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Boris and Michael Shapiro have a conjecture concerning the
Schubert calculus and real enumerative geometry and which
would give infinitely many families of zero-dimensional systems
of real polynomials (including families of overdetermined sys-
tems) —all of whose solutions are real. It has connections to the
pole placement problem in linear systems theory and to totally
positive matrices. We give compelling computational evidence
for its validity, prove it for infinitely many families of enumera-
tive problems, show how a simple version implies more general
versions, and present a counterexample to a general version of
their conjecture.

1. INTRODUCTION

The determination of the number of real solutions
to a system of polynomial equations is a challeng-
ing problem in symbolic and numeric computation
[Gonzalez-Vega et al. 1999; Sturmfels 1994; 1998]
with real world applications [Dietmaier 1998]. Re-
lated questions include when a problem of enumer-
ative geometry can have all solutions real [Sottile
1997a] and when may a given physical system be
controlled by real output feedback [Byrnes 1989;
Rosenthal et al. 1995; Syrmos et al. 1997]. In May
1995, Boris Shapiro and Michael Shapiro commu-
nicated to the author a remarkable conjecture con-
necting these three lines of inquiry.

They conjectured a relation between topological
invariants of the real and of the complex points in
an intersection of Schubert cells in a flag manifold, if
the cells are chosen according to a recipe they give.
When the intersection is zero-dimensional, this as-
serts that all points are real. Their conjecture is
false — we give full description and present a coun-
terexample in Section 5. However, there is consid-
erable evidence for their conjecture if the Schubert
cells are in a Grassmann manifold. It is this variant
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which is related to the lines of inquiry above and
which this paper is about.

Here is the simplest (but still very interesting and
open) special case of this conjecture: Let m,p > 1
be integers and let X be a p x m-matrix of indeter-
minates. Let K(s) be the m x (m + p)-matrix of
polynomials in s whose (4, j)-th entry is

IR
1—1

P53 X) = det [IK (s))(] |

(1-1)

Set

where [, is the p x p identity matrix.

Conjecture 1.1 (Shapiro and Shapiro). For all integers
m,p > 1, the polynomial system

Cmp(L; X) = @ p(2X) =+ = @ p(mp; X) =0
(1-2)
1s zero-dimensional with

P 12130 (p—=2)! (p—1)! - (mp)! 1-3)
P )l (mA D! (m2)! - (mp—1)! -

solutions, and all of them are real.

(After the acceptance of this paper, A. Eremenko
and A. Gabrielov [1999] announced a proof of this
conjecture when either m or p is 2.)

It is a Theorem of Schubert [1886] that d,,, is a
sharp bound for the number of isolated solutions.
Conjecture 1.1 has been verified for all 1 < m < p
with mp < 12. The case of (m,p) = (3,4) (when
dpn,p, = 462) follows from a heroic calculation of
Faugere, Rouillier, and Zimmermann [Faugere et al.
1998]; see Section 2D for a discussion.

Conjecture 1.1 is related to a question of Ful-
ton [Fulton 1996, §7.2], who asked how many so-
lutions to a problem of enumerative geometry may
be real, where that problem consists of counting fig-
ures of some kind having a given position with re-
spect to some given (fixed) figures. For 2-planes
having a given position with respect to fixed lin-
ear subspaces, the answer is that all may be real
[Sottile 1997b]. This was also shown for the prob-
lem of 3264 plane conics tangent to five given conics
[Ronga et al. 1997]. More examples, including that
of 3-planes in C°® meeting 9 given 3-planes nontriv-
ially, are found in [Sottile 1997a; 1997c|. The result

in [Faugere et al. 1998] extends this to 3-planes in
C" meeting 12 given 4-planes nontrivially.

Only the simplest form of the conjecture of Sha-
piro and Shapiro has appeared in print [Huber et al.
1998; Rosenthal and Sottile 1998; Sottile 1997a].
While more general forms have circulated informally,
there is no definitive source describing the conjec-
tures or the compelling evidence that has accumu-
lated (or a counterexample to the original conjec-
ture). The primary aim of this paper is to rectify
this situation and make these conjectures available
to a wider audience.

Structure of the Article

In Section 2, we describe a version of the conjec-
ture related to the pole placement problem of linear
systems theory. For this, the integers 1,2,...,mp
in the polynomial system (1-2) of Conjecture 1.1
are replaced by generic real numbers and all d,,,
solutions are asserted to be real. We present evi-
dence (computational and Theorems) in support of
it. Subsequent sections describe the conjecture in
greater generality —for enumerative problems aris-
ing from the Schubert calculus on Grassmannians
in Section 3 and a newer extension involving totally
positive matrices [Ando 1987] in Section 4. We de-
scribe and give evidence for each extension and show
how the version of the conjecture in Section 2 implies
more general versions involving Pieri-type enumer-
ative problems. In Section 5, we present a coun-
terexample to their original conjecture and discuss
further questions.

A remark on the form of these conjectures is war-
ranted. Conjecture 1.1 gives an infinite list of spe-
cific polynomial systems, and conjectures that each
has only real solutions. The full conjectures are
richer. For each collection of Schubert data, Sha-
piro and Shapiro give a continuous family of polyno-
mial systems and conjecture that each of the result-
ing systems of polynomials has only real solutions.
Conjecture 1.1 concerns one specific polynomial sys-
tem in each family, for an infinite subset of Schubert
data.

Results here were aided or are due to computa-
tions. Further documentation including Maple V.5
and Singular 1.2.1 [Greuel et al. 1998] scripts used
are available at [Sottile 1999a).
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2. LINEAR EQUATIONS IN PLUCKER COORDINATES

2A. Some Enumerative Geometry

Consider the following problem in enumerative ge-
ometry: How many p-planes meet mp general m-
planes in C™"? nontrivially?

The set of p-planes in C™*?, Grass(p, m+p), is
called the Grassmannian of p-planes in C™*?. This
complex manifold of dimension mp is an algebraic
subvariety of the projective space P("#")~1. To see
this, represent a p-plane X in C™"" as the row space
of a px (m+p)-matrix, also written X. The maximal
minors of X are its Plicker coordinates and deter-
mine a point in P("#M~1. This gives the Pliicker
embedding of Grass(p, m+p). If X is generic, then
its first p columns are linearly independent, so we
may assume they form a p x p-identity matrix. The
remaining mp entries determine X uniquely and give
local coordinates for Grass(p, m+p), showing it has
dimension mp.

Consider a m-plane K to be the row space of a
m X (m + p)-matrix, also written K. Then K N X
is nontrivial if and only if

det [?] =0.

Laplace expansion along X gives a linear equation
in the Pliicker coordinates of X.

If Ky,...,K,, are m-planes in general position,
the conditions that X meet each of the K, nontriv-
ially are mp linear equations in the Pliicker coordi-
nates of X, and these are independent by Kleiman’s
Transversality Theorem [Kleiman 1974]. Thus there
are finitely many p-planes X that meet each K; non-
trivially and the number of such planes is the degree
of Grass(p, m+p) in P("#")=' which Schubert [1886]
determined to be d,, ,.

2B. The Conjecture of Shapiro and Shapiro

Shapiro and Shapiro gave a recipe for selecting real
m-planes Ky, ..., K,,,. They conjecture that when
these planes are in in general position, all d,, , p-
planes meeting each K; are real. The standard ra-
tional normal curve is the image of the map v : R —
R™*? given by

visr— (1,8,8%, ..., (2-1)

Then the matrix K(s) of (1-1) has rows

V) A

2 77 (m=1)!7
where we take derivatives with respect to the param-
eter s. Thus the row space of K(s) is the m-plane
osculating the rational normal curve at y(s). Let X
be a p X m-matrix of indeterminates. Define

7(s),7'(s),

Pmp(s; X) := det [II(I)()S()] '

Conjecture 2.1 (Shapiro and Shapiro). For all integers
m,p > 1 and almost all distinct real numbers s, . ..,
Smp, the system of mp equations

(pm,p(sﬁX) = Som,p(52§ X)=-= Som,p(smp;X) =0
(2-2)
is zero-dimensional with d,, , real solutions.

Let K (s) denote both the mx (m+p)-matrix defined
above and its row space, an m-plane. Conjecture
2.1 asserts that the m-planes K (s1),..., K (sm,) are
in general position, and any p-plane meeting each
K(s;) is real. The systems are zero-dimensional
[Brockett and Byrnes 1981; Eisenbud and Harris
1983] and there are generically no multiplicities. We
see that Conjecture 1.1 is the special case s; = 1.

Example 2.2. We establish Conjecture 2.1 when m =
p = 2. Then

1 s s§*2 s
0 1 2s 3s?
©22(8;X) = det 10 21,
0 1 To1 Too

is

4 3 2 2

§°—28"X91 + 8 Loy — 35 w11 + 2519 + L1122 — T12%01.
We show that if s,t,u,v € R are distinct, the

system of polynomial equations

©2.2(8) = Pa2(t) = pa2(u) = p22(v) =0  (2-3)

has all dy » = 2 solutions real. Our method will be
to solve (2-3) by elimination.

