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W. H. Meeks has asked the following question: For what g does
every (orientation preserving) periodic automorphism of a closed
orientable surface of genus g have an invariant circle? A variant
of this question due to R. D. Edwards asks for the existence of
invariant essential circles. Using a construction of Meeks we
show that the answer to his question is negative for all but 43
values of g < 10000, all of which lie below g = 105. We then
show that the work of S. C. Wang on Edwards’ question general-
izes to nonorientable surfaces and automorphisms of odd order.
Motivated by this, we ask for the maximal odd order of a peri-
odic automorphism of a given nonorientable surface. We obtain
a fairly complete answer to this question and also observe an
amusing relation between this order and Fermat primes.

1. INTRODUCTION AND MAIN RESULTS

In this paper F, denotes a closed orientable surface
of genus g and N, a closed nonorientable surface of
the same genus. By a periodic automorphism of or-
der n we mean a diffeomorphism f: ¥ — ¥ (where
¥ = F, or N,) such that f" =idy and f* # idy for
1 <k <n—1. The classical case to consider is

(A) The surface ¥ is orientable and f is orientation
preserving.

For this case we study the following question of
[Meeks 1979], which also appears as [Kirby 1997,
Problem 2.8]:

(Q1) For what genus g does every (orientation pre-
serving) automorphism f of F, have an invariant
circle?

Here invariant circle means an embedded circle C' C
¥ such that f(C) = C.

By the cited work of Meeks the answer is positive
for ¢ < 10, negative for ¢ = 11, and according to
[Kirby 1997] it is known that the answer is negative
for infinitely many g (though, to our knowledge, no
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proof of this fact exists in the literature). Neverthe-
less, in some sense ‘most’ periodic automorphisms
have an invariant circle (this and the previous state-
ments will all be discussed below), which led Meeks
to conjecture that the answer to (Q1) is positive for
infinitely many g. However, by using Meeks’ own
technique we can prove the following theorem, pro-
viding some evidence against this conjecture.

Theorem 1.1. There are precisely 43 values of g in the
range g < 10000 such that every orientation preserv-
ing periodic automorphism of F, has an wnvariant
circle, namely, g =0, 1, 2, 3,4, 5, 6, 7, 8, 9, 10,
12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 27, 28, 30, 32,
35, 39, 42, 43, 44, 45, 48, 49, 50, 51, 60, 65, 66, 72,
73, 87, 90, 105.

This theorem and some related results are discussed
in Section 3.

The existence of invariant essential circles, i.e.
embedded circles C' C ¥ that are not nullhomotopic,
was studied by Wang [1989]. He showed that an ori-
entation preserving periodic automorphism F, — F}
(g > 2) of prime order p has an invariant essential
circle if and only if p < g+ 1, and that 2¢g+ 2 (when
g is even) or 2g—2 (when g is odd and g > 3) consti-
tutes a sharp upper bound for the order of automor-
phisms with invariant essential circles (for g = 3 the
bound is 6). In Section 4 we generalize the results
of Wang to nonorientable surfaces /N, and automor-
phisms of odd order, and we explain the difficulties
in trying to extend these results to the other cases
(automorphisms of N, of even order or orientation
reversing automorphisms of F}). Some of the results
of that section can be summarized as follows:

Theorem 1.2. (i) Any periodic automorphism
f:Nyg — Ny

of order n equal to the power of an odd prime has
an invariant essential circle. If n contains only
two different prime factors, then f still has an
invariant (but possibly inessential) circle.

(ii) There are infinitely many N, which admit a pe-
riodic automorphism of odd order without invari-
ant circles.

In the theory of surface automorphisms there is a
further problem with a long and distinguished his-
tory, namely, the question:

(Q2) What is the maximal order o(X) of a periodic
automorphism f : X — X7

The case for orientation preserving automorphisms
of F, was settled in [Wiman 1895] and [Harvey 1966,
and the complete answer was first found in [Steiger
1935] and rediscovered by [Wang 1991] (and others).
Their result reads as follows:

Theorem 1.3.

_J49+2, godd g=>3;
o(Fy) = {49 +4, g even, g>2;

_ )29 g odd, g > 3;
o(Ny) = {Zg —2, g even, g >4.

In the remaining cases the order of f can be arbi-
trarily large.

