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Finding optimal packings of a symplectic manifold with sym-
plectic embeddings of balls is a well known problem. In the
following, an alternate symplectic packing problem is explored
where the target and domains are 2n-dimensional manifolds
which have first homology group equal to Z" and the embed-
dings induce isomorphisms of first homology. When the target
and domains are T" X V and T" X U in the cotangent bundle
of the torus, all such symplectic packings give rise to packings
of V by copies of U under GL(n,Z) and translations. For arbi-
trary dimensions, symplectic packing invariants are computed
when packing a small number of objects. In dimensions 4 and
6, computer algorithms are used to calculate the invariants as-
sociated to packing a larger number of objects. These alternate
and classic symplectic packing invariants have interesting simi-
larities and differences.

INTRODUCTION AND MOTIVATION

Some old and well known packing problems involve
studying optimal arrangements of rigid copies of a
standard shape. (See [Conway and Sloane 1988;
Melissen 1997], for example.) In 1982, Gromov in-
troduced problems regarding packing a symplectic
manifold with the images of a standard shape un-
der symplectomorphisms. In dimension 2, a sym-
plectic manifold is simply a 2-dimensional manifold
with an area form, and symplectomorphisms are
precisely area preserving diffeomorphisms. In higher
dimensions, a symplectic manifold is a smooth 2n-
dimensional manifold equipped with a closed 2-form
w which is nondegenerate in the sense that w™ is a
volume form. Even-dimensional euclidean space and
the cotangent bundle of the torus, denoted T™*T™,
have canonical symplectic structures and will be the
main symplectic manifolds studied in this paper.
In higher dimensions, symplectic diffeomorphisms
still preserve volume, but an exact understanding
of symplectic diffeomorphisms is elusive. Results
about symplectic packings demonstrate that sym-
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plectic diffeomorphisms are sometimes quite flexible
while at other times are extremely rigid.

Gromov defined an invariant of a symplectic man-
ifold by studying a symplectic embedding of a ball
into the symplectic manifold. Let wy denote the
standard symplectic form on R*" The Gromov width
of a symplectic manifold (M,w) is

g(M,w) = sup{nr? | *w = w, for some
embedding 1 : B*"(r) — M}.

As an illustration of the nontriviality of this invari-
ant, Gromov showed that the infinite volume cylin-
der

7*(1) = {2? + ¢ < 1} x R?7?

has g(Z*"(1),wp) = m. This is often referred to
as “Gromov’s Nonsqueezing Theorem”; see Theo-
rem 2.3. The width invariant can be generalized to
the ball k-packing width (or ball k-width) by study-
ing k symplectic embeddings of a ball with disjoint
images:

0.1 gix(M,w) =sup{7r? | there are k embeddings
of (B*"(r),wy) into (M, w)
with pairwise disjoint images}.

Section 2 describes how these ball packing widths
satisfy properties that qualify them to be symplec-
tic capacities. Although these invariants are quite
easy to define, they are extremely difficult to calcu-
late. In some cases, such as CP? or S? x 52, the ball
packing widths are known for an arbitary number
of balls. These calculations were initiated in [Gro-
mov 1985] as applications of his theory of pseudo-
holomorphic curves, extended in [McDuff and Pol-
terovich 1994] using more developed ideas of alge-
braic geometry, and further extended in [Biran 1997;
1999b], by incorporating results from the framework
of Taubes’ theory of Gromov invariants.

In this paper, a new symplectic invariant is de-
fined and computed for symplectic manifolds that
satisfy a special topological condition. Instead of
considering all symplectic manifolds, we restrict at-
tention to symplectic manifolds with first homology
equal to Z", where 2n is the dimension of the man-

ifold:
0.2) Mz = {(M*",w) | Hy(M;Z) ~Z"}.

If U is an open, contractible subset of R™ then the
subspace T™ x U of T*T" is an element of Mzn.

Throughout this paper, A™(r) will denote the in-
terior of the n-dimensional simplex with the n + 1
vertices (0,...,0), (r,0,...,0),...,(0,...,0,r), and
P?"(r) will denote the corresponding subset of T*T":

P> (r) :==T" x A™(r).

P?"(r) can be thought of as an Mz~ counterpart of
B?"(y/r) since for all € > 0, there exist symplectic
embeddings

B(Vr =) = P(r) = B*(VF):

see [Traynor 1995], for example. Thus embeddings
of B?>"(y/r) into a symplectic manifold give rise to
embeddings of P?"(r), and embeddings of P?"(r)
give rise to embeddings of B*"(y/r —¢) for any & >
0. Thus there is no quantitative difference between
looking at symplectic packings with B?"(y/r) and
with P?"(r). But when restricting to symplectic
manifolds in Mgz, it is possible to add the condi-
tion that the symplectic embeddings of P**(r) in-
duce an isomorphism on the level of first homology.
The simplex k-packing width (or simplex k-width)
sk : |, Mz» — [0, 00], is defined by
0.3)  s,(M,w) = sup{nr | there are k embeddings
of (P?"(r),wy) into (M,w)
with pairwise disjoint images and
inducing isomorphisms H, (P (r)) — H,(M)}.

It is easy to check that these are symplectic invari-
ants. Section 2 shows that these invariants satisfy a
set of axioms analogous to the capacity axioms.

Thus for a symplectic manifold that satisfies the
nontriviality condition on first homology, one has
both the ball packing and simplex packing widths,
and it is easy to see that

Sk(M,W) S gk(M,W) S Vk(Maw)v

where v}, is the upper bound given by the fact that
symplectic embeddings must preserve volume. The
natural question arises: Is s;, different from g7

The aim of this paper is to highlight some inter-
esting similarities and differences between these two
families of packing invariants. In the process of cal-
culating simplex widths, connections between con-
vex geometry, computer algorithms, and symplectic
topology are illustrated.
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1. TOOLS AND MAIN RESULTS

Whereas algebraic geometry is a crucial tool to cal-
culate ball packing widths, the main tool to calcu-
late the simplex packing widths is the following the-
orem.

Theorem 1.1 (= Corollary 2.6). Suppose V is an open,
connected subset of R™ with H,(V;Z) = 0. Then

s1(T" xV,wy) = sup{nr | there are k integral affine
transformations taking A(r) into V/
and having pairwise disjoint images}.

By an integral affine transformation we mean the
composition of an element of GL(n,Z) with a trans-
lation in R™. It is easy to see that, given k trans-
formations that satisfy the conditions of the theo-
rem, one can construct a symplectic packing that
satisfies the nontriviality condition on first homol-
ogy (see Remark 2.7). The nontrivial implication is
that to every packing of T™ x V by symplectic im-
ages of P?"(r) = T™ x A"(r), one associates a pack-
ing of V' by copies of A"(r) under GL(n,Z) and
translations. In particular, this reduces a packing
problem of some 4-dimensional manifolds to pack-
ing a 2-dimensional subset of R® with the images of
a right, isosceles triangle under GL(2,7Z) and trans-
lations. Whereas the pseudo-holomorphic technique
is most powerful in dimension 4, this theorem ap-
plies equally to arbitrary dimensions. The proof
of this theorem can be viewed as an extension of
a rigidity result from [Sikorav 1989], and is closely
connected to the rigidity of exact lagrangian sub-
manifolds. In fact, when n = 2, a version of The-
orem 1.1 holds with weaker conditions on V. For
example, an analogous result holds when V is a
punctured disc and sy, is defined by considering sym-
plectic packings with (v;), injective for all . This
is a consequence of Giroux’s results [1994] about

incompressible lagrangian tori in T2 x (R”\ {0}).
See Remark 2.14. It would be interesting to under-
stand more examples where analogues of Theorem
1.1 hold.

Interesting similarities and differences between the
ball packing and simplex packing widths are illus-
trated by the following result, to be proved later.

Theorem 1.2. Let P = P*(1) = T? x A(1) C T*T=.
These are the ball k-widths gp(P) and simplex k-
widths s (P), for 1 <k <09:

k 1 2 3 4 5 6 7 8 9
N R AR
wPr | 1434t % 4 b

Remark 1.3. It is interesting that 1—7 appears in both
cases but for packing different numbers of objects.
This phenomenon will continue to appear in upcom-
ing calculations. It is work in progress by Traynor

to understand why this happens.

The ball packing width calculations in Theorem 1.2
follow from ball packing width calculations for CIP?
done in [Gromov 1985] and [McDuff and Polterovich
1994]. The simplex width calculations can easily be
done directly when k& < 5 using techniques described
in Sections 3 and 4. For larger k, s; has been cal-
culated by the computer program described in Sec-
tion 5. Some optimal ball and simplex packings can
be visualized as in Figure 1.4. Explicit ball packing
constructions are unknown for nonsquares beyond 6.