Let e; be the i-th elementary symmetric polyno-
mial in s,t,u,v. In the lexicographic term order
with z,; > T3 > 99 > X9 on the ring

Q(s,t,u,v)[®11, T12, Taa, Ta1,

the ideal
<902,2(3)a ©2,2 (t)a ©2,2 (U)a 802,2(77))
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has a Grobner basis consisting of the polynomials
2T91 — €1, Tog — 3T1y — €9, 2119 + €3, and 1222, +
deyx11 + ejes — 4ey. Thus, for distinct s, ¢, u, v, the
system (2-3) has 2 solutions and they are real if the
discriminant of the last equation,

16€2 — 48¢e;e3 + 192ey,

is positive. Expanding this discriminant in the pa-
rameters s, t, u, v, we obtain

8((s —t)*(u—v)?

+(s—u)?(t—v)?+ (s

—v)%(t — u)?).
Hence all solutions are real, establishing Conjecture

2.1 when m = p = 2. Theorem 2.3 proves Conjec-
ture 2.1 when (m,p) = (2, 3).

2C. The Pole Placement Problem

Suppose we have a physical system (for example, a
mechanical linkage) with inputs © € R™ and outputs
y € R” for which there are internal states x € R"
such that the system evolves by the first order linear
differential equation

& = Ax + Bu,

(2-4)

y=Cz.
(We assume n is the minimal number of internal
states needed to obtain a first order equation.) If
the input is controlled by constant output feedback,
u = Xy, we obtain

t=(A+BXC)z.

The natural frequencies of this controlled system are
the roots sy,...,s, of

©(s) :=det(sl, — A — BXC). (2-5)

The pole assignment problem asks the inverse ques-
tion: Given a system (2-4) and a polynomial ¢(s)
of degree n, which feedback laws X satisfy (2-5)7

A coprime factorization of the transfer function is
two matrices N(s), D(s) of polynomials with

det D(s) = det(sI, — A)

and N(s)D(s)™! = C(sI, — A)~'B. This always ex-

ists. A standard transformation (see [Byrnes 1989,
§2]) shows that, up to a sign of +1,
_ get | V(s) D(s)

o(s) = det [ 7 ¥ |

p

(2-6)

If we set K(s) := [N(s)D(s)], write K(s) for the
m-~dimensional row space of this matrix, and let X
be the p-plane [I, X], then (2-6) is equivalent to

XNK(s;)#{0} for i=1,...,n, (2-7)

where sy, ...,s, are the roots of ¢(s).

If the m-planes K(s;),...,K(s,) are in general
position, then mp > n is necessary for there to be
any feedback laws. These m-planes are not a priori
in general position.

To see this, let K : P! — Grass(m, m+p) be the
extension of the map given by s — K(s). Then
K is a parameterized rational curve of degree n in
Grass(m, m+p). The space of all such curves K
with n distinguished points {K(s;),...,K(s,)} has
dimension [Strgmme 1987]

mp + n(m + p) + n.

The space of all n-tuples of m-planes has dimension
nmp. Therefore when

n >mp/(mp —m —p—1),

such n-tuples constitute a proper subvariety of all
n-tuples of m-planes.

However, by the General Position Lemma [Byrnes
1989] (see also [Eisenbud and Harris 1983]), there is
a Zariski open subset of the data A, B,C, ¢ such
that the m-planes K(s1),...,K(s,) are in general
position in that the set of X satisfying (2-7) has
dimension mp — n.

Since all rational curves K : P* — Grass(p, m+p)
of degree n with K(oco) = [0 I,] arise in this way
[Martin and Hermann 1978], the polynomial systems
of Conjecture 2.1 are instances of the pole place-
ment problem. Interestingly, these very systems fig-
ure prominently in a proof of the General Position
Lemma [Byrnes 1980].

An important question is whether a given real
system may be controlled by real feedback [Byrnes
1983; Rosenthal et al. 1995; Rosenthal and Sottile
1998; Syrmos et al. 1997; Willems and Hesselink
1978]: If all roots of y(s) are real, are there any
real feedback laws X satisfying (2-6)7 Few specific
examples have been computed [Byrnes and Stevens
1982; Morse et al. 1981; Rosenthal and Sottile 1998;
Willems and Hesselink 1978]. In [Rosenthal and Sot-
tile 1998] an attempt was made to gauge how likely
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it is for a real system to be controllable by real feed-
back and how many of the feedback laws are real —
in the case of (m,p) = (2,4) so that d,,, = 14. In
all, 600 different curves K(s) were generated, and
each of these were combined with 25 polynomials
¢(s) having 8 real roots. Only 7 of the resulting
15,000 systems had all feedback laws real. This is in
striking contrast to the systems given in Conjecture
2.1, where all the feedback laws are conjectured to
be real.

2D. Computational Evidence

Consider (2-6) as a map Grass(p, m+p) — P in
local coordinates which associates a p-plane X to a
polynomial ¢ (modulo scalars) of degree at most mp.
When K(s) is the curve K,, ,(s) of Conjecture 2.1,
the inverse image of the polynomial 1 is the single
real point [0 I,]. Rosenthal suggested that the fibre
over a nearby polynomial may consist of d,, , real
points.

With this in mind, Rosenthal and Sottile [1998]
tested and verified several thousands of instances of
Conjecture 2.1 when (m,p) = (2,4). Each was a
specific choice of m, p, and mp distinct real num-
bers sq,. .., sy, for which we showed all solutions to
(2-2) are real. Any verified instance implies that all
nearby instances in the space of parameters sq,...,
Smp has all of its solutions real. In light of the com-
putations described in Section 2C, we felt that this
provided overwhelming evidence for the validity of
Conjecture 2.1.

Our method was to solve the polynomial systems
by elimination (see [Cox et al. 1998, §2] for a dis-
cussion of methods to solve systems of polynomial
equations). We first choose distinct integral val-
ues of the parameters s; and generate the resulting
system of integral polynomial equations. Since we
are performing an exact symbolic computation, we
necessarily work with integral polynomials. Next,

g(x) with the property that its roots are the set
of x-coordinates of solutions to our system. When
g(x) has d = d,,, roots (Schubert’s bound), there
is a lexicographic Grobner basis satisfying the Shape
Lemma, since this system is zero-dimensional [Eisen-
bud and Harris 1983]. It follows that the solutions
are rational functions (quotients of integral polyno-
mials) of the roots of g(z). In some instances, the
eliminant we calculated did not have d roots. For
these we found a different eliminant with d roots.
Lastly, we checked that these eliminants had only
real roots.

Table 1 gives the number of instances we know
to have been checked. By Lemma 3.7(ii), there is
a bijection between instances of (m,p) = (a,b) and
(m,p) = (b,a). Table 1 also lists the running time
to compute a degree reverse lexicographic Grébner
basis for the systems of Conjecture 1.1, and the size
of that basis. The timed calculations used Singular-
1.2.1 [Greuel et al. 1998] on a K6-2 300MHz pro-
cessor with 256M running Linux. The checked in-
stances reported in the last 3 columns are not due
the the author. A more complete account is found
in [Sottile 1999a].

The computations of the last two columns stand
out. The first is the case (8,2) (also one instance
each of (7,2) and (4, 3)) computed by Jan Verschelde
[2000] using his implementation of the SAGBI ho-
motopy algorithm described in [Huber et al. 1998].
Since the polynomial system of Conjecture 2.1 was
ill-conditioned, he used instead the equivalent sys-
tem of Conjecture 2.1’ (see Section 2E below), where
the P;(s) were the Chebyshev polynomials. These
numerical calculations give approximate solutions
whose condition numbers determine a neighborhood
containing a solution. The solutions of this real sys-
tem are stable under complex conjugation, so it suf-
ficed to check that each neighbourhood and its com-
plex conjugate were disjoint from all other neigh-

we compute an eliminant, a univariate polynomial = borhoods. This computation took approximately
(m, p) (4,2) 5,2 33 (62 (7,2) (43) (2,8
dmp 14 42 132 429 462 1430
# checked > 12000 1000 550 55 2 2 1
time (sec) 0.04 1.42 1.50 78.6 8175 - -
size 1.4K 12.8K 18.6K 202K 4.58M 32M -

TABLE 1. Instances checked.
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25 hours on a 166MHz Pentium II processor with
64M running Linux. These algorithms are ‘embar-
rassingly parallelizable’, and in principle they can
be used to check far larger polynomial systems.

The second is the case of (m,p) = (3,4) of Con-
jecture 1.1 (also all smaller cases with m < p),
computed by Faugere, Rouillier, and Zimmermann
[Faugere et al. 1998]. They first used FGB (see
[Faugere n.d.]) to calculate a degree reverse lex-
icographic Grobner basis for the system (1-2) for
(m,p) = (3,4) with s; = 4. This yielded a Grobner
basis of size 32M. They then computed a rational
univariate representation [Rouillier 1998] (a sophis-
ticated substitute for an eliminant) in two ways.
Once using a multi-modular implementation of the
FGLM [Faugere et al. 1993] algorithm and a second
time using RS, an improvement of the RealSolving
software [Rouillier n.d.] under development. The
eliminant had degree 462 and size 3M, thus its gen-
eral coefficient had 2,000 digits. Using an early im-
plementation of Uspensky’s algorithm, they verified
that all of its zeroes were real, proving Conjecture
1.1 for (m,p) = (3,4). In the course of this cal-
culation, they found it necessary to rewrite their
software.

