3-3)
into (3-2) and (3-1) now proves the second part
of the proposition for m, due to the homotopy in-
variance for coloured graphs of state sums. The
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first part of the proposition follows from the obser-
vation that

(XxI) U
(X,p1002)
=(Xul) U ExI) U (Ex1I)

(27‘/71) (27902)

(X x 1)

for two diffeomorphisms ¢; and ¢y and from the
completeness relation (2-17). O

Denote by A,,..., Asy_3, B1, ..., B, the elemen-
tary Dehn twists associated with the curves ay, ...,
Q39-3,01,--., 0, (see Figures 4 and 6). Then the
mapping class group MCG? is generated by the el-
ements Ay,...,A;, Ao, B, ..., B, (see [Wajnryb
1983], for example). Set

Si = A2_gl—2+i B; A2_gl—2+i
S, = AT' B, AT,
S, =A;} B, A}

g+1 g+1-

for 1 <1<y,

Then MCGY is also generated by A, ..
Styooy Sy

. 7A3g—37

Proposition 3.2. The representation w(yp) of MCGY
defined by (3—-1) satisfies

(e, ['Im(e) e, [)= (e Im(p)e){f |m(p) | [)-

(3-4)
This means m decomposes into two maps m and T,
on V> and V>, respectively, defined by (2-18). By
use of the canonical isomorphism V= 2 V¥ @c V.=,
Equation (3-4) implies that

m(p) = mp) @ (p). (3-5)

- \\:>‘<__,, e

Furthermore the map , is complex conjugate to
the map m in these bases. For the generating ele-
ments Ai,...,As;_3,5,...,8, of MCG? the map

m 18 given by

where w = \/r/2/(sin7/r) (see Equation (2-9)).

Proof. By explicit calculation of the matrix ele-
ments (3-1) we prove the factorization property
(3-4) for the generators of MCGY. Thus it suffices
to define m; on these elements. We start with the
elements A;,..., A3,_3 and determine 7(A;) |e,0)
first. For the elementary Dehn twist A; along a;,
the graph |G*|, o, on 0T g= of Figure 6 is changed
into A;|G¥|, . as given in Figure 7.

We see that the meridians T, , ..., Tq,,_, are left
unchanged. Also the equivalence of the two pic-
tures in Figure 7 on the level of state sums results
from [Karowski and Schrader 1993, Lemma 5.4]
(compare also the proof of Theorem 2.11). Hence
we obtain by Equations (2-5) and (2-6)

m(A1)|e,0) = |e,0) ¢, (3-7)

where ¢; = (=1)77¢’U*D for j € J. For right-
handed lines we would obtain a similar picture as
that of Figure 7, except that the self-overcrossing
is replaced by the opposite version. Therefore we
obtain

m(A)le, f)=le f)d a7 (3-8)

€2

FIGURE 7. The Dehn twist A; applied to |G¥|c 0,z
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The discussion for any A; (1 <i < 3¢ —3) is anal-
ogous, giving

m(A)e. f)=le f)a. a7

for 1 <i<3g—3.

We turn to the investigation of S; = A;'B; A"
and discuss first 7(S;) |e,0). The graph |G¥|, and
the meridians T,,, ..., Ty,,_, do not change under
B;. The circle BT, takes the form depicted in
Figure 8. This results in the following action of S}
on |G*|, and its meridians as depicted in Figure 9.

In particular the circle A7' By A7 T, is just 4. To

evaluate the matrix elements (¢', f'|7(S1) e, f)
BlTOtl
e r

€2

FIGURE 8. The effect of By on |G¥|. 0z

we apply a basis transformation |e,0) — |&,0).
First we omit the meridian 7, of e; by Equa-
tion (2-10). Then we use the following identity
for the coloured graph (see [Karowski and Schrader
1993, (4.11)], a special case of a Fierz transforma-
tion):

€1 €2g+2 e e; ©20+2
€9 _ 2 €2
~ 3w, %
é e €1
(S €24 2 1 €24
€1 €2g+42

€1 €3

=2k,

e €y, 6 €2 ’

g+2 €29 €2 e ex)
where ‘“ b C‘ is the 6j-symbol of Equation (2-4).
We obtain the transformation matrix

€1 €1 €2 (3_9)

N
|('bl

0]¢,0) =[] 6z.e. we,we,

P €gt2 €24 €2

We also apply the analogous transformation
(e,0] = (€,0].

Using the cutting rules established in [Karow-
ski and Schrader 1993] (see also Appendix A) to

\A\,’ e2

\\\\\

ATt

Ty, AflTa1 =T,

€2

B,

B AT,

€1

FIGURE 9. The effect of S = A

1B1AI1 on |G2|§7Q,£'
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Equations (3-1) and (3-2) for ¢ = S; we obtain
the resulting expression

(¢,0]m(51)]¢e,0)

3g—3 39— 3U) / ’U)
— 229—2 _,
—w Hwew&;lﬂl .
X Z(M17|G1|) 2 (M27|G2|)

€2

where Z(M,,|G|) is the invariant of the manifold
and the coloured graph depicted in Figure 10 and
Z(Ms,,|G,]) that of the remainder. Here x; is the
colour of S;T,, belonging to the line of colour €; on
the inner part of the surface and =] is the colour of
the meridian for €] on the outer part of the surface.

FIGURE 10. Graphical description for the nontrivial
contribution to the matrix element (&',0|7(S1)|é&,0).

By appropriate cuttings (in analogy to the proof
of (2-14) in Appendix A) we write Z (M, |G,]|) and
Z(Ms>,|G5]) in terms of invariants of planar graphs
and find

3g—3
(¢,0]|7(S1)]¢&,0) = _55261 H 0zz,  (3-10)
where
- we/ wél
S, =—1"7 (3-11)
H€1 w

in the sense of a state sum of a planar graph on S?
[Karowski and Schrader 1993, Example 4.10]. For
right lines the matrix S in Equation (3-10) is to
be replaced by the complex conjugate matrix.

Svfz - (sz ~)* f1
f{7fl f{7f1

(3-12)
By the same method as above one can calculate
the general matrix element

(¢, F'|m(S)]ef) =Sz, 9

‘h
et

*ﬂn
*ﬂn

5 Il

In terms of the original basis we obtain, by the
transformation formula (3-9),

(¢, f'|m(S1) e, f)

— ot SJfgtz,fZg H 5636] 5f_,.'fi’ (3-13)

€ 6276162 f1f27f1f2

Jj=3
where
€g+2,€2¢9
Se’1 eh,e1€2
/ /
62 €1 €1 €9 &

= Wel, We, E w~2

| Sg
€gt+2 €29 €2] 1%

€g+2 629 €2

(we have again made use of a Fierz transformation
in the proof of this last equality) and S = S*.
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Obviously m(S, = Ag+1B A,l,) may be calcu-
lated in the same way giving (compare Figure 6):

(¢, J'|m(Sy) e f)
€3g—3,€29—1 f3 3, 291 B
- SE j—l g7ej+15( gi1f f://+1f_j H 65 €j fi'

1#J J+1

(3-14)

It remains to calculate the matrix elements of
(S = A2_g 2+zB A2gl 2+7,)

for 1 < ¢ < g. We look at the local picture around
the i-th hole; see Figure 11, where the colours
er, e, err and ery are

er = egpi1 if i > 2,
e = €9 34 if1>2,
if i =2,
ifi<g-—1,

€1 =€ =6
€111 = €gti+1
ery = €gg_iq1 if 1< g—1,

€111 = €1y = €441 le:g—].