In fact, g,(P*(1)) is known for all values of k.
Biran [1997] proved that g,(P*(1)) = n/Vk for all
k > 9. Equivalently, it is possible to come arbitrar-
ily close to exhausting all the volume of P*(1) by
the image of symplectic embeddings of k balls when
k > 9. When k is a square, one can similarly get

YT N N <N

FIGURE 1.4. (a) Optimal ball or simplex packings with & < 4 and k£ =9 objects. (b) Optimal ball packings with
k = 6 balls [Traynor 1995]. (c¢) Optimal simplex packings with k£ = 5,6 simplices.
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“full” simplex packings. However, in contrast to g,
the value of s, will always be rational (see Remark
5.4). Although g, and s, differ radically for k > 9
and not a perfect square, there are some interest-
ing similarities between lower bound estimates for
s, and a version of Seshadri constants h;, from al-
gebraic geometry. Namely, consider

hiy(M,w) = sup{nr? | the cohomology class
O*[w] — 72 3% e; admits a Kihler
representative on the blow-up of M
at k (generic) points}.

Here © : M’ — M is the blow-up of M at k points,
and e; denotes the Poincaré dual to the exceptional
divisor over the i-th blown-up point. Similar to sy,
h;, is bounded above by g;:

hi,(CP?) < g,(CP?) = g, (B*(1)).

A conjecture in [Nagata 1959] leads to the conjecture
that hy(CP?) = g, (CP?) = gx(P*(1)), for all k. See
[McDuff and Polterovich 1994]. Although Nagata’s
conjecture is still open, a number of people have
made estimates for h;(CP?).

Theorem 1.5. (a) [Xu 1994] For all j € N,

—1
h;(CP?) > Y7,
J
(b) [Biran 1999a] For all k € N,
2k k
hk2+1((C]P)2) > 2]{;2—{—17‘- and hk2+2((C]P2) > k2+17'('.

Notice that Biran’s calculations for h;, when j is
one or two larger than a square, are stronger than
Xu’s general estimate for h;. When j is one larger
than a square, the following estimates of s;, proved
in Section 3, agree with Xu’s estimates of h; and
with Biran’s estimate of h;.;. When j = k* + 2

for £ > 4, our estimate of s; is greater than Xu’s
estimate of h;.

Theorem 1.6 (= Theorem 3.1). For k > 2, we have

Sk2+1(P4(1)) >

sp2po(PH(1)) > .

FIGURE 1.7. Left: a k> + 1 = 10 simplex packing.
Right: a k2 + 2 = 11 simplex packing.

The following Theorem and Conjecture gives Biran’s
exact calculations of g, from [Biran 1997] and known
and conjectured lower bound estimates on h; made
in [Biran 1999a]. These estimates are obtained from
continued fraction expansions of vk which lead to
minimal solutions to Pell’s equation. The calcula-
tions and estimates on s, are again done by the com-
puter program described in Section 5.

Theorem and Conjecture 1.8. Let
P=P41)=T> x A(1) C T*T>.

Table 1 gives the exact ball k-widths gi(P), the exact
calculations of the simplex widths si9, S11, S12, and
estimates and conjectures on lower bounds for the
remaining s, and the Seshadri constants hy,.

For arbitrary dimensions, using holomorphic curve
techniques, Gromov proved that g, (CP") < Z when
1 < k < 2". This implies that g,(P"(1)) < % for

k 10 12 12 13 14 15 16 17 18 19 20 21 22 23

9(P)/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1
? ? ? ? ? ? ? ?

2 6 3 2 180 4 101 <8 L4 <3 2 Ji12 I a4 ‘5

hi(CP?) /7 215 270 27 2519 21 21 1 233 217 Zig 25 23 2107 2o

! | 1 | | 1 1 1 i
3 2 15 6 20 <1 1 <4 <3 L2 L2l < 4 L7 21
sg(P)/m 16 z 56 23235 279 27 1 2177 213 2% Z97 215 231 Z70d

?
TABLE 1. Results for Theorem 1.8. > denotes a known lower bound, > denotes a conjectured lower bound, and

denotes a known lower bound, conjectured optimal.

=
o
- | &
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these values of &, and thus s, (P"(1)) < 7. However,
a direct, more elementary proof is given in Section 3
for this simplex widths’ upper bound.

Theorem 1.9 (= Theorem 3.2).
sp(P?"(1)) < 7w/2 forl<k<2"
Equality holds for 1 <k <n+ 1.

Remark 1.10. As a complement to Gromov’s obstruc-
tion calculations for CP", McDuff and Polterovich
proved, by techniques of algebraic geometry, that
there is a full ball 2"-packing of CP”, and thus
gx(P?"(1)) = w/2 for 1 < k < 2". This can al-
ternatively be proved using the ball packing con-
structions from [Traynor 1995]. The fact that the
simplex packing widths can be precisely calculated
for 1 < k < n+1 follows from explicit constructions.
In fact, it is known that equality holds for more val-
ues of k, but it is easy to prove for 1 < k < n + 1.
Moreover, for n = 3,4, it is proved in [Mastrangeli
1997] that sx(P*"(1)) = w/2 for 1 < k < 2", and
it is still work in progress by Mastrangeli to verify
that this statement holds for arbitrary dimensions.

Next, consider a variation of P?"(r):
P(al, e

where A(ay, ..., ,) is the simplex with the (n+1)
vertices (0,...,0), (a1,0,...,0), ..., (0,...,0,ay).
Just as P"(r) can be thought of as an analogue of
a ball of radius /7, so P(ay,...,a,) is an Mgn-
analogue of the ellipsoid

E(Ja,...,\/a.)

1 2 2 1 2 2
= b — <14,
{GErm S

n

yan) =T X Aoy, ..., ),

Gromov’s Nonsqueezing Theorem implies that

91(E (Vaq,...,\/a, ) = ma; when a; < -+ < ay,.

However, higher widths have not been previously
calculated, because most of the ellipsoids do not
have nice algebrogeometric counterparts. At best,
for some choices of «;, the ellipsoids correspond to
orbifolds of weighted projective spaces, but the holo-
morphic curve theory for orbifolds has not yet been
developed. Although the ball packing widths are
not known, in Section 3 some “convexity” arguments
give rise to the following simplex width calculations.

Theorem 1.11 (= Theorem 3.10). If a; < --- < «, then
Sl(P(Oél, .

7an)) = oqT,
and
sa(P(ou,...,a,)) = min{oy, ey, .

As a corollary, it is possible to calculate the second
ball packing width of an ellipsoid:

Corollary 1.12 (= Corollary 3.11). If a; < --- < «, then

g(E(\aq,...,a,)) =min{ay, sa, }.

In Section 4, an analogue of the polydisc D? x D?
is studied. Again there are interesting similarities
and differences between the ball and simplex pack-
ing widths. Let [J(1,1) C R? be the interior of the
square with vertices (0,0), (1,0), (0,1), (1,1) and
¥4(1) := T? x J(1,1). The following calculations of
gr are consequences of Biran’s calculations [1997] of
gr(S?x S?). The calculations of s, for k = 1,2, 3 are
done in Section 4 while for higher k they are done
by the computer program described in Section 5.

Theorem 1.13. For ¥ = T? x [(1, 1), the ball packing
widths and simplex packing widths are:

k 1 2 3 4 5 6 7 8
gk(X)/m 11 2 2 3 4 & 1
skp(X)/m 11 2 4 1111

FIGURE 1.14. Optimal simplex packings with 3, 4,
and 8 simplices.

Biran [1997] proved that, for £ > 8, there exists a
full packing of S? x S2. Equivalently, g,(3*(1)) =
\/2/—k7r, for k£ > 8. In contrast, the computer al-
gorithm implies that s, will always be rational; see
Remark 5.4. Alternatively, the following theorem
demonstrates that g, and s, often differ.

Theorem 1.15. When k is odd, X*(1) does not admit
a full simplex packing:

sp(X4(1) < gu(2*(1)), for k> 9 and odd.
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Proof. By Theorem 1.1, full packings of (1) exist
only if there exist full packings of [J?(1) with im-
ages of A%(r) under GL(2,Z) and translations. The
result then follows immediately from a result that
states a square can be partitioned into k triangles

of equal area only when k is even. See, for example,
the argument in [Stein and Szab6 1994]. O

More precisely:

Theorem 1.16. Let ¥ = T? x[J(1,1). Table 2 gives the
known optimal, known and conjectured optimal, and
known lower bounds for the simple k-widths si(X).

In higher dimensions, let O(ay, . . .,
the open box

a,) C R" denote

O(ay, ... {(y1, .-

Then X(ay,...,q,) = T" x O(ay,...,q,) is the
analogue of the product of the 2-dimensional discs
of radius (/aq, ..., \/a, since, as shown in [Traynor
1995], for all € > 0 there exist symplectic embed-
dings

, Q) 1= Yn) |0 <ys < i}

D*(Vay —e)x - x D*(Va, —¢) = X(ay,...,a,)
and
Y(ag,...,a,) = D*(yai) x -+ x D*(\/ay, ).