2E. Equivalent Systems
The extension of the map (2-1) to P*

v it 8] s [P st TR g PT 2 gt

is a parameterization of the standard real rational
normal curve in P™*?~! and K(s) is the m-plane
osculating this curve at the point v[1, s]. In general,
a parameterized real rational normal curve is a map
v : Pt — P™+P~1 of the form

[t,s] — [Pi(s,t), Pa(s,1), ..., Pnip(s,t)]

where Pi(s,t),..., Pnyip(s,t) form a basis for the
space of real homogeneous polynomials in s, t of de-
gree m + p — 1. All parameterized real rational nor-
mal curves are conjugate by a real projective trans-
formation of P *P~!, Conjecture 2.1 has a geomet-
ric formulation.

Conjecture 2.1 (Geometric form). For all integers m>1
and p > 1 and almost all choices of mp m-planes
Ky, ..., K, osculating a real rational normal curve

at distinct real points, there are exactly d,, , p-planes
X satisfying

XNK;#{0} for

1=1,...,mp
and all of these p-planes X are real.

Thus Conjecture 2.1 is equivalent to a conjecture
concerning a much richer class of polynomial sys-
tems.

Conjecture 2.1’. Suppose m,p > 1 are integers and
Pi(s),..., Puip(s) are a basis of the space of real
polynomials of degree at most m +p — 1. Let K(s)
be the m x (m + p) matriz of polynomials whose
(1,7)-th entry is Pj(i_l)(s). Set

X)) e K(s)
o(s; X) := det [II,X } .
Then, for almost all choices of distinct real numbers
81+, 8mp, the system

p(s1;X) = @(s2; X) = -+ = @(8mp; X) = 0
has ezxactly d,, , solutions, and all of them are real.

The polynomial matrix K(s) of Conjecture 2.1’
differs from that of Conjecture 2.1 by right multi-
plication by an invertible (m + p) x (m + p)-matrix.
Thus the resulting polynomial systems differ primar-
ily by choice of local coordinates for the Grassman-
nian. In linear systems theory, two physical sys-
tems are output feedback-equivalent if their matri-
ces of coprime factors [IV(s)D(s)] differ in this man-
ner [Ravi et al. 1997].

We give an equivalent conjecture concerning a
simpler system of polynomials with two fewer equa-
tions and unknowns. We may reparameterize the
curve K (s) of Conjecture 2.1 and assume S,,,, 1 = 0
and s,,, = oo. Observe that K(0) = [I, 0] and
K(oc0) = [0 I,]. The collection of all p-planes X
satisfying

XN[L,0]#{0} and XnNI[0I]#{0} (2-8

is an irreducible rational variety of dimension mp—2.
Let X be the set of all p X (m + p)-matrices X
whose entries x; ; satisfy

xi7j:1 lf j:z'<por (17]):(p7p+1)7

t=1 and j > m,
l1<i<pand j<iorj>i+m,
i=p and j <p.

Tij = 0 if
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The remaining mp — 2 entries are unconstrained and
give coordinates for X. The row space of a matrix X
is a p-plane X satisfying (2-8) and almost all such
p-planes arise in this fashion. Thus X parameter-
izes a dense subset of the subvariety of p-planes X
satisfying (2-8).

For example, if (m,p) = (4,3), then X is the set
of all matrices of the form

1 x93 ®3 714 O 0 0
0 1 T2z T24 T25 T26 0
0 0 0 1 T35 X3¢ L3t

Since the (1, m)-th entry of a matrix X in X van-
ishes,

Conjecture 2.1”. Let m,p>1 be integers. Then, for
almost all choices of nonzero real numbers sq,...
Smp—2, the system of equations

Y(s1; X) =1 (s2; X) =+ =1(8mp_2; X)=0

is zero-dimensional with d,,, solutions, and all of
them are real.

K(s)

det[ ¥

factors as s - 1(s; X).

b

(2-9)

The systems of Conjecture 2.1 and the variations
given here are deficient: They have fewer solutions
than standard combinatorial bounds. For example,
if p < m, then the system (2-9) consists of mp — 2
equations of degree p, thus its Bézout number is
p™~2. A better combinatorial bound is the nor-
malized volume of the Newton polytope A,, , of the
polynomial ¢ [Kushnirenko 1975]. Table 2 compares
these combinatorial bounds with d,, ,, for some val-
ues of m,p. The volumes of A,,, were computed
using PHC [Verschelde 1999], a software package for
performing general polyhedral homotopy continua-
tion. Note the striking difference between the equiv-
alent systems m, p and p, m.

167

2F. Proof in the Case m =2 and p = 3
Theorem 2.3. Conjecture 2.1 holds for (m,p) = (2, 3).

L. Gonzalez-Vega has also obtained this using resul-
tants and Sturm—Habicht sequences.

Proof. We will prove the equivalent Conjecture 2.1”.
Let X := {12, X3, T24, T35} be indeterminates. Set

1 s s s S
0 1 2s 3s? 4s3
P(s;X)=det |1 x5 0 0 O
0 1 x93 x4 O
0 O 0 1 x5

We solve the system of polynomials

P(s; X) = ¢(HX) = ¥(u; X) =1p(v; X) =0
(2-10)
by elimination.

The ideal (¥(s), ¥ (t),¥(u), ¥ (v)) in the ring
Q(s,t, u,v)[T12, T3, Toa, T3s]

has degree 5 = ds 3 and the lexicographic Grobner
basis with 15 < Ty3 < T94 < T35 contains the follow-
ing univariate polynomial g, which is the universal
eliminant for this family of systems:

x5, — dexss + (de] + 6ey)wdy — (12165 + des)Tag

+ (9€2 + 8ejes — dey)Tss — (12e5e5 — 8eqey)

Here e; is the i-th elementary symmetric polynomial
in s,t,u,v. We show that g has 5 distinct real roots
for every choice of distinct parameters s, t,u,v. The
discriminant A of g has degree 20 in the variables

(m,p) | (2,2) (3,2) (42) (52) (6,2) (7,2) (82) (23 (3,3) (43) (24 (34

Ay | 2 5 14 42 132 429 1430 5 42 462 14 462

vol Ay | 2 5 18 67 248 919 3426 5 130 3004 42 7156
pr? 4 16 64 256 1024 4096 16384 81 2187 59049 4096 1048576

TABLE 2. Combinatorial

bounds versus dy -
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s,t,u,v and 711 terms:

9eszese] — bdeseded + 8lese; — 32eie] + 204eseqe’
—324e5e5e; —108eSe] +324e5e,+81eiese] —486eiese]
+ T29¢%eS — bdegseiele] + 324eselesel — 486eyelel
+204e,e3emes —1296e,e3e5e3+2052¢e4e5e5e, —8eyeze]
+738eye3e0e] —2106e4e5e3 — 108 e5e; —324eieze5€]
+ 2052€iesedel — 3240eiezese 108¢€3 €3 €$
+738e2e2e,ef—2592¢e2e2eel +3834e2eles —368e2e3es
+ 1800e2e3ese; — 27e2es + 324edesel — 2106edeie]
+ 3834e3ede? — 972e3e; — 108e3ese’ + 1800e3eseye’
— bbddeleseie; — 634eiele? + 984elele, — 2Teje]
+ 984etese? + 432elel — 352etese; — 64el.

This vanishes when g has a double root. Thus the
number of real roots of g is constant on each con-
nected component (in R*) of the locus A # 0. We
show there is only one connected component, and
so the number of real roots of g (and thus the orig-
inal system) does not depend upon the choice of
real parameters. Since the roots of g evaluated at
(s,t,u,v) = (1,2,3,4) are

8, 8 +/19, 8 £ V11,

it follows that there are always five real roots of g,
and thus the system (2-10) has dy3 = 5 real solu-
tions whenever s, t,u,v are real and distinct.

We complete the proof. For w € Zl>00, consider
the polynomial -

sy (s — )5 (s

X (t— )" (t —

—u)%(s —v)""

v)" (u—wv). (2-11)

Let A,, be the primitive part of the symmetrization
of this polynomial. Thus, when all componentes of
w are even, A, is a sum of squares, none of which
vanish on the locus where s, t, u, v are distinct. Then
A is

%(7142220222224 + 3A2222402204 + 6A4222022222

+ T As220222222 + 2A 4420022222 + 242222440022

+ 2A0222442022 +  Asa20202222 + 244222420022

+ Ausoo022422 + Ao2o24a2202 +  As202024422
+ 6 A2222420024 + 10 A 4920022242 + 3A2222229222)-

The term 7A 320222000 does not vanish when a single
parameter is zero. Similarly, the term 3A292402204
does not vanish when s = v and t = v (but u # t).
Thus the locus where A = 0 has dimension 2 and so
its complement is connected. O

We have a Maple program that performs the compu-
tations described in this proof and runs in approxi-
mately 15 seconds on a K6-2 300MHz processor.

A positive semidefinite polynomial is a real poly-
nomial that takes only nonnegative values. In the
proof we showed A is positive semidefinite by ex-
hibiting it as a sum of squares. Not all positive semi-
definite polynomials are sums of squares of polyno-
mials. There exist positive semidefinite polynomi-
als of degree [ in k variables which are not sums of
squares of polynomials if min(k,1) > 2 and (k,1) #
(3,4) [Hilbert 1888]. For A, (k,1) = (4,20).

