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Abstract. This paper examines nonlinear, hereditary control systems, with dynamics 
described by an integrodifferential equation. It is proved that the set of trajectories is com
pact in an appropriate space of continuous functions and under some additional hypotheses 
on the velocity field, that it is also connected. Analogous properties are obtained for the 
attainable sets, and it is also shown that the attainability multifunctions is Hausdorff con
tinuous in the time variable. Then a relaxation and a "bang-bang" type theorem is proved. 
Finally some optimal control problems are solved. 

1. Introduction. The purpose of this paper is to examine hereditary control systems 
(i.e., control systems with memory), governed by an integrodifferential equation. So the 
state velocity does not only depend on the past history of the state, but also on the past 
values of the control function. Our work extends earlier works of Angell [1], Cesari [5], 
Hermes-LaSalle [8] and Oguztoreli [13]. 

The hereditary control system under consideration is the following: 

{ 
x(t)=g(t,xt)+ fotK(t,s)f(s,x(s),u(s))ds, a.e .. on T=[O,b] (*) 

x(v) = ¢(v) for vETo= [-r, OJ, u(t) E U(t, x(t)) a.e. 

Here, X: n = [-r, b] -+X is the state function and Xt(.) = xl[t-r,t](. ), i.e., represents the 
past history of the state up to time t. 

In the next section we will recall some basic defintions from the theory of multifunctions 
that we will need in the sequel and we will state the main hypotheses concerning the data 
of our system (*). In section 3, we study in detail the structure of the set of trajectories 
of (*) and of the corresponding attainable set. In section 4, we prove a relaxation result 
which, roughly speaking, says that convexification of the velocity field does not alter the 
reachability properties of the system. Also, we prove a "bang-bang" type theorem. Finally, 
in section 5, we solve various optimization problems involving system (*). 
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2. Preliminaries. Let (n, :E) be a measurable space and X Polish space (i.e., a complete, 
separable, metrizable space). We will be using the following notations (convexity makes 
sense when X is linear): 

Pf(c)(X) ={A~ X: nonempty, closed, (convex)} 

and 
Pk(c)(X) ={A~ X: nonempty, compact (convex)}. 

A multifunction F : n --+ PJ(X) is measurable if it satisfies one of the following equivalent 
conditions: 

(i) p- (U) ={wEn: F(w) n U #0} E :E for each open subset U of X 

(ii) w--+ d(x, F(w)) = inf {llx- zll : z E F(w)} is measurable, for each x EX 

(iii) there exists a sequence Un}n>I of measurable functions fn : n --+ X such that, for 
all wEn, F(w) = cl Un(w)}n;l (Castaing's representation). 

If there is a l7-finite measure J.L( ·) with respect to which :E is complete, then (i), (ii) and 
(iii) above are equivalent to: 

(iv) Gr F = {(w, x) En X X: X E F(w)} E :EX B(X), B(X) being the Borel ()-field of X 
(graph measurability). 

Let X be a finite dimensional Banach space. By S}, we will denote the set of integrable 
selectors ofF(·), i.e., S} = {! E L 1(X) : f(w) E F(w) J.L- a.e}. Clearly, this set may be 
empty. Using Aumann's selection theorem, it is not difficult to see that S} =I 0 if and only 
if inf{ilzll : z E F(w)} E L~. We say that a multifunction F : n --+ PJ(X) is integrably 
bounded if and only if it is measurable and sup{llzll : z E F(w)} = IF(w)l E L~. It is clear 
that in this case S} =I 0. Using this set S}, we can define a set valued integral for F( ·) by 
setting 

Next, let Y, Z be Hausdorff topological spaces. A multifunction G: Y--+ 2z\{0} is said to 
upper semi-continuous (u.s.c.), if for all V ~ Z open, the set c+(v) = {y E Y : G(y) ~ 
V} is open in Y. Also, on Pj(X), we can define a metric h(·, ·), by setting h(A, B) = 
max{sup(d(a,B),a E A), sup(d(b,A),b E B)}. We know that for any complete metric 
space X, (PJ(X), h) is also complete. This metric is known as the Hausdorff metric and a 
multifunction F : Y --+ PJ(X) is said to be Hausdorff continuous (h-continuous), if it is 
continuous from the topological space Y into the metric space (Pj(X), h). 

