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Snap is a computer program for computing arithmetic invariants

of hyperbolic 3-manifolds, built on Jeff Weeks’s SnapPea and

the number theory package Pari. Its approach is to compute

the hyperbolic structure to very high precision, and use this to

find an exact description of the structure. Then the correctness

of the hyperbolic structure can be verified, and the arithmetic

invariants of Neumann and Reid can be computed. Snap also

computes high precision numerical invariants such as volume,

Chern–Simons invariant, eta invariant, and the Borel regulator.

1. INTRODUCTIONThis paper describes Snap, a computer program forcomputing arithmetic invariants of hyperbolic three-manifolds. Snap is based on the program Snap-Pea [Weeks 1993] and the number theory packagePari [Batut et al. 1998]. SnapPea computes the hy-perbolic structure on a �nite volume hyperbolic 3-manifold numerically (from its topology) and uses itto compute much geometric information about themanifold. Snap's approach is to compute the hyper-bolic structure to very high precision, and use thisto �nd an exact description of the structure. Thenthe correctness of the hyperbolic structure can beveri�ed, and the arithmetic invariants of Neumannand Reid [1992a] can be computed. Snap also com-putes high precision numerical invariants such asvolume, Chern{Simons invariant, eta invariant, andthe Borel regulator. As sources of examples bothSnap and SnapPea include the Hildebrand{Weekscensus of all 4,815 orientable cusped manifolds tri-angulated by up to seven ideal simplices [Hildebrandand Weeks 1989], and the Hodgson{Weeks census of11,031 low-volume closed orientable manifolds hav-ing no geodesic of length less than 0:3 [Hodgson andWeeks � 2000]. (SnapPea also includes a census ofnonorientable cusped manifolds.)Snap is available electronically; see the Web pagehttp://www.ms.unimelb.edu.au/~snap.
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2. IDEAL TRIANGULATIONSSnapPea and Snap represent an orientable hyper-bolic 3-manifold of �nite volume as a set of idealtetrahedra in H 3 with face pairings. Identifying thesphere at in�nity of H 3 with ~C = C [ f1g, theorientation preserving congruence class of a tetra-hedron is given by the cross ratio of its vertices; ori-ented tetrahedra, whose vertices are numbered con-sistently with the orientation, correspond to crossratios with positive imaginary part. After choosingorderings for the vertices of each tetrahedron, thetetrahedra are given by complex numbersfz1; : : : ; zng;called their shape parameters, lying in the upper halfplane. Changing the vertex ordering of a tetrahe-dron may replace zj by 1� z�1j or (1� zj)�1.For the result of gluing these tetrahedra to rep-resent a hyperbolic 3-manifold, the following gluingconditions must be satis�ed:
1. Around each edge of the complex, the sum of thedihedral angles must be 2�, and the edge mustbe glued to itself without translation.
2. Each cusp (neighborhood of an ideal vertex) musteither (i) have a horospherical torus cross sec-tion, or (ii) admit a compacti�cation by addinga closed geodesic around which there is an angleof 2� and no translation.
Remark 2.1. A probably more familiar situation isthat of gluing the faces of a compact polytope toobtain a closed geometric manifold. In this casethe translation condition is unnecessary since it isautomatically satis�ed.If every cusp has a horospherical torus cross section,the glued complex is a complete hyperbolic 3-mani-fold. If some cusps require compacti�cation, the re-sult is a Dehn �lling of the glued complex. Idealtriangulations are described in much more detail in[Thurston 1979].The above conditions are equivalent to a set ofequations in the zi which we shall describe shortly.First we need to de�ne a kind of \complex dihedralangle" for the edges of an ideal tetrahedron. Foreach edge of an ideal tetrahedron, there is a loxo-dromic transformation, having the edge as axis, andtaking one of the two adjacent faces onto the other.

The logarithmic edge parameter of the edge is r+ i�,where r is the translation distance of the transfor-mation, and � is the angle through which it rotates.For oriented tetrahedra, with consistently numberedvertices, we can take � 2 (0; �). The correspondingedge parameter is er+i�. If the tetrahedron has shapeparameter z, each edge parameter is one ofz; 1� z�1; or (1� z)�1:Condition 1 is that for each edge of the 3{complexthe sum of the logarithmic edge parameters is 2�i.Condition 2 can be similarly expressed; the exactset of terms which are added depends on whetherthe cusp is complete or �lled. We call these the log-arithmic gluing equations of the ideal triangulation.When SnapPea is given a 3-manifold topologi-cally, as a set of face pairings for ideal tetrahedra,and perhaps also Dehn �llings for some of the cusps,it attempts to solve the logarithmic gluing equationsnumerically. A solution is called geometric if all thezi lie in the upper half plane. Corresponding idealtetrahedra can then be glued together, along some ofthe faces, to give an ideal fundamental polyhedronfor the manifold; the remaining face pairings give afaithful representation of its fundamental group intoPSL(2; C ).If not all of the zi lie in the upper half plane thesolution may still have a meaningful interpretation.Regard any quadruple of points in ~C as a tetrahe-dron. Call it geometric if the cross ratio lies in theupper half plane, at if it is real and not equal to 0 or1, degenerate if it is 0; 1, 1 or unde�ned (i.e., if twoor more vertices coincide), and negatively orientedif it is in the lower half plane. A solution withoutdegenerate tetrahedra certainly gives a representa-tion of the fundamental group of the manifold intoPSL(2; C ). However, the representation need not befaithful and may not have a discrete image.It follows from the existence of canonical ideal celldecompositions of �nite volume hyperbolic mani-folds [Epstein and Penner 1988] that every such 3-manifold can be represented using only geometricand at tetrahedra: decompose each cell into tetra-hedra, then match di�ering face triangulations usingat tetrahedra (if necessary). It is conjectured thatin fact only geometric tetrahedra are needed in thiscase.



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 129For closed hyperbolic 3-manifolds the situation isless clear. Certainly every such manifold can be ob-tained topologically by Dehn �lling a suitable hy-perbolic link complement. This means that any so-lution of the gluing equations will give a representa-tion of the fundamental group into PSL(2; C ). Un-less, however, the solution is geometric, it cannotbe guaranteed that the representation is faithful ordiscrete.What is important, for present purposes, is thatthe gluing conditions can also be given as a setof polynomial equations, with rational coe�cients,in the zi. The gluing equations are obtained fromthe logarithmic gluing equations by exponentiation.These equations state that certain products of edgeparameters (of the form zi, 1� z�1i , and (1� zi)�1)equal 1. Multiplying through by suitable powers ofzi and (1�zi) we obtain polynomial equations. Notethat the gluing equations only specify that the anglesum, around each edge or �lled cusp, is a multipleof 2�. In terms of numerical computation however,it is straightforward to check if a solution actuallygives an angle sum of precisely 2�.Mostow{Prasad rigidity (see [Mostow 1973]) im-plies that the solution set of the gluing equationsis 0-dimensional. It follows that the zi in any so-lution are algebraic numbers: compare [Macbeath1983, proof of Theorem 4.1]. For example, the com-plement in S3 of the �gure 8 knot has an ideal tri-angulation by two tetrahedra with shape parameterz1 = z2 = 12 + p32 i:This is actually the shape parameter of a regularideal tetrahedron.We can also assume that the entries of a set ofPSL(2; C ) matrices for the fundamental group arealgebraic: position the fundamental polyhedron sothat one tetrahedron has three of its vertices at 0, 1,and 1. The remaining vertices will be algebraic, aswill entries of the face pairing transformation ma-trices. The other matrices, being products of these,will also have algebraic entries.
3. COMPUTATION WITH ALGEBRAIC NUMBERSIn order to give an exact representation of a 3-mani-fold we clearly need a way to represent algebraicnumbers. We give a brief discussion, referring to

[Cohen 1993; Pohst 1993] for more details. The mostobvious way to represent an algebraic number is togive a polynomial with rational coe�cients, whoseroots include the number in question, and somehowspecify which root is intended. The latter can bedone by giving the root numerically to su�cient pre-cision. The roots can also be sorted and given bynumber.Carrying out the �eld operations with algebraicnumbers given in this way is slightly non-trivial: a\resultant trick" enables us, given two numbers, tocompute a polynomial whose roots include the sumof the two numbers. We must then determine whichroot is the sum, perhaps by computing the latter nu-merically to su�cient precision. Di�erences, prod-ucts and quotients can be similarly computed.In fact we do not use quite this approach. Wespecify one number, � say, in the above manner,then represent other numbers as Q -polynomials in� . Let f be the minimum polynomial of � and letn be the degree of f . Then the �eld Q (�) is a de-gree n extension of Q , and each element of Q (�) hasa unique representation as a Q -polynomial in � ofdegree at most n� 1.Field operations in Q (�) are now very easy: sumand di�erence computations are obvious; a productcan be computed directly then reduced to a poly-nomial of degree at most n � 1 by subtracting asuitable multiple of f(�). A quotient g1(�)=g2(�) iscomputed by using the Euclidean algorithm to �ndpolynomials a; b such that af + bg2 = 1, whenceb(�) = g2(�)�1:Pari [Batut et al. 1998] implements this kind ofarithmetic: the expression Mod(g; f), called in Paria polymod, represents g(�) where � is a root of f .Note that it is not necessary to specify which rootis chosen to do arithmetic with polymods, since achange of root is a �eld isomorphism.Of course if we want to add �; � belonging to dif-ferent number �elds we must either fall back on the�rst approach, or �nd a new primitive element, �such that Q (�) � Q (�; �);and re-express both � and � in terms of �. Forthe most part, however, our approach is to �rst �nda number �eld which contains all the numbers we