By methods similar to those used to calculate
the matrix elements of S; we obtain

(¢, [ |m(Si) e, ])
1 .
—2H we,wiws, | [ 0e,e, 0517, 2002 (3-15)
el

jEl2

€1 €111
Tai Tai+1
€i €it+1
€11 €1v
Tagg

FIGURE 11. The local form of |G¥|, and its merid-
ians around the i-th hole.

for 1 < ¢ < g, where

=

Zi =12 i+1€g4i € ’
62+1 \\ 6299
Z; = 77, I, = {2g—2+i, i, g+i, i,i+1} and I, =

{1,...,3¢9—3} \ I;. This concludes the proof of
Proposition 3.2. U

Before we prove unitarity of the representation of
the mapping class group given by the invariants
of graphs on Riemann surfaces we discuss some
properties of two special (r — 1) x (r — 1)-matrices:
the diagonal matrix A (see Equation (3-7))

A =0u (3-16)

and S¢ (for fixed ¢) with matrix elements given by
Equation (3-11)

-2 —
q qb 2 2 nrcd
c __ da 1b c
ab = E wyqaN gy
w d

(3-17)
where N& = wawb‘ " @b d‘ This representation in
terms of a 6j-symbol and the following relations
are proved in Appendix B. Note that for ¢ = 0
this formula coincides with the representation of
Sy (A1) in [Karowski and Schrader 1993] for the
genus ¢ = 1 case, i.e.,, S° = S, because N% =
N is the fusion matrix (2-3). The matrix S¢ is
symmetric and ¢ /2S¢ is real:

b = QC(SZb)*'

ab = Sha (3-18)

Moreover the matrices A and S°¢ are unitary:

ATA=1, 8§89t =1° (3-19)

In the second relation 1¢ has to be understood as
the unit matrix with indices a subject to the con-
dition N, # 0. We also have

ASCASCA = kS, (3-20)



332 Experimental Mathematics, Vol. 6 (1997), No. 4

where

1 4 2 —3/2 _—in(1/4+1/2)
kK = — w = (& & " 3—21
w Ed a4a = 4 ( )

(This phase factor « differs from the one in [Re-
shetikhin and Turaev 1991] and [Kirby and Melvin
1991] since we have a different sign convention for
q2.) The matrix N°? (for ¢ and d fixed) with matrix
elements N¢7 is diagonalized by S¢:

(S9)IN“S = diag(Sy/Sos)ves- (3-22)

The eigenvalues of N°¢ are independent of ¢, imply-
ing that N°? is equivalent to the fusion matrix N%:
(8¢S 1) IN“geSTt = N4 (3-23)
That A is unitary and S°¢ is symmetric is obvious;
the other relations are proved in Appendix B.
By Proposition 3.1 we now have:

Theorem 3.3. The representation o_f the mapping
class group ¢ — (', f'|m(p)|e, f) on VE (see
(3-1)) is unitary.

Proof. Since MCG? is generated by A;,..., A,, A,
and Si,...,S,, Equations (3-19) imply unitarity
because of Equations (3-8), (3-13), (3-14), (3-15)
and transformations like (3-9). O

Moreover, because of the decomposition formula of
Proposition 3.2, we have:

Theorem 3.4. The map ¢ — (€' |m(p)|e) on V;®
and the map

e ([ m (o) | f)

on V¥ (see Equation (3-6)) both define a unitary
ray representation of MCGY such that m = m @ ,
and 7, = 7). For genus g =1 the maps p;(p)
and p,(p) gwen by pi(S) = m(S) and pi(A) =
k™31 (A) for the generators and p, = p; define
representations of MCG'.

Proof. It remains to prove that the relations S* =
1 and ASASA = S for the generators of MCG'
also hold for the representation matrices p;. This

follows from Equations (3-19)-(3-21). Thus we
have proved the main results of this section. O

The preceding decomposition of the representation
7w into m; and 7, provides a choice of the phases
that makes them into ray representations only. For
g = 1 the phases have been adjusted in such a way
that one indeed obtains representations p; and p,.

Example 3.5. If ©(A,S) is a word composed of A’s
and S’s then

(¢'|mp(4,9)]e) =w" (e, 0] n(p(4,5))]e,0),
where Ng is the number of S’s in ¢(A, S).
Example 3.6. For genus g = 1 we have

(¢ |m(A™ SA™ S ... A™ S)|e)
= (A™ S A™1 S A™ S)

e'e
and

(¢ |m(SA™ S A™=1§... A™ S)|e)
= (SA™ S A™ 1 S... A™ §)

where the matrix A is given by Equation (3-16)

and S, given by Equation (3-17) for ¢ = 0, is the

Verlinde matrix

2042 8i0(7/7)(2a 4 1)(20 + 1)
wsin(m/r) ’

Suy = (—1) (3-24)

4. APPLICATION TO THE PARTITION FUNCTION OF
ARBITRARY MANIFOLDS

Based on our discussion in Section 3 of the repre-
sentation of the mapping class group, we now pro-
vide a formulation on how to calculate the Turaev—
Viro state sum Z(M) for an arbitrary oriented
compact three-manifold M. In particular we give
an explicit formula for manifolds obtained from a
figure-eight knot by an (—n/m)-surgery. Let My
be an arbitrary handlebody with boundary ¥ of
genus ¢, viewed as embedded in S%. We set ME* =
S3\ My, with dMs, = %, such that MUy My, = S,
Let ¢ be an arbitrary orientation preserving dif-
feomorphism and set M = Mz* Ui,y Ms. Any
three-manifold can be obtained (nonuniquely) in
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this way [Heegaard 1916]. By our previous discus-
sion we may write the Turaev—Viro invariant of the
three-manifold M as

Z(M,r) = (Mg | () | My)
=D (Myle,f) (e, [n(e)| Ms). (4-1)
e.f

In particular, for ¢ = 1, we get of course

Z(S3,r) = <ME |M2>
= (Mx]0,0)(0,0| Mg) =w™2.  (4-2)

Because of (2-16) this means that (0,0|My) =
w?™" and (My]0,0) = w9~ We want to fac-
torize the right-hand side of Equation (4-1) into a
left- and a right-handed contribution. The factor-
ization of the first factor,

<M2|§7f> zwg“(leg,Q)(leQ,f)
= w'™ (Ms |e)( M| f),

follows from the trivial braiding of left- and right-
handed lines that was proved in [Karowski and
Schrader 1993], which implies that the graphs 9_?
and 9% may be moved into two nonintersecting
balls D? C S3, respectively. The normalization fol-
lows from the definitions (2-15) and the equalities
Z(58*) =w 2 and (Mx|0,0) = w' 9( Mg | Mg ) =
w9, We have introduced ( My, |e) = ( My |¢,0)
such that ( My |0) = w9 !. The factorization of
the second factor,

(e flm(p) | M) = w' ™ (e|m(p) [0){fIm ()| 0),

follows from Proposition 3.2 and Equation (2-16).
Therefore we have

Z(M,r)=Z,(M,r) - Z.(M,r),

where

Z;(M,r)

= VP s N (M e ) (el m(p) [0)  @-3)

€

and Z.(M,r) = Z(M,r). For p =1 we have

Z(8% ) = e w;

compare Equation (4-2). The phase ¢(Ms, @),
which is of course not determined by the Turaev—
Viro invariant, has to be chosen in such a way that
Z;(M,r) is invariant (see below).

We now discuss the case where ¥ is a set of (pos-
sibly knotted) tori:

N

Y= U(Sl X Sl)z‘,

=1

forming a link £ with N components. For simplic-
ity we write ( My, | = (£ | and use | My ) = [0,0).
The mapping class group of a torus is generated
by the elements S and A with the relations S* = 1
and (SA)> = S%. We use the representation as
given in [Karowski and Schrader 1993] and Theo-
rem 3.4 (see also [Gepner and Witten 1986]). If we
consider the map ¢ = A" --- AW S, --- Sy, then
instead of the invariant (4-3) we get the following
formula, due to Reshetikhin and Turaev [1991] (see
also [Kirby and Melvin 1991]).