The form of the squares we used (2-11) for the
discriminant A, while motivated by the observation
that no two parameters (0, s,t,u,v,00) should co-
incide, is justified by the observation that any real
zero of A must also be a zero of all the squares, if A
is a sum of squares. (See [Choi et al. 1987] for other
applications of this idea.)

Each of the polynomials A, is a sum of squares,
the number given by the orbit of the symmetric
group on its index w. Since 6 have trivial stabi-
lizer, 7 are stabilized by a transposition, one by the
dihedral group Dsg, and one is invariant, there are
6-24+7-12+4+ 34+ 1 = 232 squares in all. This
is not the best possible. Choi, Lam, and Reznick
[Choi et al. 1995] show, for degree [ homogeneous
polynomials in k variables that are a sum of squares
of polynomials, at most

Ak, 1) = E (W— 1>J

squares are needed. Note that A(4,20) = 59.

3. SCHUBERT CONDITIONS ON A GRASSMANNIAN

3A. The Schubert Calculus on Grass(p, m+p)

The enumerative problems of Section 2 are special
cases of more general problems given by Schubert
conditions on Grass(p, m+p). A Schubert condition
on Grass(p, m+p) is an increasing sequence of inte-
gers

a:l<ag <oy < <a,<m+p.

Let ([mp“’]) be the set of all such sequences. A Schu-
bert variety Q,K, is given by a Schubert condition
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a and a complete flag K, in C™"?, a sequence of
subspaces

K.IK1CK2C“‘CKm+p:(Cm+p

where dim K; = . Then the Schubert variety Q,K,
is the set of all p-planes X satisfying

dim X N Km+p+1—a,~ Z b + 1—1 (3_1)

for each ¢ = 1,2,...,p. This irreducible subvariety
of Grass(p, m+p) has codimension |a| := ), (o; —1).
A sequence o* = al,...,a", with

o € ([m;—p]) and 3. |a?| = mp,

is Schubert data for Grass(p, m+p). Given Schu-
bert data a* and flags K},..., K™ in general posi-
tion, there are finitely many (complex) p-planes X
which lie in the intersection of the Schubert varieties
QK7 for j =1,...,n. The classical Schubert cal-
culus [Kleiman and Laksov 1972] gives the following
recipe for computing this number d = d(m, p;a*).
Let hy,...,h,, be indeterminates with degh; = 1.
For each integer sequence §; < B2 < --- < (3, define
the following polynomial

Sp = det(hg,—j)1<ij<r-
Here hg := 1 and h; :=0if i < Oor i > m. Let J
be the ideal in Q[h,..., h,,| generated by those Sz
with r =p+1,1 < B, and B,41 < m + p. The
quotient ring A,, , := Qlh4, ..., hy]/J is isomorphic
to the cohomology ring of Grass(p, m+p). It is Ar-

tinian with one-dimensional socle in degree mp. In
the socle we have the relation

d- (hp)? — SarSuz -+ San € J.

We can compute the number d by normal form
reduction modulo any Grobner basis for J.
If v is a rational normal curve, then the flag of
subspaces osculating v at a point is the osculating
flag to v at that point.

Conjecture 3.1 (Shapiro and Shapiro). Let m,p > 1 and
a* be Schubert data for Grass(p, m~+p). For almost
all choices of flags K}, ..., K™ osculating a fized ra-
tional normal curve at real points, there are exactly
d(m,p;a*) p-planes X in the intersection of Schu-

bert varieties
QK NQeK?N-- N Qe K7, (3-2)

and each of these p-planes is real.

As with Conjecture 2.1, the intersection is zero-
dimensional if the points of osculation are distinct
[Eisenbud and Harris 1983], and there are no mul-
tiplicities for the important class of Pieri Schubert
data, (described below) which includes the case of
Conjecture 2.1.

If «; = 1+ 1, then condition (3-1) for ¢ —1 im-
plies (3-1) for i. Thus only those conditions (3—1)
with o; — a;_1 > 1 (or oy > 1) are essential, and
so only the subspaces K, ,1_o, corresponding to
essential conditions need be specified in a flag. If
a:=(1,2,...,p—1,p+ 1), then only the last con-
dition is essential, thus the Schubert variety Q,K,
consists of those X with dimX N K,, > 1. This
shows Conjecture 2.1 is a special case of Conjecture
3.1.

3B. Systems of Polynomials

A complete flag K, is represented by a nonsingular
matrix also written K,: The i-plane K; is the row
space of K, the first ¢ rows of K,. The condition
that dim X N K, py1-a, > p+ 1 — 1 is given by

. . Km —a;
(m+p+1+4i— «;)-minors of [ ol ] =0.

X

The flag K, (s) that osculates the rational normal
curve v with the parameterization (2-1) at 7(s) is
represented by the (m + p) x (m + p)-matrix whose
(i,4)-th entry is (Y"7)s' "
Conjecture 3.1". Let m,p > 1 and o be Schubert
data for Grass(p, m+p). For almost all n-tuples of
distinct real numbers s, ..., S,, the system of poly-
nomials

(m+p+1+i—al)-minors of [Km”“af (Sﬂ')} =0

I, X

p

fori =1,....,p and j = 1,...,n has d(m,p;a*)
solutions, and each is real.

For any Schubert conditions «, 8 with o; + B,11-; <

m+pfori=1,...,p, let X, 3 be the collection of
all p x (m + p)-matrices X whose entries x;; satisfy

fori=1,...,p,
1f]<al 0rj>m+p+1—ﬁp+1,i.

Tia; =1
z;; =0
If X € X, g, then the row space of X is a p-plane
in the intersection Q, K, (00)NQzK,(0). In this way,
Xa,3 parameterizes a Zariski open subset of the set
of all such p-planes. This parameterization can be
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used to obtain a system of equations simpler than,
but equivalent to, the system of Conjecture 3.1'.
The map X, — Grass(p, m+p) is not injective.

For example, X33 134 consists of all 3 x 7-matrices
of the form

1 x5 13 214 O 0 0

0 1 x93 Tog Tos O 0

0 0 1 T34 X35 T36 L37

Let 7,75, 73 be the rows of such a matrix. If z35 =
x37; = 0, then for each a € C, the matrix with rows
r1,72 + ars,r3 is in Xy93,134, and these all have the
same row space. Similarly, if 255 = 0, then the same
is true of the matrices with rows r{ + arg, ry, 3.

Let X7, 5 C Xa,p be the set of those matrices whose
entries further satisfy the following condition:

Foreachi=2,...
for j satisfying
Bpr1—i <m+p+1—7<Bpra i

For His3,134 this condition is that zo5 # 0 and
(236, 37) # (0,0). We made this definition so that
the map X7, ; — Grass(p, m-+p) is injective.

,p, at least one z;; is nonzero,

3C. Pieri Schubert Conditions

Ifae ([m;rp]) has a,_1 = p—1and a, = p+a, then
the Schubert variety Q,K, is

{X | XN Ko 7 {0}}

We call such a Schubert condition a Pieri condi-
tion and denote it by J,. Pieri Schubert data are
Schubert data o', ..., a" were at most 2 of the con-
ditions o' are not Pieri conditions.
the Schubert data of Conjecture 2.1.

These include

Proposition 3.2 [Eisenbud and Harris 1983, Theorem
9.1]. If a* are Pieri Schubert data and the flags
K}, ..., K" osculate a rational normal curve at gen-
eral points, then the intersection of Schubert vari-

eties
QK NQeK?N- N QK"

1s transverse. In particular, there are no multiplic-
ities.
Here is the main theorem of this section.

Theorem 3.3. Let a,b > 1 and suppose that Conjec-
ture 2.1 holds for this (m,p) = (a,b). Then Con-
jecture 3.1 holds for any Pieri Schubert data for
Grass(p, m+p) with (p,m) <(a,b) or (p,m) < (b, a),
in each coordinate.

We deduce Theorem 3.3 after Lemma 3.7, which
shows some simple dependencies between Conjec-
ture 3.1 for different collections of Schubert data.

Remark 3.4. If the conclusion of Proposition 3.2 held
for all Schubert data, then the proof we give of The-
orem 3.3 would imply its conclusion for all Schubert
data as well. David Eisenbud pointed out that our
proof shows that in the absence of this strengthen-
ing of Proposition 3.2, we may still deduce that all
points in the intersection (3—2) of Conjecture 3.1 are
real, although there may in general be multiplicities.

Pieri conditions are special because of Pieri’s for-
mula. For o, € ([m:p]) and a > 0, we write o <, 3
if |a| + a = || and

o <G << By <<y <.

Proposition 3.5 (Pieri’s Formula). Let J, :=1 < 2 <
o< p=l<ptac ([erp])‘

p

(i) In the cohomology ring A, , of Grass(p, m+p),
Sy, = h, and
So 81, =Y Ss.
a<,f
(ii) If K,(s) and K,(t) are flags osculating a rational
normal curve at points s and t, then
lim (20K, () N 2, K.(s)) = D QKL (1)
a<l,B

Here, the limit is taken as cycles. By this we
mean that the sum is the fundamental cycle of
the limit of the schemes Q,K,(t) N Qy, K, (s) as
s approaches t along the rational normal curve.