130 Experimental Mathematics, Vol. 9 (2000), No. 1are interested in and then carry out the requiredcomputations inside this �eld.Our aim then, given a 3-manifold with shape pa-rameters fz1; : : : ; zng, is to �nd an irreducible poly-nomial f 2 Z[x] with root � such thatz1; : : : ; zn 2 Q (�):In outline what we do is this:
1. compute each zi to high precision (typically some50 decimal places);
2. use the LLL algorithm [Lenstra et al. 1982] toguess a polynomial in Z[x] vanishing on each zi;
3. check if all the zi belong to the �eld generated byone of them, also using the LLL algorithm.Step 1 is done by Newton's method, using the solu-tion provided by SnapPea as a starting point. Usu-ally the check in Step 3 is successful. When it is notwe try small rational linear combinations of the zito �nd a primitive element for Q (z1; : : : ; zn). A sidee�ect of Step 3 is that we obtain an expression foreach of the zi in terms of the primitive element.Since the LLL algorithm is fundamental we de-scribe a little further what it is and how it is appliedin Steps 2 and 3 above. Most of what follows is de-scribed much more precisely in [Cohen 1993; Pohst1993].The LLL algorithm is an algorithm which �nds a\good" basis for an integer lattice with respect toa given inner product. A good basis is one whichconsists of short and approximately orthogonal ele-ments. Roughly, how it does this is to apply Gram{Schmidt \orthogonalization" to the starting basis,but modi�ed so that only nearest integer multiplesof basis elements are added or subtracted. When-ever an element is obtained which is signi�cantlyshorter than the preceeding ones, it is moved in frontof them, and Gram{Schmidt is started again fromthere. The resulting basis always contains elementsnot too far from being shortest in the lattice. Weemphasize that the result is dependent on the innerproduct : the lattice in our case is always simply theinteger lattice Zn; it is by varying the inner productthat we obtain useful results.Now suppose that z approximates an algebraicnumber � . To �nd an integer polynomial, of degreeat most m, vanishing on � we look for one which issmall on z. In fact we use LLL to �nd a short vector

in Zm+1 with respect to the inner product given bythe quadratic form1(a0; : : : ; am) 7!a20 + � � �+ a2m+N ja0+ a1z+ a2z2 + � � �+ amzmj2;where N is a large number, around 101:5d if z is givento d decimal places. If a0+a1z+a2z2+ � � �+amzm isnot zero, to approximately the precision to which zis known, the term N ja0+a1z+a2z2+ � � �+amzmj2will make (a0; : : : ; an) long. Thus if LLL �nds anyshort vectors, it has most likely found (a0; : : : ; am)such that a0 + a1� + a2� 2 + � � � + am�m = 0. Byfactoring this polynomial, and identifying which ir-reducible factor has � as a root, we can determine� 's minimum polynomial. Of course, if � 's mini-mum polynomial has degree greater than m, thiswhole process is doomed to failure. Assuming how-ever that we have chosen m su�ciently large, thisapplication of LLL completes Step 2 above.For Step 3 we need to check if �, algebraic, ap-proximated by w, belongs to Q (�). We use the LLLalgorithm to �nd a small vector in Zn+1 with respectto the inner product given by the quadratic form(a; a0; : : : ; an�1) 7!a2+a20+� � �+a2n�1+N jaw+a0+a1z+� � �+an�1zn�1j2;where N is as before and n is the degree of � 's min-imum polynomial. As before, if LLL �nds a shortvector, it most likely has found (a; a0; : : : ; an�1) suchthat a�+a0+a1�+a2� 2+� � �+an�1�n�1 = 0. Since nis the degree of � 's minimum polynomial, a shouldnot be zero; so we obtain an expression for � interms of � . On the other hand, if aw + a0 + a1z +a2z2 + � � � + an�1zn�1 is not zero, to approximatelythe precision to which z and w are known, it is likelythat � 62 Q (�). Re�nements of these procedures canbe found in [Cohen 1993; Pohst 1993].We can give a rough analysis of the above useof the LLL algorithm. Denote by b(a0; : : : ; am) theabove quadratic form that is reduced by the LLL al-gorithm to �nd a good integer polynomial for z. One1 A slightly di�erent quadratic form is actually used, namely thea20 term is omitted if z is real and the a20 and a21 terms are omittedif z is nonreal. The reason is pragmatic: LLL initializes by doing atrue Gram{Schmidt reduction of the form, and the resulting basis-change is the same to within machine precision for the modi�edform, but is given by a much simpler formula.



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 131can easily check that this bilinear form has determi-nant approximately equal to N or N 2 according asz is real or non-real. (In this discussion, \approx-imately equal to" will mean \equal to a boundedmultiple of". The actual determinants are very closeto N and (Im zN)2 respectively.) In our applicationsz is complex, but we will analyze the algorithm with-out this assumption, so let k = 1 or 2 according as zis real or non-real. Putting N = 10P , we can writedet(b) � 10kP :Now crude estimates suggest that a \random" quad-ratic form of determinant D on Zm+1 will have min-imum on Zm+1�f0g of approximately D1=(m+1). Inour case,minfb(a0; : : : ; am) : (a0; : : : ; am) 2 Zm+1 � f0gg� 10kP=(m+1):Since the coe�cients ai contribute their squares tothis minimal b(a0; : : : ; am), they will be bounded byapproximately 10kP=(2m+2). Thus if we expect co-e�cients bounded by 10c we need c less than kP=(2m+ 2) and henceP � 2(m+ 1)c=kor larger. Conversely, once P is chosen, c is boundedby about Pk=2(m+ 1).The minimal b(a0; : : : ; am) also includes a contri-bution 10P l2 withl = a0 + a1z + � � �+ amzm;so we also have 10P jlj2 � 10kP=(m+1) sojlj � 10P (k�m�1)=2(m+1):This is expected even if the original � that z ap-proximates does not satisfy an integer polynomialin degree m. Thus to detect that the polynomialthat we �nd is a good one, we should use somewhatmore than P (m + 1 � k)=2(m + 1) � P=2 digits ofprecision.Snap adjusts P so that it uses d = 2P=3 digits ofprecision. Since k = 2 in Snap's applications, thismeans we can hope Snap will �nd polynomials withcoe�cients up to about 103d=2(m+1). Snap's default(which can be changed at any time) is to work withdegree 16 and precision d = 50, so we can hope to�nd polynomials with coe�cients bounded by about104:5, and expect to �nd them if the coe�cients aresigni�cantly smaller than this.

We can roughly quantify the likelihood of �nding\false positives" in these applications of LLL. Givenn random complex numbers �1; : : : ; �n in the unitdisk, the number of complex numbers of the forma1�1 + � � �+ an�nin the unit disk with jaij � 10c is approximately10(n�2)c, so the total area covered by a disk of radius10�p around each will be approximately 10(n�2)c�2p�if p is signi�cantly larger than (n � 2)c. Thus theprobability of one of these linear combinations a1�1+� � � + an�n being \accidentally" within 10�p of 0 isabout 10(n�2)c�2p. With a machine precision of 10�dand coe�cients up to 10c we should take p = d� c,so the likelihood of a false positive becomes about10nc�2d. With Snap's defaults (n = 17, d = 50)described above and c = 4:5, this is about 10�23.As we increase both precision and degree, the run-ning time of the algorithm goes up. We were unableto �nd any estimates of the expected running time ofthe LLL algorithm in the literature, but experimentsuggests that typical running times using Pari 2.03'simplementation on a Sparc 5 machine are given ap-proximately, in seconds, by3:7� 10�7precision2:6degree2:7;for degrees between 10 and 20 and precisions be-tween 80 and 180.Finally, note that whatever choice we make for nin Step 2, it is the degree of the minimum polyno-mial found which governs n in Step 3: often this willbe smaller and the LLL computations in Step 3 willrun correspondingly faster.Snap follows the procedure outlined above to �nda number �eld containing all the shape parametersof a given 3-manifold, and an exact expression foreach shape in terms of a primitive element for that�eld. Snap's \verify" function then substitutes theexact shapes back into the gluing equations to checkthat they are satis�ed. Here is sample output for the�gure 8 knot complement.Shapes (Numeric)shape(1) = 0.50000000000000000000000 +0.86602540378443864676372*ishape(2) = 0.50000000000000000000000 +0.86602540378443864676372*i



132 Experimental Mathematics, Vol. 9 (2000), No. 1Shape Fieldmin poly: x^2 - x + 1root number: 1numeric value of root:0.50000000000000000000000 +0.86602540378443864676372*iShapes (Exact)shape(1) = x 1.33737 E-67shape(2) = x 5.24561 E-68Gluing EquationsMeridians:1, 0; 0, 1; 0 -> 1 : 9.27301 E-68Longitudes:0, -2; 0, 4; 2 -> 1 : 0.E-57Edges:2, -1; -1, 2; 0 -> 1 : 1.29822 E-67-2, 1; 1, -2; 0 -> 1 : 1.29822 E-67The root number says which root of the minimumpolynomial is used as a primitive element for the�eld. The numbering scheme used will be describedwhen we discuss canonical representations of num-ber �elds in C . The small number following each ex-act shape (e.g., 1.33737 E-67) gives the accuracyof the originally computed numerical shape. It isincluded only as a sanity check.Finally we have the gluing equations. As we havealready noted, the gluing equations come down tothe requirement that certain products of terms ofthe form zi, 1 � z�1i and (1 � zi)�1 give 1. This isequivalent to certain products of powers of zi, 1� ziand �1, giving 1: see for example [Neumann andZagier 1985]. Reading each gluing equation horizon-tally we have powers of z1; : : : ; zn, powers of 1� z1,. . . , 1 � zn, and the power of �1, followed by theirproduct in exact arithmetic. This is followed aftera colon by the precision to which the logarithmicgluing equation has been veri�ed. Since the gluingequation is exactly correct, the logarithmic gluingequation is known to be correct up to an integermultiple of 2�i, so it would su�ce to verify it tomuch lower precision than is actually done.Since this output shows that the logarithmic glu-ing equations have been veri�ed exactly, and sincethe shape parameters were in the upper half plane,signifying correctly oriented simplices, it proves the

existence of a hyperbolic structure with an ideal tri-angulation with the given simplex shapes.The meridian and longitude referred to in theprintout are curves, in a cross section of the cusp,which give a basis for the �rst homology group ofthat cross section. Typically SnapPea uses shortestcurve and next shortest independent curve, in theEuclidean structure on a horospherical cusp crosssection, as the meridian and longitude respectively.(For knot and link complements, SnapPea uses theconventional terminology: where a meridian meansa curve bounding a disk transverse to the knot orlink, while a longitude means a curve that runs par-allel to the knot or to a component of the link and isnull-homologous in S3 minus the knot or link com-ponent.) Corresponding to each meridian or longi-tude is a gluing equation for the cusped hyperbolicstructure. The gluing equations for a Dehn �lledmanifold include one equation for each �lled cusp,corresponding to the �lling curves.
4. COMMENSURABILITY INVARIANTSTwo �nite volume, orientable, hyperbolic 3-mani-folds are said to be commensurable if they have acommon �nite-sheeted cover. Subgroups �;�0 �PSL(2; C ) are commensurable if there exists g 2PSL(2; C ) such that g�1�g\�0 is a �nite index sub-group of both g�1�g and �0. Therefore, by Mostowrigidity orientable hyperbolic 3-manifolds of �nitevolume are commensurable if and only if their fun-damental groups are commensurable as subgroupsof PSL(2; C ).
4A. The Invariant Trace FieldLet � be the group of covering transformations ofsuch a manifold, and let ~� denote the preimage of �in SL(2; C ). The traces of elements of ~� generate anumber �eld Q (tr �) called the trace �eld of �. ThatQ (tr �) is a number �eld follows from the observa-tion that � is �nitely generated and, by conjugatingsuitably (as described at the end of Section 2) we canassume that the generators have algebraic entries.The trace �eld Q (tr �) is almost, but not quite, acommensurability invariant of �: see [Reid 1990].The invariant trace �eld k(�) of � may be de�nedas the intersection of all the �elds Q (tr �0), as �0varies over all �nite index subgroups of �. De�ned