The discussion in Section 4 suggests that it is
worthwile to focus attention on the case

(B) The surface X is nonorientable and f has odd
order.

Motivated by this, we now ask question (Q2) for this
case. Write 0*(g) for the maximal odd order of an
automorphism f : Ny — N,, with g > 3 understood.
For g even, let 2* be the largest power of 2 that

divides g — 2, and set
2641

alg) = —5—(9-2).

For g odd, let k be the smallest natural number (not
including 0) such that

1. either 2F is the largest power of 2 that divides
g— ]-7
2. or 2¥ divides g — 1 and 2**! does not divide g +
28 —1and ged(2" +1,9+28 - 1) =1.
Then set
28 +1
ok
with € = 0 if £ comes from the first alternative, and
e = 1 if it comes from the second. We abbreviate
the right hand side of this equation to a.(g).
Here are the main results proved in Section 5.

a(g) = (g+e2" = 1),

Theorem 1.4. (i) For g even, 0*(g) = a(g).
(i) For g odd, a(g) < o*(9) < 3(9 +1)/2, and
0*(g) = alg) for g # 257 mod 8160 or g < 16575.

This seems to constitute overwhelming evidence for
the conjecture that o*(g) = a(g) for all g, but the
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conjecture fails for g = 16577. A different formula-
tion, as we shall see, is that the first example where
0*(g) is strictly bigger than «a(g) arises for k = 5
and € = 0.

Theorem 1.5. For g odd, the number o*(g) satisfies
0*(g9) > g, and equality o*(g) = g can only hold if g
is a Fermat number g = F; = 22 +1,5 € Ny. In
fact, for the Fermat primes F;, 0 < j < 4, we have
o*(F;) = F;; for the composite Fermat numbers F;,
5 <7 <9, we have o*(F;) > F;.

The present paper grew out of Rattaggi’s diploma
thesis [1998] under Geiges’ guidance at the ETH
Zurich. In that thesis the reader can find an exten-
sive bibliography pertinent to the questions consid-
ered here, more background information, examples,
and some further related results.

2. PERIODIC AUTOMORPHISMS AND BRANCHED
COVERS

A periodic automorphism f : ¥ — X of order n
induces a Z,-action on X such that the quotient
map

X=X :=%/Z,

is an n-sheeted cyclic branched covering. It is some-
times convenient to assume (and we shall do so im-
plicitly below) that ¥ is endowed with a metric for
which f is an isometry. Such a metric can be ob-
tained simply by averaging any given metric. One
may even assume this to be a constant curvature
metric. This is achieved by lifting an elliptic, Eu-
clidean, or hyperbolic structure from X /Z, (which
we regard as an orbifold) to X; for the existence of
such a structure on the orbifold see [Thurston 1985,
Chapter 13] and [Scott 1983, Section 2|. Such an
invariant constant curvature metric can be used to
show that if C is the image of an injective continu-
ous map S' — ¥ and f(C) = C, then there exists a
smoothly embedded invariant circle in the same free
homotopy class.

We recall some well-known facts about branched
coverings; see for instance [Harvey 1966; Berstein
and Edmonds 1979; Miranda 1995]. Let [ be the
number of branch points (in ¥’) of the branched
covering m : ¥ — X’ and write B = {b,..., b} for
the branching set. Let m;, ¢ = 1,...,[, be the cor-
responding branching indices, which means that in

suitable local complex coordinates around one of the
preimages of b; the map 7 is given by z +— 2. De-
note the Euler characteristic by x. Then, assuming
that ¥’ has no boundary (or reflector curves when
regarded as an orbifold), we have the Riemann-
Hurwitz formula, subsequently referred to as (R-H),

1
x(¥) : 1
= =y - 1——1.
o =aE) =) (1
=1
The monodromy around the branch points induces
a surjective representation

p: m (X —B)—=Z,,

where the element x; of m, (X — B) represented by
a small loop around b; maps to an element of order
m; in Z,. Conversely, from such a representation
one can reconstruct the cyclic branched covering.

The existence of a periodic automorphism can be
deduced from purely algebraic conditions; see [Bu-
jalance et al. 1990]. We summarize these for the
cases (A) and (B) that we consider in the present
paper; for the other cases see [Rattaggi 1998].