(iii) Suppose that a* = o', J,,a?,...,a" are Schu-
bert data. Then

d(m,p;a®) = Z d(m,p; 3,02, . ..

al<,p

,am).

Statement (i) is the usual statement of Pieri’s for-
mula [Fulton 1997; Hodge and Pedoe 1952]. State-
ment (ii) is Theorem 8.1 of [Eisenbud and Harris
1983], and (iii) is a direct consequence of (i).

Definition (3-1) implies that QzK, C Q,K, if
and only if o < 8 coordinatewise. In fact, 3K, N
Q. K, = QpgyoK,, where 3V a is the coordinatewise
maximum of o and 3. We make some definitions
needed for the statement of Lemma 3.7.

Definition 3.6. Let m,p > 1 be integers.
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1. For a € ([m;p]) define at € ([mg”]) to be the
increasing sequence obtained from the numbers
{1,2,...,m+p}\{a,...,a,}. Given Schubert
data a* for Grass(p, m+p), set a** to be

(@b, ..., (@™t

2. Suppose p > 2. For a € ([m;ri”;l]) define o™ €
(") tobe 1 <14 <--- <14y Given
Schubert data a* for Grass(p, m+p), set a*t to

be (ah)*t, ..., (a™)*.

3. Let < be the partial order on Pieri Schubert data
where we say that 3* covers a* = at,...,a" if
either

B =pB,a%, ..., a" with o* = J, and o' <, 5,
or
B =a',...,a" 23 with "' = J, and " <, B.
Lemma 3.7. Let m,p > 1 be integers.

(i) If a* is Schubert data for Grass(p, m+p), then
a*t is Schubert data for Grass(m, m+p). More-
over, Conjecture 3.1 holds for m,p, a* if and only
if it holds for p,m, a*~.

(i) Suppose p > 2 and let
I =1<2<---<p-1<p+m.

If a* is Schubert data for Grass(p—1, m+p—1),
then B* .= a**, J,, is Schubert data for

Grass(m, m+p).

Moreover, Conjecture 3.1 holds for m, p—1, a* if
and only if it holds for m,p, 3°.

(iii) Suppose that o*,3* are Pieri Schubert data for
Grass(p, m+p) with * < (*. If Conjecture 3.1
holds for a* for Grass(p, m+p), then it holds for
B

Proof of Theorem 3.3.. First note that Conjecture 3.1

holds for Schubert data «* for Grass(p, m+p) if and

only if it holds for any rearrangement of the data

a*. Suppose Conjecture 2.1 holds for Grass(b,a+b).

Let a* be Pieri Schubert data for Grass(p, m+p)

where (m,p) < (a,b) or (m,p) < (b,a) coordinate-

wise. Since Ji* = J;, Conjecture 2.1 holds also for

(m,p) = (b,a), by Lemma 3.7(i). Thus we may as-

sume that (m,p) < (a,b). By Lemma 3.7(ii), there

exist Pieri Schubert data (* for Grass(b,a + b) such
that Conjecture 3.1 holds for a* if and only if it

holds for 3*. Finally, Theorem 3.3 follows from (iii)

by noting that the Schubert data of Conjecture 2.1,
namely a! = --- = a® = J;, is minimal among all
Pieri Schubert data for Grass(b,a + b). O

Proof of Lemma 3.7. For (i), fix a real inner inner
product on C™*?. Then the map

X — X+

gives an isomorphism between Grass(p, m+p) and
Grass(m, m+p). Given a flag K, and an increasing
sequence a, let K be the flag of annihilators of the
subspaces of K,. Then we have

X €O K, &= X" € QK.

Furthermore, if K,(s) is the flag of subspaces oscu-
lating a rational normal curve 7 at a point y(s), then
(K,ip1(8))* is a rational normal curve with K- (s)
its osculating flag. Thus Conjecture 3.1 for Schubert
data «a* for Grass(p, m+p) is equivalent to Conjec-
ture 3.1 for Schubert data a** for Grass(m, m+p).

For (ii), let « be the rational curve (2-1) with
K,(s) as before. Then X € Q; K,(oo) if and only
if (y(o0)) = K;(00) € X. Consider the projection
7 C™P = C™P~! from the last coordinate (o).
If X € Q; K,(c0), then X’ := 7X is a (p—1)-plane.
This induces an isomorphism 7 : Q; K,(c0) —
Grass(p—1, m+p—1). The inverse map is given by
X' Ky (00) + X

The projection 7 oy is the standard rational nor-
mal curve 4/ in C™~". Similarly, the flag K,’(s)
osculating 4" at 4'(s) is 7K,(s). Note that if L is
a linear subspace of C™"” with y(co0) ¢ L, then
dimX N L = dim7X N«wL. In particular, if X €
0y K,(00), s # 00, and a € ([m;f_”), then

1
dim X' N K,y yi1oa, =0 —1) +1 1
if and only if
dim X N Ko ipri—(iqa) =P+ 1— (1 +1).
Thus
XeQy K, (00)NQ+ K, (s) = X' € Q. K, (s).

In fact, this induces an isomorphism of schemes.
This gives a strong equivalence between enumer-
ative problems: If a!,...,a" are in ([m:_pl_l]) and
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S1,...,8, any complex numbers, then the map =
induces an isomorphism between the schemes

0, K. (00) N[ Qe+ Ku(s:) and () QiK' ().
i=1 i=1

Part (ii) follows by noting that any real reparame-

terization of the rational normal curve v induces an

isomorphism of polynomial systems, thus preserves

real solutions. Hence given sg, s1, ..., S, € Py, there

is an equivalent system with sq = co.

It suffices to prove (iii) when [3* covers a* in the
partial order < defined on Pieri Schubert data. Sup-
pose Conjecture 3.1 fails for 3* and (° covers a® with
a' <, B and a® = J, as in Definition 3.6 (iii). Then
there exist distinct real numbers s, s3,..., s, such
that

Q/gK.(Sl) DQQSK.(S?,) Mn--- ﬁQanK,(sn) (3-3)

is transverse with some complex p-planes in the in-
tersection. We may assume without any loss that
s; = 0. Then there is an open subset O of the
set of (n — 1)-tuples of real numbers ss, ..., s, such
that (3-3) is transverse and contains a complex p-
plane X.

By the dimensional transversality results of [Eisen-
bud and Harris 1983], we may assume further that
for g’ € ([m:p]) and (sz,...,8,) € O, the intersec-
tion

QpK.(0) N [) Qs Ko (s1)
i=3
has the expected dimension and is transverse if (-
dimensional. This is empty if |3'| > a + |a!], for
dimension reasons. Thus

(3 2ur)n0uK.(s)
a<qB =3
is transverse for (s3,...,s,) € O.
Fix (s3,...,8,) € O. By Proposition 3.5(i), there
is an € > 0 such that for |t| < e

QK. (0) N Qy, K () N[ Qs Ko (s5)
i=3
is transverse. Here, when t = 0, replace Q,K,(0) N
Qs K. (1) by Yoo, 526 K. (0). Since at t = 0 not all
points in the intersection are real, the same holds
for 0 < t < . But then Conjecture 3.1 fails for

the Schubert data «*, which completes the proof of
Lemma, 3.7. O

3D. An Infinite Family

We show that Conjecture 3.1 holds for an infinite
family of nontrivial Schubert data.

Theorem 3.8. Conjecture 3.1 holds for any m with
p = 2 and Pieri Schubert data where one condition
18 Jmfl.

Proof. By Lemma 3.7(iii), it suffices to show this for
ol = --- =™ = J and o™ = J,_;. Ge-
ometrically, we are looking for the 2-planes which
meet a 2-plane and m + 1 general m-planes nontriv-
ially. We first show there are m such 2-planes. Let
L = Ky(0) = [0 I] and M = K,,(0) = [I,, 0],
and let N; = K,,(s;), where sq,...,s,, are distinct
nonzero real numbers. For each one-dimensional
subspace A of L and each 1 < ¢ < m, the com-
position

M—<L®M~C"? - LeM/(A\+N;)~C

defines a linear form 1), » on M. Each one-dimen-
sional subspace u of its kernel gives a 2-plane A ®
containing A and meeting both M and N; nontriv-
ially.

Thus if X is a 2-plane meeting L, M, and each NV,
nontrivially, then H N L = A and H N M = p are
lines with p in the kernel of each form 1); . Hence
the forms are dependent. Similarly, if A is a line in L
such that the forms ¢, \ are dependent, then any line
u they collectively annihilate gives a 2-plane A & p
meeting L, M, and each N; nontrivially. It follows
that the number of such 2-planes is the degree of the
determinant of the forms 1); , a polynomial in A €
P(L) ~ P'. Since each form v, ) is a linear function
of A, the determinant has degree m, so there are m
2-planes X meeting L, M, and each N; nontrivially.

We compute this determinant and show it has
only real roots. Let A = A(z) be the span of the
vector

0, ...,0,1, (m+1)z).