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 133in this way it is clear that k(�) is a commensurabilityinvariant of �. What is less clear is that it is evernon-trivial. We have, however, the following.
Theorem 4.1 [Reid 1990].k(�) = Q (ftr2() j  2 �g) = Q (tr �(2));where �(2) is the �nite index subgroup of � generatedby squares f2 j  2 �g.We have seen how it is possible, given a set of gener-ators for a �eld, to guess a primitive element for that�eld along with its corresponding minimum polyno-mial. In order to compute the trace and invarianttrace �elds of � we must �nd �nite sets of generatorsfor the two �elds.
Theorem 4.2. Let ~� � SL(2; C ) be �nitely generatedby fg1; : : : ; gng. The trace, tr(gi1 : : : gik ), of an el-ement of ~� can be expressed as a polynomial withrational coe�cients in the traces: tr(gi); 1 � i � n,tr(gigj); 1 � i < j � n, and (if n > 2) the traceof one triple product of generators, e.g . tr(g1g2g3).Also, tr(gi1 : : : gik) is an algebraic integer if eachtr(gi), for 1 � i � n, and each tr(gigj), for 1 �i < j � n, is an algebraic integer .
Proof. For the trace relations used in the follow-ing, see [Magnus 1980]. Let K be the �eld gen-erated over Q by the traces tr(gi); 1 � i � n, andtr(gigj); 1 � i < j � n. Let Pijk = tr(gigjgk) +tr(gigkgj) and Qijk = tr(gigjgk): tr(gigkgj). Thentr(gigjgk) and tr(gigkgj) are the roots of z2�Pijkz+Qijk = 0. Fricke's Lemma [Magnus 1980] impliesthat Pijk and Qijk are integer polynomials in thetr(gi) and tr(gigj), hence they are in K. Writing�(gi; gj ; gk) for the discriminant P 2ijk � 4Qijk it isclear that for any extension K1 of K, tr(gigjgk) 2K1, if and only if both tr(gigjgk) and tr(gigkgj) 2K1, if and only if p�(gi; gj ; gk) 2 K1.By [Magnus 1980, Lemma 2.3], for any i; j; k andi0; j0; k0 in f1; : : : ; ng,q�(gi; gj ; gk) �q�(gi0 ; gj0 ; gk0) 2 K:Thereforeq�(gi; gj ; gk) 2 K1 (=) q�(gi0 ; gj0 ; gk0) 2 K1:If we now put K1 = K(tr(g1g2g3)) it follows fromthe above observations that tr(gigjgk) 2 K1 for alli; j; k in 1; : : : ; n.

We show next, by induction on k � 3, that K1contains the traces of all k{fold products of the gen-erators gi. We have just shown that this is so fork = 3. Suppose then that k > 3 and K1 containsthe traces of all (k�1){fold products of generators.Then for each product g0 = gi1 : : : gik�2 , K1 containsall traces, and all traces of products of pairs, of el-ements in the set fg1; : : : ; gn; g0g. Moreover it con-tains at least one triple product, namely tr(g1g2g3).By the above argument it follows that K1 containsthe traces of all triple products of elements of thisset. In particular, K1 contains the trace of g0gigj foreach g0 as above, and i; j in f1; : : : ; ng. Since theseare all the k{fold products of the gi, this proves the�rst statement.Finally, if the tr(gi) and tr(gigj) are all algebraicintegers, Pijk and Qijk are also. Therefore tr(gigjgk)and tr(gigkgj), being roots of a monic polynomialwith algebraic integer coe�cients, are again integral.The same induction argument then shows that alltraces of k{fold products of the gi are in the ring ofintegers of K1. �Theorem 4.2 enables us to compute the trace �eldof � = hg1; : : : ; gni. There is no particularly obvi-ous set of generators for �(2) which we can use tocompute the invariant trace �eld of �. Fortunately,Corollary 3.2 of [Hilden et al. 1992] tells us thatQ (tr �(2)) = Q (tr �SQ) where �SQ = hg21 ; : : : ; g2ni, aslong as tr(gi) 6= 0, for i = 1; : : : ; n.Snap computes trace �elds and invariant trace�elds in much the same way that it computes a �eldcontaining all the shape parameters. It �rst com-putes high precision numeric expressions for a setof generators for the group of covering transforma-tions of a manifold. Then it uses LLL to �nd aprimitive element in terms of which the appropriateset of traces can be expressed.For example: (6; 1){Dehn �lling on the �gure 8knot complement yields a closed hyperbolic 3-mani-fold with volume 1:284485300468 : : : . Its group ofcovering transformations is hg1; g2i, where g1 and g2are given respectively by��1:135368+0:572291i 0:00:702328+0:354014i �0:702328� 0:354014i � ;��1:226699+1:467712i 2:689343+1:705870i�0:265154+0:168189i 0:0 � :



134 Experimental Mathematics, Vol. 9 (2000), No. 1Snap prints the invariant trace �eld as follows:Invariant trace fieldminumum polynomial: x^3 + 2*x - 1root number: 2numeric value of root:-0.2266988257582018 +1.467711508710224*isignature: [1, 1]discriminant: -59...It also gives exact expressions for the traces used togenerate this �eld:Invariant trace field generatorstr(g1^2) = Mod(-x^2 - x - 1, x^3 + 2*x - 1)tr(g2^2) = Mod(x^2 - 2*x - 1, x^3 + 2*x - 1)tr(g1^2g2^2) = Mod(-x + 2, x^3 + 2*x - 1)This is all very well but there is not much point incomputing invariants, like the invariant trace �eld,if we cannot compare two and decide whether theyare the same. Simple invariants of a number �eldinclude its degree (dimension over Q ), which is equalto the degree of the minimum polynomial of anyprimitive element, and its signature (r1; r2), wherer1 is the number of real roots, and r2 is the numberof conjugate pairs of non-real roots of a minimumpolynomial.We also have the discriminant, de�ned as follows.The algebraic integers of a number �eld Q (�) forma free Z{submodule of Q (�) of rank [Q (�) : Q ]. Thebilinear map (x; y) 7! tr(xy) gives a nondegenerateinner product on Q (�) as a Q -vector space. Givenany basis of the ring of integers we form the matrixof inner products of basis elements, taken pairwise.The determinant of this is in Z and is independentof the choice of basis. It is called the discriminantof the number �eld.In fact we can construct a canonical minimumpolynomial which is a complete isomorphism invari-ant for number �elds. The so-called T2 norm of anumber �eld is given by the the inner product(x; y) 7! nXi=1 �i(x)�i(y);where �1; : : : ; �n are the embeddings of the num-ber �eld Q (�) into C , and the bar denotes ordinarycomplex conjugation. This gives a positive de�nite

inner product on Q (�), and we can enumerate in-tegers of Q (�) in order of their T2 norm. The setof integers of smallest norm that generate Q (�) iscanonical. Their minimum polynomials include onewhich is lexicographically �rst, and this serves as acanonical minimum polynomial. See [Cohen 1993]for further discussion.The trace �elds we compute are not just abstractnumber �elds, they are actually sub�elds of C . Com-plex conjugate sub�elds arise from complex conju-gate representations in PSL(2; C ) of the same funda-mental group, and just correspond to reversing theorientation of a hyperbolic 3-manifold. Otherwisedi�erent sub�elds mean essentially di�erent valuesof the invariant. Since several roots of the canonicalminimum polynomial might generate the same sub-�eld of C , we sort the roots into some �xed orderand take the �rst which gives the required sub�eld.This gives us a canonical root number for the sub-�eld.2For example: in [Hodgson and Weeks � 2000]the closed hyperbolic 3-manifolds m010(�1; 3) ands594(�4; 3) have isomorphic invariant trace �elds,with canonical minimum polynomial x4 + x2 � x +1, but they have di�erent canonical root numbers,namely 1 and 2 respectively. Therefore their invari-ant trace �elds di�er and they are not commensu-rable.
4B. The Invariant Quaternion AlgebraLet K be a �eld of characteristic zero. A quater-nion algebra over K is a simple central algebra ofdimension 4 over K. These are discussed in detailin [Vign�eras 1980]. Let (a; b) be a pair of nonzero el-ements of K. Up to isomorphism, there is a uniquequaternion algebra A containing elements i; j satis-fying i2 = a, j2 = b, and ij = �ji, and such thatf1; i; j; ijg form a basis for A as a K-vector space.Such a pair (a; b) is called a Hilbert symbol for A.2 In fact, we make an ordered list of the real roots followed by thecomplex roots having positive imaginary part; these are arrangedin increasing order of real part and increasing absolute value ofimaginary part (if real parts are equal). We then try each real rootin turn (if the �eld is real) or each complex root followed by itscomplex conjugate (if the �eld is non-real). Finally, we assign theroot a number: if the root has non-negative real part we give itsposition in the list, otherwise we give the negative of the numberfor its conjugate.



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 135Every quaternion algebra over K has a Hilbert sym-bol, but the symbol is far from being unique.A is a division algebra if and only if the equationaX2 + bY 2 � Z2 = 0has no non-trivial solutions for X;Y;Z 2 K. IfA is not a division algebra, it is isomorphic withM(2;K), the algebra of all 2 by 2 matrices over K(and conversely, the latter is not a division algebrafor any K). Over R there are just two quaternionalgebras: the \usual" Hamiltonian quaternion al-gebra, which has Hilbert symbol (�1;�1) and is adivision algebra, and M(2;R ). Over C there is justM(2; C ).As before, let M = H 3=� be a �nite volume,orientable hyperbolic 3-manifold. Denote by ~�(2)the preimage in SL(2; C ) of the group generated bysquares of elements of � � PSL(2; C ). The invariantquaternion algebra A(�) of �, is the k{subalgebra ofM(2; C ) generated by ~�(2), where k denotes the in-variant trace �eld of �.
Theorem 4.3 [Hilden et al. 1992]. Let g; h be non-commuting elements of �(2) with tr(g) 6= �2. ThenA(�) has Hilbert symbol(tr(g2)� 2; tr([g; h]) � 2);where [g; h] denotes the commutator ghg�1h�1.Snap computes a Hilbert symbol for the invariantquaternion algebra of a 3-manifold by �nding g; h 2�(2) as above, and computing exact expressions fortr(g2)� 2 and tr([g; h]) � 2. The non-uniqueness ofthe Hilbert symbol means that this is not, by itself,enough to tell us whether or not two 3-manifoldshave the same quaternion algebra.The remainder of this section describes how theclassi�cation of quaternion algebras over a number�eld gives a complete invariant which we can com-pute. We �x a number �eld K, and quaternion al-gebra A over K with Hilbert symbol (a; b).
Theorem 4.4 [Vign�eras 1980]. Let K and A be asabove. The isomorphism class of A is determinedby the (�nite) set of real and �nite places of K atwhich A is rami�ed . The total number of places,real and �nite, at which A rami�es, is even.Recall that a place of a number �eld K is an equiv-alence class of absolute values j � j : K ! R . A place

is called real or complex if the completion of K withrespect to j � j is isomorphic with R or C , respec-tively. The real places of K are in one-to-one cor-respondence with embeddings � : K ! R ; likewisethe complex places of K correspond to conjugatepairs of non-real embeddings � : K ! C .A place is called �nite if it arises from a valuationv : K� = K � f0g ! Z, i.e., there is a real number� 2 (0; 1) such that jxj = �v(x) for all x 2 K�. Thesevaluations, in turn, are in one-to-one correspondencewith prime ideals of ZK , the ring of integers of K:if p is a prime ideal of ZK , then for each x 2 K�,let vp(x) = r where r is the unique integer such thatx 2 pr � pr+1.For a �xed place of K, let � : K ! K denote theembedding of K into its completion. Then A
�K isa quaternion algebra overK. A is said to be rami�edat � if A
�K is a division algebra. In general, overa complete �eld with absolute value (e.g. R ), thereexists at most one quaternion division algebra.Computing the real rami�cation of A is straight-forward: A 
� R has Hilbert symbol (�(a); �(b)).Therefore A is rami�ed at � if and only if both �(a)and �(b) are negative.For the remainder of this section we consider theproblem of computing the �nite rami�cation of A.Slightly di�erent notation is convenient. Let p � ZKbe a prime ideal and let Kp denote the correspond-ing completion of K. We regard K as a sub�eld ofKp, omitting any explicit mention of an embedding.Finally, we write Ap for A
Kp.
Proposition 4.5. Let K, A and (a; b) be as above. Letp 6 j 2 be a prime ideal of ZK . Then Ap is a divi-sion algebra if and only if none of a; b and �ab aresquares in Kp. If a; b and �ab all have even p-adicvaluation, at least one of them is a square.
Proof. See [Vign�eras 1980, Lemma II.1.10 and subse-quent table]. (Note that Vign�eras uses the notationfa; bg for our Hilbert symbol (a; b).) �This proposition has two useful consequences. First,that the �nite rami�cation of A is restricted to the�nite set of primes p dividing 2ab. Secondly, forprimes p not dividing 2, the question of whether Ais rami�ed reduces to determining whether certainc 2 K are squares in Kp. Proposition 4.7 settlesthis question for us. The proof uses Hensel's Lemma