Theorem 4.1. Let L be a link of N components with
framing ny,...,ny. Then

Z(M,r) — ot N
XY (L m (A AR | e)wl, - wl, (4-4)

EN

18 tnwariant under Kirby moves, if the phase factor

o — q—3/2e—i7r(1/4+r/2)

is given by Equation (3-21) and oy, is the signature
of the linking matriz. Therefore Z,(M,r) is an
mwvariant of the three-manifold obtained by surgery
along L.

Note that (4-4) for N = 1 is compatible with (4-3)
for g = 1.

Proof. Let L' be the link obtained by a Kirby move
at a line of L of colour e. We use Theorem 2.11
to write the invariant of the link £’ embedded in
S? as an invariant of a planar graph. We then
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apply formula (B—4) of Appendix B and use again
Theorem 2.11 in the inverse direction to obtain

Z w2 (L' |m(e) e, e)

This relation also explains the local meaning of L
and L'. The normalization of (4—4) is consistent
with

(Llm(Af - AY)]0,0) =(L]0,0) =w*

and
(e|m(S1---Sn)]0)=Se0 - Sero

= w_ngl ---wSN.

Invariance under Kirby moves obviously does not
determine uniquely the phase factor in (4-4). In
Section 5 we present for special cases an experi-
mentally obtained choice of the phase factor exp iy
such that Z;(M,r) fits asymptotically for » — oo
with the asymptotic expansion of Witten’s Chern—
Simons functional integral Zas(M, k) for

k=r+2— oco.

This choice of the phase does not agree with that
of (4-4). Formula (4-4) yields up to a factor w
the Reshetikhin—Turaev invariant of three-mani-
folds [Reshetikhin and Turaev 1991] in the slightly

modified version of Kirby and Melvin [1991] (see
also [Wenzl 1993)):

Z(M,r) =w " 7,.(M). (4-5)
The matrix element
(LA - AN |e)

in (4-4) is the invariant of the link £ with framings
ni,...,ny of the components as given by formulas
(2-7) and (2-8) for left-handed lines with colours
e=(ep,...,ex). In particular for a single unknot-
ted circle (N = 1) and framing n = +1, (4-4)
together with (2-8) and (3-7) yields the following
value for the invariant of S® (see also Figure 7):

Z(8% 1) = 671 Y (L m(AH) | epw?
=rkTw? Z whg? =w™t. (4-6)

This means that Z;(M,r) is invariant under Kirby
moves in this case.

We now return to Equation (4-3) and restrict
attention to the case where X is a (possibly knot-
ted) single torus S* x S* forming a knot X of one
component. Then

Z(M,r) = e w 3 (K |e)(e|m(e)0), (@7

which is the desired formula. The general case for
the map ¢ belongs to a (—n/m)-surgery. We dis-
tinguish two cases, always with m # 0:

(i) [n/m| > 1. Then we write n/m as a finite con-
tinued fraction expansion

my

for 1 <t < oo with integers my,...,m; each
> 2. The mapping class group element is then
of the form

o M= A G AL G A™ S (4-8)
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and the matrix element in (4-7) is given by the
matrix product
(elm(p™/™)]0) = (A™ S A™ S).o, (4-9)
where A is the diagonal matrix of (3-16) with
diagonal elements ¢> and S is the Verlinde ma-
trix (3-24).
(ii) [n/m| < 1. This time we write

m 1
_:mt_
n

mt—1—71

my

again with the m; > 2. The mapping class
group element is then of the form

p M = G AT G AT S AT,

and the matrix element in (4-7) is given by the
matrix product

(elm(p

We obtain, in particular,

TI0) = (SA™ S AT S

n/1)|0>_q2n50_w lq?n 2 (4_10)

(elm(p w,
ZSee qe/ ’0-

(e|m(e ™) 10)

(4-11)

What remains is to calculate the coefficients (X | e)
depending on the way X is embedded in S$%. They
are invariants of knots.

We now assume in addition that X is a figure-
eight knot.

Lemma 4.2. If K 1is the figure-eight knot, then

2 2 2 —2
§ :wbw 4% 4.
b,c

eebd

(Kle)=w

‘. (4-12)
eec

Proof. We use Theorem 2.11 to write the invariant
of the knot embedded in S® as an invariant of a

planar graph

(K|e) = Z

=w3Z 6@

— -2 2,2
=w E w,w, Z
b,c

=w Zwbw quc

The completeness and Racah relations (B-1) have
been used. By Equation (2-4) we obtain Equa-
tion (4-12). O

Corollary 4.3. For the figure-eight knot and a (—n/m)
surgery the resulting manifold Mg(—n/m) has a
Turaev—Viro state sum Z(Mg(—n/m)) equal to

|21 (Ms(—n/m))P,
with
Z/(Mg(—n/m),r) = e w™*

eeb
2.2 72
XE :wbw qb c

e e cC
b,c,e

(e|m(p~/")]0).
(4-13)

Example 4.4. We may write Equation (4-7) also as

P (K Im(@) e)(e|m(S)]0)

€

Z(M,r) =e“w™

with ¢ = ¢ S. For a (—2/1)-surgery at a figure-
eight knot we have
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(X|m(A%)]e) =2Z

S

The meridian m undercrosses the line with colour
e such that it is left-handed. For a (—1/2)-surgery
at a figure-eight knot we have

(K|m(SA?)|e)=Z

7

For simplicity we have not drawn the image of the
meridian.

5. NUMERICAL RESULTS

We have analyzed numerically the partition func-
tion Z(Msg(—n/m),r) given by Equations (4-10)-
(4-13) for several cases. For this we used the ex-
plicit formula for the 6j-symbol taken from [Kir-
illov and Reshetikhin 1989], with the identification

abe

RW
— j2atbtotdtetf) abe (5-1)
dcf ’

dcf

where the right-hand side is the quantity defined
in [Kirillov and Reshetikhin 1989, Theorem 5.1] as
follows:

{e ’ ; }sz A(abe) Alacf) A(ede) A(dbf)
X Z(—l)z[z—l—l]q!([z—a—b—e]q![z—a—c—f]q!

x[z—b—d—f],![z—d—c—e],! [a+b+c+d—2z],!

x[a+d+etf—z], b+eretf—z],1)"" (5-2)

with the notation

A(abc) = ([_a+b+c]q![a_b-l-c]q![a-l—b—c]q!>§

[a+b+c+1],!
(5-3)
as in [Karowski and Schrader 1993, (3.6)],

]! = (ql - qfll) (q2 - q*f) (q” - qfl”)’
qa—q q9—q q9—q

and the sum in (5-2) taken over all nonnegative in-
tegers z with nonnegative arguments in the square
brackets.

(Note that the ¢*/? of [Kirillov and Reshetikhin
1989] is our g and the gy of [Turaev and Viro 1992]).

The numerical calculations were performed for
various manifolds Mg(—n/m) and values of r in the
range 4 < r < 403. We used a Fortran program
with double precision. Note that due to Equa-
tions (4-12) and (5-1)-(5-3) the numerical cal-
culation is essentially a four-loop calculation, so
Z)(Mg(—n/m),r) is a sum of O(r*) contributions
with a corresponding computing time behaviour.
This is why for values of r above r ~ 440 the results
tended to become unreliable in double precision. It
is possible to extend the range of r up to ~ 500 by
working with G-precision. Here, however, we shall
only report on results in the range given above.
The absolute values of Z;(Mg(—n/m),r) turn out
to be all of order one, in contrast to the case of lens
spaces (see [Freed and Gompf 1991; Jeffrey 1992],
for example).