In case (A) we observe that ¥ = ¥/Z, is ori-
entable and without boundary. Then by Theorems
3.1.2 and 3.1.5 of [Bujalance et al. 1990] we have
the following necessary and sufficient conditions for
the existence of an orientation preserving periodic
automorphism f : F, — F|, of order n with quotient
Fy =F,/Ly,:

(A1) m; divides n for: =1,...,1.

(A2) (R-H): (29 —2)/n=2¢ =24+ 3\, (1 — 1/m,).

(A3) lem(my, ..., My, ...,my) = lem(my, ..., my) for
1 = 1,...,l, where m,; indicates the omission of

m;.

(A4)If ¢' = 0, then n = lem(my,...,my).

This case (A) is also discussed in [Harvey 1966, The-
orem 4]. The algebraic conditions listed there (for
instance, [ # 1 and, if ¢’ = 0, then [ > 3) can be
deduced from (A1)—(A4). For g > 2 (i.e., in the hy-
perbolic case), the monodromy representation p has
to satisfy only the two conditions mentioned above:
it needs to be surjective, and p(z;) must have or-
der m; (see [Harvey 1966, Theorem 3]).

In case (B), Theorem 3.1.3 and Corollary 3.2.3 of
[Bujalance et al. 1990] state that X' is nonorientable
and without boundary. Furthermore, necessary and
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sufficient for the existence of a periodic automor-
phism f : N, — N, of odd order n with quotient
Ny = N,/Z,, are:

(B1) m; divides n for i =1,...,1.
B2) (R-H): (9—2)/n=9g —2+ >, (1—1/m,).
(B3) If ¢’ = 1, then n = lem(my,...,my).

Write (X" — B) in the standard form

2 2
(CryeeyCys @y mley ey my . omp = 1),

and denote by I'" the subgroup of elements of
T (Z’ - B)

containing an even number of the factors ¢t'. If
g > 3 (again, the hyperbolic case), then the only
condition the monodromy representation p has to

satisfy (in addition to those discussed above) is that
p(r+) = ZLy;
see [Bujalance 1983, Proposition 3.2].

3. AUTOMORPHISMS WITHOUT INVARIANT CIRCLES

In this section we explain the mathematical princi-
ples behind the numerical search which we carried
out to prove Theorem 1.1. Thus here we consider
orientable surfaces F, and orientation preserving pe-
riodic automorphisms f : F, — F, (of order n).
First we summarize the results for ¢ = 0 or 1 (com-
pare [Scott 1983; Wang 1989]). If ¢ = 0 then f is
a rotation by 27 /n around some axis, and f has an
invariant circle. If ¢ = 1 then f can either be iso-
topic to the identity (f is a shift and n arbitrary)
or f is one of four maps not isotopic to the identity
of order 2, 3,4, 6, respectively. In any case, f has an
invariant circle.

For the remainder of this section we assume g > 2.

Meeks [1979] has shown that every f : F, — F,
with order n containing at most two different prime
factors or with ¢ < 10 has an invariant circle. Also,
on Fi; there is essentially only one automorphism
(of order 30) with no invariant circles (‘essentially’
meaning up to conjugation and taking a power rel-
atively prime to 30). So automorphisms with no
invariant circles appear to be scarce.

Meeks also shows the following necessary and suf-
ficient conditions — together with (A1l)-(A4)— for
the existence of a periodic automorphism f : F, —
F, without invariant circles:

(A5) g = 0, that is, ¥’ = S%.
(A6) There is a surjective representation

p:m (X —B)=(x,...,z|x1...00=1) > Z,

with p(z;) of order m; and such that p(z" ... x}")
is not a generator of Z, for any choice of ¢; €
{0,1},i=1,...,L

That last condition can be explained as follows: El-
ements of 7, (X' — B) which can be represented by an
embedded circle C" are precisely those of the form
xi' ... z]" by [Meeks and Patrusky 1978, Theorem 1],
and the preimage C' of C' is an invariant circle ex-
actly when C' — C’ is an n-fold cover and p([C']) a
generator of Z,,.