136 Experimental Mathematics, Vol. 9 (2000), No. 1[Lang 1986, page 42], which is valid for any primep � ZK , and corresponding absolute value jxj =�vp(x). Here, ZK refers to the closure of ZK in Kp.
Lemma 4.6 (Hensel). Let f(X) be a polynomial inZK [X]. Let x0 be an element of ZK such thatjf(x0)j < jf 0(x0)2j;where f 0 denotes the formal derivative of f . Then fhas a root x in ZK such that jx� x0j < 1.
Proposition 4.7. For each c 2 K� and prime p �ZK there exists w 2 K� such that cw2 2 ZK andvp(cw2) 2 f0; 1g. Suppose now p 6 j 2. Then c isa square in Kp if and only if vp(cw2) = 0 and cw2projects to a square in the �nite �eld ZK=p.
Proof. Let w1 2 ZK be the denominator of c. Thencw21 2 ZK . By the Chinese Remainder Theorem, wecan �nd an element u 2 K� such that vp(u) = �1while vq(u) � 0 for all prime ideals q 6= p. Thenw = w1um, wherem is the integer part of vp(cw21)=2,has the required property.Let c0 = cw2. Let f(X) = X2 � c0. If vp(c0) = 0and c0 projects to a square in ZK=p we can lift asquare root to obtain x0 2 ZK such that f(x0) 2 pwhile f 0(x0) = 2x0 62 p. Lemma 4.6 then impliesthat c0 is a square in Kp.Conversely, if c0 = x2 for some x 2 Kp, vp(c0) = 0and x projects to a square root of the projection ofc0 in ZK=p. �We turn now to the case p j 2. Recall that Ap is a di-vision algebra if and only if the equation aX2+bY 2�Z2 = 0 has no non-trivial solution for X;Y;Z 2 Kp.Denote by e > 0 the p-adic valuation of 2, i.e.,e = vp(2), or equivalently, j2j = �e. (This e is in factthe rami�cation index of the �eld extension K=Q atp.) We omit the easy proof of the following lemma.
Lemma 4.8. Let X;X 0 2 Kp and suppose jXj � 1and jX �X 0j � �k for some non-negative integer k.Then jX2 �X 02j � �minfk+e;2kg.Multiplying a and b by suitable squares if necessary,by the �rst part of Proposition 4.7, we can assumea; b 2 ZK and vp(a); vp(b) 2 f0; 1g.
Proposition 4.9. Let a; b 2 ZK be such thatvp(a); vp(b) 2 f0; 1g:

Let R be a �nite set of representatives for the ringZK=pe+3, where e = vp(2). The equationaX2 + bY 2 � Z2 = 0 (4–1)has a solution for X;Y;Z 2 Kp, if and only if thereexist elements X 0; Y 0; Z 0 2 R such thatjaX 02 + bY 02 � Z 02j � �2e+3and maxfjX 0j; jY 0j; jZ 0jg = 1.
Proof. Let (X;Y;Z) be a solution of (4{1) in Kp.After multiplying through, if necessary, by a suitablepower of a uniformizing element � with vp(�) = 1,we can assume X;Y;Z 2 ZK andmaxfjXj; jY j; jZjg = 1:Since ZK is dense in ZK , and R is �e+3-dense inZK , we can choose X 0; Y 0; Z 0 2 R such that each ofjX � X 0j, jY � Y 0j, jZ � Z 0j is at most �e+3. ByLemma 4.8, jaX 02 + bY 02 � Z 02j � �2e+3.Conversely, letX 0; Y 0; Z 0 2 R be such that jaX 02+bY 02�Z 02j � �2e+3 and maxfjX 0j; jY 0j; jZ 0jg = 1. IfjX 0j = 1 then j2aX 0j � �e+1, and thereforejaX 02 + bY 02 � Z 02j < j2aX 0j2:Regarding aX 02 + bY 02 � Z 02 as a polynomial in X 0alone, by Lemma 4.6 there exists X 2 ZK such thataX2+bY 02�Z 02 = 0. The same argument applies ifjY 0j = 1 or jZ 0j = 1. Since at least one of the threecases must hold, the result follows. �Propositions 4.5, 4.7 and 4.9 reduce the task of com-puting the �nite rami�cation of a quaternion alge-bra over a number �eld to a �nite number of steps.We remark that the details of these computationsare readily handled by Pari. In particular, Pari hasfunctions for factoring algebraic numbers and ide-als into primes, and for computing valuations. Theuniformizing element and the element u, invoked inthe proof of Proposition 4.7, are constituent partsof Pari's way of representing a prime ideal (and arethus readily available).
Remark 4.10. For an invariant quaternion algebraA = A(�), the calculation of �nite rami�cation cansometimes be simpli�ed by using the following ob-servation from [Gehring et al. 1997]. Assume thatall traces of elements in ~� are algebraic integers,



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 137and let g; h be non-commuting loxodromic elementsof ~�(2). Then any prime p which rami�es the quater-nion algebra A must divide tr([g; h])�2, where [g; h]denotes the commutator ghg�1h�1.
4C. ArithmeticityFinally we describe the \arithmetic" constructionof Kleinian groups of �nite co-volume. Let A be aquaternion algebra over a number �eld K. The in-tegers of A, i.e., elements of A which have a monicminimum polynomial with integral coe�cients overK, do not in general form a subring of A. The anal-ogous role in A, to that of ZK in K, is now playedby an order of A. An order O of A is a rank 4ZK-submodule of the set of integers of A, contain-ing 1A, and closed as a subring of A. Orders alwaysexist but are not generally unique. The units O1 ofO form a multiplicative subgroup. For each real orcomplex place � of K, � induces a map of A into H ,M(2;R ) orM(2; C ). If K has precisely one complexplace, and every real place is rami�ed (i.e., maps Ainto H ), then the image of O1 in M(2; C ) is a dis-crete subgroup of SL(2; C ) of �nite co-volume. Thisgroup is said to be derived from a quaternion alge-bra. A subgroup � of SL(2; C ) is arithmetic if it iscommensurable with one derived from a quaternionalgebra. The K and A of the construction can berecovered as the invariant trace �eld, and invariantquaternion algebra respectively, of �.
Remark 4.11. This is not really the de�nition of arith-meticity; there is a much more general de�nition inthe context of lattices in semi-simple Lie groups. Itis a result of Borel that the above construction yieldsall the arithmetic subgroups of SL(2; C ).A result of Reid [1987] (see also [Takeuchi 1975;Hilden et al. 1992]), shows that a discrete subgroup� of SL(2; C ) is arithmetic if and only if the follow-ing conditions are satis�ed:
1. The invariant trace �eld k = Q (tr �(2)), has ex-actly one complex place.
2. A(�) is rami�ed at every real place of k.
3. � has integer traces (equivalently, tr �(2) � Zk).This enables us to determine whether or not hyper-bolic 3-manifolds are arithmetic. See Tables 2 and3 for some examples.

Arithmetic subgroups of SL(2; C ) are commensu-rable if and only if they have the same invariantquaternion algebra. Therefore the arithmetic mani-folds grouped together in Table 3 are commensu-rable. Non-arithmetic manifolds with the same in-variant trace �eld, quaternion algebra and integral-ity or otherwise of traces, may still be incommensu-rable. It is work in progress to �nd a computable,complete commensurability invariant for the non-arithmetic case.
Example 4.12. Betley, Przytycki and Zukowski de-scribe in [Betley et al. 1987] an interesting familyof hyperbolic \twins"|pairs of non-homeomorphicclosed hyperbolic 3-manifolds with the same vol-ume. These examples are obtained by Dehn �llingon the manifold denoted m009 in SnapPea's nota-tion; this is the once-punctured torus bundle overS1 with monodromy given by the matrix � 31 21�. Weuse the geometric choice of basis for homology ofthe boundary torus consisting of shortest geodesicand next shortest independent geodesic on a horo-spherical torus cross section. Then the Dehn �llingsm009(p; q) and m009(�p; q) give non-homeomorphicclosed manifolds of equal hyperbolic volume, for eachpair of relatively prime integers (p; q), except forthe 8 non-hyperbolic Dehn �llings (�3; 1), (�2; 1),(�1; 1), (0; 1), and (1; 0).Pzrzytycki asks in [Kirby 1997, Problem 3.60(H)]if these pairs are commensurable. Using Snap, we�nd that these pairs of manifolds generally have theisomorphic invariant trace �elds, but have di�er-ent invariant quaternion algebras so are not com-mensurable. However, there is one pair, m009(5; 1)and m009(�5; 1), of arithmetic manifolds of volume1:8319311883544380 : : : having the same invariantquaternion algebra, and hence commensurable. Ta-ble 1 shows some arithmetic data for the lowest vol-ume twins. (See Section 8 on page 145 for the inter-pretation of the last three columns.)
5. THE CHERN–SIMONS AND ETA INVARIANTSThe eta-invariant �(M) and the Chern{Simons in-variant cs(M) are geometrically de�ned invariants ofan hyperbolic 3-manifoldM . These invariants oftentake rational values, but are conjecturally \usually"transcendental; see [Neumann and Yang 1995b] for aprecise conjecture. Snap computes these invariants