Let the rational normal curve v have the parame-
terization

cs— (1,—s,8%,...,(=1)"Hsmth),
v



Sottile: Real Schubert Calculus: Polynomial Systems and a Conjecture of Shapiro and Shapiro 173

Then K,,(s), the osculating m-plane to 7 at y(s), is
the kernel of the matrix

J

0 s™ L. (m)sm’j+1 (m)s2 ms 1

s™ ms™ ! .. (".L)sm*j ... ms 1 0]
2

j—1

If R;(s) is the linear form given by the j-th row of
this matrix, then

((m+ 1)x 4+ ms;)Ri(s;) — Ra(s;)

vanishes on A(z) and its restriction to M gives the
form ); x(»). This restriction is represented by the
vector A(s;, z) whose j-th coordinate for j =0,...,
m—1is

(m+1) ((m—j—l—l)xsl-"ij 4 (m—j)s;nfjﬂ) ]

J
We seek the determinant of the matrix

A(sy, )

A(sr.n,w)

This factors as A - B, where A is the bidiagonal
m X (m + 1)-matrix

[m (m+1)x 0
m?—1 m(m+1)z

(") mg) (") (m—jt1)e

J J

| () ()]
and B is the (m + 1) x m-matrix whose (i, 7)-th
entry is s;’“’?_i. Numbering the rows of A and the
columns of B from 0 to m, we see that

det(A(z) - B) = Em:(—l)i det A,(x) det B;,

=0

where A, is the matrix A with its ¢-th column re-
moved and B; is the matrix B with its i-th row
removed. We find that

m

det A; = m!(m +1—i)z™" H (™),

J

detBl = 61'(81,. ..

and so det(A - B) is

m

m! (s — s L)

<k j=1

.<§0:(—1)i(m —i+ 1)z Tei(sy, . sm)>-

Thus the coordinate x of the line A\ satisfies the
polynomial

P,(S1y...,8m;)

= Z(—w‘(m — i+ 1)z (51, -0y Sm)-

Since we have €;(s1,...,8m) = €i(S1,..-y8m_1) +
Sm€i-1(81y-+,8m_1), We see that
P,(81y-y8m; )
m—1
=(z —$u)Pn_1(81,--+,Sm-1;2) + & H (x — ;).
=1

To complete the proof, we use induction to show:

If0 < sy < -+ s Tm Of Py,
satisfy

< S, the roots rq,..

0<m <8 <12<8< - <Tp<Sn (¥

This suffices, if we can assume 0 < s; < - -+ < 8.
But we may assume this: Given a set of distinct
real numbers Sy, ..., Sm, Smi1, Smi2, WE May assume
Smaz = 00 and Sy < 81 < -+ < Sy, and then
apply the automorphism s +— s — 8,41 of P*(R)
which fixes 00 = $,,19.

The case m = 1 of () holds as Py(s;;2) = 2z —
s1. Suppose P,,_; satisfies (x). Then the roots of
(x — Sp)Pm_yare ry <ry < -+ < rpm_y < Sy and
those of =[], (z — ;) are 0 < 8, < --- < Sy
Moreover the leading coefficients of both polynomi-
als are positive. The result follows by the Interme-
diate Value Theorem: If P(z) and Q(z) are polyno-
mials of degree n with positive leading coefficients
and real interlaced roots p; of P and ¢; of )

P1<q1 <p2<q < <Ppn<(n,

then P(z) + Q(z) has real roots r; satisfying p; <
ry < g, fori=1,... n. O

3E. Computational Evidence

We have proven Conjecture 3.1 in a number of cases
besides those of Theorem 3.8. We also have done
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many computations along the lines of those in Sec-
tion 2D. To describe these, we use the following
compact notation. If a Schubert condition « is re-
peated k times in some Schubert data, we abbreviate
that by a*. Thus, the conditions of Conjecture 2.1
are written as J;'".

Theorem 3.9. Conjecture 3.1 holds for the following
Schubert data.

(i) (m,p) = (4,2), a* = J3. Here,
d(4,2;Jy) = 3.
(i) (m,p) = (3,3), a* = Jy, J,. Here,
d(3,3; J5,J1) = 3.
(iii) (m,p) = (3,3), a* = (135)2, J}. Here,
d(3,3;(135)%, J}) = 6.
(iv) (m,p) = (4,3), a* = (135)*. Here,
d(4,3;(135)*) = 8.
Proof. We consider a polynomial system with pa-
rameters, give a universal eliminant, and show the
eliminant has only real roots for distinct values of

the parameters. We work in the local parameteriza-
tion X,1 42 of Section 3B.

(i) Let (m,p) = (4,2) and a* = J;. The equations
are

s s s st S0

1 2s 3s% 4s® bs?
0 1 3s 652 10s*|=0
T 13 0 0 0
0 0 0 1 x5 mog

maximal minors

= o O =

and the same equations with ¢ replacing s. The ideal
of these polynomials contains the following univari-
ate polynomial g of degree 3 = d(4,2, Jy)

2523, — 2527, (s+t)+312(19st+65>+6t%) —3(s*t+st7).

Its discriminant is a sum of squares with primitive
part

9(s —t)° + 235t (s — t)> + 9(s® + t°).
Since g(x2;1,2) has roots
1 and 1417,

we have shown that g always has real roots, when s
and t are distinct.

(i) Let m = p =3 and a* = J3,J,. Here, X, s,
consists of all matrics X of the form
1 T19 0 0 0 0

0 1 o3 Tosa s O
0 0 0 0 1 T36

and our equations are

K;(s)

X

det [ b

K2(t)} o,

] = maximal minors [

and the same equations with u replacing ¢. The ideal
of these polynomials contains the following univari-
ate polynomial g, here e; =t + u and e, = tu.

T —T36(3s5+4e;) + x36(4€;+3e2+10se;)
— (6ere2+8sei+ses)
= (x36—2€1)($§6—261$36+3€2)
— S($§6—1061CE36+86§+62).

These last two polynomials have roots

e1 £ +ve? —3ey, 2e, gelj:% e? — 3e,,

which are interlaced. For example, if e; > 0, then
e1 — Vel —3ey < Zer — 3v/el — 3ey
< e ++/€2—3ey
< 261 + %\/ 6% — 362 < 261.

When s, t,u are distinct and different from 0, g al-
ways has 3 real roots, by the Intermediate Value
Theorem. We could also note that the discriminant
of g
s (t—u)* + t*(s—u)® + u'(s—t)* + s°t*(s—t)°

+ s*u?(s—u)® + (s—t)*(s—u)?(t—u)?
+ 2(s*(t—u)? + t*(s—u)* + v’ (s—t)* + t*u*(t—u)?)
is a sum of squares and g(xs6;1,2,3) has approxi-
mate roots

4.736, 7.756, 10.508.

(iii) Let (m,p) = (3,3) and a* = (135)2, J}. Here,
Xi35,135 consists of all matrics X of the form
1 T12 0 0 0 0

0 0 1 Loy 0 0
0 0 0 0 1 I36

and our equations are

det [Kiﬁs)] = det [K;((t)] = det [K}“)] = 0.
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We write the universal eliminant, g(zs6), in terms
of the elementary symmetric polynomials in s,t, u
925 — 48,754 + (64€] + 108e2) 36
— (288e,69 — 198e3)x3s + (320€5 + 540e; e3) T3,
— 1200e5e3x36 + 11256%.

Evaluating the parameters (s, t,u) at (1,2, 3), we see
that g(x36;1,2,3) has approximate roots

1.491, 1.683, 3.210, 5.630, 9.213, 10.773.

The discriminant of g is a sum of squares. The prim-
itive part of the discriminant is
e3(4esel—15eze3 —15e3+63eze0e, —81e€3)
X (256€5e2 —768¢eze5 —T768¢e5+2592e3e0e,—2187e3 ).
The second factor is the sum of squares
s —t)(s —u)*(t —u)?
+ 187 ((t —w)* + (s —uw)* + u?(s — 1)*).

Interestingly, the last (squared) factor is itself a sum
of squares

112(s—t)*(u*+st?)
+ 112(t—u)?(s*+t2u?)+ 112(u—s)? (t*+5%u?)
+16(s—t)*(s—u)*(t—u)*+ 309s*t*u*
+16(s* (7 4+u?) + t*(s*+u®)+ut (P 4u?)).
(iv) Let (m,p) = (4,3) and a* = (135)*. Here,

Xi35,135 consists of all matrics X of the form

1 12 I13 0 0 0 0
0 0 1 Tog Tos 0 0
0 O 0 0 1 x3s 37

and our equations are

K;(s)

X

Kigs)]

maximal minors [ ] = maximal minors [

=0,

and the same equations with ¢ replacing s. In this
case, the universal eliminant has 4 quadratic factors:

3622, — £15(12t + 30s) 4 65t 4 552,
3622, — x15(12s + 30t) + 6st + 52,

333%2 - 23512(8 + t) + st,

361’%2 —30x12(s +t) + 5t + 14st + 5s°2.

When s # t and neither is zero, we see that each
has 2 real roots. O

Observe that in all 4 cases, the discriminant was
a sum of squares and the eliminant has the correct
number of real roots for distinct values of the param-
eters. Of particular note is that the system in (ii) is
not symmetric in the parameters and the Schubert
data of (iv) is not Pieri Schubert data.