Conditions (A1)-(A6) clearly allow a numerical
search for automorphisms without invariant circles.
By the results of Meeks, one can restrict attention
to orders n with at least three prime factors (in par-
ticular, n > 30). Furthermore, if one can find an au-
tomorphism f satisfying (A1)—-(A5) with n > 2g+2
and m; # n for all ¢ = 1,...,[, then one need not
check condition (A6), for the condition n > 2g + 2
implies according to [Wang 1989] that f has no in-
variant essential circles, and m; # n implies that f
has no fixed points and hence no invariant inessen-
tial circles (if f had an invariant inessential circle,
this circle would bound a disc which would have to
be invariant because of g > 1, and to this disc the
Brouwer fixed point theorem would apply).

Starting with { = 3 (observe that (A5) together
with (R-H) implies [ > 3), one can already find in-
finitely many F, admitting an automorphism with-
out invariant circles, for example:

g=—4+15k with ke N,

n = ?)Ok, (7'1,7'2,7"3) = (273’5)’
mizn/m fori:172737
p(xl) =T, P(xz) =Ty, p(x3) =T mod n,

or in fact infinitely many F}, with any given number
of nonequivalent automorphisms without invariant
circles.

Continuing with [ = 4 and 5, one can find an au-
tomorphism of F, without invariant circles for any
g < 10000 except the ones listed in Theorem 1.1.
To finish the proof of Theorem 1.1 one has to check
that the corresponding F, do not admit an auto-
morphism without invariant circles for larger values
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of [. It follows from the Riemann-Hurwitz formula
that this search is finite. Indeed, with ¢’ = 0 and
r; = n/m; we have

!
2g—2=n(l—2)—2n~.

=1
With r; = n/m; < n/2 we get
29 —2>n(il—2).

Hence, for given g and [ there are only finitely many
possible values for n and thus only finitely many
solutions of (A1)-(A6). Furthermore, (R-H) implies
that for [ > 18 there is no automorphism with ¢’ =
0, n > 30, and g < 105.

Detailed lists of periodic automorphisms without
invariant circles and some remarks on the program-
ming of the search described in this section can be
found in [Rattaggi 1998].

4. NONORIENTABLE SURFACES

In the present section we want to generalize the re-
sults of Meeks and Wang to automorphisms f of
nonorientable surfaces ¥ = N, of odd order n. The
reason for this restriction will be explained at the
end of this section.

As mentioned in Section 2, the quotient surface

X =3/(f)

is again nonorientable and without boundary.

We first deal with the special cases ¥ = N, = RP”
and X = N, = Klein bottle. If ¢ = 1, then (B2) =
(R-H) reads

l
, 1 g—2 -1
9‘“;(1‘5): noon 0

This implies ¢’ = 1 and [ <1 (since 1 —1/m; > ).
The case [ = 0 can be excluded because here n = 1.
Thus ! =1 and m; = n.

If we think of RP? as a disc with opposite points
on the boundary identified, then these data can be
realized by a rotation by 27/n around the centre of
this disc. This is (up to equivalence) the only au-
tomorphism corresponding to the given data, since

the (surjective) monodromy representation

p:m (¥ -B)=7Z—17Z,

can only be reduction modulo n. The circle at infin-
ity (corresponding to half the circumference of the
disc) is an invariant essential circle under the de-
scribed rotation; any circle around the centre is an
invariant inessential circle.

If g = 2, then (R-H) becomes

l
1
243 (1-—) =o.
! +i:l( mi) 0

Hence ¢' < 2. If ¢’ =1, then

thus [ = 2, m; = my = 2, and, by (B3), we get
n = lem(my, my) = 2, contradicting our assumption
that n be odd. The only remaining case is ¢’ = 2
and [ = 0, that is, ¥’ also has to be a Klein bottle
and ¥ — ¥ an n-fold unbranched covering. Such a
covering can be given by realizing ¥’ as the quotient
of R* under a(z,y) = (z+1/n, —y) and B(z,y) =
(z,y+1), and ¥ as the quotient of R? under o and
B, with the obvious projection ¥ — ¥'. Since Z,, is
abelian, the monodromy representation

p: m(T) = (o, Bl afaB=1) - Z,
factors through
Hi(Y) = (o, Blaf = fa, f* =1) 2L & Ly

and hence is unique up to isomorphism (since n
is odd). So up to equivalence the automorphism
(x,y) — (x+1/n, —y) of ¥ is the only automor-
phism of N, of odd order n. This automorphism
has both essential and inessential invariant circles.