Finally, if X is any Banach space and {An}n;:::1 ~ 2x\{0} we define 

where w denotes the weak topology on X. When X is finite dimensional, weak and norm 
topologies coincide and in this case we have 

lim An = {x EX: limd(x, An)= 0}. 

Now, let us state the assumptions concerning the data of our system (*). Recall that 
T = [O,b], n = [-r,b] and To= [-r,O]. 

H: X, Z are finite dimensional Banach spaces. These are the state and the control space, 
respectively. 
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H(g): g: T x C(To, X) -t X is a function such that 

(1) for every z E C(T0 , X), t -t g(t, z) is measurable; 

(2) llg(t, z)ll ~ a1(t) + bl(t)llzlloo almost everywhere with a1(·), b1(·) E L~; 

(3) llg(t, zl)- g(t, z2)ll ~ 1/!l(t)l1z1- z2lloo tL-almost everywhere, with 1/J1(·) E L~. 
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H(K): K : ~ = {(t, s) : 0 ~ s ~ t ~ b} -t L(X) = {space of continuous linear operators 
from X into itself}, (t, s) -t K(t, s) is measurable and IIK(t, s)ll ~ M. 
H(U): U: T x X -t Pkc(Z) is a multifunction such that 

(1) (t,x) -t U(t,x) is measurable; 

(2) x -t U(t, x) is u.s.c.; 

(3) IU(t,x)l ~ a(t) + b(t)llxll almost everywhere, where a(·), b(·) E L~. 

H(f): f: T x X x Z -t X is a function such that 

(1) t -t f(t, x, u) is measurable; 

(2) (x, u) -t f(t, x, u) is continuous; 

(3) II/( t, x, u)ll ~ a2(t) +b2(t) llxll almost everywhere, where a2( · ), b2( ·) E L~, u E u(t, x ); 

(4) 11J(t,x1,u)- j(t,x2,u)ll ~ 1/JI(t)iixi- x2ll almost everywhere, where 1/J1(·) E L~, 
u E B ~ Z bounded. 

A function u : T -t Y is an admissible control if there exists a solution (trajectory) x( u) (-) 
of(*) corresponding to u(·) such that u(t) E U(t,x(t)) almost everywhere on T. A trajec
tory corresponding to an admissible control is said to be an admissible trajectory. A pair 
(x(·),u(·)), where u(·) is an admissible control and x(·) is the corresponding admissible tra
jectory, is said to be an admissible pair. We will denote the set of admissible pairs by A(¢). 
We will make the following controllability type hypothesis concerning A(¢). 

He: A(¢)# 0. 
Furthermore, it is clear from the previous hypotheses that for every admissible control 

u( ·), the corresponding admissible trajectory is unique. 

3. Set of trajectories, attainable set. We will start with a result concerning the 
topological properties of the set A(¢). This result will allow us to solve the optimal control 
problems considered in section 5. 

In the proof we will need the following lemma, which here we state and prove for a general 
Banach space X. Recall that if A ~ X is nonempty, then the support function of A is the 
function a(·, A): X* -t R = RU{+oo}, defined by a(x*,A) = sup{(x*,x): x E A}. Here, 
X* denotes the topological dual of X and(-,·) the duality brackets for the pair (X, X*). 

Lemma 3.1. If X is Banach space, K E L(X), {An}n>l ~ 2x\{0} and An ~ G where 
G E Pwkc(X) = { nonempty, weakly compact, convex subsets of X} then, w -lim K(An) ~ 
conv K(w -lim An)· 

Proof: For every x* E X*, we have that lim a(x*, K(An)) = lima(K*x*, An)· Using Propo
sition 3.1 of [15], we get that 

lima(K*x*,An) ~ a(K*x*,w -limAn) = a(x*,K(w -limAn)). 