There are several other cases for which these meth-
ods may work. There are 6 2-planes in C? which
meet 5 general 4-planes nontrivially, as d(5,2; J5) =
6. Using the 6-dimensional system of local coordi-
nates X 4,14, Wwe can compute a degree 6 eliminant in
the variable x,5, and parameters s, t, u of the points
of osculation of three flags. The discriminant has
388 terms and degree 30 in the parameters s,t,u.
By the calculations in the first column of Table 3
below, Conjecture 3.1 would hold for these Schu-
bert data, if this discriminant is a sum of squares or
more generally, if it is positive semidefinite.

Another case is when (m, p) = (4, 2) and the Schu-
bert data is JZ,J{. Here d(4,2;J2,J}) = 6. Us-
ing the 4-dimensional system of local coordinates
X14,14, we compute a degree 6 universal eliminant in
the variable zo5 and parameters s,t,u,v as before.
The discriminant has 3 factors, 2 are the same cu-
bic form, while the third has 1289 terms and degree
24 in the parameters s,t,u,v. We also check that
there are 6 real roots of the eliminant for parame-
ter values 1,2, 3,4, so Conjecture 3.1 would hold for
these Schubert data, if this discriminant is a sum of
squares.

Table 3 gives the number of instances of Conjec-
ture 3.1 we have checked.

4. TOTAL POSITIVITY

Previous sections have dealt with Schubert condi-
tions given by flags osculating a real rational normal
curve. Recently, Shapiro and Shapiro have conjec-
tured that a generalization of this choice involving
totally positive real matrices would also give only
real solutions. We describe that here, prove the first
nontrivial instance, and present some computational
evidence in support of this generalization.

A real upper triangular matrix g with 1’s on its
diagonal is totally positive if every minor of g is pos-
itive, except those minors which vanish on all upper
triangular matrices. Let TP be the set of all totally



176 Experimental Mathematics, Vol. 9 (2000), No. 2
at | (2P (J2)f ()T | (Ja) (J3)°  (135)°  (135),(J1)°
(m,p) | (5,2) (6,2) (7,2) | (5,3) (43) (53) (6,3)
d(m,p;a®) 6 15 36 6 16 32 61
# checked 10000 2821 504 10160 2002 400 294

TABLE 3. General Schubert data tested.

positive, a multiplicative semigroup. Define a par-
tial order on real flags F, by F, < gF, if g € TP.

Conjecture 4.1 (Shapiro and Shapiro). For any m,p > 1,
let a* be Schubert data for Grass(p, m+p). If F,' <
-o- < E," are real flags, then the Schubert varieties
QalF.l, e, Qon E\" intersect transversally, with all
points of intersection real.

We will prove Conjecture 4.1 in the first nontrivial
case of m = p = 2. First, we relate Conjecture 4.1 to
Conjecture 3.1. Let K,(s) be the square matrix of
size (m + p) whose (i,j)-th entry is (?"])s/~* (com-
pare (1-1)). If s > 0, then K,(s) is totally positive
and for any s,t we have K,(s)-K,(t) = K,(s+t). To
see this, first recall that TP is generated as a semi-
group by exp(E; ;11), where E; ;.1 is the elementary
matrix whose only nonzero entry is in position 7, i+1
[Loewner 1955]. These assertions follow from the
observation that

K,(s) = exp(sN),

where N is the nilpotent matrix whose only nonzero
entries are (1,2,...,m + p — 1) lying just above its
main diagonal.

Theorem 3.3 holds in this new setting. For this,
we alter the notion of Pieri Schubert data a*® to
Schubert data al,...,a™ where all except possibly
ol and o™ are Pieri conditions.

Theorem 4.2. Let a,b > 1 and suppose that Con-
jecture 4.1 holds for (m,p) = (a,b) and Schubert
data a* = (J;)™. Then Conjecture 4.1 holds for
any Pieri Schubert data for Grass(p, m+p) where
(m,p) < (a,b) or (b,a) coordinatewise.

Proof. The arguments used to prove Theorem 3.3
work here with minor adjustments.

We first remark that total positivity, and hence
our order < on real flags, is defined with respect
to a choice of ordered basis for R™*?. Suppose that
€1,.-.,Em4p is the basis we used to define this order.
Then F, < G, is and only if G, <’ F,, where <’ is
defined with respect to the basis e;, —e,, €3, —€4, .. ..

Similarly, if we have an inner product on R™" so
that the basis ey, . .., €,,4, is orthonormal, then F, <
G, ifand only if F;* <” G}, where <" is defined with
respect to the basis in reverse order e,,1,,...,€es,e;.
Thus

F'<F’<.-.<F'eF'<...<F<F!

so that Conjecture 4.1 holds for Schubert data a°
if and only if it holds for the data in reverse order.
(This is the only rearrangment we used in the proof
of Lemma 3.7.) Similarly, the analogue of Lemma
3.7(i) holds. For the analogue of Lemma 3.7(ii), per-
mute the last two Schubert conditions, so that 3* is
still Pieri Schubert data, in our new, restricted def-
inition.

Finally, in the proof of Lemma 3.7(iii), replace
$3,-..,8, in defining the set O by fixing F! to be
the standard flag represented by the matrix I,,.,
and let O be the set of all

F!<..-.<Fr

for which the appropriate transversality conditions
hold. Since TP is open, it follows that there ex-
ists ¢ > 0 and totally positive matrix M (which
stabilizes F}) such that if 0 < s < g, then F! <
M-K,(s)-F} < F?. Then the same arguments used
to prove Theorem 3.3 suffice. In particular, the ana-
log of Proposition 3.2 also holds in this setting.

Totally positive matrices have a useful description.
Let U be the group of real unipotent (upper trian-
gular) matrices. Then TP is a connected component
of the complement of a hypersurface H U defined by
the vanishing of all minors consisting of the first i
rows and last 4 columns [Shapiro and Shapiro 1995].
This has a geometric description.

Associating a matrix to a flag as in Section 3B,
we may identify U with a Zariski open subset of the
real flag manifold. Then the hypersurface H is the
union of all positive codimension Schubert varieties
defined by the flag determined by the identity ma-
trix.
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Given a matrix M € U, the translate TP.M is a
component of the complement of all Schubert va-
rieties of positive codimension defined by the flag
given by M. Similarly, given a totally positive ma-
trix M, the set of upper triangular matrices N for
which there exists a totally positive g with gN = M
is the component of this complement containing the
identity matrix.

Let F! < --- < F™ be real flags. Using a real
automorphism of the flag manifold, we may assume
that F! = K,(0) = I,,,,. Then F? ... F" € TP,
since they are all translates of the identity by to-
tally positive matrices. Also, F! ..., F" ! are in
the same component of the complement of all pos-
itive dimensional Schubert cells defined by F*. If
we now consider a real coordinate transformation
fixing F!', but with F" becoming K, (00), then this
complement becomes TP, in these new coordinates.

Thus we may work in the local coordinates X :=
Xatan. We do this in our proof of the following
theorem and in subsequent calculations.

Theorem 4.3. Conjecture 4.1 holds form =p = 2 and
Schubert data (J;)*.

Proof. Let F, G € TP be totally positive matrices and
set H=G-F. When m=p =2, X =X,, j is the

set of matrices
1 a 0 O
0 0 1 bl

For a matrix L, let L;; denote the 2 x 2-minor of
L given by the first two rows and columns ¢ and j.
Then the equations for a 2-plane in X to meet the
flags given by F' and H are

[ = Fyy — bFy3 — alFy + abFys,
h = H24 - bH23 - aH14 + aleg.

The lexicographic Grobner basis for this (assuming
a<b)is

H13f — Fish = Jis — bJos — aJ3a,
(H14 - bH13)f - (F14 - bF13)h

177

= Jiz — b(Jaz + J1a) + b? Jou,
where J;; is the (4, j)-th minor of the matrix

Fyy
H24

F23
H23

Fiy
H14

F13
H13 ’

We may write the the discriminant of the quadratic
equation for b as follows

(Jaz + J14)2 —4J13J24 = (Laz + L14)2 —4Ly3L54,

where L is the matrix

F13 F14
F23 F24

H13
Ho;

H14
H24 ’

Thus we will have two real roots for our original
system if and only if

A(B) = L13 — B(L23 + L14) + B2L24 =0

has 2 real solutions. Painstaking calculations reveal
that A(l) = —G12G34 < 0. Since L24 = H13H24 -
Hy,3H,y, = HyH3, by the Pliicker relations, we see
that Lyy > 0 and so A(B) = 0 will have 2 real
solutions. O

Table 4 shows the number of instances of Conjecture
4.1 that we have verified.

5. FURTHER REMARKS

We present a counterexample to the original conjec-
ture of Shapiro and Shapiro and close with a discus-
sion of further questions.

5A. A Counterexample to the Original Conjecture

The original conjecture of Shapiro and Shapiro con-
cerned the M-property for flag manifolds [Shapiro
and Shapiro 1992]. An algebraic set X defined over
R has the M-property if the sum of the Z /2Z-Betti
numbers of X(R) and of X(C) are equal. Sha-
piro and Shapiro conjectured that an intersection of
Schubert cells in a flag manifold has the M-property,
if the cells are defined by flags osculating the rational

ar (J)°  (R)*  (A35)* (L) () (135)(136)(/1)°
(m,p) (3,2) (52 (43 (420 (62 (4,3)
d 5 6 8 14 15 25
# checked | 12000 4000 4000 1500 300 150

TABLE 4. Instances checked.
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normal curve at real points. When such an intersec-
tion is zero-dimensional all of its points are real. It
is this consequence we have been studying.