From now on we only consider surfaces ¥ = N,
with ¢ > 3, and f : N, = N, will always denote an
automorphism of odd order n.

The following three lemmas are the analogues of
Lemmas 1, 2, 3 of [Wang 1989] (see also Section 1
of [Meeks 1979]) for the case (B) considered here.

Lemma 4.1. Let C be an invariant circle of f and
r < n the order of the restriction of f to C. Then

(i) r =n, and
(ii) there are no singular points of f on C.

Proof. (i) Choose a point x € C and a short geodesic
arc A perpendicular to C' at z. The map f" is an
isometry which fixes C' pointwise. Hence f7 is either
the identity on A, or it reflects A in z. In any case
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f*"(a) = a for all @ € A. Hence f?" is the identity
on Ny, since f?" fixes a point x and an orthogonal
frame at x (an isometry of a connected manifold is
determined by its value and differential at one point;
see [Carmo 1992, Lemma 8.4.2]). Thus 2r = n or
2r = 2n. But n is odd, hence r = n.

(ii) We argue by contradiction. Assume y € C
is a singular point of f, that is, f?(y) = y for some
g < n. So f1C is an isometry of a circle with a fixed
point, but not the identity. Therefore f?¢|C is ori-
entation reversing and so is f|C. By the Lefschetz
fixed point theorem, f|C must have a fixed point,
which implies that f|C' must be of order r = 2.
This contradicts (i), because of our global assump-
tion that n be odd. O

In the following lemma we adhere to the notation of
Section 2. The proof is the same as in the classical
case (A).

Lemma 4.2. If C is an invariant circle of f, then C' =
7(C) is a circle in ¥' — B and p([C"]) is a generator
of Z.,,. Conversely, if C" is a circle in X' — B and
p([C"]) a generator of Z,, then C = 7 *(C") is an
wnwvariant circle of f.

Proof. An invariant circle C' of f does not contain any
singular points by Lemma 4.1. Hence (f) acts freely
(with order n) on C, so f|C (being an isometry) is a
shift by m - length (C')/n with m coprime to n, and
C' = 7(C)isacircle in ¥'—B with C' — C” an n-fold
unbranched covering. Hence p([C’]) generates Z,,.
Conversely, if p([C']) generates Z,, then C =
7 1(C") is connected and thus an invariant circle. O

Lemma 4.3. Let C' be an invariant circle of f. Then
C separates Ny if and only if C" = ©w(C) separates
X' = Ny/(f)-

Proof. Suppose C separates N,. Then we can write
N, as a disjoint union N, = A; UA,UC with A, and
A, connected open sets with A,—A; = C fori = 1,2.
These sets are either preserved or interchanged by
f, but since f™ is the identity on N, and n is odd,
we must have f(A;) = A; for i = 1,2. Arguing by
contradiction, we assume that C’ does not separate
3'. Given two nonsingular points a; € A;, we can
then find a path v in ¥' — (B U C") joining m(a;)
with 7(az2). The lift 4 of v with initial point a; ends
in 7(1) € 7Y (mw(az)) C Ay (because f(A4y) = A,),

but 4 does not pass through C. This contradiction
proves that C' separates Y'.

Conversely, if C" separates X', write X' = A} U
A,UC'. If C = n1(C") did not separate N,, we
could choose a} € A} and a path 7 in N, —C from an
a, € 7 *(a}) to an ay € 7' (a}). Then 7(y) would
be a path from a} to aj not passing through C'. O

Proof of of Theorem 1.2. (i) Let n be a power of the
prime p. Then an element of Z,, generates this group
if and only if it is not divisible by p.

By Lemmas 4.2 and 4.3 it is sufficient to find an
element [C'] of m (X' — B) represented by a loop C’
not separating ' such that p([C’]) is a generator

of Z,,.
We write
T (EI — B)

2 _
Cp Ty o7 = 1),

={Cly ey CyyTrye ey | € L
as before. First consider the case [ = 0. Since p is
surjective, there exists a ¢; such that p(c¢;) generates
Z.,,, and we take C' to be a circle representing c;.