138 Experimental Mathematics, Vol. 9 (2000), No. 1Manifold Volume Homology Invariant trace �eld Quaternion algebra Int/Arm009(4; 1) 1.4140610441653916 Z=6 x3�x2+1[1; 1](2) (5; x�2)[1] Y/Ym009(�4; 1) 1.4140610441653916 Z=10 x3�x2+1[1; 1](�2) (19; x�3)[1] Y/Ym009(5; 1) 1.8319311883544380 Z=2+Z=4 x2+1[0; 1](1) (2; x+1)(5; x+2)[ ] Y/Ym009(�5; 1) 1.8319311883544380 Z=2+Z=6 x2+1[0; 1](1) (2; x+1)(5; x+2)[ ] Y/Ym009(�1; 2) 1.8435859723266779 Z=6 x5�2x4�2x3+4x2�x+1[3; 1](�4) (2; x2+x+1)(5; x+1)[1; 2] Y/Nm009(1; 2) 1.8435859723266779 Z=2 x5�2x4�2x3+4x2�x+1[3; 1](4) [1; 2] Y/Nm009(�3; 2) 1.9415030840274678 Z=10 x5�x4�2x3�x2+2x+2[3; 1](4) (2; x)(19; x+2)[2; 3] Y/Nm009(3; 2) 1.9415030840274678 Z=2 x5�x4�2x3�x2+2x+2[3; 1](�4) (2; x)(2; x3+x2+1)[2; 3] Y/Nm009(�6; 1) 2.0624516259038381 Z=14 x5�x4+x3+2x2�2x+1[1; 2](2) (2; 1+x)[1] Y/Nm009(6; 1) 2.0624516259038381 Z=10 x5�x4+x3+2x2�2x+1[1; 2](�2) (2; x+1)(19; x+9)(2; x3+x2+1)[1] Y/Nm009(�5; 2) 2.1340163368014022 Z=14 x5�3x3�2x2+2x+1[3; 1](4) (71; x�11)[1; 3] Y/Nm009(5; 2) 2.1340163368014022 Z=6 x5�3x3�2x2+2x+1[3; 1](�4) (2)(5; x�2)[1; 3] Y/N
TABLE 1. A family of pairs of closed manifolds with equal volume. See Section 8 on page 145 for discussion.to high precision. The Chern{Simons invariant isalso computed (to lower precision) by SnapPea. Inthe following two subsections we say in more detailwhat these invariants are and how Snap computesthem.There are two commonly used normalizations ofChern{Simons invariant in the literature, relatedby cs(M) = 12�2 CS(M). (Although the invariantsare usually de�ned for compact M , we allow cusps;see below.) In the versions we consider, the eta-invariant �(M) is a real invariant while the Chern{Simons invariant cs(M) is de�ned modulo 12 . More-over, the Chern{Simons invariant is determined bythe eta-invariant: cs(M) is simply 32�(M) (mod 12).Why do we bother with cs(M), given that it isimmediately determined by �(M)? A �rst reasonis that cs(M) is somewhat easier to compute. Sec-ondly, cs(M) also has algebraic signi�cance; it isclosely tied to the Bloch invariant, an algebraic andnumber-theoretic invariant which we describe in thenext section.A less signi�cant reason is that cs(M) multipliesby degree in coverings, so it is a tool for commensu-rability questions. However, the behaviour of �(M)for coverings is also well understood (and related toother interesting invariants; see [Atiyah et al. 1975;Neumann 1978], for example).

5A. The Chern–Simons InvariantThe Chern{Simons invariant cs(M) is de�ned forany compact (4k�1)-dimensional Riemannian mani-

fold M and is an obstruction to conformal immer-sion of M in Euclidean space [Chern and Simons1971]. It is the integral of a certain (4k � 1)-formthat is de�ned in terms of curvature. (More gen-erally, the Chern{Simons invariant is an invariantof a connection on a manifold and our cs(M) is theChern{Simons invariant for the Riemannian connec-tion on the tangent bundle of M).For hyperbolic 3-manifolds Meyerho� [1986] ex-tended the de�nition of cs(M) to allow M to havecusps. The point is that if M 0 is a compact mani-fold obtained by Dehn �lling M then cs(M 0) is nat-urally the sum of a term that varies analytically onhyperbolic Dehn �lling space and a discontinuoussummand (� 12� times the sum of torsions of thegeodesics added by Dehn �lling); see [Neumann andZagier 1985; Yoshida 1985]. So one de�nes cs(M)as the value of the analytic term at the completehyperbolic structure on M .This leads to an invariant cs(M) of a hyperbolic3-manifold M in R= 12Z. If M is closed the Chern{Simons invariant is well de�ned modulo 1, but Snapand SnapPea still only compute modulo 12 . Thisis no real loss, since the Chern{Simons invariant ofa closed manifold M modulo 1 can also be com-puted from the �rst homology of M together withthe eta-invariant �(M), both of which Snap can alsocompute.Another signi�cance of cs(M) for a hyperbolic 3-manifold is that it has natural analytic relation tovol(M). In fact vol(M) + 2�2i cs(M) is a natural



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 139complexi�cation of vol(M) and the formulae oneuses to compute cs(M) give vol(M) as well.The method of computation used by Snap andSnapPea is as follows. Recall that these programscompute using ideal triangulations. Let M be acusped hyperbolic 3-manifold with ideal triangula-tion and M(p; q) the result of hyperbolic Dehn sur-gery on some chosen cusp of M , triangulated bydeformed versions of the original tetrahedra. Neu-mann [1992] gave a formula for cs(M(p; q)) + �,where � is a constant, in terms of the simplex pa-rameters of these deformed ideal tetrahedra. Theconstant � is unknown, but it does not depend onp or q. Thus if the exact Chern{Simons invariant isknown for just one of the manifolds M(p; q) then �can be deduced, so cs(M(p; q)) can be computed forall the M(p; q). As one computes cs(M) for moremanifolds one has more reference points to computenew families of values. Using this \bootstrapping"procedure Weeks and Hodgson computed cs(M) forthe data-bases of manifolds in SnapPea. The com-puted values are included in SnapPea so that theyare available for further Dehn surgeries.In fact the constant � is always an integer multipleof 1=24 in the version of the formula that Snap uses(this was conjectured in [Neumann 1992] but hassince been proved; see [Neumann � 2000] or theannouncement in [Neumann 1998]). Thus Snap cancompute the high precision value of cs(M) up toa multiple of 1=24 and this multiple can then bedetermined from SnapPea's lower precision value.An improved formula that computes cs(M) exactlyis now known (loc. cit.). This avoids the need ofthe bootstrapping procedure and will eventually beimplemented in Snap.
5B. The Eta-InvariantThe eta-invariant �(M) is also de�ned for any closedoriented Riemannian (4k � 1)-manifold. It was ini-tially de�ned by Atiyah, Patodi and Singer as ameasure of the \asymmetry" of the spectrum of theLaplacian onM , but they proved [Atiyah et al. 1975]that it can also be given by the formula�(M) := ZX L� sign(X);where

� X is any Riemannian 4k-manifold with @X =Msuch that the metric on some collar neighbour-hood of @X is isometric to the product metric onM � [0; "), and� L is the Hirzebruch L-class as a 4k-form on X,de�ned in terms of curvature as in [Milnor andStashe� 1974, Appendix], for example.The Hirzebruch index theorem tells one that theabove formula gives zero for a closed manifold Xand it is then a standard argument to see that itgives an invariant of M that does not depend onthe choice of X when X has boundary M as above.If k > 1 then M may not be the boundary of anyX, but the disjoint union 2M of 2 copies of M isa boundary, so this formula can be used to de�ne�(2M), and hence de�ne �(M) as 12�(2M).The relation of �(M) to cs(M) for a compact 3-manifold M is3�(M) � 2 cs(M) + � (mod 2)(see [Atiyah et al. 1975]), where � is the number of 2-primary summands of H1(M ;Z). Thus �(M) com-pletely determine cs(M) if M has known homology.There is also a cusped version of this: Meyerho�and Ouyang [1997] extended the de�nition of �(M)to cusped M for which one has chosen a basis ofhomology at each cusp.A formula for �(M(p; q)) in terms of ideal trian-gulations for manifolds M(p; q) as described abovewas given in [Meyerho� and Neumann 1992], whereit was proved \locally" (i.e., in a neighbourhood ofthe complete structure M in analytic Dehn �llingspace). It was proved globally in [Ouyang 1997].The formula is a modi�cation of Neumann's Chern{Simons formula by the addition of certain arithmeticterms. Again, there is an undetermined constantthat is independent of p and q. Thus the abovebootstrapping procedure, which will no longer beneeded for computing Chern{Simons invariant, isstill needed to compute �(M) through the tablesmaintained by Snap and SnapPea. For a mani-fold M that has not yet been linked by a sequenceof hyperbolic Dehn �llings and drillings (removalof closed curves) to a manifold with known eta-invariant, Snap cannot compute �(M). This stillapplies to most of the knot and link complements inthe standard knot and link tables, for example.



140 Experimental Mathematics, Vol. 9 (2000), No. 1It is conjectured that the bootstrapping procedurewill always work. That is:
Conjecture 5.1. Any two hyperbolic 3-manifolds arerelated by a sequence of hyperbolic drillings and �ll-ings.Snap and SnapPea provide good facilities for search-ing for such sequences, so there is much experimen-tal evidence for the conjecture. The emphasis hereis hyperbolic drilling and �lling: that is, each drillingor �lling should move between points in the appro-priate analytic Dehn �lling space. Without this re-striction the conjecture is easy, since every 3-mani-fold is obtainable by Dehn surgery on some link inthe 3-sphere.
Remark 5.2. The formula mentioned earlier for cs(M)actually computes the Chern{Simons invariant forthe natural at connection on the associated princi-pal PSL(2; C )-bundle over M rather than the Rie-mannian connection. It was shown by Dupont andKamber [1993] that these are the same in R =Z[ 16 ].In that paper they were considering a more generalsituation and not aiming for best denominators, andDupont informs us that their proof works withoutintroducing denominators in the 3 dimensional casethat we are interested in.The equality of the Riemannian and at Chern{Simons invariants also follows if one assumes theconjecture above. Indeed, in [Yoshida 1985] the for-mula we use to compute Chern{Simons is provedin the context of the Riemannian Chern{Simons in-variant and in [Neumann � 2000] it is proved forthe at Chern{Simons invariant. Thus we have twoformulae that di�er at most by the unknown con-stant they contain, valid over the analytic Dehn �ll-ing space for M . Thus the di�erence of Riemannianand at Chern{Simons is constant on any analyticDehn �lling space. It is zero for some examples, so ifthe bootstrapping conjecture is true, the bootstrap-ping procedure shows the di�erence is always zero.
6. BLOCH INVARIANT AND PSL-FUNDAMENTAL

CLASSFor details on what we discuss here see [Neumann� 2000; Neumann and Yang 1995a; 1999] or theexpository article [Neumann 1998].