The convexity arguments in Section 3 give rise to
the following two results.

Theorem 1.17 (= Theorem 4.1). If o; <
Sk(E(al, PN

- < a, then
yap)) = aqm for 1 <k <nl

Theorem 1.18 (= Theorem 4.2). If a; < iy then

s3(Z(a, a2))

The proof of Theorem 1.17 is fairly easy, but that
of Theorem 1.18 illustrates the difficulty of doing
simplex width calculations directly. The following
conjecture has been tested using the computer pro-
gram described in Section 5.

=min{oy, (o +ay)}.

FIGURE 1.19. Optimal simplex packing configura-
tions with £ = 3 objects when as > 2a; and when
(65) S 2a1.

Conjecture 1.20. For a; < ay,

s4(X(ay, az))

For higher dimensions, by results from [McDuff and
Polterovich 1994, it is known that there is a full ball
k-packing of the 6-dimensional polydisc and thus of
¥(1,1,1) for k = 3!5*, where j € N. As described in
Section 5, computer calculations lead to some pre-
cise values for s; and thus to estimates of g.

=T3x[0(1,1,1). Then
and sg(¥°(1)) = 37.

4

= min{al, max{%ag, %(al—f—ag)}}ﬂ.

Theorem 1.21. Let 33(1)
s7(X°(1)) = g

5

As a consequence,
g7(S?x5?x 8%) > 21 and gs(S?xS5*x S%) > 3.

There are many interesting questions beyond calcu-
lating the simplex width capacities of a fixed sym-
plectic manifold. For example, it would be inter-
esting to understand the possible effect of removing
subsets of volume 0 on the simplex widths. Analo-
gous but harder results were obtained for the Hofer—
Zehnder capacities in [Tokieda 1996; 1997]. Sec-
tion 4 gives some results and conjectures about the
possible beginnings of the “simplex capacity spec-
trum”, the sequence of numbers that can be realized
as capacities for T? x U where U is an open subset
of O(1).

ko [91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
sk(3) |3 15 2 13 ;i NI ;_5 ;4_ S1 1 35 ;1_ J18 57 S2 ;i NERNY S48 58 516 58
™ 7T 37T 5 =8 =11 =20 =44 =137 =3 3 =16 =36 —44 =24 =7 =18 =11 =15 =164 31 =63 07

!
TABLE 2. Bounds for ¥ = T? x 0(1,1) (Theorem 1.16). > denotes a known lower bound, and > denotes a known

lower bound, conjectured optimal.
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Conjecture 1.22 (= Conjecture 4.5). Consider an open,
contractible set U C (1). Let sy = rm, 89 =
rom, 83 = r3m be the first three simplex widths of
T? x U. Then ry,ry, 75 must satisfy 0 < r; < 1,
%7"1 <ry <ry, and

%rl <rg < min{TQ, maX{Zf(rl—l-rz), %(rl—i-rg)}}.

Conversely, if ry, 9,73 are chosen arbitrarily so that
they satisfy the above inequalities, then there exists a
U and a volume-preserving diffeomorphism between
T? x U and T? x T(1) so that s, = rim, sy = 7o,
s3 = r3m are the first three simplex widths of T?> x U.

2. PACKING CAPACITIES

Let M?" denote the set of all 2n-dimensional sym-
plectic manifolds. Throughout this paper, the focus
will be on open subsets of (R*",w,), where wy =
dry Ndy, + --- + dz, A dy,, and of the cotangent
bundle of a torus (7*T",wy),

n_ {1, m0)}
T =T"xR"= —F——= .
X 7TZn X {(y17 7yn)}7

where wy = ) dz; A dy;. Particular open sets of in-
terest include B**, Z*" C (R*",w,) and P*",Y?" C
(T*’]I‘n’ C(JO):

)
Z2n (\/77) ={(z1, Y1, ToyYn) | T2+ 43 <7},
P> (r) :=T" x A"(r),
AM(r) = {1, ya) [0 <wi, Yws <7},
Y2 (r) :=T" x (0,r) x (RT)"™,

where R := (0, 00). Recall the definition of Mz~ C
M™ from (0.2). P?" and Y are the Mz» “counter-
parts” of B?" and Z*" since, as shown in [Traynor
1995], there exist for any € > 0 symplectic embed-
dings

B(V/r —¢) — P(r) = B(\J/r),
Z(\Vr—¢e)=Y(r)— Z(r).

A basic problem in symplectic topology is to find
invariants of a symplectic manifold. It is easy to ver-
ify that the volume | o w" of the symplectic mani-
fold (M,w) is a symplectic invariant. In their search
for periodic solutions of hamiltonian vector fields on
convex energy surfaces in R*", Ekeland and Hofer
[1989] defined a nontrivial invariant that they called

(2.1)

a symplectic capacity. The concept of a symplectic
capacity was generalized and axiomatized as follows.

Definition 2.2 (compare [Hofer and Zehnder 1994;
McDuff and Salamon 1995]). Let M?™ denote the
set of 2n-dimensional symplectic manifolds. An M-
capacity is a function ¢ : |, .y M?™ — [0, o0] satisfy-
ing:

Monotonicity: If there is a symplectic embedding
(My,wy) = (My,w,),

where M, My € M, then ¢(M;,w;) < e(My,w,).
Conformality: c(M,ow) = |a|c(M,w), for all non-
zero o € R.
Nontriviality: 0 < ¢(B*"(1),wp) and ¢(Z?"(1),wo)
is finite.

The nontriviality condition guarantees that, in di-
mensions greater than two, volume is not a capac-
ity. The search for symplectic capacities and tech-
niques to calculate them are major areas of research
in symplectic topology.

For each k, the ball k-packing width g (M) de-
fined in (0.1) is a symplectic capacity. This can be
proved using a slight variation of the proof that g, is
a capacity as given in [Hofer and Zehnder 1994; Mc-
Duff and Salamon 1995]. It is not difficult to verify
the monotonicity and conformality axioms. How-
ever, the nontriviality is difficult and is essentially
equivalent to Gromov’s nonsqueezing theorem.

Nonsqueezing Theorem 2.3 [Gromov 1985]. There is
a symplectic embedding ¢ : B*(s) — Z*™(t) if and
only if s <'t.

Recall the definition of the simplex k-packing widths
from (0.3). It is easy to check that s is a symplectic
invariant. It will be shown that the simplex k-widths
satisfy Mz analogues of the capacity axioms.

Definition 2.4. An Mz-capacity is a function z from
U,, Mz~ to [0, 0o] satisfying:

Monotonicity: If there exists a symplectic embed-
ding ¢ : (M;,w;) — (My,w,), where M, M, €
My, such that v, : Hy(M,) — Hy(M,), then
2(My,wy) < 2(Ma,ws).

Conformality: z(M,ow) = |a| z(M,w) for all non-
zero o € R.

Nontriviality: 0 < z(P*"(1),wp) and z(Y?"(1),wo)
is finite.
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It is easy to verify that the s, satisfy the mono-
tonicity and conformality axioms. The nontriviality
can be deduced from Gromov’s nonsqueezing theo-
rem (see Remark 2.9) or, alternatively, as an easy
consequence of the following theorem which will be
proved at the end of this section.

Theorem 2.5. Let U and V' be open, connected subsets
of R" with Hi(U;Z) = H,(V;Z) = 0. Consider
T"xU,T"xV C (T*T",wy). Given embeddings

Y T xU—=>T"xV, fori=1,...,k,
satisfying the conditions V¥}wy, = wy,
(i)« : Hy(T"xU) — Hy(T" x V),
and whose images are pairwise disjoint, there ez-
ist M; € GL(n,Z) and t; € R", for i = 1,...,k,

satisfying M;U + t; C V and such that the images
MU + t; are pairwise disjoint.

As a corollary, for some subsets of (T*T"™,wy), the
invariant s, has the following “algorithmic defini-
tion”.

Corollary 2.6. Suppose V' is an open, connected subset
of R" with Hi(V;Z) = 0. Then

sk(T" xV,wy) = sup{nr | there are k integer-affine
transformations taking A(r) into V
and having pairwise disjoint images}.

Remark 2.7. It is easy to show that every k-tuple of
integer-affine transformations with the stated prop-
erties gives a lower bound for s;(T" x V,wy). Given
M € GL(n,Z), t € R",

Yot (@,y) = (M) T2, My +1)

is a symplectic embedding of P?*(r) into T*T™. If
M(A™(r))+t C V then ¢, (P?"(r)) C T"xV and
$1(T™ x V') > wr. Similarly, finding M;,..., M, €
GL(n,Z) and ty,...,t; € R" such that all the im-
ages M;(A"™(r))+t; are contained in V' and pairwise
disjoint implies s;(T™ x V') > ar. If k Vol A™(r) =
Vol U, it is possible to conclude also that s, (T™xV)
equals 7r.