Now assume [ > 1. If there exists a ¢; such that
p(c;) generates Z,,, we are done as before. Other-
wise, all p(c;) are divisible by p, and since p is sur-
jective there is an x; with p(x;) not divisible by p.
The class c¢;x; can then be represented by a circle
C" with the desired properties.

The proof of the existence of an invariant circle if
n = p*q” goes along the same lines and is analogous
to the proof of Theorem 2 in [Meeks 1979]: Since p is
surjective, either one of the generators c;, z; maps to
a generator of Z,, (in which case we are done), or we
find two elements u;, us among this set of standard
generators of 7, (X' — B) such that p(u,) is divisible
by p but not by ¢, and p(us) is divisible by ¢ but
not by p. Then p(uju,) is a generator of Z,, and
uyu, can be represented by an embedded circle.

(ii) We choose ¢' =1, I = 2 and, with & € N odd,

g = 1785k—18, n = 1785k, m, = 595k, m, = 105k.

Notice that 1785 =3-5-7-17. Writing m (X' — B)
in terms of standard generators ¢, x;, > as before,
we define

p: m (X —-B)—=17Z,
by
plci) =n—10, p(z1) =3, p(z2) = 17.
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Then (B1)—(B3) and the conditions on p stipulated
in Section 2 are easily verified. In particular,

p(c2z?) = 1 mod n,

so p(I'") =2Z,.

It remains to check that the automorphism f of
N, defined by these data has no invariant circle.
According to [Chillingworth 1972, p. 145, case (iv)],
the only elements of (X’ — B) which can be rep-
resented by an embedded circle are those conjugate
to

2 2 2
L, ¢, o, aw, (Cll’l) y L1, €1,

or their inverses. By Lemma 4.2 we have to show
that none of these elements maps to a generator of
Z,, under the monodromy representation p. Clearly
we may disregard multiples and inverses, and since
Z,, is abelian the same holds for conjugates. We are
left with the three generators ¢;, z1, x5 of m (X' — B)
and ¢z, ¢2x1, which map under p to

n—10,3,17, n -7, n—17,

respectively, neither of which is relatively prime to n.
O

We conclude this section with a brief comment about
the cases not considered in this paper: orientation
reversing automorphisms f : F, — F, or automor-
phisms f : N, = N, of even order. In either case
it can happen that the quotient surface ¥’ = X/(f)
has nonempty boundary, in which case Lemma 4.1
and subsequent arguments based on it will fail. If 3’
happens to be closed, then Lemmas 4.1 and 4.2 still
hold. But a nonseparating circle ¢’ C ¥’ may now
lift to a separating circle C' C X. However, as long as
we are only interested in the circle C' C X being es-
sential, the arguments of this section carry through
(subject to the assumption that ¥’ be closed) with
Lemma 4.3 replaced by the following statement.

Lemma 4.4. Let C be an wnvariant circle of f not
containing a singular point, and C' = w(C). If
n[C'] # 1 € m ('), where n is the order of f, then
C is essential.

Proof. Denote by 7y the homomorphism 7;(X) —
m(X') induced by the projection 7 : ¥ — ¥'. Under
the assumptions of the lemma we have 74 ([C]) =
n[C'] # 1 € m(¥'), and thus [C] # 1 € m(2),
which implies that C' is an essential circle. O

5. MAXIMAL ORDERS OF PERIODIC AUTOMORPHISMS

We now turn to the proof of Theorem 1.4. Let
g > 3 be given and write ny = 0*(g) for the maxi-
mal odd order of periodic automorphisms f : N, —
Ny. Write f, for an automorphism which realizes
this maximal odd order, g, for the genus of the or-
bit space, and [, for the corresponding number of
branch points of Ny — Ny = N,/(fo). We shall see
presently that g; does not depend on the choice of

Jo-

Lemma 5.1. Let f : N, — N, be an automorphism of
odd order n and g' the genus of the quotient surface
N,/{f). Then g and g’ have the same parity.

Proof. The Riemann-Hurwitz formula yields

l

n
=2 -2 In — —
g + ng n+In Zz:; .
= ¢’ mod 2,
regardless of the parity of [. O

Lemma 5.2. For g odd we have g, =1 and ly = 2, for
g even we have g, =2 and [y = 1.