Example 5.1. Figure 12, left, plots Z;,(Mg(—6/1),7)
for even r = 4,...,403 as dots in the complex
plane. The phase in Equation (4-13) is taken as
1 = mr; see Equation (5-8) below. It turns out
that for odd r these invariants are zero (see below
and Appendices C and D). Note that Mg(—6/1) is
a hyperbolic manifold.

Example 5.2. Figure 12, right, plots Z;(Mg(—1/6),7)
for r = 4,...,403. The phase in Equation (4-13)
for m = 1 is taken as 1) = 0; see Equation (5-10)
below.

The main interest of our analysis was to see if the
semiclassical analysis » — oo could be correct.
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Ile A

05l

0.5.' " ReZ

Ile A

1 Re Zl

FIGURE 12. Left: The values of Z;(Ms(—6/1),r), for even 4 < r < 403. Right: The values of Z;(Ms(—1/6),r),

for 4 <1 <403.

Recall that by Equation (1-1) (see also (4-8)
and (4-13)) the values of Z;(Mg(—n/m),r) and
Zes(Mg(—n/m), k = r — 2) should agree up to
a phase. Now the semiclassical conjecture [Witten
1989; Freed and Gompf 1991; Rozansky 1995] is
that for large r we have

ch(M, k:T’—Q)

]. 1 q- 0 i
o~ 5 Z CA ro3 dim H”(A) | 627”TSCS(A), (5-4)
A flat

if all flat connections are isolated (modulo gauge
transformations), so that in particular we then have
dim H*(A) = 0. This is indeed the case for all ex-
amples we have considered. Therefore the leading
contributions in Equation (5-4) arise from the ir-
reducible flat bundles, where H°(A) = 0. Since the
structure group is SU(2) and since we consider the
adjoint representation, dim H°(A) can only take
the values 0 (in the irreducible case), 1 (reducible
to U(1)) or 3 (in the trivial case with Scg(A) = 0).
Finally, the absolute value of C?% is conjectured to
be, say for the irreducible connections, equal to
the Reidemeister—Ray—Singer torsion, whereas the
phase is related to the spectral flow [Witten 1989;
Freed and Gompf 1991; Rozansky 1995].

To see if (5-4) holds we performed a Fourier
transform

ZZ(MS(—n/m), t)
| o3

= 100 Z Zi(Mg(=n/m), r) ™™, (5-5)
r=4

where 0 < ¢ < 1. This function should show
prominent maxima at values of ¢ that correspond
to Scs(A) for flat A. In principle the absolute val-
ues of the C'y’s may be determined from |Z,(M, t)|
at the maxima unless there are two or more differ-
ent flat connections with the same Chern—Simons
action and the same dim H°(A). This is for exam-
ple the case for Mg(—n/1) with n = 8,16,20 (see
Appendix C).

Example 5.3. Figure 13, left, plots the absolute value
of the Fourier transform Z,(Ms(—6/1), t) where
the phase in Equation (4-13) for m = 1 has be
taken as ¢ = 7r; see Equation (5-8) below. The
function has period ¢ = § since Z;(Ms(—6/1), r)
vanishes for odd r. We interpret the big peaks as
corresponding to the leading contributions of the
asymptotic expansion (5—4) with dim H°(A) = 0
and the small ones to dim H°(A4) = 1.
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|Z] —6/1 surgery 21| —6/1 surgery
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIGURE 13. Left: The Fourier transform |Z;(Mg(—6/1), t)|. Right: |Z;(Mg(—1/6),t)|.

Example 5.4. Figure 13, right, plots the absolute
value of Z;(Ms(—1/6), t) where the phase in Equa-
tion (4-13) has been taken as 1) = 0; see Equa-
tion (5-10) below.

To locate the maxima of |Z,(Ms(—n/m), t)], we
also employed the following procedure. We consid-
ered the set of points

Z,(Mg(—n/m), r, t) = Z,(Ms(—n/m), r) e ™",

For ¢ at a maximum these members typically form

Im Zl

0.5+

0.5 Re 7

a symmetric pattern. Figure 14 provides two ex-
amples at the maxima t = 0.15127 and £ = 0.33333
for the manifold Mg(—6/1) (compare Figure 13 and
Tables 1 and 2). Figure 12, left, corresponds to the
choice t = 0.

In all the examples considered, this procedure
allowed for an evaluation of the maxima up to six
digits. Since Zcs and Z; might differ by a phase
factor, the differences in the maxima should cor-
respond to the differences in the Chern—Simons
invariants of flat bundles.

Im Zl

0.5 Re Zl

FIGURE 14. The values of Z;(Mg(—6/1),r)e=2™" for t = 0.15127 (left) t = 0.33333 (right).
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Kirk and Klassen [1990] describe explicitly how
to obtain all reducible and irreducible flat connec-
tions up to gauge equivalence of Mg(n/m) and give
precise formulae for computing the corresponding
Chern—Simons invariants. For the convenience of
the reader we briefly recall these results in Ap-
pendix C, where we also derive some consequences
from these formulae. The set of Chern—Simons
invariants of Mg(n/m) corresponding to reducible
flat connections is given by

t2
{——p‘tzo,l,...,gnj}, (5-6)

n
where p is an integer such that p-m = —1 mod n

(see Appendix C). In our numerical analysis the
reducible flat connections show up as small peaks
(see Example 5.3, Figure 13, left, and Table 1).
This is obviously due to the fact that these contri-
butions in formula (5-4) go like r—*/2. Comparing
these values (5-6) with the values obtained from
our numerical calculations starting from (4-13), we
can determine (at least asymptotically for r — 00)
the phase 1 in (4-3) and (4-13), which is unde-
termined from the Turaev—Viro invariants. For all
examples of three-manifolds Mg(—n/m) we have
considered the phase is consistent with

p(n,m,r) = gK(n,m) r, (5-7)

with K(n,m) € Z,, at least asymptotically for
large 7.

In Table 1 we list for some examples the number
K (n,m) and the values of Scg obtained by our nu-
merical method compared with the values obtained
by the method of [Kirk and Klassen 1990].

Kirk and Klassen [1990] provide for the examples
(nfm) = (=3/1), (~1/1), (=1/2), and (~1/3) a
list of all irreducible representations of m Mg (n/m)
and the corresponding Chern—Simons invariants.
With the techniques presented in Appendix C we
have extended their list by more examples to com-
pare the values of Sog(A) predicted by the semi-
classical approximation formula (5-1) with the ac-
tual values given by Equations (C-3) and (C—4).

surgery # red. reps K Scs (4-13) Scs (K-K)

-3/1 1 3 0.66681 2/3
—4/1 1 0 0.75000 3/4
~5/1 2 1 0.19997 1/5
0.79999 4/5
—6/1 3 2 0.3333 1/3
0.5012 1/2
0.83333 5/6

TABLE 1. Values of Scs(A) as obtained from (4-13)
and from [Kirk and Klassen 1990], for some exam-
ples of reducible representations for (—n/1) surgery.

We used Mathematica to find the solutions of (C-2)
and to calculate the corresponding values of Equa-
tions (C-3) and (C-4).

Some of these results are listed in Tables 2, 3,
and 4. They too show excellent agreement between
the two methods. The following comments also
take into account other examples not listed in these
tables.