6A. The PSL-Fundamental ClassWe �rst describe the \PSL-fundamental class" of anhyperbolic 3-manifold M . This is a homology class[M ]PSL in the homology group H3(PSL(2; C );Z),where we are taking homology of PSL(2; C ) as a dis-crete group. If M has cusps, [M ]PSL is only de�nedup to an element of order 2 inH3(PSL(2; C );Z). Wedescribe how we compute this invariant numericallylater.Let M = H 3=� be a compact hyperbolic 3-mani-fold. Then H�(�;Z) = H�(M ;Z), since M is aK(�; 1)-space. Thus H3(�;Z) ' Z with a naturalgenerator given by the fundamental class ofM . Theinclusion �! PSL(2; C ) induces a map H3(�;Z)!H3(PSL(2; C );Z).
Definition 6.1. The PSL-fundamental class [M ]PSL 2H3(PSL(2; C );Z) is the image of the natural gener-ator of H3(�;Z) under the above map.If M is non-compact the PSL-fundamental class isharder to de�ne, and we postpone it. It lies inH3(PSL(2; C );Z)=C2, where C2 is a cyclic subgroupof H3(PSL(2; C );Z) of order 2. This cyclic subgroupexists and is unique by the next theorem. In our no-tation we will ignore this C2 ambiguity and speak of[M ]PSL 2 H3(PSL(2; C );Z).Note that we can conjugate � to lie in a subgroupPSL(2;K) of PSL(2; C ), where K is a number �eld,and [M ]PSL is then de�ned inH3(PSL(2;K);Z) (thishas only been proved modulo torsion in the cuspedcase). Usually, the smallest K for which one cando this will be a quadratic extension of the trace�eld of � (and there are in�nitely many such �eldswhich work). The following theorem tells us that ifwe work modulo torsion then we can actually usethe invariant trace �eld.This theorem summarises results of various peo-ple; see [Neumann and Yang 1999] for more details.
Theorem 6.2. 1. H3(PSL(2; C );Z) is the direct sumof its torsion subgroup, which is isomorphic toQ =Z, with an in�nite dimensional Q vector space(conjectured to be countable).2. If k � C is a number �eld then H3(PSL(2; k);Z)is the direct sum of its torsion subgroup with Zr2 ,where r2 is the number of conjugate pairs of com-plex embeddings of k. Moreover , the mapH3(PSL(2; k);Z)! H3(PSL(2; C );Z)



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 141is injective modulo torsion.3. If k is the invariant trace �eld of M then somepositive multiple of [M ]PSL is in the image ofH3(PSL(2; k);Z)! H3(PSL(2; C );Z).In fact, one can show that, after possibly addinga torsion element, 2b+1[M ]PSL is in the image ofH3(PSL(2; k);Z) ! H3(PSL(2; C );Z), where b =rankH1(�;Z=2). Moreover, the coe�cient 2b+1 canbe replaced by 1 if M has cusps.
6B. Invariants of the PSL-Fundamental ClassThere is a homomorphismĉ : H3(PSL(2; C );Z)! C =2�2Zcalled the \Cheeger{Simons class" ([Cheeger and Si-mons 1985]) whose real and imaginary parts giveChern{Simons invariant and volume:ĉ([M ]PSL) = 2�2 cs(M) + i vol(M) :(cs(M) is here appearing as the Chern{Simons in-variant of the at connection, as discussed in Re-mark 5.2). We therefore denote the homomorphismsgiven in the obvious way by the real and imaginaryparts of ĉ bycs : H3(PSL(2; C );Z)! R=Z;vol : H3(PSL(2; C );Z)! R :
Conjecture 6.3. The Cheeger{Simons class is injec-tive. That is, volume and Chern{Simons invariantdetermine elements of H3(PSL(2; C );Z) completely .(This is a special case of a general conjecture of Ra-makrishnan in algebraic K-theory; see [Neumann1998] for a discussion.)If k is an algebraic number �eld and �1; : : : ; �r2 :k ! C are its di�erent complex embeddings up toconjugation then denote by volj the compositionvolj = vol �(�j)� : H3(PSL(2; k);Z)! R :The mapBorel := (vol1; : : : ; volr2) : H3(PSL(2; k);Z)! R r2is called the Borel regulator.
Theorem 6.4. The Borel regulator mapsH3(PSL(2; k);Z)=Torsioninjectively onto a full sublattice of R r2 .

It is known that cs is injective on the torsion sub-group of H3(PSL(2; C );Z). Thus, by Theorems 6.2and 6.4, cs(M) 2 R =Z and Borel([M ]PSL) 2 R r2(k)determine the PSL-fundamental class[M ]PSL 2 H3(PSL(2; C );Z)completely, where k is the invariant trace �eld ofM .Snap computesBorel(M) := Borel([M ]PSL):To describe how, it helps to introduce the \BlochGroup" B(C ). In the next subsection we give thisgroup a geometric description, but in fact, by a re-sult of Bloch and Wigner and others, it is naturallythe quotient of H3(PSL(2; C );Z) by its torsion sub-group Q =Z.We can now explain how a cusped 3-manifold hasa PSL-fundamental class in H3(PSL(2; C );Z) mod-ulo an order 2 ambiguity. We shall see that it hasa natural class in the Bloch group, which can bethought of as a PSL-fundamental class modulo tor-sion, and the Meyerho� de�nition of Chern{Simonsinvariant then pins down the PSL-fundamental classup to the stated ambiguity. It would be nice to �nda more direct de�nition that gives a fundamentalclass in H3(PSL(2;K);Z) (modulo a similar ambi-guity to the above) when � � PSL(2;K), but theabove de�nition does not do this.
6C. The Bloch GroupThere are several di�erent de�nitions of the Blochgroup in the literature. They di�er at most by tor-sion and they agree with each other for algebraicallyclosed �elds. We shall use the following.
Definition 6.5. Let k be a �eld. The pre-Bloch groupP(k) is the quotient of the free Z-module Z(k �f0; 1g) by all instances of the relations[x]� [y] + hyxi� h1� x�11� y�1 i+ h1� x1� y i = 0 (6–1)and[x] = h1� 1xi = h 11� xi= �h1xi = �hx� 1x i = �[1� x]: (6–2)



142 Experimental Mathematics, Vol. 9 (2000), No. 1The �rst of these relations is usually called the �veterm relation. The Bloch group B(k) is the kernel ofthe mapP(k)! k� ^Zk�; [z] 7! 2(z ^ (1� z)):For k = C , relation (6{2) says that P(C ) may bethought of as being generated by isometry classes ofideal hyperbolic 3-simplices. The �ve-term relation(6{1) says that in this group we can replace an idealsimplex on four ideal points by the cone of its bound-ary to a �fth ideal point. As is shown in [Neumannand Yang 1999, Appendix], the e�ect is that P(C )is a group generated by ideal polyhedra with idealtriangular faces modulo the relations generated bycutting and pasting along such faces.
6D. The Bloch InvariantSuppose we have an ideal triangulation of an hyper-bolic 3-manifold M using ideal hyperbolic simpliceswith cross ratio parameters z1; : : : ; zn. This idealtriangulation can be a genuine ideal triangulationof a cusped 3-manifold, or a deformation of sucha one as used by Snap and SnapPea to study Dehn�lled manifolds, but it may be of much more generaltype; see [Neumann and Yang 1999].
Definition 6.6. The Bloch invariant �(M) is the el-ement Pn1 [zj ] 2 P(C ). If the zj 's all belong to asub�eld K � C , we may consider �(M) as an ele-ment of P(K).
Theorem 6.7 [Neumann and Yang 1999]. If �(M) canbe de�ned as above in P(K) then it actually lies inB(K) � P(K) and is independent of triangulation.In these terms, the Borel regulator Borel(M) canalso be thought of as an invariant of the Bloch in-variant �(M) and can be computed as follows. Theinvariant trace �eld k ofM will always be containedin the �eld K generated by the simplex parameterszi, i = 1; : : : ; n. The j-th component volj([M ]PSL)of Borel(M) isBorel(M)j = nXi=1 D2(�j(zi));where �j : K ! C is any complex embedding thatextends �j : k ! C . Here D2 is the \Wigner dilog-arithm function"D2(z) = Im ln2(z) + log jzj arg(1� z);

where z ranges over C �f0; 1g and ln2(z) is the clas-sical dilogarithm function. D2(z) is also the volumeof the ideal simplex with parameter z.As described earlier, Snap speci�es the invarianttrace �eld k as a sub�eld of C by giving the mini-mal polynomial of a \canonical" primitive elementtogether with the position of the this primitive ele-ment in a list of the roots of this polynomial. Snapnumbers the roots with non-negative imaginary partusing real roots �rst in order of size, say c1 < c2 <: : : < cr1 , and then non-real roots in lexicographicorder of size of real and imaginary parts, cr1+1, . . . ,cr1+r2 . Finally, roots with negative imaginary parthave negative indices: c�j = cj . The \canonical el-ement" is the �rst complex root in the list cr1+1,cr1+1, cr1+2, cr1+2, . . . that generates the correctsub�eld of C .In printing Borel(M) Snap uses the complex em-beddings given by the complex roots cr1+1; cr1+2; : : :above. The e�ect is that, according as the canonicalelement is cr1+j or c�(r1+j), the j-th component ofthe Borel regulator is vol(M) or � vol(M). In thelatter case|more generally, whenever k 6= k|theBorel regulator Borel(�M) is simply �Borel(M).However, if k = k then Snap's printout of Borel(M)and Borel(�M) refer to the same embedding of k(both times given by the same canonical element),so the relation is given by the action of conjugationon B(k), which is a bit more subtle.It can be shown that � vol(M) is, in fact, thecomponent with largest absolute value in the Borelregulator; [Neumann and Yang 1999].Some interesting examples with invariant trace�eld Q (x)=(x4 + x2 � x+ 1)are discussed in [Neumann and Yang 1999]. We listall examples with this invariant trace �eld from theclosed and cusped censuses in Table 5.To compare the Bloch invariants of manifolds withdi�erent trace �elds we must compute in the Blochgroup of a common �eld. We close this section withinteresting examples which illustrate this.
Example 6.8. The manifold of conjecturally smallestvolume is the so-called Weeks manifold Wks, calledm003(�3; 1) in the closed census. Its invariant trace�eld is [x3 � x2 + 1; �2];



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 143by which we mean the sub�eld of C generated by thecomplex conjugate of the second root of the polyno-mial x3 � x2 + 1 (the �rst root is the real root).This �eld has one complex embedding, so the Borelregulator has just one component, which, by the pre-ceding discussion, will be minus the volume:Borel(Wks)=[�0:9427073627769277209212996031]:The manifold of conjecturally third smallest vol-ume is called m007(3; 1) in the closed census. It isan arithmetic manifold of exactly half the volume ofthe �gure eight knot complement, i.e., its volume isthe volume 1:0149416 : : : of a regular ideal simplex.Call this manifold Vol3 for short. Its invariant trace�eld is [x2 � x+ 1; 1]and its Borel regulator is thus[1:014941606409653625021202554]:However, we can ask Snap to compute the Borelregulator in the �eld k(Wks) = [x3 � x2 + 1; �2] ofthe Weeks manifold instead. Snap complains thatthis �eld does not contain our invariant trace �eld,and then proceeds to compute the join of the two�elds and gives us the answer in that �eld:[x6 � x5 + x4 � 2x3 + x2 + 1; �2];[ 1:014941606409653625021202554;�1:014941606409653625021202554;�1:014941606409653625021202554]:From this we see that the joined �eld K is degree 6,as expected, and that it has three complex embed-dings and they restrict on k(Vol3) once to the givenembedding and twice to its conjugate.Computing with the Weeks manifold in this same�eld we get a Borel regulator:[ 0;�0:9427073627769277209212996031;0:9427073627769277209212996031](which tells us that the �rst complex embedding ofour degree 6 �eld restricts to the real embedding ofk(Wks) and the next two complex embedding re-stricts to the complex embedding of k(Wks) and itsconjugate).It has been asked if the Bloch group can be gener-ated by Bloch invariants of 3-manifolds (a positiveanswer would imply the \Rigidity Conjecture"; see