An “My-nonsqueezing theorem” is another easy con-
sequence of Theorem 2.5.

Corollary 2.8 (Mz-Nonsqueezing). There is a symplec-
tic embedding 1 : P*"(s) — Y?"(r) with

Wyt Hy(P(s)) — Hi(Y (7))

if and only if s < r.

Proof. First, if s < r, the inclusion is a symplectic
embedding P?"(s) — Y?"(r). Conversely, suppose
there exists a symplectic embedding ¢ : P*"(s) —
Y?"(r). By Theorem 2.5, there exists M € GL(n,Z)
and t € R™ so that M(A) +t c (0,7) x (RT)"1.
Let p; : R™ — R denote the projection to the first
coordinate. Then

|1 (M (A(s)) + 1)
= sup{|p1(2) — pr(w)| : 2,w € M(A(s)) + t}

is a positive integral multiple of s. Since
p1(M(A(s)) +t) C (0,7),
we have ‘pl(M(A(s) + t))‘ <rand thus s <r. O

Remark 2.9. This theorem can alternatively be proved
using Gromov’s Nonsqueezing Theorem 2.3. For
suppose there exists an embedding v : P*"(s) —
Y?"(r) when s > r. Choose ¢ < s —r. By (2.1),
there exist embeddings B*"(\/s —¢) — P*"(s) —
Y?"(r) — Z?"(y/r), a contradiction to Theorem 2.3.

Corollary 2.10. s, (M) is an My-capacity.

The remainder of the section is devoted to prov-
ing Theorem 2.5. The rigidity of the packings is
related to the rigidity of exact lagrangian subman-
ifolds. A lagrangian submanifold of (M?",w) is an
n-dimensional manifold L such that w(v,w) = 0,
Vv,w € T,L, Vp € L. If w = —d), this implies
i*(A\) € H'(L) is a closed 1-form, where ¢ : L — M
is the inclusion map. Fixing A, L is called an ezact
lagrangian if i*(\) is an exact form: *A = df, with
f: L — R. A deep and important fact in symplectic
topology is that exact lagrangians must intersect.

Theorem 2.11 (Intersections of exact tori) [Gromov 1985;
Lalonde and Sikorav 1991]. If L, L' are closed, exact
lagrangian tori in T*T™ then LN L' # &.

Remark. This intersection theorem was proved using
the technique of holomorphic curves by Gromov for
more general cotangent bundles in the cases where
L’ is the zero section or L' is hamiltonian isotopic to
L. A deep study which further extended the cases
where lagrangian intersections must occur was done
in [Lalonde and Sikorav 1991]. The proof of Theo-
rem 2.5 needs only the case of lagrangian tori.
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The following notion of strong exactness is an impor-
tant ingredient in proving the rigidity statements.

Definition 2.12 [Sikorav 1989]. Let U be an open sub-
set of T*T™ = T™ x R™ with its standard symplectic
form wg = —d\, where A = ). y;dx;. A symplectic
embedding of U into T™ x R" is strongly ezxact if

@ [6°A — A =0 & H'(I;R), and
(b) p* =i* : H' (T" x R™;R) — H'(U;R), where 4

is the inclusion.

Remark. A hamiltonian diffeomorphism is always a
strongly exact embedding.

If L is an exact lagrangian submanifold then, for an
arbitrary symplectic diffeomorphism 1, ¢(L) is a la-
grangian submanifold but not necessarily exact. For
example, T" x {u} is an exact lagrangian submani-
fold of T*T™ only when v = 0. However, it is easy
to check that exact lagrangians are preserved under
strongly exact symplectic embeddings. In addition,
strongly exact embeddings are preserved under con-
jugation. In particular, let 7, be a translation by
in the fibers of T*T": 7,(z,y) = (z,y + u). Then if
Y : T xU — T xR" is a strongly exact embedding,
for each u € U,

7, o (T x {u}) =7, " o o7, (T" x {0})
is an exact lagrangian submanifold.
The next theorem demonstrates the rigidity of
strongly exact embeddings.

Theorem 2.13 [Sikorav 1989]. Let U,V be open sub-
sets of R" and consider T" xU, T"xV C (T*T",wy).
If there exists a strongly exact embedding of T™ x U
into T XV then U C V.

Using this, Sikorav easily proved the surprising re-
sult that if U,V C R" are connected, open subsets
with H'(U) = H'(V') = 0 (either real or integer co-
efficients) then T™ x U is symplectically equivalent
to T™ x V if and only if there exists M € GL(n,Z)
and ¢t € R" such that M (U)+t = V. Sikorav’s proof
of this fact can be modified to prove Theorem 2.5.

Proof of Theorem 2.5. Suppose that {p;}*_, satisfy the
hypotheses of the theorem. The conditions on U,V
imply H;(T™ x W) = H{(T") for W = U,V and
either real or integral coefficients. By the universal
coefficient theorem,

H'(T";Z) = Hom(H,(T"); Z).

Thus the hypotheses on ¢; imply that the
(o))" : HY(T" x V;Z) — HY(T" x U;Z)

are isomorphisms. Associate M;(y;) € GL(n,Z)
and t;(¢;) € R™ as follows.

(a) Choose a fixed identification of Aut(H'(T";Z))
with GL(n,Z). Then, by hypothesis,

Mi(g:) = ¢} € Aut(H'(T";Z)) = GL(n, Z)

fori=1,...,k.
(b) Since ¢; is symplectic,

ti(pi) = [pIA =] € H(T" x U;R) ~ R".
A direct calculation shows that
’(/JZ' = SOiOSOJT/I];,ti :T" x (MZU—f—tl) — Im(pZ CT"xV

is strongly exact, where ¢y, +, is defined as in Re-
mark 2.7. The proof will be finished by proving that
the domains of these 1; give a packing of T" x V.
Since for all ¢, 1; is strongly exact, Theorem 2.13
implies M;U +t; C V. Next suppose there exists
ce (M;U+1t;)N(M;U +t;) where i # j. Consider
T.: T" x R™ — T™ x R™ defined by

Te(z,y) = (2, y +¢).
Then
T, = 7. o)y o 7.(T™ x {0}),

T; .= 7, ot or.(T" x {0})

are exact lagrangian tori in 7" x R", so T; NT; # @
by Theorem 2.11. This implies 7.(T;) N 7.(T;) # 2.
However, since 7.(T;) C Imy,; and 7.(T;) C Imy;,
this is a contradiction. 0

Remark 2.14. In fact, a version of Theorem 2.5 holds
for n = 2 under weaker conditions on the first ho-
mology of the target space. Namely, consider the
modification of 2.5 where V = D?\ {0}, where D?
is the open disc centered at the origin, and

(¢). : Hi(T? x U) — Hy(T? x V)

is injective, for ¢ = 1,...,k. Then each lagrangian
torus 1;(T™ x {p}) is incompressible in T? x V and
thus, by a result in [Giroux 1994], must be homo-
topic to a “horizontal” torus of the form T? x {x},
with x € V. Thus ¢} can again be identified with
an element of Aut(H,(T")) = GL(n,Z), and the
proof of Theorem 2.5 follows through. It would be
interesting to understand more examples where ana-
logues of Theorem 1.1 hold.
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3. PACKING ANALOGUES OF BALLS AND ELLIPSOIDS

As described in Section 1, P"(r) = T" x A™(r) C
T*T" can be thought of as an analogue of B*"(\/r ).
The idea for the following packing constructions is to
start with a configuration as found in a packing with
k? triangles. This full packing is then slit along a
row and shrunk until it is possible to insert “skinny”
triangles. In the terminology of Section 5, these are
packings with two convex lattice polytopes. See Fig-
ure 1.7. By an easy construction, the lower bound
given by Theorem 3.1 for packing 6 simplices is not
optimal. See Figure 1.4(c). By the computer results
in Theorems 1.2 and 1.8, the lower bounds in this
theorem are known to be optimal for packing 5, 10,
and 11 simplices, and are conjectured optimal for
packing 17 and 18 simplices.

Theorem 3.1. For k > 2,

k
21

S22 (P(1)) >

and

k-1
Sk2+2(P4(1)) Z mﬂ'

Proof. Let r = k/(k*+1). The following elements
M; € GL(2,Z) and t; € R? give a k41 packing of
A(1) by A(r) and thus, by Remark 2.7, a simplex
packing of P*(1). The images of A(r) lie in k+1
“rows”. The bottom row contains the following k-+1

images of A(r):
t = (8) ;

1 (10
Ml - (O 1 )

1 (1 0 1 [T
M = ( 0o -1/’ ty = r)’

1 (13 =2 1 (T

for i = 3,...,k+1.
images of A(r):

s (1 k—itl , [ i-1
Mi_(() -1 » b= r+r/k

The next row contains k—1

for i = 1,...,k—1. These 2k triangles are all con-
tained in
r k+1
A(1)N , <r4+-= .
W0 { | v <rag = S

Since A(1) N{y, > (k+1)/(k*+1)} is a right, isosce-
les triangle with legs of length (k—1)r, it can be fully

packed using (k—1)? copies of A(r). Altogether,
there are (k+1)+(k—1)+(k—1)* = k?+1 disjoint
images of A(r).