Example 5.5. For (—n/1)-surgery (see Table 2) the
phase factor in Equation (4-13) turns out to be
consistent with the choice

e — oim nr/27 ie., K(TL, 1) =n, (5-8)

at least asymptotically for large r. Note that this
phase factor is an invariant of the three-mani-
fold Mg(—n/1), because the modified Reshetikhin—
Turaev invariant 7,.(M) of [Kirby and Melvin 1991]
(see (4-5)) takes the following values for r = 3:

T3(M8(—n/]_)) = /@% (]_ + e—iﬂ"n/2) )

This result is obtained as follows. For r = 3 in
(4-13) only b = ¢ = 0 and e = 0,1/2 contribute.
Therefore with Equation (4-10) we have

1/2
W — nlee0
20 (n/).3) = w Y w6 0.
e=0
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surgery # irr.reps K Scs (4-13) Scs (K-K)

-0/1 0 3 0.00000 0.0
0.20000 0.2
0.80000 0.8

-1/1 2 1 027978 0.279762

0.85116 0.8511905

-2/1 2 2 0.387512  0.3875
0.88750 0.8875
-3/1 2 3 0.479178  0.479166
0.91667 0.91666
—4/1 2 0 0.55019 0.55
0.950009  0.95
-5/1 2 1 0.054478  0.054458
0.605920  0.6059135
—6/1 2 2 0.151275  0.151265
0.651283  0.651265
-8/1 4 0  0.29997 0.3
0.70003 0.7
0.721091  0.721304
0.721091  0.721304
—12/1 4 0 0.050089  0.05
0.450186  0.45
0.489647  0.4896907
0.489647  0.4896907
—14/1 6 2 0.048320  0.0485379
0.055263  0.054853
0.161499  0.1614793
0.548319  0.5485379
0.555265  0.554853
0.661497  0.6614793
-16/1 4 0 0.200064 0.2
0.251354  0.251307
0.251354  0.251307
0.799979 0.8
—18/1 6 2 0306522  0.3064713
0.325624  0.3255013
0.413818  0.413881
0.806520  0.8064713
0.825627  0.8255013
0.913822  0.913881

TABLE 2. Values of Scs(A) for some examples of
(—n/1)-surgery for irreducible representations. See
Table 1 for the meaning of the last two columns.

Now Equations (2-2), (2-5), and (2-9) yield wi =1,

w%/zz—laQO=17Q1/2=—q3/2=6_”/2,w2=2, and
000 1 % % 0 _ 1
000 ’ % % 0

(see [Turaev and Viro 1992], for example), giving
Zy(Ms(—n/1),3) = e 1 (14 e " "/2). In particu-
lar for n = 4n’+2 this vanishes. As already stated,
the big peaks in the function Z;(M,t) (compare
Figure 13 for n = 6) correspond to the leading con-
tributions of the asymptotic expansion (5—4) with
dim H°(A)=0 and the small ones to dim H°(A)=1.

(@) For m = 1 and n > 4, in which case the space
Mg(—n/m) is hyperbolic, there is at least one
flat SU(2)-connection A with vanishing coho-
mology. For increasing n there is a proliferation
in the number of such flat connections (mod-
ulo gauge equivalence). See the remarks after
Equation (C-2) in Appendix C.

(b) The numerical calculations confirm the analytic
results of Appendices C and D to the effect that
Z)(Mg(—n/1), r) =0 for all odd r in case n = 2
mod 4. The case n = 6 is depicted in Figure 13,
left, showing that Z;(Ms(—6/1), t) is indeed pe-
riodic in ¢ with period %

(c) For the exceptional case of Mg(0/1), which for
the case of an unknotted torus would correspond
to S? x S* we find the closed formula (guessed
by our numerical results)

cos 2m /5 — cos 2mr /5

2sin7/5 sin 2w /5

In this case the semiclassical approximation is

exact. This is analogous to the situation for lens

spaces [Jeffrey 1992]. This result also agrees
with the analytic result of Kirk and Klassen

[1990] according to which there are two Chern—

Simons invariants with values +1 (and vanish-

ing cohomology).

Z,(Mg(0/1), r) = (5-9)

(d) For the case n = 1, m = 1, corresponding to the
Seifert homology sphere —X(2,3,7), we obtain
two maxima for |Z;| located near

25 121
1—— d 1———.
142 ™ 142



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 341

This is compatible with the result of Kirk and
Klassen giving two flat connections A, and A,
with

2 2

Sos(A1) = o and Ses(dr) = oo

(e) For n = 3, m = 1, corresponding to a Seifert
fibered space over the two-sphere with Seifert
invariants (3,—2), (3,1), (4,1), Kirk and Klassen
predict two values

2 2

—4212 and Scs(A2)=—4512
We have found two strong maxima of Zl at t; =
1-5%/(4-12) and t, = 1—22?/(4-12) and a small
maximum at ¢3 = 2/3 if we choose K(3,1) =3
in Equation (5-7); see (5-8).

(f) If n = 4k with k > 1, there are at least two irre-
ducible representations of m;(Mg(—n/1)) with
the same Chern-Simons actions (for a precise
statement see Proposition C.1 below). We have
taken account of this fact in Table 2, although
of course the analysis of Equation (4-12) does
not exhibit this. Table 2 provides examples of
all statements of Proposition C.1.

Scs (Al) =

Example 5.6. For (—1/m)-surgery (see Table 3) the
phase factor in (4-13) turns out to be consistent
with the choice

eV =1,

ie, K(1,m)=0 (5-10)

(again at least asymptotically for large r), and the
numerical results are in agreement with the obser-
vation made above that there are 2m irreducible
flat connections (modulo gauge equivalence). Since
the Mg(—1/m) are homology spheres there are no
nontrivial reducible representations.

Example 5.7. Figure 15 plots the absolute value of
the Fourier transforms

ZZ(MS(_3/2)7 t) and ZZ(MS(_2/3)7 t).

In each case the maxima are at the same values as
calculated using the methods of Kirk and Klassen
[1990, p. 363], that is, Z; seems to agree with Zgg in
these cases, which means that K(2,3)=K(3,2)=0.

surgery # irr. reps  Scs (4-13)  Scs (K-K)
-1/2 4 0.053927 0.053933
0.235109 0.23516
0.514125 0.514125
0.828180 0.828117
-1/6 12 0.018324 0.018451
0.051140 0.051163
0.074568 0.07461
0.211492 0.21082
0.291498 0.292507
0.298875 0.297362
0.470291 0.470357
0.504663 0.504638
0.614698 0.614739
0.729624 0.729587
0.810647 0.810042
0.890340 0.890394
-1/8 16 0.003120 0.00348
0.086381 0.08637
0.17133
0.172185 0.172535
0.207460 0.20804
0.272334 0.272329
0.400936 0.40089
0.415939 0.415986
0.514109 0.51386
0.555343 0.55579
0.593689 0.593654
0.720535 0.7205257
0.808226 0.807600
0.850603 0.85053
0.867921 0.868405
0.989921 0.990035

TABLE 3. Values of Scg for examples of (—1/m)
surgery. For —1/8 one spike at Scg = 0.17133 is
not discernible, since it is too close to the one at
Scs = 0.172535.

Example 5.8. We analyzed numerically the phase
factor €' for manifolds Mg(—n/m) with n > 0,
m > 0, n/m > 1, and values of m from 2 to
15. We looked at about 400 manifolds in total.
Our numerical results indicate the following rules:
Asymptotically for large r the phase v is again of
the form (5-7). In particular K (n,m) is fixed only
mod 2 if Z;(Mg(—n/m), r) = 0 for r odd. Also
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|Z1] —3/2 surgery

1Z1] —2/3 surgery
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FIGURE 15. Left: The Fourier transform |Z;(Mg(—3/2), t)|. Right: |Z;(Mg(—2/3),t)|.

surgery # irr.reps K Scs (4-13) Scs (K-K)
-3/2 4 0 0.141068 0.141138
0.333369 0.333333
0.548895 0.548930
0.870718 0.870641
-2/3 6 0 0.129545 0.129563
0.248862 0.248874
0.336324 0.336288
0.629556 0.629563
0.748850 0.748874
0.836311 0.836288

TABLE 4. Values of Scg for (—3/2) and (—2/3) surgery.