Using Proposition 4.1 of [15], we finally have that 

w - lim K (An) ~ conv K ( w - lim An). 
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I 

Now we can state the result on the topological properties of the set of admissible trajec
tories, denoted by P(¢)~ 

Theorem 3.1. If hypotheses H, H(g), H(K), H(U), H(f) and He hold, then P(¢) is 
compact in C(Tb , X). 

Proof: Set F(s,y) = f(s, y, U(s, y)). Since U(·, ·)is Pkc(z)-valued and f(s, y, ·)is continu
ous, we have that f(s,y,U(s,y)) E Pk(x). 

From H(U), we have that (s,y) -+ U(s,y) is measurable. So, using Castaing's rep
resentation result (see section 2), we can find Vn : T x X -+ Z measurable such that 
U(s,y) = cl{vn(s,y)}n~l· Exploiting the continuity of f(s,y, ·), we get 

f(s, y, { Vn(s, y)}n~l ~ {f(s, y, Vn(s, y))}n~l ==> F(s, y) = {f(s, y, Vn(s, y)) }n~l. 

Because of hypothesis H(f), we have that (s,y)-+ f(s,y,vn(y,s)) is measurable. Hence, 
(s,y)-+ F(s,y) is measurable. 

Next we will show that for fixed t E T, y -+ F(t, y) is u.s.c. on X. We need to show 
that for every V ~ X nonempty, open, {y E X : F(t, y) ~ V} = F+(t, V) is open. So, 
let y E F+(t, V). Then, by definition, F(t, y) ~ V and so for all u E U(t, y), we have 
f(t, y, u) E V. But recall that by hypothesis H(f) (2), f(t, ·, ·) is continuous. So we can find 
neighborhoods N(u), (y) of y and N(u) of u such that for ally' E N(u)(y) and all u' E N(u) 
we have f(t, y', u') E V. Since U(·, ·)is compact valued, we can find u11 • • · , UN such that 

N 

U(t, y) ~ U N(u,) = W open in Z . 
i=l 

Set N(y) = n~1 N(u,)(y). This is a neighborhood of y. Since U(t, ·) is u.s.c., there exists 
N'(y) a neighborhood of y, such that U(t, y') E W for all y' E N'(y) . Setting N(y) = 
N(y) n N'(y), we have that for every y' E N(y) and for every u' E U(t, y') 

f(t,y',u') E V ==> F+(t, V) is open ==> F(t, ·) is u.s.c. 

Now consider the following integrodifferential inclusion: 

x(t) E g(t,xt) +lot K(t,s)F(s,x(s))ds a.e. on T 

x(v) = ¢(v), vETo 

By a solution of ( * )', we understand an absolutely continuous function X : n -+ X, for 
which there exists h( ·) E L 1 (X) such that h(s) E F(s, x(s)) almost everywhere and 

x(t)=g(t,xt)+ lotK(t,s)h(s)ds, a.e.onT, x(v)=¢(v), vETo. 

We claim that systems ( *) and ( * )' are equivalent. Clearly, every solution of ( *) also solves 
( * )'. On the other hand, let x( ·) be a solution of ( * )'. Then, by definition, we have: 

x(t) = g(t,xt) +lot K(t,s)h(s)ds a.e. on T 

x(v) = ¢(v) , vETo and hE Sh,x(·)). 
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Let 
S(t) = {z E U(t, x(t)): h(t) = f(t, x(t), z)}. 

Define p(t,z) = h(t)- f(t,x(t),z). Clearly, p(·,·) is measurable in t and continuous in z, 
hence is jointly measurable. Thus 

GrS = {(t,z) E T x Z: p(t,z) = 0} n GrU(·,x(·)). 