To estimate sj245(P*(1)), consider

k-1
k?—k+1
and let M/ € GL(2,Z) and t € R? be as follows.
Again, the images of A(r) lie in one of k+1 “rows”.
The bottom row of A(1) has the same k+1 embed-
dings as the k*+1 packing. In the row above the
bottom row, insert k triangles:

o (1 k—i+l , [ i1
Mi_(O -1 » L= r+r/k

fori=1,...,k—1, and

wzulﬁw’ﬁ:QH%*O'

Again, these 2k+1 triangles are all contained in

r k+1
A(1) N {y2 < T+E = P } .
Since A(1) N{y> > r+r/k} is a right, isosceles trian-
gle with legs of length (k—1)r, it can be fully packed
with an additional (k—1)? triangles. Altogether,
this makes a packing with (k+1)+(k)+(k—1) =
k?+2 copies of A(r). O

r =

Remark. A similar idea was employed in [Krouglikov
1994] to construct ball packings of B*(1) before Bi-
ran proved there exist full packings. Krouglikov
proved that

3k
21 (B*(1)) > ——
gz (BY1)) 2 3557
when k£ > 3. These estimates on g, are weaker than
those given as a corollary to Theorem 3.1.

In arbitrary dimensions, Gromov [1985] proved that
ge(B*™(1)) < L, for 1 < k < 2". The following
theorem is implied by this result. The proof given
uses euclidean rather than algebraic geometry.

Theorem 3.2. s;,(P?>"(1)) < 37 for 1 < k < 2",

Remark. By conformality (Definition 2.4), this state-
ment is equivalent to sz(P*"(a)) < zam when 1 <
k < 2. The estimate that s,(P?"(1)) < 37 holds
for all £k > 1, but when k£ > 2" the volume con-
straint is more restrictive. If for any j > 1, it is
known that s;(P?"(1)) = i then it follows that
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si(P*(1)) = 3w for 1 < k < j. An interesting and
natural attempt at a full ball packing construction
for B**(1) in [Krouglikov 1994] would have led to
a full simplex 2"-packing of P?"(1). However, the
inductive argument is incomplete. It is not hard to
check that s,41(P?"(1)) = $7. This can be seen by
constructing embeddings that have images in the
n 4+ 1 “corners”. More precisely, let M; = I™ for
1,...,n+1, t,4y =0, and ¢; = (0,...,0,%,0,...,0)
for i =1,...n. Thus

sp(P?(1)) = %’/T

In [Mastrangeli 1997], it is shown that for n = 3,4,
there is a full packing of P?"(1) with 2™ copies of
P?(3), and thus

sp(P?(1)) = Ln

2

forl<k<n-+1.

for 1 < k < 2" when n = 3, 4.

It is currently work in progress by Mastrangeli to
generalize this to all n.

Before proving Theorem 3.2, some tools will be built
which are based on the restrictive nature of the
image of A"(r) under GL(n,Z). Given any sym-
plectic embedding ¢ : P*(r) — T*T" such that
Y, : Hi(P*(r)) — Hy(T*T"), we can identify ),
with an element of GL(n,Z). This automorphism is
reflected in the shape of the triangle. An equiv-
alence relation on GL(n,Z) will be given by the
shape (up to translation) of the image M(A™(r));
M € GL(n,Z).

Definition 3.3. Let M,, M, € GL(n,Z). Then M, =
M, if and only if there exists t € R"™ such that
Mi(A™(r)) +t = My(A™(r)). Equivalence classes
will be denoted by [M].

The following lemma emphasizes the important role
played by r = 1.

Lemma3.4. If r > 1 and ¢ : P*"(r) — P*"(1) is a
symplectic embedding with

Yo s Hy(PP(r) 5 Hy(P(1)
then [¢.] = [1"].
Proof. Since M € GL(n,Z), the length
pi(M(D () +1)]

of the projection of M(A™(r)) + t onto the y; axis
is a positive integral multiple of . The images of
these triangles lie in A™(1), for each i, and hence

lpi(M(A™(1)) + t)| = mr < 1, for some m € N.
However, r > % then implies that m = 1. Hence the
vertices of M (A™(r)) + t must coincide with n + 1
vertices of a translated n-dimensional cube of size r.
A vertex (y1,...,Yn) of M(A™(r))+t C A™(1) must
satisfy y; > 0 and > y; < 1. Thusif r > %, there
are at most n 4+ 1 vertices of the translated cube
that lie in A™(1). Hence M(A™(r)) + t is a subset
of A™(1) only if it is the interior of the convex hull

Of{(tl,...,tn), (t1+T,t2,...,tn), (tl,t2+T,...,tn),
ooy (1, te, ooyt + 1)} for DO t; < 1 —r. Therefore
[1h.] = [I"]. O

The image of A™(r) under an element of GL(n,Z)
will always be convex. To study more than one em-
bedding, it is convenient to look at the translation
set associated with each shape.

Definition 3.5. Let 7" and R be open sets in R™. The
translation set of T in R is 7(T,R) := {t € R" |
T+tC R}.

Example 3.6. It is easy to check that 7(A™(1), A™(1))
is the closed simplex with the n+1 vertices (0,...,0),
(3,0,...,0), ..., (0,...,0,3).

The set 7(7T, R) will always be closed. For the cases
of interest, it will also always be convex.

Lemma3.7. If T = M (A(r)), M € GL(n,Z), and R

is a convez subset of R" then 7(T, R) is convez.

Proof. Let ti,ty € 7 and a;,ay > 0 such that a; +
ay = 1. Then T+t{, T+t, C R and R convex implies
that T' + Oéltl + Oégtg = (Oél + OéQ)T + Oéltl + Oégtg =
(an(T + t1) + (T + t2)) C R. Hence 7(T,R) is
convex. ]

The following lemma will be used to prove Proposi-
tions 3.9 and 4.3.

Lemma3.8. Let T = M(A(r)) and M € GL(n,Z). If
pi €T+ 2z fori=1,2,...,1, then for any s1,...,s
that satisfy s; > 0 and 22:1 s; = 1, we have

l

!
Z sip; €T + Z SiZ;.

i=1 1=1

Proof. Let m = n + 1 and suppose

T:{itjy] t3>0, it]:]_}
j=1 j=1
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Since pi € T + z;, there exist ti such that p; equals
> thy; + 2, where t§ > 0 and S ™ ti =1. Then

Jj=17J

l l m
Z 8ip; = Z ( Z Sitj‘yj + Sizi)

i—1 =1 N =1
= ZZS tzy] —i—Zs i

=1 j=1

To verify that this is an element of T + 22:1
first note that

SiZi,

HM~
LPQS
M-

Moreover the coefficients Zizl s;it; of each y; are
strictly greater than zero since at least one s; is
strictly greater than zero and t; are positive. O

The next proposition will be useful to prove that
there does not exist a packing containing two tri-
angles of the same shape. It reduces checking all
possible translations to the “extreme” vertex trans-
lations.

Proposition 3.9 (Same-shape noncompatibility). Let T' =
M(A(r)), M € GL(n,Z), and let T be the convex
hull of z1,..., 2

T:{gp%

s; >0, Zsizl}.

If the vertex translations satisfy (T +z;) N (T + z;) #
o,Vi,j = 1,...,1, then for all o, € 7, (T + ) N
(T+5)#9

Proof. Let a,8 € 7. Then a = 22:1 rizi, B =
23:1 sjz; where r;,s; > 0, 22:1 r,=1= 22:1 5;.
By hypothesis, there exists p;; € (T +y;) N (T + y;)
for i,7 = 1,...,1. For i =1,...,l, consider ¢; =
2321 s;p;; where s; are chosen from the definition
of 3. For fixed 1, since p;; € T'+2; for all j and T+ z;
is convex, it follows that g; € T+ z;. By Lemma 3.8,
¢ €T+ . Thus g; € (T + 2z;) N (T + 5). A similar
argument shows that 3>\ rq; € (T +a)N (T +3),
and thus (T'+ a) N (T + B) # . O

Proof of Theorem 3.2. It suffices to prove that for
ro> LA Y, P(r) — P(1) are symplectic
embeddings with (¢;), : Hy(P(r)) — H;(P(1))
then Imy; NIm ), # @. By Lemma 3.4, if r > %

then [¢.] = [I"]. From Example 3.6, the transla-
tion set 7(A"(r), A™(1)) has vertices zo = (0,...,0),

2 = (1—r0 ,0), 2 = (0,1—r,0,...,0), ...,
= (0,0,.. 1— 7). Then, for positive ¢ less than
1(2r—1)/(n—1) < %, we have
(6,...,6,%,6,...,6) € (T+2z) N (T+2z)

where 1 is in the i-th position, and

( € € 1—5 € 1_6 € € )
n—2"""n-2"2 7pn-2"""2 Tp-2"""n-2
€ (T+z) N (T+z)

where the %—5 entries are the i-th and j-th. By
Proposition 3.9, for all o, 8 € 7(A™(r), A™(1)), the
intersection (A"(r)+a) N (A™(r)+3) is nonempty.
Hence, if » > %, there do not exist two disjoint
images of A™(r) under GL(n,Z) and translations
contained in A™(1). Therefore, by Corollary 2.6,

s(P?"(1)) < %7’[’. O
Next consider

Plag,...,a,) =T" x Aoy, ..., 0n),

where A(ay,. .., a,) is the simplex with the (n+ 1)
vertices (0,...,0), (a;,0,...,0), ..., (0,...,0, ).
Recall, as described in Section 1, this is an analogue
of an ellipsoid.