[Neumann and Yang 1999; Neumann 1998], for ex-ample). If so, one might guess that a \random"3-manifold with invariant trace �eld equal to theabove degree 6 �eld K is likely to have Borel reg-ulator linearly independent of the above two Borelregulators, since the Bloch group has rank 3. Thereturn out to be just two manifolds in the closed cen-sus with this invariant trace �eld (as far as hasbeen computed). They are called v2274(�3; 2) and�v2274(3; 2), and both have the same Borel regula-tor, namely[ 2:029883212819307250042405108;�4:858005301150090412806303917;0:7982388755114759127214937007]:It turns out that this is, at least numerically, equalto 3Borel(Wks) + 2Borel(Vol3):Other interesting examples are given by surgerieson the census manifold v3066, as discussed in [Neu-mann and Yang 1999]. This manifold gives some ofthe most interesting examples of the \twins" phe-nomenon discussed in Example 4.12. The four surg-eries v3066(�p; q) and v3066(�2q; p=2) all have thesame volume for each p; q.
Example 6.9. The manifolds M1 = v3066(6; 1) andM2 = v3066(�6; 1) have invariant trace �elds[x9�2x7�5x6+12x5+8x4+15x3+4x2+2x�1;�2]and[x9�2x7�5x6+12x5+8x4+15x3+4x2+2x�1;�5]respectively. The join of these �elds isK18 = [x18�6x16�4x15+8x14+6x13+19x12+16x11+32x10�84x9�104x8+52x7+67x6�8x5+30x4�28x3+8x2�2x+1;�1];with 9 complex embeddings, and the Borel regula-tors of the above two manifolds, computed in thisjoin, are respectively�1 = [�2a1�a2;�a1; 2a1+a2; a1+a2; 0;�a2; a1+a2;�a1; a2]�2 = [�2a1�a2; a2; a1; a1+a2;�a1�a2;a1; 0;�2a1�a2; a2];



144 Experimental Mathematics, Vol. 9 (2000), No. 1wherea1 = 2:568970600936708884920674169;a2 = 0:6083226776636170914331534552:The automorphism group of the �eld K18 is order 6.Each of �1 and �2 is �xed by an involution in thisautomorphism group, since they come from degree9 sub�elds. Nevertheless, we can �nd three Galoisconjugates of each of �1 and �2, so we might hopeto generate up to a rank 6 subgroup of B(K18). Butin fact, we only generate a rank 3 subgroup.The Galois conjugates of �1 are �1 and�01 = [�a1; a2;�a2; 0;�a1�a2; 2a1+a2;�a1�a2;�2a1�a2;�a2];�001 = [a2;�2a1�a2; a1;�a1�a2; a1+a2;a1; 0; a2;�2a1�a2]and we �nd that�2 = 13(2�1 + 2�01 � �001 ):Various 3-manifolds can be found in the censuswith invariant trace �elds contained in K18. So farthey all have Bloch invariant in the above rank 3subgroup of B(K18). For example, the �eld [x3 +2x � 1; 2] is the �xed �eld of Aut(K18). It oc-curs as the invariant trace �eld of various mani-folds, for example v3066(1; 2), and they all haveBorel regulator computed in K18 proportional toBorel(v3066(1; 2) = 23(�1+�01+�001 ). The �eld [x3�x2 + x + 1; i] occurs as a sub�eld of K18 for eachof its three embeddings i = 1; 2;�2. The real em-bedding (i = 1) is in fact the real sub�eld of K18.The complex embedding and its conjugate occur formany census manifolds and leads to Borel regulatorsin K18 that are integer multiples of 2�1��01��001 orits Galois conjugate 2�001 ��1��01, depending on ori-entation. The third Galois conjugate 2�01 � �001 � �1must belong to the embedding [x3 � x2 + x+ 1; 1],i.e., to the real sub�eld of K18. We will use this factin the next section.In addition to three embeddings of the degree 9�eld already mentioned, the only other sub�elds ofK18 are Q (p�11) and two degree 6 �elds (the joinsof Q (p�11) with the degree three sub�elds above;one of these degree 6 �elds is Galois over Q ). Noneof these degree 2 and 6 �elds have been found so farin the census. One must, however, be careful about

making premature guesses from these data: arith-metic manifolds exist for any imaginary quadratic�eld| for Q (p�11) they have just not been foundin the census. The Bloch invariant for these arith-metic manifolds will lie outside the above rank threesubgroup of B(K18).
7. SCISSORS CONGRUENCEThe scissors congruence group P(H 3 ) is the abeliangroup generated by congruence classes of hyperbolicpolyhedra of �nite volume modulo all relations ofthe form: P = P1+ � � �+Pn if the polyhedra P1, . . . ,Pn can be glued along faces to create the polyhedronP . Dupont and Sah [1982] showed that one obtainsthe same group whether one allows ideal polyhedraor not. (For an exposition and references for thematerial of this section see [Neumann 1998].)The Dehn invariant is the map� : P(H 3 )! R 
 R =�de�ned on generators of P(H 3) as follows. If P isa compact polyhedron then �(P ) =PE l(E)
 �(E)where the sum is over the edges E of P and l(E)and �(E) are length and dihedral angle. For an idealpolyhedron one �rst truncates the ideal vertices byhorocycles and then uses the same de�nition, sum-ming only over edges that do not bound one of thehorocycle faces of the truncated polyhedron. Thekernel of the Dehn invariant will be denotedD(H 3) := ker(� : P(H 3 )! R 
 R =�):If one subdivides an hyperbolic 3-manifoldM intopolyhedra then the sum of these polyhedra de�nesan element �0(M) in the scissors congruence groupP(H 3) and it is an easy exercise to see that in fact�0(M) is in D(H 3 ).This group D(H 3) is closely related to the Blochgroup. Since B(C ) is a Q -vector space, it splits asthe direct sumB(C ) = B+(C )�B�(C )of its +1 and �1 eigenspaces under the action ofconjugation. Dupont and Sah [1982] showed:
Theorem 7.1. The Dehn invariant kernel D(H 3) isnaturally isomorphic to B�(C ). In fact the naturalmap of the pre-Bloch group P(C ) to P(H 3 ), de�ned



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 145by mapping a class [z] to the ideal simplex with pa-rameter z, induces a surjection B(C )! D(H 3) withkernel B+(C ). The Bloch invariant �(M) is takento the scissors congruence class �0(M) by this map.In particular, this implies that the scissors congru-ence class �0(M) is orientation-insensitive. In fact,it was �rst pointed out by Gerling in a letter toGauss that any polyhedron is scissors congruent toits mirror image. Neumann [1998] discusses to whatextent one may think of the Bloch group as giving anorientation-sensitive version of scissors congruence,and [Neumann and Yang 1999] gives an explicit in-terpretation in terms of scissors congruence allowingonly cut-and-paste along ideal triangles. However,the geometric interpretation of this for �(M) needscare| for instance the manifold Vol3 discussed ear-lier appears to have no subdivision into ideal tetra-hedra at all.Note that if two manifolds have the same scissorscongruence class, say �0(M1) = �0(M2), this meansa priori only that M1 and M2 are stably scissorscongruent; that is, there is some polyhedron Q suchthat M1+Q can be cut-and-pasted to formM2+Q.However, one can show that ifM1 andM2 are eitherboth compact or both non-compact then adding Qis unnecessary: M1 can be cut into polyhedra thatcan be reassembled to form M2.
Theorem 7.2. SupposeM1 andM2 both have invarianttrace �eld contained in the �eld K. The followingstatements are equivalent :
1. M1 and M2 are stably scissors congruent ; that is,�0(M1) = �0(M2).
2. Computed over a �eld containing K and K, wehave Borel(M1) + Borel(�M1) = Borel(M2) +Borel(�M2).
3. Borel(M1) � Borel(M2) is proportional to someBorel(x) with x 2 B(K \ R ).
Proof. The equivalence of the �rst two conditionsfollows because �(�M) = ��(M) and the map x 7!12(x� x) de�nes the projection B(C )! B�(C ).Denote B(K)Q the image of B(K)
Q in B(C )
Q = B(C ) (recall B(C ) is a Q -vector space). In[Neumann and Yang 1995a] it is shown that theB(K)Q \ B+(C ) = B(K \ R )Q . This is thus thekernel of the map B(K) ! P(H 3 ), proving equiva-lence of the third condition. �

Example 7.3. Returning to the manifolds M1 and M2of Example 6.9, we �nd that they are scissors con-gruent. Indeed,Borel(M1)�Borel(M2)= [0;�a1�a2; a1+a2; 0; a1+a2;�a1�a2; a1+a2;�a1�a2; 0]= 13(2�01��001��1);and we pointed out in Example 6.9 that this Borelregulator comes from the real sub�eld of K18.The following conjecture has been made by manypeople. It is, as discussed in [Neumann 1998], alsoa consequence of Conjecture 6.3 and hence of theRamakrishnan conjecture.
Conjecture 7.4. The map vol : D(H 3) ! R is injec-tive.Snap provides many examples like the above whichgive evidence for this conjecture.
8. SOME TABLESThe tables in this section list some arithmetic andnumerical invariants of hyperbolic 3-manifolds com-puted using Snap. Much more extensive tables ofresults are available; see [Goodman et al. 1998].In the column \Invariant trace �eld" we list thecanonical minimal polynomial p de�ning the �eld,the signature [r1; r2], and the canonical root numberas described in footnote 2 on page 134.In the column \Quaternion algebra" we list the�nite rami�cation (giving generators for the corre-sponding prime ideals), then real rami�cation of theinvariant quaternion algebra (giving the root num-ber for the corresponding real �eld embeddings).The Int column indicates whether all traces are in-tegral and the Ar column whether the manifold isarithmetic. Manifolds are named using SnapPea no-tation; � denotes the mirror image of a manifold.Table 2 lists invariants for the �rst 12 closed hy-perbolic 3-manifolds in the Hodgson{Weeks census[� 2000]. These are conjectured to be the 12 hyper-bolic 3-manifolds of smallest volume.Table 3 includes examples of closed manifolds cho-sen to illustrate phenomena such as� manifolds with the same invariant trace �eld butdi�erent invariant quaterion algebras,