K (n,m) is quasiperiodic in n with quasiperiod £m;
that is,

K(n+m,m) = K(n,m) £ m mod 4,

with a minus sign if m = 1 mod 4 and a plus
sign otherwise. We have not been able to find a
general closed form for K(n,m) as a function of n
and m. In Table 5 we have listed the values of K
for m = 1,...,12 and some low values of n > m.
For m = 4 we found K(n,4) =0 for all n > 4.

To sum up, within our limits of numerical accu-
racy and for the examples considered we have been
able to confirm the asymptotic expansion (5-4) up
to contributions going like r~/2; that is, for ir-
reducible flat connections the coefficient in front

of exp 27irScs(A) behaves like a constant and for

n‘m:123456789101112
0 0

1 1

2 2

3 30

4 0 0

5 1 2 2 0

6 2 2

7 303030

8 0 1 2 0

9 1 2 0 2 0 0

10 2 2 2 2

11 3000102210

12 0 2 0 0
13 121012211020
14 2 3 1 2 0
15 30 0 30 1
16 0 0 0 3 P 0
17 122012102020
18 2 0 1 2
19 30300032103 2
20 0 1 1 0 0
21 1 2 0 3 1 2 2
22 2 2 0 2 0

23 300030201230
24 0 3 0 1
25 1 210 2.0 0 1 3 0
2 2 3 2 2 1 0
27 2 2

29 2 2 0
31 0 0 P
33 0

35 0 0
37 0
41 0

TABLE 5. Values of K for various manifolds Mg(—n/m).
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reducible ones with dim H°(A) = 1 like r='/2. In
addition for some manifolds (including n/m = 7/1,
16/1, 22/1) we have found peaks whose amplitudes
indicate at least an r=2 decay. To the best of our
knowledge, so far such contributions to the semi-
classical asymptotic expansion have no interpreta-
tion yet. The technique used to see the rate of
decay was to modify Equation (5-5) by introduc-
ing the quantity

Zl(MS (_n/m)a t; Tmins "max> 04)

Z,(Mg(—n/m),t) = Z,(Ms(—n/m, t; 4,403,0).

We then looked at the absolute value of the peaks
for varying i, Tmax, and a.

Figure 16 gives an example for the case n/m =
16/1, for which exp iy = 1; see (5-8). The top row
of diagrams, with o = 0, shows that the ampli-
tudes for the irreducible flat connections (indicated
by arrows: see Table 2) stay constant for varying
Tmax and rp;,. The middle row, with o = 1/2,
shows that the amplitudes of the reducible flat con-
nections (again indicated by arrows: see Table 1)

e . behave like 7~'/2. The bottom row, with o = 2,
= (Fmax—T'min) Z r*Z(Ms(—n/m),r)e ) indicates that the peak at 0.6104 (which is not the
= Tmin value for the Chern—Simons action of a flat connec-
tion) has an amplitude that decays at least like r—2.
which satisfies In the two bottom rows the peaks corresponding to

r=4...103 r=104...203 r=204...303 r=304...403

1l 4 { { J\L { {
A
a=3
r=4...103 r=104...203 r=204...303 r=304...403
{ { { { { AAh’ { { { { {
r=4...103 r=104...203 a=2 r=204...303 r=304...403

FIGURE 16. The absolute value |ZI(M8( 16/1),t; Tmin, Tmax)| of the Fourier transform of r*Z;(Mg(—16/1), r)

for some r-regimes.
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irreducible flat connections have been cut off. Fig-
ure 16 also shows that for Z,(Mg(—16/1), ) the
asymptotic regime sets in at r ~ 100.

A. PROOF OF AN ORTHOGONALITY RELATION FOR
THE CANONICAL GRAPH OF HANDLEBODIES

In this appendix we outline the proof of Equa-
tion (2-14). To this end we we cut the manifold
(2-13)

(Mg \ Tgoe) U (Ms \ Tge) 2 B x 1 (A1)

into simple pieces. We consider a hollow cylin-
dric part which is the neighbourhood of the lines
with colours e = e;, f = f;, ¢ = ¢, f' = f! for
some ¢ in the range 1 < ¢ < 39 — 3. We apply
some results from [Karowski and Schrader 1993]
that are recalled in Section 2 and Appendix B:
Lemma 2.10, which says how to introduce hollow
tubes, and Lemma 2.9, which says how to cut full
cylinders. Using in addition Equations (B-2) and
(B-3) we have the following cutting rule:

mirror
image "’

Applying this rule 3g — 3 times, where g > 1, the
manifold (A-1) may be cut into 2g — 2 pieces of
the form

These manifolds are equipped with graphs
|G|

616263f1f2f27

where the e-lines branch at a 3-vertex and so do the
f-lines. In addition there are the meridians. Using
again the cutting rules of [Karowski and Schrader
1993] one finds

Z(M(Tg), |G|e1ezegf1f2f2) — w*4Nel NJf1

e2e3” " fof3”

This concludes the proof of Equation (2-14).

B. PROOF OF SOME EQUATIONS OF SECTION 3

In this appendix we outline the proofs of some
equations of Section 3. The following equations in-
volving graphs are to be understood as equations
of their invariants in the sense of Equation (2-1). If
there are graphs with open lines they have to be in-
terpreted as parts of closed graphs. By (2-2)-(2-5)
and the Wigner-Eckart relation (2-6) we have the
following completeness and Racah relations:

—
2 al |b
Zw0£ ][’
c
a qc a
b c = b/)c -

a9

|+ <]
|

(B-1)

The Verlinde matrix (genus g = 1)

2a+2p SI(T/7)(2a +1)(2b + 1)

Sw = (=1) wsin(m/r)

diagonalizes the fusion matrix; that is, it solves the
eigenvalue equation

_ Sw

Nd
( S)ab SdO

Sab
and we have the well-known relations

% =S =5.=95,, = (S_l)ab5

1
w

see [Karowski and Schrader 1993], for example.
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In particular S? = 1, together with the Wigner—
Eckart relation (2-6), implies the following change
of a part of a graph:

s -0y -3 3t

b a
2
w
S S
w b
=w? 0 Y ; (B=2)

compare [Karowski and Schrader 1993, (A.2)]. As
a result, using the completeness relation (B-1), we
get

£ G g Il

>

<>

G e l a
= w? 0 = w?
alb

lev

(B-3)
Also we have with Equation (B-1)

et Uy -Tue )

- Swvin 1)
:quwn’a = WK JD , (B-4)

and analogously to Equation (B-3)

a _ b _ b
e 000 s G0
(B-5)

where in both cases the sum over c yields the con-
stant

Wk = Zw qc =wq —3/2 e—iﬂ(1/4+r/2). (B—6)

In (B4) and (B-5) we used Yang—Baxter relations
and in (B-6) we used Gauss’s reciprocity relation.
These formulas for the special matrix S,, = SY, are

now used to derive Equations (3-19)-(3-23) for the
general matrix S¢, defined by Equation (3-12).

Proof of (3-18). The symmetry S, = S;, follows
directly from the homotopy invariance of the in-
variants of graphs on S?, and the second equation
follows from

c c
w
Sap = " = (“ ]
Wq Wy a b
Ci ] c
— a —
= 4 @ =
b

Proof of (3-19). Equation (B-3) implies

-z%%%%ﬁfﬁ=Mma

d

Proof of (3-21). Equation (B-5) implies

w w3 w ) [

c 2 Qcx a d b 2 a

E:Sadqd db_

d
_ wawdwb 2 |a _ b ’
= T 44 [ ]

d d
= rq, °q; >SS,
and (3-21) follows with S¢, = S;,.