Proof. For g odd there is a periodic automorphism f
withn =g, ¢ =1,1 =2, and m; = my, = n (see
Figure 1). This implies ny > g. By the preceding
lemma we know that ¢’ is odd. Assume ¢g' > 3.
Then (R-H) yields

g:g'—Z—i-zl: P BN
n i=1 mi) =

hence
n<g—2<g<ng.

FIGURE 1. The case g odd, n = g.
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Therefore g/, = 1. Inserting this in (R-H) we find

lo
1
:_1+Z<1_E> < —1+1,

=1

g

-2
0<
No
hence [y > 2, but also

——1+§: LYy 14
- i=1 mi) 37

qg—2
No

and thus

_9 _9
<3 (922 1) <3 (922, 1) =33
2 T 2 g g

We conclude that [, = 2.

The case g even is treated analogously, starting
from the existence of an automorphism f with n =
g—1,¢ =2 1=1,m; =n (Figure 2). O

o = RP?

FIGURE 2. The case g even, n =g — 1.

Proof of Theorem 1.4(i) (g even). The conditions (B1)-
(B3) are satisfied with n = a(g) (as defined in Sec-
tion 1), ¢ = 2,1 = 1, and m; = 1 + 2*. Hence
0*(g9) > a(g). To show 0*(g) < a(g) we can restrict
attention to ¢ = 2 and [ = 1 by the lemma just
proved. The Riemann-Hurwitz formula then reads

g—2 1

hence (g — 2)m; = n(m; — 1). In the definition of
a(g) we wrote 2F for the largest power of 2 that
divides g — 2. Since n (and hence my) is odd, we
can write m; — 1 in the form r2* with » € N. Hence

n:ml(g—Z)
m1—1
r2k 41

=2 g-2
o 92
2k +1

Proof of Theorem 1.4(ii) (g odd). By Lemma 5.2 we
know that in this case we only have to consider au-
tomorphisms with ¢’ = 1 and [ = 2. The statement
0*(g) = a(g) for g < 16575 we have checked numer-
ically by testing for solutions of (B1)-(B3).

The claim that 0*(g) > «(g) for all odd g > 3
is proved by exhibiting a solution with n = «(g)
for those very equations. Recall from Section 1 the
definition of k£ in the formula for «(g). Then the
desired solution is given by setting n = «a(g), m; =
28 +1, and my = n if a(g) = ap(g), and my = n/m,
if a(g) = au(g).

We now turn to the proof of 0*(g) < 3(g +1)/2
for all odd g > 3. This argument will also provide
the model for the proof of o*(g) = a(g) for odd
g # 257 mod 8160. Let g be given and, arguing
by contradiction, assume that we have a periodic
automorphism of N, of odd order n > 3(¢g + 1)/2.
Then (R-H) implies

1 1 -2 29— 2
ot _g-2 2 )<_7
mp My n 3(g+1) 3
hence
11 g+7 1
my  my  3(g+1) " 3

Without loss of generality we may assume m; < mao,
so the only possible cases are

(i) my =3,

(i) my = 5,ms =5,

(lll) my, = 5,m2 =1.

The second and third case can easily be shown to

lead, using (B1)-(B3), to small values of ¢ (5 or 25,
respectively), for which we already know

0o'(g9) = alg) <3(g +1)/2.
In the first case, if ged(3,my) = 1, then by (B3)
we have n = lem(my, ms) = 3ms, and inserting this
in (R-H) gives n = 3(¢9 + 1)/2, contradicting our
assumption. Similarly, if

ng(?)amZ) = 37
then n = lem(my, my) = my, hence
11 1 1 1 2 g+3
— t— =+ —< -+ = )
my me 3 n 3 3g+1) 3(g+1)

contradicting the estimate derived above.
We now proceed according to the same scheme.
In the formula for a(g) we have k =1 if
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1. either 2 divides g — 1 but 4 does not,
2. or 2 divides g — 1 and 4 does not divide g+ 1 and
ged(3,9+1) = 1.

The second alternative is equivalent to ¢ = 1 or
9 mod 12, and we get a(g) = 3(g + 1)/2. We have
already shown that a(g) < 0*(g) < 3(g+1)/2, hence
0*(g9) = a(g) in this case.

The first alternative is equivalent to ¢ = 3,7,11
mod 12, and here a(g) = 3(9g—1)/2. By an argument
similar to the one given above, the assumption n >
3(g — 1)/2 can be led to a contradiction.