146 Experimental Mathematics, Vol. 9 (2000), No. 1Manifold Eta invariant Invariant trace �eld Int ArVolume Chern{Simons (mod 1) Quaternion algebram003(�3; 1) 0:04002871111915143667 x3�x2+1[1; 1](�2) Y Y0:94270736277692772092 0:06004306667872715501 (5; x�2)[1]m003(�2; 3) 0:71802545350918014836 x4�x�1[2; 1](3) Y Y0:98136882889223208809 0:07703818026377022254 [1; 2]m007(3; 1) 0:00000000000000000000 x2�x+1[0; 1](1) Y Y1:01494160640965362502 �0:50000000000000000000 (2)(3; x+1)[ ]m003(�4; 3) 0:92390622935375341671 x4�x3+x2+x�1[2; 1](�3) Y Y1:26370923865804365588 0:38585934403063012507 [1; 2]m004(6; 1) 1:04528778231990871951 x3+2x�1[1; 1](2) Y Y1:28448530046835444246 0:06793167347986307927 (2; x2+x+1)[1]m004(1; 2) �0:83107150176717910541 x7�2x6�3x5+3x4+5x3�x2�3x+1[5; 1](6) Y N1:39850888415080664050 �0:24660725265076865812 [2; 3; 4; 5]m009(4; 1) 0:38440137776571728943 x3�x2+1[1; 1](2) Y Y1:41406104416539158138 0:07660206664857593414 (5; x�2)[1]m003(�3; 4) 0:41217915554349506721 x3�x2+1[1; 1](2) Y Y1:41406104416539158138 0:11826873331524260081 (19; x�3)[1]m003(�4; 1) �0:25828989863587927861 x5�x3�x2+x+1[1; 2](2) Y N1:42361190029282524980 �0:38743484795381891791 (13; x+5)[1]m004(3; 2) �0:49337380630786866586 x6�x5�2x4�3x3+3x2+3x�2[4; 1](5) Y N1:44069900672736487528 0:25993929053819700120 (2; x)[1; 3; 4]m004(7; 1) 1:37374457756475854543 x6�x5+x4+2x3�4x2+3x�1[2; 2](3) Y N1:46377664492723877337 0:06061686634713781814 [1; 2]m004(5; 2) �0:15641491224094610942 x7�x6�2x5+5x4�6x2+x+1[5; 1](6) Y N1:52947732943002626282 �0:23462236836141916413 [2; 3; 4; 5]
TABLE 2. Arithmetic invariants for the �rst 12 manifolds from the Hodgson{Weeks closed census.� closed manifolds with the full matrix algebra asinvariant quaternion algebra (i.e., no rami�ca-tion),� arithmetic and non-arithmetic manifolds with thesame invariant quaterion algebra,� manifolds with the same abstract invariant trace�eld, but di�erent complex embeddings,� manifolds with the same invariant quaternion al-gebra, but not commensurable (distingushed byintegrality of traces).For cusped manifolds, the invariant quaternion alge-bra is always the full matrix algebra over the invari-ant trace �eld. For non-arithmetic cusped mani-folds with one cusp, we list another useful com-mensurability invariant: the density of a maximalembedded horoball cusp (see [Neumann and Reid1992b]). A similar invariant can be de�ned for mul-ticusped cusped non-arithmetic manifolds, provided

that there is a �nite sheeted covering where all cuspsare equivalent under the symmetry group. In thiscase, we compute the cusp density by taking equalvolume horoballs at all the cusps.Table 4 includes examples of cusped manifoldschosen to ilustrate phenomena such as� arithmetic and non-arithmetic manifolds with thesame invariant quaterion algebra,� non-arithmetic manifolds with the same invariantquaternion algebra but di�erent cusp densities,� manifolds with the same abstract invariant trace�eld, but di�erent complex embeddings.This table includes some familiar knot complements:m004, m015, m016, m032 are the complements ofknots 41, 52, the �2; 3; 7-pretzel, and knot 61 respec-tively. A table of arithmetic invariants computed



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 147Invariant trace �eld Quaternion algebra Int Ar Manifolds: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x2+1[0; 1](1) (2; x+1)(3)[ ] Y Y m304(5; 1) m336(�1; 3) s942(�2; 1) s960(�1; 2)(2; x+1)(5; x�2)[ ] Y Y m293(4; 1) s297(�1; 3) s572(1; 2)s645(�1; 2) s682(�3; 1) s775(�1; 2)s778(�3; 1) v3213(�1; 3) v3216(4; 1)(2; x+1)(5; x+2)[ ] Y Y m006(1; 3) m009(�5; 1) m009(5; 1) m010(�2; 3)m294(4; 1) m312(�1; 3) s296(5; 1) s350(�4; 1)s495(1; 2) s595(3; 1) s775(�3; 1) s779(2; 1)v3217(�1; 3) v3412(5; 1)[ ] N N m239(�2; 3) s254(�3; 2): : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x2�x+2[0; 1](1) (2; x)(7; x+3)[ ] Y Y m140(�4; 1) v3110(3; 1) v3147(�3; 1)N N v3377(�3; 1) v3378(�3; 1) v3390(3; 1): : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x3+2x�1[1; 1](2) (2; x2+x+1)[1] Y Y m004(6; 1) m160(1; 2) m306(�5; 1) m307(�1; 3)s554(3; 1) s594(�3; 2)� v2642(5; 1) v2643(�2; 3)(2; x+3)(2; x2+x+1)[ ] Y N m136(1; 2) v2920(�1; 2)� v3066(1; 2) v3528(3; 1): : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x3+x�1[1; 1](2) [ ] Y N s772(�5; 2) s772(3; 2)� s775(�5; 2) s775(3; 2)�s778(�5; 2) s778(3; 2)� s779(�5; 2) s779(3; 2)�s787(�5; 2) s787(3; 2)�: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x3�x�2[1; 1](2) (2; x+1)[1] N N m293(�2; 3)� m390(3; 1)�Y Y m307(�5; 1)� m369(�1; 3) m371(1; 3)�s298(5; 1) s594(1; 2)� s594(2; 1)(2; x+1)(2; x)[ ] Y N s235(�4; 3) s595(1; 2): : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x4�2x3�x2+2x+2[0; 2](2) (13; x+2)(13; x�3)[ ] N N v3207(5; 1) v3209(4; 3) v3210(5; 1) v3208(4; 3): : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x4+x2�x+1[0; 2](2) [ ] Y N s594(�3; 4)� s594(�4; 3)N N v2050(4; 1)� v3404(1; 3): : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x4+x2�x+1[0; 2](1) [ ] Y N m010(�1; 3) m368(4; 1) m369(3; 1)�m370(�4; 1)� s313(�2; 3)� s554(1; 3): : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x5�x�1[1; 2](2) (2; x3+x2+1)[1] Y N v3221(1; 2) v3228(�1; 2)�: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x5�x�1[1; 2](3) (2; x3+x2+1)[1] Y N v3100(1; 3): : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
TABLE 3. Arithmetic invariants of some selected manifolds from the Hodgson{Weeks closed census.using Snap for the complements of knots with up to8 crossings is given in [Callahan and Reid 1998].Table 5 lists Borel regulators and arithmetic in-variants for all the closed and cusped census mani-folds for which the invariant trace �eld has beencomputed to be x4 + x2 � x+ 1. Some of these ex-amples are discussed in [Neumann and Yang 1999].Note that the �rst two Borel regulators are propor-tional for the �eld with root 2, while all three Borelregulators are proportional for the �eld with root 1.

The table also includes examples of the followingphenomena:� manifolds with same Borel regulator but di�erentinvariant quaternion algebras,� closed and cusped manifolds with the same Borelregulator,� manifolds v2050(4; 1) and v3404(1; 3) with thesame arithmetic invariants (invariant trace �eld,invariant quaternion algebra, non-integral traces)



148 Experimental Mathematics, Vol. 9 (2000), No. 1Invariant trace �eld Int Ar Cusp density Manifolds: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x2+1[0; 1](1) Y Y m001 m124 m125 m126 m127 m128 m129 m130 m131 m132 m133m134 m135 m136 m139 m140 s859 v1858 v1859N N 0.614106035 m137 m138: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x2�x+1[0; 1](1) Y Y m000 m002 m003 m004 m025 m202 m203 m204 m205 m206 m207m208 m405 m406 m407 m408 m409 m410 m411 m412 m413 m414s118 s119 s594 s595 s596 s955 s956 s957 s958 s959 s960v2873 v2874 v3551N N 0.568850725 v2875: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x2�x+2[0; 1](1) Y Y m009 m010 s772 s773 s774 s775 s776 s777 s778 s779 s780s781 s782 s784 s786 s787N N N/A s785N N 0.558071819 s783N N 0.620079799 s788 s789 v1539 v1540: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x3�x2+1[1; 1](2) Y N 0.511270966 s898 v2202� v2203Y N 0.524808681 v3428�Y N 0.539001522 v3429�Y N 0.545958189 v0769Y N 0.575271908 s420�Y N 0.604035858 v3426 v3427Y N 0.612276793 v2204� v2205�Y N 0.697799972 m015� m017� s899 s900Y N 0.711685428 m016� s897: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x3�x2+x+1[1; 1](2) Y N N/A v3220 v3223�N N N/A v3224�Y N 0.616691512 m035 m037 m039� m040� v3218 v3222� v3225� v3227�Y N 0.623017665 m376�Y N 0.645539037 m036� m038 v3214 v3215� v3216 v3217�N N 0.646337229 v3226N N 0.652161114 s448Y N 0.675735988 v3207 v3208 v3209 v3210Y N 0.717278605 v3219 v3221 v3228�Y N 0.726163222 v3211 v3212 v3213�: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x4+x2�x+1[0; 2](1) Y N 0.614493011 m161�Y N 0.631076941 s919�Y N 0.662737952 m159� m160: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x4+x2�x+1[0; 2](2) Y N 0.595110801 s235Y N 0.630681177 m032� m033�Y N 0.686680170 s435� s436�: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
TABLE 4. Arithmetic invariants of some selected manifolds from the Hildebrand{Weeks cusped census. (Thenotation N/A under \Cusp density" indicates that there are inequivalent cusps.)
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Invariant trace �eld Borel regulator Quaternion algebra Int Ar Manifolds Chern{Simons (mod 12 ): : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x4+x2�x+1(2) ��1:415104897265563340683:16396322888314398399� (2; x+3)(13; x+6)[ ] Y N m140(5; 2)� 0.17735631658981817209(2; x+3)(2; x3+x2+1)[ ] Y N m136(5; 2)� 0.21902298325648483876(2; x+3)(233; x+72)[ ] Y N m140(�5; 2) �0.23931035007684849456[ ] Y N m032� �0.15597701674351516123m033� 0.09402298325648483876: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :��2:122657345898345011034:74594484332471597598� [ ] Y N s435� 0.05770114155139392481s436� �0.19229885844860607518: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :��0:211813552808356141474:39667280193249561612� (2; x+3)(19; x�5)[ ] Y N s855(3; 2) �0.24238579181095171467[ ] Y N s594(�3; 4)� 0.00761420818904828532s594(�4; 3) �0.24238579181095171467s235 0.13261420818904828532N N v2050(4; 1)� �0.20071912514428504800: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :� 0:991477791648851057735:62938237498184724825� [ ] N N v3404(1; 3) �0.16212790021172160144: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :x4+x2�x+1(1) � 1:91084379308998886955�0:34927204139222035986� [ ] Y N m010(�1; 3) �0.09574639997098769384: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :� 3:82168758617997773911�0:69854408278444071973� (2; x+3)(29; x�14)[ ] Y N m294(4; 3)� �0.02482613327530872102m293(�4; 1) 0.22517386672469127897[ ] Y N m368(4; 1) m369(3; 1)� 0.14184053339135794563m370(�4; 1)� s554(1; 3) 0.14184053339135794563m160 m161� �0.19149279994197538769m159� 0.05850720005802461230: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :� 5:73253137926996660866�1:04781612417666107959� [ ] Y N s919� �0.16223919991296308154: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

TABLE 5. Bloch invariants of some closed and cusped manifolds with invariant trace �eld x4+x2�x+1.
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ADDENDUMThe referee raised the concern that the numerical so-lutions that Snap uses in proving a hyperbolic struc-ture might be spurious| i.e., although the minimalpolynomial evaluated at the given \numerical root"is vanishingly small, there may nevertheless actu-ally be no root of the minimal polynomial near thegiven \numerical root". This is not an issue. Toquote from the manual for the Pari libraries: \Thealgorithm used is a modi�cation of A. Sch�onhage'sremarkable root-�nding algorithm, due to and im-plemented by X. Gourdon. Barring bugs, it is guar-anteed to converge and to give the roots to the de-sired accuracy." See [Sch�onhage 1987] for a discus-sion.
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