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W. H. Meeks has asked the following question: For what g does

every (orientation preserving) periodic automorphism of a closed

orientable surface of genus g have an invariant circle? A variant

of this question due to R. D. Edwards asks for the existence of

invariant essential circles. Using a construction of Meeks we

show that the answer to his question is negative for all but 43

values of g � 10000, all of which lie below g = 105. We then

show that the work of S. C. Wang on Edwards’ question general-

izes to nonorientable surfaces and automorphisms of odd order.

Motivated by this, we ask for the maximal odd order of a peri-

odic automorphism of a given nonorientable surface. We obtain

a fairly complete answer to this question and also observe an

amusing relation between this order and Fermat primes.

1. INTRODUCTION AND MAIN RESULTSIn this paper Fg denotes a closed orientable surfaceof genus g and Ng a closed nonorientable surface ofthe same genus. By a periodic automorphism of or-der n we mean a di�eomorphism f : �! � (where� = Fg or Ng) such that fn = id� and fk 6= id� for1 � k � n� 1. The classical case to consider is
(A) The surface � is orientable and f is orientationpreserving.For this case we study the following question of[Meeks 1979], which also appears as [Kirby 1997,Problem 2.8]:
(Q1) For what genus g does every (orientation pre-serving) automorphism f of Fg have an invariantcircle?Here invariant circle means an embedded circle C �� such that f(C) = C.By the cited work of Meeks the answer is positivefor g � 10, negative for g = 11, and according to[Kirby 1997] it is known that the answer is negativefor in�nitely many g (though, to our knowledge, no
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76 Experimental Mathematics, Vol. 9 (2000), No. 1proof of this fact exists in the literature). Neverthe-less, in some sense `most' periodic automorphismshave an invariant circle (this and the previous state-ments will all be discussed below), which led Meeksto conjecture that the answer to (Q1) is positive forin�nitely many g. However, by using Meeks' owntechnique we can prove the following theorem, pro-viding some evidence against this conjecture.
Theorem 1.1. There are precisely 43 values of g in therange g � 10000 such that every orientation preserv-ing periodic automorphism of Fg has an invariantcircle, namely , g = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 27, 28, 30, 32,35, 39, 42, 43, 44, 45, 48, 49, 50, 51, 60, 65, 66, 72,73, 87, 90, 105.This theorem and some related results are discussedin Section 3.The existence of invariant essential circles, i.e.embedded circles C � � that are not nullhomotopic,was studied by Wang [1989]. He showed that an ori-entation preserving periodic automorphism Fg ! Fg(g � 2) of prime order p has an invariant essentialcircle if and only if p � g+1, and that 2g+2 (wheng is even) or 2g�2 (when g is odd and g > 3) consti-tutes a sharp upper bound for the order of automor-phisms with invariant essential circles (for g = 3 thebound is 6). In Section 4 we generalize the resultsof Wang to nonorientable surfaces Ng and automor-phisms of odd order, and we explain the di�cultiesin trying to extend these results to the other cases(automorphisms of Ng of even order or orientationreversing automorphisms of Fg). Some of the resultsof that section can be summarized as follows:
Theorem 1.2. (i) Any periodic automorphismf : Ng ! Ngof order n equal to the power of an odd prime hasan invariant essential circle. If n contains onlytwo di�erent prime factors, then f still has aninvariant (but possibly inessential) circle.(ii) There are in�nitely many Ng which admit a pe-riodic automorphism of odd order without invari-ant circles.In the theory of surface automorphisms there is afurther problem with a long and distinguished his-tory, namely, the question:

(Q2) What is the maximal order o(�) of a periodicautomorphism f : �! �?The case for orientation preserving automorphismsof Fg was settled in [Wiman 1895] and [Harvey 1966],and the complete answer was �rst found in [Steiger1935] and rediscovered by [Wang 1991] (and others).Their result reads as follows:
Theorem 1.3.o(Fg) = � 4g + 2; g odd, g � 3;4g + 4; g even, g � 2;o(Ng) = � 2g; g odd, g � 3;2g � 2; g even, g � 4.In the remaining cases the order of f can be arbi-trarily large.The discussion in Section 4 suggests that it isworthwile to focus attention on the case
(B) The surface � is nonorientable and f has oddorder.Motivated by this, we now ask question (Q2) for thiscase. Write o�(g) for the maximal odd order of anautomorphism f : Ng ! Ng, with g � 3 understood.For g even, let 2k be the largest power of 2 thatdivides g � 2, and set�(g) = 2k + 12k (g � 2):For g odd, let k be the smallest natural number (notincluding 0) such that
1. either 2k is the largest power of 2 that dividesg � 1,
2. or 2k divides g � 1 and 2k+1 does not divide g +2k � 1 and gcd(2k + 1; g + 2k � 1) = 1.Then set �(g) = 2k + 12k (g + "2k � 1);with " = 0 if k comes from the �rst alternative, and" = 1 if it comes from the second. We abbreviatethe right hand side of this equation to �"(g).Here are the main results proved in Section 5.
Theorem 1.4. (i) For g even, o�(g) = �(g).(ii) For g odd , �(g) � o�(g) � 3(g + 1)=2, ando�(g) = �(g) for g 6� 257 mod 8160 or g � 16575.This seems to constitute overwhelming evidence forthe conjecture that o�(g) = �(g) for all g, but the



Geiges and Rattaggi: Periodic Automorphisms of Surfaces: Invariant Circles and Maximal Orders 77conjecture fails for g = 16577. A di�erent formula-tion, as we shall see, is that the �rst example whereo�(g) is strictly bigger than �(g) arises for k = 5and " = 0.
Theorem 1.5. For g odd , the number o�(g) satis�eso�(g) � g, and equality o�(g) = g can only hold if gis a Fermat number g = Fj = 22j + 1, j 2 N 0. Infact , for the Fermat primes Fj, 0 � j � 4, we haveo�(Fj) = Fj; for the composite Fermat numbers Fj,5 � j � 9, we have o�(Fj) > Fj.The present paper grew out of Rattaggi's diplomathesis [1998] under Geiges' guidance at the ETHZ�urich. In that thesis the reader can �nd an exten-sive bibliography pertinent to the questions consid-ered here, more background information, examples,and some further related results.
2. PERIODIC AUTOMORPHISMS AND BRANCHED

COVERSA periodic automorphism f : � ! � of order ninduces a Zn-action on � such that the quotientmap � : �! �0 := �=Znis an n-sheeted cyclic branched covering. It is some-times convenient to assume (and we shall do so im-plicitly below) that � is endowed with a metric forwhich f is an isometry. Such a metric can be ob-tained simply by averaging any given metric. Onemay even assume this to be a constant curvaturemetric. This is achieved by lifting an elliptic, Eu-clidean, or hyperbolic structure from �=Zn (whichwe regard as an orbifold) to �; for the existence ofsuch a structure on the orbifold see [Thurston 1985,Chapter 13] and [Scott 1983, Section 2]. Such aninvariant constant curvature metric can be used toshow that if C is the image of an injective continu-ous map S1 ! � and f(C) = C, then there exists asmoothly embedded invariant circle in the same freehomotopy class.We recall some well-known facts about branchedcoverings; see for instance [Harvey 1966; Bersteinand Edmonds 1979; Miranda 1995]. Let l be thenumber of branch points (in �0) of the branchedcovering � : � ! �0 and write B = fb1; : : : ; blg forthe branching set. Let mi, i = 1; : : : ; l, be the cor-responding branching indices, which means that in