The next case to consider would be g = 5 mod 24,
when k£ = 2 and a(g) = ag(g) = 5(g — 1)/4. The
assumption n > 5(g—1)/4 now leads to the estimate
1/my + 1/my > 1/5, and we need the numerical
result 0*(g) = a(g) for g up to 120 to reduce the
possibilities for (m;, ms) to a manageable list, which
can then be treated individually as above. The first
time this line of argument fails to prove o*(g) = a(g)
is when g = 257 mod 8160. |

For g = 257 mod 8160 we may distinguish two sub-
cases. The case g = 8417 mod 16320 corresponds to
k =5 and a = ay. The case ¢ = 257 mod 16320
corresponds to k > 6. (It is worth observing that
the case « = a; with K = 5 or kK = 3 never oc-
curs; this is a simple exercise.) Here are examples
for a(g) < o*(g) with Kk = 5 and k = 6 (in both
cases ¢’ = 1,1 =2):

e g = 57377, n = 60007, m; = 23, my = 2609,
ag) = 59169;

e g = 16577, n = 17197, m; = 29, my = 593,
ag) = 16835.

Proof of Theorem 1.5. Here we consider odd g. Recall
that the number & in the definition of a(g) is such
that 2* divides g — 1. In particular, g —1 > 2*. This
inequality is equivalent to

28 +1
with equality if and only if g = 2* + 1, hence
28 +1

o'(g) 2 alg) 2 —5—(9-1) 29,
and 0*(g) = g cannot occur unless g = 2F + 1.

Lemma 5.3. Assume g = 2F + 1. If there is a nat-
ural number y with 1 <y <k —1 and ged(2Y + 1,
2Fv +1) =1, then o*(g) > g.

Proof. This can be proved simply by exhibiting a
solution to (B1)-(B3) with n > ¢g. Such a solution
is given by

=2,

n = lem(my, my) = myms.

g =1, my=2Y+1, my=2"""Y+1,

Alternatively, the estimate for 0*(g) given before
this lemma shows: a necessary condition for o*(2* 4+
1) = 2 + 1 to hold is that a(g) = ay(g) = (2% +
1)(g—1)/2%. But if y € N exists as described in the
lemma, then

ged(2V +1,9+2Y —1) = ged(2¥ 41, 2% +2¥)
=ged(2Y 41,25V +1) = 1;
hence, with y* the smallest such vy,
2V +1
alg) = —5
Lemma 5.4. Let x,y € N with y a divisor of . If x is
an even multiple of y, then 2Y + 1 divides 2* — 1. If
x 15 an odd multiple of y, then 2Y + 1 divides 2% + 1.

(g4+2Y —1) > ap(g). d

Proof. We have

27 —1=(2V+1)(2°7V = 2" 4 —... 4+ 2V — 1)
in the first case, and

29+ 1=(2V+1)(2°7Y =2 4 — .. 2V 4 1)
in the second. O
We now complete the proof of Theorem 5. So sup-
pose 0*(g) = g. We have already seen that this
forces g to be of the form g = 2¥ + 1. If ¢ is not a
Fermat number, then k£ can be written in the form
k =2/(2a +1) with j € Ny, a € N. Set x =27 - 2a
and y = 2/. Then 2 + 1 divides 2° — 1 = 2F7v — 1
by the preceding lemma. Since all the prime factors
of 2¥ + 1 are odd, this implies

ged(2Y +1,2 Y +1) = 1.
Thus 0*(g) > ¢ by Lemma 5.3.

The results o*(F;) =7, for 0 < j <4 and o*(F;) >
F; for 5 < j <9 have been checked numerically. For
instance, for ¢ = F5 we can choose

my, = 99,
my = 394435773,
n =4338793503 > F5

(and ¢’ =1, [ = 2, as in the other examples of this
section). O
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Observe that Lemma 5.3 cannot be used to show
0*(F;) > F;, for both 2¢ + 1 and 2% =¥ + 1 (with
1 <y <2 —1) are divisible by 22" + 1, where 2° is
the largest power of 2 dividing y (use Lemma 5.4).
This also implies that a(F;) = ao(F;) = F;. So
g =3, 5 <7 <9, are further examples where
0*(g) > alg).
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