Proof of (3-22) and (3-23). The eigenvalue equation
of N¢¢ defined by (3-17) reads

Zch ¢ —
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Proof of (3-17). Using again Equation (B-1) we ob-
tain the following representation for the matrix

5 .
ab*
c ol €
ge Wy wy |, _ 9 W Wy |*
= = w
ab w d w d b
b P b
1
_ 2 2 cd
= > 2 E wy gy Ngy -
wqaqb d

C. CHERN-SIMONS INVARIANTS FOR FLAT
CONNECTIONS

The results of [Kirk and Klassen 1990] describe
explicitly how to obtain all irreducible flat con-
nections up to gauge equivalence of Mg(—n/m)
and give precise formulae for computing the cor-
responding Chern—Simons invariants. For the con-
venience of the reader, and since we derive some
consequences from these formulae, we will briefly
recall these results. The group G of the figure-eight
knot has the presentation

(w,y: 27 ylz = y[z ™, y]),
where = represents a meridian and
A=y, 2z

the preferred longitudinal curve. Define curves in
C xR by

where

uy(s) =cosdmrs —3/2 £ \/cos2 dms — cos dms — 3.

Then the representations of G' given by
e27ris e—27ris
T = 0 6—27”'5 ’

e2m’s 0
Y= —ePmisy, (s) e~2mis )

for s € [%,1], are conjugate in SL(2,C) to irre-
ducible SU(2) representations and correspond one-
to-one to the conjugacy classes of irreducible SU(2)
representations.

Actually, the above SL(2,C) representation is
conjugate to a unique SU(2) representation p; +

having the following action:

eZm’s 0
T = 0 e—27ris )

\ (Lio(s) Li((.)s)_1> 7

with

2647ris + 687ris

+ Ui(S) (6747I'Z‘S _ 64711'5)‘

Li(s) =1+ 6—47ris _

Now assume that p, 1 is such that it projects to a
representation of m; (Mg(n/m)). If v, for 0 < ¢ <
1, is a path of SL(2,C) representations of G' going
from the identity to p, 1, and such that

627rioz(t) 0
Ye(w) = 0 p—2mia(t) |

627riﬁ(t) 0
Yi(A) = ( 0 e—2mﬂ(t)> )

it follows from [Kirk and Klassen 1990, Theorem
4.3] that the Chern-Simons invariant Scg(ps,+) of
Mg(n/m) corresponding to ps 4 is equal to

—2/1 Bl dt — p - na(1)
’ —vmB(1) — 21 - ma(D)B(1). (C-1)

Here p and v are integers such that vn — um = 1.
(This is formula (%) of [Kirk and Klassen 1990,
p. 361], taking account of a misprint).

In [Kirk and Klassen 1990, pp. 361, 362] a path
of representations from id to p; /6 4+ = p1/s,— i pro-
vided and the corresponding value of the integral
J B up to this point is evaluated as ;5. The cor-
responding values of o and 3 are i and % The

6
representation p,+ of G, for s € [¢, 3], factors
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through a representation of m (Mg(n/m)) if and
only if ps 4 (2" - A™) = id; that is, if and only if

e = (Ly(s)"

Define \.(s) by Li(s) = e2™+() such that Ay
is continuous and )\i(i) = 0. One easily sees
that Ly (3 —s) = Li(i + ), so that A (; —s) =
—A+(: +s). Further,

Li(%+5s)=—2sin’4ns

+cosdms + 2i sin47r3\/(cos d7rs + %)2 —1.

This implies that for 0 < s < % the function
A+ (3 4+ s) is strictly monotonically increasing from
0 to 5 and A_(s) = —A.(s).

It follows that p, 1 factors through a representa-

tion of Mg(n,m) if and only if

n/m-s=+\_(s) mod (1/m). (C-2)

The following facts are easy to check (we will al-
ways assume that n,m are coprime).

e If n is even, then i + 7 is a solution if and only
if + — 7 is a solution.

e 1 is a solution if and only if 4 divides n.

e If s is a solution for (n, m) then it is also a solu-

tion for (—n,m) with the sign in p; 4+ changed.

Let R(n/m,=+) be the number of s € [},1] such
that ps o projects to a representation of m Mg (n/m).
We will always assume that m > 0. We have the
following results:

e For n/m > —2/5 (this being the maximum of
N (s) for £ < s < %), R(n/m,+) is the number
of integers in [_T__ ——g].

e For n/m < —12, R
integers in [?—g,—j——].

e For n/m < 2V/5, R(n/m,—) is the number of
integers in [———— 5——].

e For n/m > 12, R(n/m,—) is the number of

m n

integers in [ ——————— ] .

¥
o w
i\.
EN
x
7
+
=
@
=
:
o
@
]
Q
L]

To compute the Chern—Simons invariant Scs(ps +)
of Mg(n/m) corresponding to the representation

ps,+ we employ (C-1). Using the path of [Kirk
and Klassen 1990] from the trivial representation
to p1/6+ = p1/6,— and then the path ¢ — p, ., with
t € [£, 5], we get for the Chern-Simons invariant of
ps,+ the value

—2(% + /j(/\+(t) + 1)dt>

6

—pns® —vm(Ay(s) + 1) — 2ums(Ay(s) + 1), (C-3)
while the one corresponding to p, _ is
—2(% +/1 A(t)dt)
—puns® —vmA_(s) — 2umsA_(s). (C-4)

(Since the curve 8 of the path from id to pye .+

ends with the value %, the continuation of 3 from

P16+ tO ps 4 is Ay (s) + 1, and not simply A, (s)).
Using these formulae and the fact that

Mt 47) = —A(E—7),

a straightforward calculation for even n and for
s = 1+ asolution of (C-2) yields Scs(p1/a4r4) —
Scs(p1/a—r,+) = np/4 mod 1, where as before p is
given by vn — um = 1. Therefore:

Proposition C.1. (a) Let n,m be coprime with n =
4k 4 2. Then for any irreducible representation
P1/asrx Of m(Mg(n/m)) also pyja—r s is an ir-
reducible representation and

Scs(P1/4+ni) - SCS(P1/4—T,:E) = % mod 1.

(b) If n = 4k, we have the irreducible representa-
tions p1/4,+ with Chern-Simons invariant

+1/5+1/4 if k=1mod 4,

and, for any irreducible representation pi/sq, +
of m (Ms(n/m)), the representation pi/4_, 4 is
also irreducible and

Scs (P1/4+T,i) = Scs (,01/4—T,i)-

This result was inspired experimentally. First, our
numerical calculations of Z;(Mg(—n/1),r) for n =
2 mod 4 suggested that these numbers are 0 for all
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odd r. Then we proved this analytically (see Ap-
pendix D). This implies that the Fourier transform
Z,(Mg(—n/1), t) is periodic with period %, Assum-
ing the correctness of the semiclassical approxima-
tion formula (5-4) a statement like Proposition C.1
would have to hold.

The statement that Z;(Mg(—n,1),r) = 0 for
n = 2 mod 4 and r odd may be generalized as
follows:

Proposition C.2. Let My (n/m) be the three-mani-
fold obtained by (n/m) Dehn surgery on the knot
K C S% Ifn=2mod 4 (and m,n coprime) then
Z)(Mg(n/m), r) =0 for every odd r.

When K is the figure-eight knot, this result turns
into an if and only if, with a proof that uses differ-
ent arguments; see Appendix D.