suitable local complex coordinates around one of thepreimages of bi the map � is given by z 7! zmi . De-note the Euler characteristic by �. Then, assumingthat �0 has no boundary (or re
ector curves whenregarded as an orbifold), we have the Riemann{Hurwitz formula, subsequently referred to as (R-H),�(�)n = �(�0)� lXi=1 �1� 1mi� :The monodromy around the branch points inducesa surjective representation� : �1(�0 �B)! Zn;where the element xi of �1(�0 � B) represented bya small loop around bi maps to an element of ordermi in Zn. Conversely, from such a representationone can reconstruct the cyclic branched covering.The existence of a periodic automorphism can bededuced from purely algebraic conditions; see [Bu-jalance et al. 1990]. We summarize these for thecases (A) and (B) that we consider in the presentpaper; for the other cases see [Rattaggi 1998].In case (A) we observe that �0 = �=Zn is ori-entable and without boundary. Then by Theorems3.1.2 and 3.1.5 of [Bujalance et al. 1990] we havethe following necessary and su�cient conditions forthe existence of an orientation preserving periodicautomorphism f : Fg ! Fg of order n with quotientFg0 = Fg=Zn:
(A1) mi divides n for i = 1; : : : ; l.
(A2) (R-H): (2g � 2)=n = 2g0 � 2 +Pli=1(1� 1=mi).
(A3) lcm(m1; : : : ; m̂i; : : : ; ml) = lcm(m1; : : : ; ml) fori = 1; : : : ; l, where m̂i indicates the omission ofmi.
(A4) If g0 = 0, then n = lcm(m1; : : : ;ml).This case (A) is also discussed in [Harvey 1966, The-orem 4]. The algebraic conditions listed there (forinstance, l 6= 1 and, if g0 = 0, then l � 3) can bededuced from (A1){(A4). For g � 2 (i.e., in the hy-perbolic case), the monodromy representation � hasto satisfy only the two conditions mentioned above:it needs to be surjective, and �(xi) must have or-der mi (see [Harvey 1966, Theorem 3]).In case (B), Theorem 3.1.3 and Corollary 3.2.3 of[Bujalance et al. 1990] state that �0 is nonorientableand without boundary. Furthermore, necessary and



78 Experimental Mathematics, Vol. 9 (2000), No. 1su�cient for the existence of a periodic automor-phism f : Ng ! Ng of odd order n with quotientNg0 = Ng=Zn are:
(B1) mi divides n for i = 1; : : : ; l.
(B2) (R-H): (g � 2)=n = g0 � 2 +Pli=1(1� 1=mi).
(B3) If g0 = 1, then n = lcm(m1; : : : ;ml).Write �1(�0 �B) in the standard formhc1; : : : ; cg0 ; x1; : : : ; xl j c21 : : : c2g0 x1 : : : xl = 1i;and denote by �+ the subgroup of elements of�1(�0 �B)containing an even number of the factors c�1i . Ifg � 3 (again, the hyperbolic case), then the onlycondition the monodromy representation � has tosatisfy (in addition to those discussed above) is that�(�+) = Zn;see [Bujalance 1983, Proposition 3.2].
3. AUTOMORPHISMS WITHOUT INVARIANT CIRCLESIn this section we explain the mathematical princi-ples behind the numerical search which we carriedout to prove Theorem 1.1. Thus here we considerorientable surfaces Fg and orientation preserving pe-riodic automorphisms f : Fg ! Fg (of order n).First we summarize the results for g = 0 or 1 (com-pare [Scott 1983; Wang 1989]). If g = 0 then f isa rotation by 2�=n around some axis, and f has aninvariant circle. If g = 1 then f can either be iso-topic to the identity (f is a shift and n arbitrary)or f is one of four maps not isotopic to the identityof order 2; 3; 4; 6, respectively. In any case, f has aninvariant circle.For the remainder of this section we assume g � 2.Meeks [1979] has shown that every f : Fg ! Fgwith order n containing at most two di�erent primefactors or with g � 10 has an invariant circle. Also,on F11 there is essentially only one automorphism(of order 30) with no invariant circles (`essentially'meaning up to conjugation and taking a power rel-atively prime to 30). So automorphisms with noinvariant circles appear to be scarce.Meeks also shows the following necessary and suf-�cient conditions|together with (A1){(A4)| forthe existence of a periodic automorphism f : Fg !Fg without invariant circles:

(A5) g0 = 0, that is, �0 = S2.
(A6) There is a surjective representation� : �1(�0 �B) = hx1; : : : ; xl jx1 : : : xl = 1i ! Znwith �(xi) of ordermi and such that �(x"11 : : : x"ll )is not a generator of Zn for any choice of "i 2f0; 1g, i = 1; : : : ; l.That last condition can be explained as follows: El-ements of �1(�0�B) which can be represented by anembedded circle C 0 are precisely those of the formx"11 : : : x"ll by [Meeks and Patrusky 1978, Theorem 1],and the preimage C of C 0 is an invariant circle ex-actly when C ! C 0 is an n-fold cover and �([C 0]) agenerator of Zn.Conditions (A1){(A6) clearly allow a numericalsearch for automorphisms without invariant circles.By the results of Meeks, one can restrict attentionto orders n with at least three prime factors (in par-ticular, n � 30). Furthermore, if one can �nd an au-tomorphism f satisfying (A1){(A5) with n > 2g+2and mi 6= n for all i = 1; : : : ; l, then one need notcheck condition (A6), for the condition n > 2g + 2implies according to [Wang 1989] that f has no in-variant essential circles, and mi 6= n implies that fhas no �xed points and hence no invariant inessen-tial circles (if f had an invariant inessential circle,this circle would bound a disc which would have tobe invariant because of g > 1, and to this disc theBrouwer �xed point theorem would apply).Starting with l = 3 (observe that (A5) togetherwith (R-H) implies l � 3), one can already �nd in-�nitely many Fg admitting an automorphism with-out invariant circles, for example:g = �4 + 15k with k 2 N ;n = 30k; (r1; r2; r3) = (2; 3; 5);mi = n=ri for i = 1; 2; 3;�(x1) = r1; �(x2) = r2; �(x3) = �r3 mod n;or in fact in�nitely many Fg with any given numberof nonequivalent automorphisms without invariantcircles.Continuing with l = 4 and 5, one can �nd an au-tomorphism of Fg without invariant circles for anyg � 10000 except the ones listed in Theorem 1.1.To �nish the proof of Theorem 1.1 one has to checkthat the corresponding Fg do not admit an auto-morphism without invariant circles for larger values



Geiges and Rattaggi: Periodic Automorphisms of Surfaces: Invariant Circles and Maximal Orders 79of l. It follows from the Riemann{Hurwitz formulathat this search is �nite. Indeed, with g0 = 0 andri = n=mi we have2g � 2 = n(l � 2)� lXi=1 ri:With ri = n=mi � n=2 we get2g � 2 � n( 12 l � 2):Hence, for given g and l there are only �nitely manypossible values for n and thus only �nitely manysolutions of (A1){(A6). Furthermore, (R-H) impliesthat for l � 18 there is no automorphism with g0 =0, n � 30, and g � 105.Detailed lists of periodic automorphisms withoutinvariant circles and some remarks on the program-ming of the search described in this section can befound in [Rattaggi 1998].
4. NONORIENTABLE SURFACESIn the present section we want to generalize the re-sults of Meeks and Wang to automorphisms f ofnonorientable surfaces � = Ng of odd order n. Thereason for this restriction will be explained at theend of this section.As mentioned in Section 2, the quotient surface�0 = �=hfiis again nonorientable and without boundary.We �rst deal with the special cases � = N1 = RP2and � = N2 = Klein bottle. If g = 1, then (B2) =(R-H) readsg0 � 2 + lXi=1 �1� 1mi� = g � 2n = �1n < 0:This implies g0 = 1 and l � 1 (since 1� 1=mi � 12).The case l = 0 can be excluded because here n = 1.Thus l = 1 and m1 = n.If we think of RP2 as a disc with opposite pointson the boundary identi�ed, then these data can berealized by a rotation by 2�=n around the centre ofthis disc. This is (up to equivalence) the only au-tomorphism corresponding to the given data, sincethe (surjective) monodromy representation� : �1(�0 �B) = Z! Zn

can only be reduction modulo n. The circle at in�n-ity (corresponding to half the circumference of thedisc) is an invariant essential circle under the de-scribed rotation; any circle around the centre is aninvariant inessential circle.If g = 2, then (R-H) becomesg0 � 2 + lXi=1 �1� 1mi� = 0:Hence g0 � 2. If g0 = 1, thenlXi=1 �1� 1mi� = 1;thus l = 2, m1 = m2 = 2, and, by (B3), we getn = lcm(m1;m2) = 2, contradicting our assumptionthat n be odd. The only remaining case is g0 = 2and l = 0, that is, �0 also has to be a Klein bottleand �! �0 an n-fold unbranched covering. Such acovering can be given by realizing �0 as the quotientof R 2 under �(x; y) = (x+1=n; �y) and �(x; y) =(x; y+1), and � as the quotient of R 2 under �n and�, with the obvious projection �! �0. Since Zn isabelian, the monodromy representation� : �1(�0) = h�; � j����1� = 1i ! Znfactors throughH1(�0) = h�; � j�� = ��; �2 = 1i �= Z�Z2and hence is unique up to isomorphism (since nis odd). So up to equivalence the automorphism(x; y) 7! (x+1=n; �y) of � is the only automor-phism of N2 of odd order n. This automorphismhas both essential and inessential invariant circles.From now on we only consider surfaces � = Ngwith g � 3, and f : Ng ! Ng will always denote anautomorphism of odd order n.The following three lemmas are the analogues ofLemmas 1, 2, 3 of [Wang 1989] (see also Section 1of [Meeks 1979]) for the case (B) considered here.
Lemma 4.1. Let C be an invariant circle of f andr � n the order of the restriction of f to C. Then(i) r = n, and(ii) there are no singular points of f on C.
Proof. (i) Choose a point x 2 C and a short geodesicarc A perpendicular to C at x. The map f r is anisometry which �xes C pointwise. Hence f r is eitherthe identity on A, or it re
ects A in x. In any case