Theorem 3.10. Assume o1 < s < -+- < . Then

si(Plag,...,an)) = oy,

So(P(ayg,...,a,)) = min{al, %an}w.
Proof. Notice that P(ay,...,a,) C Y?"(a;) and
P(ay,...,a,) C P?(a,). Thus, by monotonicity
(Definition 2.4),

sp(P(ag,...,an)) <min{sy(Y?" (1)), sx (P?" (o)}

for all k. In particular, Corollary 2.8 and Theorem
3.2 imply that s;(P(ay,...,a,)) < min{ay, o, }m =
apm and sy(P(ay,...,q,)) < min{al, %an}w. Since
P"(ay) C Plau,...,an), si(P(ag,...,a,)) > o7
and thus the claim about s; follows. It will be shown
that so(P(ay,...,q,)) > min{al, %an}w by an ex-
plicit construction. Consider

M1 - ]In7 tl - 0,
0 0
In-1 :
M, = Sty =
2 o™ 0
-1 -1 1 r
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Thus M, (A™(r)) has vertices (0, ...,0), (,0,...,0),
...y (0,...,0,7), and likewise M,(A™(r)) has ver-
tices (r,0,...,0), ..., (0,...,0,7), (0,...,0,2r). It
is easy to check that the two simplices are disjoint as
they share a common face with vertices (r,0,...,0),
., (0,...,0,7). If r < oy and 2r < «,, both sim-
plices are contained in P(ay,...,qa,). Thus there
exists a packing of A™(1) by two copies of A"(r) for
r= min{ozl, %an}, and the claim about s, follows.
Il

Corollary 3.11. If a; < ap < --- < «,, then
@(E(ar,...,\J/a,)) = min{al, %Oén}ﬂ'.

Proof. Since E(\/aq ,...,v/0, ) C Z(\/oq,...,\/0)
and E(\/a1,...,\/a,) C B*(\/a,), monotonicity
in Definition 2.4 implies g(E(\/aq,...,/a,)) <

min{ay, 2o, }7. Then since

sp(Plag,...,an)) < gr(Plag,...,an))
= gk(E(\/a17"' ) \/an ))7
the result follows from Theorem 3.10. O

4. PACKING ANALOGUES OF SURFACE PRODUCTS

As mentioned in Section 1, ¥(ay,...,a,) is an Mz-
analogue of the polydisc with radii a, ..., a,. Anal-
ogous to results from Section 3, it is possible to ex-
actly compute the simplex widths s of X(ay,. .., a,)
for “small” k. This theorem can be viewed as an
easy consequence of a simplex analogue of McDuff
and Polterovich’s result [1994] that the 2n-dimen-
sional polydisc D?*(a) x --- x D?*(a) can be fully
packed by n! balls. Some explicit constructions for
such packings for dimension 4 are given in [Traynor
1995]. The interesting idea behind the incomplete
attempt in [Krouglikov 1994] for explicit full pack-
ings of the 2n-dimensional polydisc would have led
to full simplex n!-packings of ¥(1,...,1). The proof
of the following theorem gives a full packing con-
struction of the 2n-dimensional polydisc using ideas
from symmetry groups.

Theorem 4.1. If a; < --- < «, then
sE(E(a, .. o)) =g for 1<k <nl

Proof. By the inclusion X(ay,...,a,) C Y*"(ay),
monotonicity in Definition 2.4 implies that

sp(X(aq, ..., a)) < Ty,

for all k. Note that for k < nl,

sp(X(ag, .y an)) = sm(X(ay, . ..

)

and that, by monotonicity,
y Q) > (X)),

Thus it suffices to prove that s, (X*"(a;)) = Ta;.
This will be demonstrated by applying ideas from
symmetry groups to construct an explicit full pack-
ing of the cube. (See, for example, [Benson and
Grove 1971] for background on symmetry groups
and fundamental regions.) The symmetry group of
the n-dimensional cube centered at the origin with
the 2™ vertices (+aq, ..., Ta;) consists of the n x n
signed permutation matrices. A fundamental region
for the symmetry group of this n-dimensional cube
is

Sn!(E(Ozl, SN

10 0 --- 0
11 0 --- 0

11 1 1 1
Moreover, the volume of F'is af /n!. The orbit of F'
under the subgroup comprised of the n! permutation

matrices gives a full packing of O(ay,...,a;). It
follows that

O S (T x O(avg, ..., aq)) = Tay.

In dimension 4, it is possible to extend the result of
Theorem 4.1.

Theorem 4.2. If 1 < « then
s3(2(1,a)) = min{1, (1 + )},

By conformality, Theorem 4.2 is equivalent to the
statement that if a; < ay then s3(X(aq,p)) =
min{ay, 1(a; + az)}m. The proof of Theorem 4.2
illustrates the technicalities involved when proving
simplex widths “by hand”. We give an overview of
the proof. If a@ > 2, it is not hard to show that
s3(2(1,)) = 7. If @ < 2, an application of Propo-
sition 3.9 will show that when r > (14 «) there
do not exist two triangles of the same shape in a
packing of O(a;,ay) by images of A?(r). By gen-
eralizing Proposition 3.9, it will then be shown that
at most two different shaped triangles can exist in
the packing. Thus a 3-packing is impossible.
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Proposition 4.3 (Different-shape noncompatibility). For

kE=1,2, let T), = M.(A(r)), M), € GL(n,Z), and
let 7y, be the convex hull of z):

T, = {itizf t; > 0 and ik:ti = 1}.
i=1 i=1

If
(T1+Zzl)ﬂ(T2+ij) #@
foralli=1,...,my and j =1,...,maq, then
(T1+a1)ﬂ(T2+a2)7é®

for all ay, € Ty and ay € Ty.

Proof. For k = 1,2, let oy, = Y. thzF € 7, be

zlzz

arbitrary. By hypothesis, there exists
Dij € (T1 + le) N (Tg + 2]2)

For a fixed j, Lemma 3.8 and the convexity of T5 +zJ2-
imply

Zt Py €

Furthermore, by Lemma 3.8 and the fact that 71+,
is convex,

Zﬁ(th”) (Ty + o) N (T, + as).

Hence, (11 +aq) N (Ty + p) # @ for all oy € 7y and
Qg € Ty. O

T1+Oél) (TQ—FZ?)

Proof of Theorem 4.2. Since ¥(1, ) C Y (1), mono-
tonicity implies s;x(2(1, o)) < 7, for all k. An ex-
plicit construction shows this is optimal when o > 2.
Namely, consider the packing of (1, a) by A?%(1)
given by

See Figure 4.4 (which repeats Figure 1.19 for conve-
nience).

FIGURE 4.4. Optimal simplex packing configurations
with 3 objects when as > 27 and when as < 2q;3.

Next consider the case aa < 2. If r = % (1+«) then

we(0) ()
(1 ()
(1) ()

proves that s3(3(1,)) > +(1+a). See Figure 4.4.
To show that r = %(14—04) is optimal, suppose that
there is a simplex 3-packing of [J(1, o) with A?(r)
where r > $(1+a). Note that r > i(14+a) >
% (%a—i—a) = %a. Thus an argument as in the proof
of Lemma 3.4 proves that the vertices of M (A?(r))+
t must coincide with 3 vertices of a translated cube
of size r. In particular, [M] must be either [(1 0)],

[CEOT TG 200 or [ 2)]. s

s

=
I

Without loss of
generality, it can be assumed that any simplex 3-
packing of O(1, &) has [M;] = [( })]. This fol-
lows since given any packing of [J(1, «), there exists
a compositions of reflections and translations that
map (1, @) to itself and a given triangle in the
packing to a translate of T := (; )A(r). Propo-
sition 3.9 will now be used to show that there do
not exist two triangles with this shape in a packing.
The translation set 7 for T is the rectangle with
vertices t; = (0,0),ty = (1—7,0), t3 = (1—r,a—r),
ty = (0, a—r). Note that if r > 1(1+«), then
1-r <1—(3(14a)) = :(2—«), and
a—r <a—(3(1+a)) = :(2a—1).