Proof. By [Kirby and Melvin 1991, Corollary 8.9] it
suffices to show that Z;(My (4k+2/214+1), 3) =0,
which in turn holds if and only if one can em-
bed a closed surface of odd Euler characteristic
in Myk(4k + 2/21 + 1) [Kirby and Melvin 1991,
Theorem 6.3]. If D? x S* is the solid torus glued
into the exterior of a tubular neighborhood of K
to obtain My (4k + 2/20 + 1), then a Seifert sur-
face of K will meet the boundary torus S x S!
of D? x S' in a simple closed curve homologous to
—p(S* x {*}) + (4k + 2)({*} x S'), where p is an
integer such that p(2l + 1) = —1 mod (4k + 2).
Any such curve bounds a nonorientable surface of
genus 2k + 1 in D? x S*. The union of these two
surfaces is then a closed surface of odd Euler char-
acteristic. O

With regard to reducible representations, note
that the first integral homology group of Mg(n/m)
is isomorphic to Z/nZ. Therefore, m (Ms(n/m))
has nontrivial reducible SU(2) representations if
|n| > 1. They correspond to the representations
of m(L(n,m)), where L(n,m) is the (n,m)-lens
space. The proof of [Kirk and Klassen 1990, The-
orem 5.1] can be applied to calculate the set of
Chern—Simons invariants of reducible representa-
tions of Mg (n/m) for any knot K in S®. Therefore,

the set of Chern-Simons invariants of My (n/m)
corresponding to reducible flat connections A (for
these, as noted in Section 5, dim H°(A) = 1 unless
A is trivial) is given by

t2p n
Erp o |2,
{ n ‘ 2

where as before p is an integer such that p-m = —1
mod n.

D. VANISHING INVARIANTS

Here we give a necessary and sufficient condition
for Z,(Ms(—n/m), 3) to be zero. By a result from
[Kirby and Melvin 1991], Z,(Ms(—n/m),r) van-
ishes for r odd whenever

Z;(Mg(—n/m), 3) = 0.

For r = 3 we have
1 0 1 1 -1
=5 1) 5= (4 )

eel
eel

and

‘ = (-1)* =wSp. fore=0,31.

We consider the case | %] > 1 first.
Since S? = 1 we have by (4-9) and (4-13)

Z,(Mg(—n/m),3)

=Wyt

(—1)%*(e|A™S .- SA™S|0)

= (0| SA™S .- SA™ S| 0),

where (my,...,m;) is the continued fraction ex-

pansion of n/m (compare Section 4). Consider
X(mt, e ,ml) == SATTL:S i SAmls

as a word in S and A. We call words of the form
SA~SA* for o even and those of the form

SA“SAP ... SAPSATS AR

for o,y odd, B; even, and 0 < r nitial factors
if K # 0 and final factors if k = 0. A (final or
initial) factor of the form SA**SA* or of the form
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SA*SAPT ... SAPSAYSAF with v = o mod 4 is
called even, all other factors are called odd. One

can write X (my,---m;) uniquely as
I,---I,-F or
I,---1, - SA”S  with v odd, or

SA*SAP ... SAP'S  with o odd, B; even,

where the I; are initial factors and F' is a final
factor.

Lemma D.1. Let [n/m| > 1. We have

Z/(Mg(—n/m),3) = (0| X (my,---my)|0) =0

if and only if X(my,...,my) = I,---1I, - F, where
the I; are initial factors, F is a final factor and
the number of odd factors is odd.

Proof. Use the fact that A* = 1 and (SA?)* = —1 to
check that even factors are diagonal matrices with
both diagonal entries different from zero, while odd
factors are off-diagonal matrices with both off di-
agonal entries different from zero (since their de-
terminant is nonzero). The lemma follows from the

equations
1 1—¢ —1—14
SAS_i(—l—z’ 1—1)’
1 1447 —141
3 pa—
SAS_Q(—l—i—i 1—|—i>’
and

SA*SAPr...SAP S
= SA*SAP ... AP GA* GG A

= DSA*" "

with D diagonal. For all odd « all entries of SA*~¢
are nonzero. i

When comparing Lemma D.1 with Proposition C.2
it turns out that in the case of Dehn surgery on
the figure-eight knot Proposition C.2 gives exactly
the surgery coefficients for which Z;(Mg(—n/m), 3)
vanishes. With the preceding notation:

Lemma D.2. Let (my, ..., my) be the continued frac-
tion expansion of n/m, with |n/m| > 1, and let

X(my,...,my) be
(iyI,---1I,-F or
(ii)I,---1,- SAYS  with vy odd, or

(i) SA*SAP ... SAPS  with « odd, (3; even.
Then n/m = 4k/(2l + 1) if and only if case (i)

occurs with an even number of odd factors, and
n/m = (4k + 2)/(2l + 1) if and only if case (i)

occurs with an odd number of odd factors.

Proof. We use induction on the length ¢ of the con-
tinued fraction expansion. Write

n o 1
m e 1
my_ 1
_ E
1
- mt - 1 )
mi_1 — 1
1
Mgy — —

so that (mg,...,m;) is the continued fraction ex-
pansion of ¢q. Notice that the denominator and
numerator of a number described by a continued
fraction expansion both change additively by mul-
tiples of 4 if the coefficients are changed additively
by multiples of 4. Then check that if SA*SA* or
SA¥SAP .. SAP1SAYS is an even or odd factor
and ¢ = 2a/(2l + 1), then

O[——l or o — 1

Z—g ﬁr—mil

is of the form 2a'/(2l" + 1) with 2¢’ = 2a mod 4
and 24’ = 2a + 2 mod 4, respectively. Analo-
gously a final factor represents a fraction of the
form 2b/(20 + 1) with b even or odd according to

whether the final factor is even or odd. In case (ii)
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the induction starts with ¢ = o = odd. The induc-
tion step of adding as above the coefficients of an
initial factor to the coefficients of ¢ will change a
fraction ¢ of the form odd/something into a ¢’ of
the same form.

Finally a direct calculation shows that the frac-
tion represented by (v, 2,2,2,...) equals (a(k+1)—
k)/(k + 1), where k is the number of 2’s. If « is
odd, then so is a(k+1) — k. This takes care of case
(iii), concluding the proof of the lemma. O

Completely analogous results hold for |n/m| < 1.

Then

Z(Ms(=n/m),3)
=eV(0]A™SA™-"...SA™S|0),

where now (my,...,my) is the continued fraction

expansion for |Z|. Due to the above form of A
when r = 3, we have

(0] A™ SA™ ... SA™S|0)

=(0]SA™-1...SA™S|0).
Therefore (m;_i,...,m;) is the continued fraction
expansion of
n|
my|n| — |m|

with |n| > my|n| — |m| > 0. Thus n/m is of the
form 4k /odd, (4k+2)/odd or odd/something if and
only if |n|/(m|n| — |m|) is.

FINAL NOTE

After the submission of this paper, R. J. Harring-
ton’s Ph.D. thesis [Harrington 1996] became avail-
able. It contains results overlapping to a certain
degree with ours, although his focus is different.
He compares directly the predicted and exact val-
ues of Z(M, k) for large k for M obtained by n/1-
surgery from the figure-eight knot for some n. For
these n he calculates also the spectral flow and Rei-
demeister torsion that appear in the asymptotic
formula for Z (M, k). Reidemeister torsions for flat
connections of manifolds obtained by n/m-surgery
on the figure-eight knot were also computed by

Ch. Haase in his Diplomarbeit [Haase 1997]. In
contrast our strategy was to determine the Chern-
Simons invariants from Z(M, k). The method we
use is Fourier analysis as suggested by the asymp-
totic formula. The same technique also allows the
determination of the Reidemeister torsions and the
spectral flows. So far agreement for the Reidemeis-
ter torsion is again excellent.
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