80 Experimental Mathematics, Vol. 9 (2000), No. 1f 2r(a) = a for all a 2 A. Hence f 2r is the identityon Ng, since f 2r �xes a point x and an orthogonalframe at x (an isometry of a connected manifold isdetermined by its value and di�erential at one point;see [Carmo 1992, Lemma 8.4.2]). Thus 2r = n or2r = 2n. But n is odd, hence r = n.(ii) We argue by contradiction. Assume y 2 Cis a singular point of f , that is, f q(y) = y for someq < n. So f qjC is an isometry of a circle with a �xedpoint, but not the identity. Therefore f qjC is ori-entation reversing and so is f jC. By the Lefschetz�xed point theorem, f jC must have a �xed point,which implies that f jC must be of order r = 2.This contradicts (i), because of our global assump-tion that n be odd. �In the following lemma we adhere to the notation ofSection 2. The proof is the same as in the classicalcase (A).
Lemma 4.2. If C is an invariant circle of f , then C 0 =�(C) is a circle in �0�B and �([C 0]) is a generatorof Zn. Conversely , if C 0 is a circle in �0 � B and�([C 0]) a generator of Zn, then C = ��1(C 0) is aninvariant circle of f .
Proof. An invariant circle C of f does not contain anysingular points by Lemma 4.1. Hence hfi acts freely(with order n) on C, so f jC (being an isometry) is ashift by m � length (C)=n with m coprime to n, andC 0 = �(C) is a circle in �0�B with C ! C 0 an n-foldunbranched covering. Hence �([C 0]) generates Zn.Conversely, if �([C 0]) generates Zn, then C =��1(C 0) is connected and thus an invariant circle. �
Lemma 4.3. Let C be an invariant circle of f . ThenC separates Ng if and only if C 0 = �(C) separates�0 = Ng=hfi.
Proof. Suppose C separates Ng. Then we can writeNg as a disjoint union Ng = A1[A2[C with A1 andA2 connected open sets with Ai�Ai = C for i = 1; 2.These sets are either preserved or interchanged byf , but since fn is the identity on Ng and n is odd,we must have f(Ai) = Ai for i = 1; 2. Arguing bycontradiction, we assume that C 0 does not separate�0. Given two nonsingular points ai 2 Ai, we canthen �nd a path 
 in �0 � (B [ C 0) joining �(a1)with �(a2). The lift ~
 of 
 with initial point a1 endsin ~
(1) 2 ��1(�(a2)) � A2 (because f(A2) = A2),

but ~
 does not pass through C. This contradictionproves that C 0 separates �0.Conversely, if C 0 separates �0, write �0 = A01 [A02 [ C 0. If C = ��1(C 0) did not separate Ng, wecould choose a0i 2 A0i and a path ~
 in Ng�C from ana1 2 ��1(a01) to an a2 2 ��1(a02). Then �(~
) wouldbe a path from a01 to a02 not passing through C 0. �
Proof of of Theorem 1.2. (i) Let n be a power of theprime p. Then an element of Zn generates this groupif and only if it is not divisible by p.By Lemmas 4.2 and 4.3 it is su�cient to �nd anelement [C 0] of �1(�0 �B) represented by a loop C 0not separating �0 such that �([C 0]) is a generatorof Zn.We write�1(�0 �B)= hc1; : : : ; cg0 ; x1; : : : ; xl j c21 : : : c2g0 x1 : : : xl = 1i;as before. First consider the case l = 0. Since � issurjective, there exists a ci such that �(ci) generatesZn, and we take C 0 to be a circle representing ci.Now assume l � 1. If there exists a ci such that�(ci) generates Zn, we are done as before. Other-wise, all �(ci) are divisible by p, and since � is sur-jective there is an xj with �(xj) not divisible by p.The class cixj can then be represented by a circleC 0 with the desired properties.The proof of the existence of an invariant circle ifn = paqb goes along the same lines and is analogousto the proof of Theorem 2 in [Meeks 1979]: Since � issurjective, either one of the generators ci; xj maps toa generator of Zn (in which case we are done), or we�nd two elements u1; u2 among this set of standardgenerators of �1(�0�B) such that �(u1) is divisibleby p but not by q, and �(u2) is divisible by q butnot by p. Then �(u1u2) is a generator of Zn, andu1u2 can be represented by an embedded circle.(ii) We choose g0 = 1, l = 2 and, with k 2 N odd,g = 1785k�18; n = 1785k; m1 = 595k; m2 = 105k:Notice that 1785 = 3 � 5 � 7 � 17. Writing �1(�0 �B)in terms of standard generators c1; x1; x2 as before,we de�ne � : �1(�0 �B)! Znby �(c1) = n� 10; �(x1) = 3; �(x2) = 17:



Geiges and Rattaggi: Periodic Automorphisms of Surfaces: Invariant Circles and Maximal Orders 81Then (B1){(B3) and the conditions on � stipulatedin Section 2 are easily veri�ed. In particular,�(c21x71) = 1 mod n;so �(�+) = Zn.It remains to check that the automorphism f ofNg de�ned by these data has no invariant circle.According to [Chillingworth 1972, p. 145, case (iv)],the only elements of �1(�0 � B) which can be rep-resented by an embedded circle are those conjugateto 1; c1; c21; c1x1; (c1x1)2; x1; c21x1;or their inverses. By Lemma 4.2 we have to showthat none of these elements maps to a generator ofZn under the monodromy representation �. Clearlywe may disregard multiples and inverses, and sinceZn is abelian the same holds for conjugates. We areleft with the three generators c1; x1; x2 of �1(�0�B)and c1x1, c21x1, which map under � ton� 10; 3; 17; n� 7; n� 17;respectively, neither of which is relatively prime to n.�We conclude this section with a brief comment aboutthe cases not considered in this paper: orientationreversing automorphisms f : Fg ! Fg or automor-phisms f : Ng ! Ng of even order. In either caseit can happen that the quotient surface �0 = �=hfihas nonempty boundary, in which case Lemma 4.1and subsequent arguments based on it will fail. If �0happens to be closed, then Lemmas 4.1 and 4.2 stillhold. But a nonseparating circle C 0 � �0 may nowlift to a separating circle C � �. However, as long aswe are only interested in the circle C � � being es-sential, the arguments of this section carry through(subject to the assumption that �0 be closed) withLemma 4.3 replaced by the following statement.
Lemma 4.4. Let C be an invariant circle of f notcontaining a singular point , and C 0 = �(C). Ifn[C 0] 6= 1 2 �1(�0), where n is the order of f , thenC is essential .
Proof. Denote by �# the homomorphism �1(�) !�1(�0) induced by the projection � : �! �0. Underthe assumptions of the lemma we have �#([C]) =n[C 0] 6= 1 2 �1(�0), and thus [C] 6= 1 2 �1(�),which implies that C is an essential circle. �

5. MAXIMAL ORDERS OF PERIODIC AUTOMORPHISMSWe now turn to the proof of Theorem 1.4. Letg � 3 be given and write n0 = o�(g) for the maxi-mal odd order of periodic automorphisms f : Ng !Ng. Write f0 for an automorphism which realizesthis maximal odd order, g00 for the genus of the or-bit space, and l0 for the corresponding number ofbranch points of Ng ! Ng00 = Ng=hf0i. We shall seepresently that g00 does not depend on the choice off0.
Lemma 5.1. Let f : Ng ! Ng be an automorphism ofodd order n and g0 the genus of the quotient surfaceNg=hfi. Then g and g0 have the same parity .
Proof. The Riemann{Hurwitz formula yieldsg = 2 + ng0 � 2n+ ln� lXi=1 nmi� g0 mod 2;regardless of the parity of l. �
Lemma 5.2. For g odd we have g00 = 1 and l0 = 2, forg even we have g00 = 2 and l0 = 1.
Proof. For g odd there is a periodic automorphism fwith n = g, g0 = 1, l = 2, and m1 = m2 = n (seeFigure 1). This implies n0 � g. By the precedinglemma we know that g0 is odd. Assume g0 � 3.Then (R-H) yieldsg � 2n = g0 � 2 + lXi=1 �1� 1mi� � 1;hence n � g � 2 < g � n0:

���
���
���
���

FIGURE 1. The case g odd, n = g.