Then ((2—a), 1(2a—1)) € T+t;, wheni =1,2,3,4.
Thus, there exists at most one such triangle in a

packing. The arguments above also imply there ex-
ists at most one embedding of each of the other
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shaped triangles in a packing of [J(1, v). Since there
cannot be two triangles of the same shape, it can be
assumed that [M,]= [(71 0)], [(1 fl)], or [(71 fl)].

01 0 0
Consider the first option: let S = (' {)A(r). No-
tice that 7" and S have the same translation set 7 as
described above. An application of Proposition 4.3
will show that (I'+a) N (S+05) # @ for o, € .
Let T;, = T+t; and S; = S+t;. To show that
T;NS; # @ for all i,j € {1,...,4}, it suffices to
show that the edges of the closures of T; and §; in-
tersect transversally at a nonvertex point x;;. Direct
calculations show such intersections occur at x;; =
(%7‘, %7‘), Tig = (%,7‘7%), T3 =2r—a,a—r) x4y =
2r—a,a—r), 91 = (1—r,1—7), T2 = (1—%7“, %r),
Toz = (r+l—a,a—r), oy = (1—r,a—r). Notice,
for instance, that the intersection i, is guaranteed
as long as r > % whereas the existence of z3 re-
quires 7 > £(14«). By reflections and translations,
the existence of T4, T14, 22, and xo; implies the
existence of T3, T30, T33, and x34. Similarly, the ex-
istence of x,3, T13, 12, and x5, implies the existence
of 41, T4, T43 and w44. Thus, there do not exist
disjoint translates of 7" and S in O(1, «). A similar
argument shows that it is not possible to disjointly
embed translates of T and R = (, °,)A(r). Thus if
1 <a<2andr > 3(1+a), there exist at most two

triangles in a packing of O(1, av). O

There are many interesting questions beyond calcu-
lating the simplex width capacities of a fixed sym-
plectic manifold. For example, it would be inter-
esting to understand the possible effect of remov-
ing subsets of volume 0 on the simplex widths. In
the following, some results and conjectures are given
about the possible beginnings of the “simplex capac-
ity spectrum” for T? x U where U is an open subset
of OJ(1).

Conjecture 4.5. Consider an open, contractible set
U c O(1). Let sy = rim, 8y = rom, 83 = r3m be the
first three simplex widths of T2 x U. Then ri,r4,75
must satisfy 0 < r; <1, %7‘1 <ry, <7y, and

%ﬁ <rg < min{rg, max{Z—(h-H"z), %(7’14‘7"2)}}-

Conversely, if r1, e, r3 are chosen arbitrarily so that
they satisfy these inequalities, there exists a U and
a volume-preserving diffeomorphism between T? x U
and T? x T(1) so that s; = rim, Sy = TyT, 83 = I'sT
are the first three simplex widths of T? x U.

Portions of this conjecture can be proved. First con-
sider an open U C [J(1). All the inequalities except
ry < max{Q—(rl +79), %(rl —‘1-7'2)} are easy to prove.

Now suppose 7, 2,73 are chosen so that they sat-
isfy the stated inequalities. The idea will be to con-
struct U by removing line segments from (1) in
such a way that U is still open and contractible. In
all cases, conjectured optimal packings can be con-
structed using only right, isosceles triangles.

The construction of U depends on the quantity
max{2—(ry+73), 3 (r1+72)}. First suppose that this
quantity equals 2—(r;+7r3). In this case, ry,r, are
small enough that it is possible to construct pack-
ings so that that there exist disjoint triangles from
the optimal 1, 2, and 3 simplex packings. The upper
bound for r; comes from the fact that in order for
these triangles to be disjoint, the sum of the “diag-
onals” of the three disjoint right isosceles triangles,
namely %7"1 \/5—1-%7"2\/5—1—%7"3\/5 must be less than or
equal to v/2, the length of the diagonal of [J(1). See
the figures in Figure 4.6(a). Construct U C (1)
as follows. Delete paths from the boundaries of
the three triangles (; 3)A(r1), (7 °)A(ra)+(7),

0 T1

(Bl 31 ) A(r3)+ ( }) such that each path has one end-
point on the boundary of [1(1) and traces out much
of the boundary without disconnecting [1(1). In the
complement of the above three triangles, delete a
sufficient number of line segments to guarantee that
no larger triangles can be embedded. The first three
simplex widths of T? xU appear to be 7, rom, and
T3

1 Next suppose that max{2— (r;+7;), %(rl—l-rz)} =
3(ri+rz). Now ry, ry are so large that it is more
efficient to pack 3 simplices inside the images of the
optimal 1 and 2-packings. See Figure 4.6(b,c). The
upper bound for r3 by %(rl +7ry) is related to the
bound

S3(T2 X D(Tl, 7"2)) < l('f'l +7°2)

— 3

from Theorem 4.2. Construct U C [J(1) by deleting
lines in the complement of the closures of the images
of the triangles (; {)A(r1) and (7' f’l)A(rz)—k(:i).
See the horizontal lines in Figure 4.6(b,c), and the
second figure in (d). In addition, delete paths from
the boundaries of the triangles under the following
condition. If r3 = %7’1, delete a path along the line
Y1 +y2 = r; with one endpoint on the boundary of

0(1) as in 4.6(b). If ry > Iry, delete two paths along
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FIGURE 4.6. (a) Construction of U in the case max{2— (r1+72), 3(r1+r2)} = 2—(r1+r2). The arrows denote
the “diagonals” of the triangles from believed optimal simplex 1, 2,and 3-packings. (b) Construction of U in
the case max{2—(ri+72), 3(r1+72)} = §(r1+7r2), r3 = 2 together with its believed optimal simplex 3-packing.
(c) Construction of U in the case max{2— (ri+ry), $(ri+r2)} = $(ri+72), r3 > 2 together with its believed
optimal simplex 3-packing. (d) Different options of the construction of U when 2—(ry+7r2) = 1(r1+72).

the line y; +y, = r; from the boundary of (1) to
the boundary of (' ° ) A(r;)+ (:z) as in 4.6(c).
Notice that 2—(r1+7;) = 1(r1+72) if and only if
ri+ry = % In this case, U can be constructed by
either of the two ways above; see Figure 4.6(d).

5. SIMPLEX PACKING COMPUTER ALGORITHMS

This section describes the algorithms used to com-
pute the simplex packing widths in Theorems 1.2,
1.8, 1.13, and 1.16. The main idea is to compute the
optimal packing of k images of a simplex into an n-
dimensional polytope by maximizing a linear form
over an (nk+1)-dimensional “configuration space”.
This complicated space can easily be decomposed
into a large union of (convex) polytopes. For pack-
ing k < 12 simplices in A%, or k < 11 simplices in
(0%, or k < 8 simplices in [13, it is feasible to con-
struct and examine all the polytopes.

Despite some shortcuts, our method essentially
uses brute force, and the combinatorial explosion
in this problem is severe. In dimension 2, the exact
results for k¥ < 8 were obtained using a simple Math-
ematica program running on a workstation. By con-
trast, to reach £ = 12 in dimension 2 and k£ = 8 in

dimension 3 required specialized programs running
on a massively parallel supercomputer. These pro-
grams allowed us to perform about 107 times more
computation with perhaps 10* times more storage
for intermediate results. Nonetheless, k = 13 still
seems out of reach for the moment, and reaching
the “next level” (k > 16 triangles in a triangle or
k > 18 triangles in a square) is out of the ques-
tion without some new approach. As described in
the last subsection of the paper, however, it is still
possible to give estimates for larger k by packing
“convex lattice polygons”.

Configuration Spaces

For 1 <i <k, let /A; be an image of the standard
open n-simplex A™ under an element of GL(n,Z),
and let S C R™ be the interior of a convex poly-
tope. The configuration space X(Ay,...,;) of
valid packings is the set of points (ty,...,tx,7) €
(R™)* x R* satisfying

(5.1) rN\;+t; CS forl1<i<k
and
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(Compare Definition 3.5.)

Let D denote the multiset {A;,...,A;}. Our
goal is to find the largest value of r, call it (D),
such that X (Ay,...,Ax)N (Rnk X {r}) is nonempty,
and then maximize r(D) over all multisets D. Since
there always exists a packing for some sufficiently
small value of r, say r = ¢, it is possible to ignore
all shapes A such that no translate of e/ lies in S.
This leaves finitely many possibilities for each A;
and hence finitely many multisets D to consider.