While there is much evidence in support of this
conjecture for zero dimensional intersections in a
Grassmannian (Conjectures 2.1, 3.1, and 4.1), it
does not hold for more general flag manifolds. In
fact, we give a counter example in the simplest enu-
merative problem in a flag manifold that does not
reduce to an enumerative problem in a Grassman-
nian.

Counterexample 5.1. Consider the manifold F(2, 3;5)
consisting of partial flags

XCY

in C° with dim X =2 and dimY = 3. This manifold
has dimension 8; the projection to Grass(2,5) has
fibre over a 2-plane X equal to

P(C°/X) ~ P2.

Given general 2-planes a,b,c and general 3-planes
A, B,C, there are 4 flags X C Y satisfying the fol-
lowing conditions:

1. X meets a, B, and C nontrivially, and
2. dimY N'A>2 and Y meets b and ¢ nontrivially.

That this number is 4 may be verified using the
Schubert calculus for a flag manifold [Fulton 1997]
or the equations we give below.

Let K,(s) be the flag of subspaces osculating the
standard rational normal curve. Set

a = K5(4), A := K3(0)
b:= Ky(1), B := K3(3)
c:= Ky(-bh), C:=K3(-1)

We claim that of the 4 flags X CY satisfying condi-
tions 1 and 2 above for this choice of a,b,c, A, B,C,
2 are real and 2 are complex.

We outline the computation. Choose local coor-
dinates for (2, 3;5) as follows. Let Y be the row
space of the 3 x 5b-matrix

1 T4 15

T3 T4 T2

O = O
= o O

T33 T34 I35

and let X be the row space of its last 2 rows. We
seek the solutions to the overdetermined system of
polynomials

det [Kifl)] = det [K2§,5)]

= det [Kigﬂ = det [K‘q’g(_l)]

K§§4 }

K‘”’(O)} = 0.

= maximal minors [

Y

These polynomials generate a zero-dimensional ideal
containing the univariate polynomial

27063 — 11755624 — 595223, — 1041623, + 3240027,

= maximal minors [

which is part of a lexicographic Grébner basis sat-
isfying the Shape Lemma. This polynomial has ap-
proximate roots

—.736 + 1.30v/—1, .227, 1.62.
Thus 2 of the flags are complex.

5B. Further Questions

While Counterexample 5.1 shows that we cannot
guarantee all points of intersection real when the
Schubert varieties are given by flags osculating a
real rational normal curve, a number of questions
remain (besides the resolution of the conjectures of
the previous sections). There remains the original
question of Fulton.

Question 1. Given Schubert data for a flag mani-
fold, do there exist real flags in general position
whose corresponding Schubert varieties have only
real points of intersection?

In every case we know, this does happen. For in-
stance, if we change the 3-plane B to K3(2) in Coun-
terexample 5.1, then all 4 solution flags are real.
There is also the following result, showing this holds
in infinitely many cases. A Grassmannian Schubert
condition is a Schubert condition on a flag which
only imposes conditions on one of the subspaces. We
likewise define Grassmannian Schubert data. For
example, Counterexample 5.1 involves Grassman-
nian Schubert data. Let F(2, n—2; n) be the man-
ifold of flags X C Y in C" where dim X = 2 and
dimY =n — 2.
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Proposition 5.2 [Sottile 1997c, Theorem 13]. Given
any Grassmannian Schubert data for F(2,n—2;n),
there exist real flags whose corresponding Schubert
varieties meet transversally with all points of inter-
section real.

The beauty of the conjectures of Shapiro and Sha-
piro is that they give a simple algorithm for selecting
the flags defining the Schubert varieties.

Question 2. Can the choice of flags in Question 1 (or
Proposition 5.2) be made effective? In particular, is
there an algorithm for selecting these flags?

While computing the examples described here, we
have made a number of observations which deserve
further scrutiny. These concern eliminant polynomi-
als in the ideals defining the intersections of Schu-
bert varieties in the local coordinates we have been
using.

Suppose we have Schubert data a*, and have cho-
sen local coordinates either for the Grassmannian or
are working in X,n on-1. Conjecture 3.1 or 4.1 may
be formulated in terms of a parameterized system
of polynomials with parameters either s,...,s, in
the case of Conjecture 3.1 or (n—1)-tuples of totally
positive matrices (or in terms of some parameteri-
zation of TP [Berenstein et al. 1996]). For each of
the coordinates, the ideal of this system contains a
universal eliminant, which is the minimal univari-
ate polynomial in that coordinate with coefficients
rational functions in the parameters.

We ask the following questions about the elimi-
nant.

Question 3. Does the universal eliminant have degree
equal to the generic number of solutions? That is,
do generic solutions satisfy the shape lemma?

Question 4. Let A be the discriminant of the polyno-
mial system, a polynomial in the parameters which
vanishes when there are solutions with multiplici-
ties.

(a) Is the locus A # 0 connected?

(b) In the case of Conjecture 3.1, where A is a poly-
nomial in the parameters sq,...,s,, is A always
a sum of squares of polynomials?

(c) If so, are these polynomials monomials in the
s; and their differences (s; — s;)? This would
imply that the polynomial systems are always

multiplicity-free for distinct real values of the pa-
rameters, and hence the stronger version of The-
orem 3.3 mentioned in Remark 3.4.

The discriminants we have computed for instances
of the conjectures for the Grassmannian (including
the discriminant for system of Theorem 4.3) are al-
ways nonnegative when the parameters are distinct.
For the case of Counterexample 5.1, we computed
a discriminant for a simpler, but equivalent system,
in the spirit of sections 2E and 3B. This polyno-
mial in parameters s, Sy,%1,ty is symmetric in the
s’s and in the t’s separately (and in the transforma-
tion s; <> t;) and has degree 24. It has three factors,
the first of degree 20 with 857 terms, and the square

(25132 + 2t1ty — (51 + 82)(t1 + t2))2-

While this factor will not prevent the discriminant
from being a sum of squares, this factor shows that
there is a choice of distinct parameters for which
the discriminant vanishes. Indeed, if we set s; =
3,80 = 6,t; = 9, and t, = 5, then this factor van-
ishes, and the resulting system has a root of multi-
plicity 2. This also explains why different values of
the parameters in Counterexample 5.1 give different
numbers of real and complex solutions.

Question 5. When the universal eliminant factors
over Z, it reflects either some underlying geometry
or some interesting arithmetic. More generally, one
might ask about the Galois group of these enumer-
ative problems [Harris 1979], or the Galois group of
the universal eliminant. For instance, is it the full
symmetric group? That is not always the case, as
the example of Theorem 3.9(iv) shows.

Question 6. In many cases with the substitution of
s; = 1, the eliminant factors over the integers. This
happens in Conjecture 1.1, Theorem 2.3, Theorem
3.9(1) and (iv), and in other cases. Table 5 lists
the degrees of the factors in the case of Conjecture
1.1. Why does this choice of s; = i induce a factor-
ization? Is there any special geometry or interest-
ing arithmetic here? If 2 parameters are allowed to
come together, then the resulting ideal factors in a
way respecting the product of Schubert classes, by
the Corollary to Theorem 1 in [Eisenbud and Harris
1987]. From the Schubert calculus, we would expect
factors of 9 and 5 for (m,p) = (2,4), 14 and 28 for
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(mp) | 32) (42) (,2)  (6,2) (7,2) (33) (3,4)
o p 5 14 42 132 429 42 462
factors | 2,3 6,8 10,32 20,112  — 6,36 16,30,416

TABLE 5. Factorization of the eliminant.

(m,p) = (2,5), and 21 and 21 for (m,p) = (3,3),
but these do not appear in Table 5.

5C. Further Developments

Since this paper was written, we have found further
evidence in support of these conjectures of Shapiro
and Shapiro, and also more examples of enumer-
ative problems that are known that may have all
their solutions real. In [Sottile 1999b], we show
there is a choice of sy,..., s, in Conjecture 2.1 for
which all d,,, , p-planes are real. More generally, the
main result of that paper is that for Pieri Schubert
data in Conjecture 3.1, there is a choice of s1,..., s,
for which all p-planes in the transverse intersection
(3-2) are real.

We have also answered Question 1 affirmatively
for Grassmannian Schubert data where each con-
dition comes from a Pieri Schubert condition on
a Grassmannian [Sottile 2000b]. Similarly, a large
class of enumerative problems arising in the quan-
tum cohomology of flag manifolds (and related to
systems theory) may have all their solutions be real
[Sottile 2000a]. The method of proof in these cases
is related to the methods used to establish Theo-
rem 3.3 and also to the homotopy continuation al-
gorithms of [Huber et al. 1998]. In a related devel-
opment, Dietmaier has shown that all 40 positions
of the Stewart platform in robotics may be real [Di-
etmaier 1998].

A consequence of [Sottile 1999b] is that Conjec-
ture 3.1 follows from the stronger version of Propo-
sition 3.2 mentioned in Remark 3.4. While all this
bolsters our conviction that these conjectures are
true, they are still open. All of these results, and
the evidence for these conjectures of Shapiro and
Shapiro presented here, do show that there should
be a broader theory of real enumerative geometry to
explain these phenomena.
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