82 Experimental Mathematics, Vol. 9 (2000), No. 1Therefore g00 = 1. Inserting this in (R-H) we �nd0 < g � 2n0 = �1 + l0Xi=1 �1� 1mi� < �1 + l0;hence l0 � 2, but alsog � 2n0 = �1 + l0Xi=1 �1� 1mi� � �1 + 23 l0;and thusl0 � 32 �g � 2n0 + 1� � 32 �g � 2g + 1� = 3� 3g :We conclude that l0 = 2.The case g even is treated analogously, startingfrom the existence of an automorphism f with n =g � 1, g0 = 2, l = 1, m1 = n (Figure 2). �= RP2
FIGURE 2. The case g even, n = g � 1.

Proof of Theorem 1.4(i) (g even). The conditions (B1){(B3) are satis�ed with n = �(g) (as de�ned in Sec-tion 1), g0 = 2, l = 1, and m1 = 1 + 2k. Henceo�(g) � �(g). To show o�(g) � �(g) we can restrictattention to g0 = 2 and l = 1 by the lemma justproved. The Riemann{Hurwitz formula then readsg � 2n = 1� 1m1 ;hence (g � 2)m1 = n(m1 � 1). In the de�nition of�(g) we wrote 2k for the largest power of 2 thatdivides g � 2. Since n (and hence m1) is odd, wecan write m1� 1 in the form r2k with r 2 N . Hencen = m1(g � 2)m1 � 1= r2k + 1r2k (g � 2)� 2k + 12k (g � 2) = �(g): �

Proof of Theorem 1.4(ii) (g odd). By Lemma 5.2 weknow that in this case we only have to consider au-tomorphisms with g0 = 1 and l = 2. The statemento�(g) = �(g) for g � 16575 we have checked numer-ically by testing for solutions of (B1){(B3).The claim that o�(g) � �(g) for all odd g � 3is proved by exhibiting a solution with n = �(g)for those very equations. Recall from Section 1 thede�nition of k in the formula for �(g). Then thedesired solution is given by setting n = �(g), m1 =2k+1, and m2 = n if �(g) = �0(g), and m2 = n=m1if �(g) = �1(g).We now turn to the proof of o�(g) � 3(g + 1)=2for all odd g � 3. This argument will also providethe model for the proof of o�(g) = �(g) for oddg 6� 257 mod 8160. Let g be given and, arguingby contradiction, assume that we have a periodicautomorphism of Ng of odd order n > 3(g + 1)=2.Then (R-H) implies1� 1m1 � 1m2 = g � 2n < 2(g � 2)3(g + 1) < 23 ;hence 1m1 + 1m2 > g + 73(g + 1) > 13 :Without loss of generality we may assumem1 � m2,so the only possible cases are
(i) m1 = 3,
(ii) m1 = 5;m2 = 5,
(iii) m1 = 5;m2 = 7.The second and third case can easily be shown tolead, using (B1){(B3), to small values of g (5 or 25,respectively), for which we already knowo�(g) = �(g) � 3(g + 1)=2:In the �rst case, if gcd(3;m2) = 1, then by (B3)we have n = lcm(m1;m2) = 3m2, and inserting thisin (R-H) gives n = 3(g + 1)=2, contradicting ourassumption. Similarly, ifgcd(3;m2) = 3;then n = lcm(m1;m2) = m2, hence1m1 + 1m2 = 13 + 1n < 13 + 23(g + 1) = g + 33(g + 1) ;contradicting the estimate derived above.We now proceed according to the same scheme.In the formula for �(g) we have k = 1 if
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1. either 2 divides g � 1 but 4 does not,
2. or 2 divides g�1 and 4 does not divide g+1 andgcd(3; g + 1) = 1.The second alternative is equivalent to g � 1 or9 mod 12, and we get �(g) = 3(g + 1)=2. We havealready shown that �(g) � o�(g) � 3(g+1)=2, henceo�(g) = �(g) in this case.The �rst alternative is equivalent to g � 3; 7; 11mod 12, and here �(g) = 3(g�1)=2. By an argumentsimilar to the one given above, the assumption n >3(g � 1)=2 can be led to a contradiction.The next case to consider would be g � 5 mod 24,when k = 2 and �(g) = �0(g) = 5(g � 1)=4. Theassumption n > 5(g�1)=4 now leads to the estimate1=m1 + 1=m2 > 1=5, and we need the numericalresult o�(g) = �(g) for g up to 120 to reduce thepossibilities for (m1;m2) to a manageable list, whichcan then be treated individually as above. The �rsttime this line of argument fails to prove o�(g) = �(g)is when g � 257 mod 8160. �For g � 257 mod 8160 we may distinguish two sub-cases. The case g � 8417 mod 16320 corresponds tok = 5 and � = �0. The case g � 257 mod 16320corresponds to k � 6. (It is worth observing thatthe case � = �1 with k = 5 or k = 3 never oc-curs; this is a simple exercise.) Here are examplesfor �(g) < o�(g) with k = 5 and k = 6 (in bothcases g0 = 1, l = 2):� g = 57377, n = 60007, m1 = 23, m2 = 2609,�(g) = 59169;� g = 16577, n = 17197, m1 = 29, m2 = 593,�(g) = 16835.
Proof of Theorem 1.5. Here we consider odd g. Recallthat the number k in the de�nition of �(g) is suchthat 2k divides g�1. In particular, g�1 � 2k. Thisinequality is equivalent to2k + 12k (g � 1) � g;with equality if and only if g = 2k + 1, henceo�(g) � �(g) � 2k + 12k (g � 1) � g;and o�(g) = g cannot occur unless g = 2k + 1.
Lemma 5.3. Assume g = 2k + 1. If there is a nat-ural number y with 1 � y � k � 1 and gcd(2y + 1;2k�y + 1) = 1, then o�(g) > g.