The set X (Ay,...,A\;) has a complicated but fi-
nite description in terms of linear inequalities. If S'is
expressed as an intersection of half-spaces {y € R" |
a-y < b}, where a € R" and b € R, then the condi-
tion rA; +t; C S is captured by the corresponding
inequalities

a-t;+cr <b, wherec= supa-y.

yeD;
Consequently, the set of configurations satisfying
(5.1) is a polytope P C R™ x R*.

Condition (5.2) removes a collection of convex sets
from P. To see this, first notice that r/A; + ¢; in-
tersects rA; + t; if and only if ¢; — ¢; lies in the
Minkowski sum

rQ;+ (=) ={yi —y; | yi € TAiy y; €AY,
which we write as r(A; — A;). Define the forbidden
set
Fj={(y,r) eR"xR" |y er(D;i -4}

Geometrically, F}; is a cone over the open set /\;—A\;
(without its vertex). By the remarks above, the
configuration space is obtained from P by omitting
all points (¢1,...,t,r) such that ¢, —¢; € F;;, where
1<i<j<k Letm;:R"™xR" - R"xR" be
the linear map (t1,...,t,7) — (t; —t;, 7). Then

) = P\ |7 (Fy).

1<j

X(A, ...

This leads to a decomposition of X (Ay,...,A)
into finitely many polytopes. Write (R” x R™) \ F};
as a union of f;; convex polyhedra A}, U---U Af;jf,
where f;; is the number of facets of A; — A;. Figure
5.3, right, illustrates the construction for dimension

n = 2. Then

X(ADy,y... ) = U(p n ﬂﬂi}l (A;Tj(i,j)>),

1<j

FIGURE 5.3. Left: The Minkowski sum A;4+(—4;) is
the interior of this hexagon when A; and A; are the
images of the standard simplex A2 under M = I.
Right: The cross section at r = % of the comple-
ment of the forbidden set (when A; = A; = A?)
subdivided into 6 closed polyhedra with disjoint in-
teriors. Each polyhedron Aéj is the intersection of
two half-spaces.

where the union is over all functions o : {(i,7) | 1 <
i <j <k} —{L...,fi;}. For each such o, the
intersection P N ﬂKj Wigl(A?j(i’j)) is a polytope X,
defined by finitely many linear inequalities. Hence,
by solving linear programs, it is possible to maxi-
mize r over each of the [, < fi; polytopes X,, and
the largest of these maxima is (D).

Remark 5.4. If S is the simplex A™(1) or the cube
O"(1) then the calculation of r(D) can be carried
out exactly. In these cases the closures of S and
A; — A; are polytopes with integer vertices, and
hence each of the inequalities that define the poly-
hedra P and A!; can be written with integer coeffi-
cients. Therefore the linear programs can be solved
using exact rational arithmetic. It follows, as men-
tioned in Section 1, that the maximum value of r is
rational, and hence that the simplex packing widths
are rational multiples of .

Practical Algorithms

The algorithm just described is not practical as it
stands, because the number [], < fi; of polytopes
X, can be astronomical —on the order of 6*(*—1)/2
in dimension n = 2—and the number of multisets
D is exponential in k. To make the algorithm prac-
tical even for modest values of k, we employ several
ideas to reduce the amount of calculation needed.
Nonetheless, the time and space requirements of the
algorithm remain exponential in k?, whether one
uses the simplex algorithm for solving linear pro-
grams, as we do, or a theoretically faster method.
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The goal of the improvements is merely to bring a
few more cases within reach.

We accelerate the calculation of 7(D) by organiz-
ing the functions ¢ in a “branch-and-bound” algo-
rithm. First we find a packing that is likely to be
optimal, either by hand or by the “lattice polygon”
method described in the last subsection of this pa-
per. Let 7y be the value of r for this packing. Then
we search for functions o such that the maximum
value 7(o) attained by r on X, exceeds ry. Starting
with all values o(i, j) undefined, we choose some or-
dering on the pairs (i,j) with 1 < i < j < k, and
successively fill in the entries o(7,j) in all possible
ways. This amounts to searching a tree of height (’2“)
whose nodes on level [ are the functions p from the
first [ pairs (4,j) to integers p(i,j) € [1, fi;], with
edges between nodes denoting function extensions.

The key observation is that a function p yields an
upper bound on (o) for all functions ¢ that extend
p. Let X, be the polytope

Pt (457),

where the intersection is taken over the pairs (i, 7)
such that p(i,7) is defined, and let r(p) be the max-
imum value attained by r on X,. If o extends p,
then X, C X, and hence r(c) < r(p). We can com-
pute r(p) by solving a linear program. If r(p) < ry,
then we can safely discard p and ignore all func-
tions o that extend it. Thus we can search the tree
depth-first, computing r(p) at each node and back-
tracking whenever r(p) < ro. If we ever reach a leaf
o with r(o) > ry, we can revise our value for ry and
make the remainder of the search more efficient. In
practice, however, we search the tree breadth-first;
although it requires more memory, it allows us to
perform many computations in parallel. If ry is in-
deed optimal and the entries p(i,j) are considered
in an intelligent order, the search can usually prove
that r(D) < r, while exploring only a tiny fraction
of the tree.

Similarly, there is no need to prove that r(D) < r,
for every multiset of shapes D. It suffices to find a
blocking set of multisets &, ..., Ex such that ev-
ery multiset D contains some &; and r(&;) < ry for
each i. We use several different techniques to find
efficient blocking sets, some automated and some
requiring human intervention. Typically, we divide

the set of available shapes A into a large set A of
“awkward” shapes that cannot be packed efficiently
and a small set B of “basic” shapes that are more
common in efficient packings. For instance, when
packing the triangle A?, the set B might consist
only of the shape A? itself. We then inductively
enumerate all multisets D of shapes from A such
that r(D) > ro, starting with the empty multiset
and successively adding elements of A in all pos-
sible ways. Call a multiset D live if (D) > rg
and dead otherwise. By not considering any mul-
tisets of cardinality ¢ until we have found all live
multisets € of cardinality ¢ — 1, we avoid comput-
ing r(D) for any multiset D that contains a dead
multiset €. We save for each live multiset & the
functions o such that r(o) > r¢, to avoid repeating
work when considering D = € U {A;}. At the end
of this process, we can add all minimal dead multi-
sets & over A to the blocking set we are construct-
ing. The remaining task, which is more difficult, is
to prove that none of the live multisets D of awk-
ward shapes can be extended to a live multiset C
of cardinality k& by adding basic shapes. We usually
treat each multiset D as a separate subproblem, but
sometimes a partial result for one subproblem offers
an efficient route to a partial result for another, and
this is one place where human insight has been use-
ful.

We have three further ways to save work. First,
when S has symmetries in GL(n,Z), this group of
symmetries permutes the multisets of shapes, and
we need to compute (D) for at most one multiset
D in each orbit. Second, if D = {Aq,..., Ay} con-
tains a shape with multiplicity > 2, say A; = A,
then interchanging the positions of AA; and A; gives
an equivalent packing. Geometrically, a product of
symmetric groups acts on the configuration space
X(Aq,...,A), and it suffices to consider polytopes
X, that cover a fundamental domain for this action.
Third, and most important, the optimum value (D)
is always achieved by r(o) for some polytope X,
of full rank. For if we shrink an optimal packing
slightly, setting » = (D) — ¢ and preserving the
centroid of each simplex in the packing, then all the
simplices can move freely and independently; we see
nk + 1 degrees of freedom. Therefore we can dis-
card any intermediate polytope X, that is not of
full rank.
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Estimates from Convex Lattice Polygons

We can use the computer to make informed conjec-
tures about two-dimensional packings for larger val-
ues of k. In the two-dimensional packings that are
known to be optimal, many of the triangles abut
edge-to-edge to form blocks, which are scaled trans-
lates of convex lattice polygons; see Figures 1.4(c)
and 1.14. In fact, each packing that is known to be
optimal consists of at most three blocks. This ob-
servation suggests that we look for the best packings
of the region S by a small number of blocks. A sim-
ple inductive argument using Pick’s theorem shows
that every lattice polygon can be triangulated by
translates of GL(2, Z)-images of A% so each packing
by blocks gives rise to a simplex packing. (See, for
example, [Coxeter 1961], for background on Pick’s
theorem.) The estimates in Theorems 1.8 and 1.16
were obtained by this lattice polygon approach. Un-
fortunately, for the case of 16 triangles in a square
we found a packing of 7 blocks that improves upon
the best packing of 6 or fewer, which dampens any
hope for a strong bound on the number of blocks
in an optimal packing. Figure 5.5 illustrates the
best block packings found by our programs, exclud-
ing trivial cases. We conjecture that these packings
yield optimal simplex packings.
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10 <n <14 or 17 < n < 23. Middle: Lattice polygon packings that yield packings of the square by n triangles,
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19 <n < 27.
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