Proof. This can be proved simply by exhibiting asolution to (B1){(B3) with n > g. Such a solutionis given byg0 = 1; l = 2; m1 = 2y + 1; m2 = 2k�y + 1;n = lcm(m1;m2) = m1m2:Alternatively, the estimate for o�(g) given beforethis lemma shows: a necessary condition for o�(2k+1) = 2k + 1 to hold is that �(g) = �0(g) = (2k +1)(g� 1)=2k. But if y 2 N exists as described in thelemma, thengcd(2y+1; g+2y�1) = gcd(2y+1; 2k+2y)= gcd(2y+1; 2k�y+1) = 1;hence, with y� the smallest such y,�(g) = 2y� + 12y� (g + 2y� � 1) > �0(g): �
Lemma 5.4. Let x; y 2 N with y a divisor of x. If x isan even multiple of y, then 2y + 1 divides 2x � 1. Ifx is an odd multiple of y, then 2y +1 divides 2x+1.
Proof. We have2x � 1 = (2y + 1)(2x�y � 2x�2y +� � � �+ 2y � 1)in the �rst case, and2x + 1 = (2y + 1)(2x�y � 2x�2y +� � � � � 2y + 1)in the second. �We now complete the proof of Theorem 5. So sup-pose o�(g) = g. We have already seen that thisforces g to be of the form g = 2k + 1. If g is not aFermat number, then k can be written in the formk = 2j(2a + 1) with j 2 N 0, a 2 N . Set x = 2j � 2aand y = 2j . Then 2y + 1 divides 2x � 1 = 2k�y � 1by the preceding lemma. Since all the prime factorsof 2y + 1 are odd, this impliesgcd(2y + 1; 2k�y + 1) = 1:Thus o�(g) > g by Lemma 5.3.The results o�(Fj) =Fj for 0� j � 4 and o�(Fj)>Fj for 5� j � 9 have been checked numerically. Forinstance, for g = F5 we can choosem1 = 99;m2 = 394 435 773;n = 4338 793 503 > F5(and g0 = 1, l = 2, as in the other examples of thissection). �



84 Experimental Mathematics, Vol. 9 (2000), No. 1Observe that Lemma 5.3 cannot be used to showo�(Fj) > Fj, for both 2y + 1 and 22j�y + 1 (with1 � y � 2j � 1) are divisible by 22c + 1, where 2c isthe largest power of 2 dividing y (use Lemma 5.4).This also implies that �(Fj) = �0(Fj) = Fj. Sog = Fj, 5 � j � 9, are further examples whereo�(g) > �(g).
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