Since by hypothesis, (t, y)---+ U(t, y) is measurable, we have that t---+ U(t, x(t)) is measurable 
and so Gr U(·, x(·)) E E(T) x B(X) x B(Z), where E(T) =Lebesgue completion of the Borel 
a-field B(T). Apply Aumann's selection theorem (see Saint-Beuve [17]), to get u : T ---+ Z 
measurable such that u(t) E S(t) for all t E T ===} h(t) = f(t,x(t),u(t)), u(t) E U(t,x(t)), 
t E T ===} x( ·) solves ( *). Hence, we have shown that systems ( *) and ( * )' are indeed 
equivalent. 

Let x(·) E P(¢). FortE T we have: 

llx(r)ll ~ 11¢(0)11 + 1T llg(t, Xt)ll dt + 1T lot IIK(t, s)f(s, x(s), u(s))ll ds dt 

~ 11¢(0)11 + 1T (a1(t) + bl(t)llxtlloo) dt + 1T lot M(a2(s) + b2(s)llx(s)ll) ds. 

Let k(t) =II Xt lloo . Then we can write: 

k(r) ~ (II ¢(0) II+ II a ll1 +M II a2 lh) + 1T b1(t)k(t) dt + 1T lot Mb2(s)k(s) ds. 

Define b(t) = max(b1(t),M, 1). Clearly, b(·) E L1. Also, let 'f7o = 11¢(0)11 + lla1ll1 + Mlla2lh
Then we have: 

k(r) ~ 'TJo + 1T b(t)k(t) dt + 1T b(t) lot b2(s)k(s) ds dt. 

Apply Theorem 1 of Pachpatte [14], to get that 

k(r) ~ 'f7o(1 + 1T b(t)exp(llblll + llb2ll1)dt) 

===}k(r) ~ "7o(1 + llblh exp(llbll1 + llb2lll)) = L ===} llxlloo ~ L for all x(·) E P. 

Now, let T, T 1 En, T 1 > T. We consider the following cases: 
T < r' ~ 0: We have II x(r')- x(r) 11=11 ¢(r')- ¢(r) II. 
T :5 0 < r' : In this case, we can write 

II x(r') -x(r) II 
I I t 

=II ¢(0)+ loT g(t,xt)dt+ 1T fa K(t,s)f(s,x(s),u(s))dsdt-¢(r) II 
I I t 

~II ¢(0) -¢(r) II+ 1T II g(t,xt) II dt+ 1T foil K(t,s) 1111 f(s,x(s),u(s)) II ds 

I I t 

~II ¢(0)- ¢(r) II+ loT (al(t) + bl(t) II Xt lloo) dt + 1T Ia M(a2(s) + b2(s) rr x(s) II) ds dt 
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0 $ T < T 1 : In this final case, we have: 

II x(T')- x(T II S 1~' II g(t, Xt) II dt + lr' lot II K(t, s) II · II f(s, x(s), u(s)) II ds dt 

$ lr' (at(t) + b1(t)L) dt + 1r' lot M(a2(s) + b2(s)L) ds dt. 

From all these estimates, we deduce that P(</>) is equicontinuous. Invoking the Arzela
Ascoli theorem, we get that P(</>) is relatively compact in C(Tb, X). We will show that P(</>) 
is, in fact, compact in C(n, X). So we only need to show that it is closed. Hence, let 
{xn(·)}n~l ~ P(</>) be such that Xn ~ x in C(Tb,X). For all n 2' 1, we have 

Xn(t) E g(t, (xn)t) +lot K(t, s)F(s, Xn(s)) ds. 

We saw earlier in the proof that F(t, ·) is u.s.c. Therefore we have that 

H(t) = ( U F(t, xn(t)) U F(t, x(t)) E Pk(X) t E T. 
n~l 

Also, from hypothesis H(U) (3), we have 

IH(t)l $ a(t) + b(t) sup II Xn lloo==> t ~ H(t) is integrably bounded. 
n~l 

Since F(t,xn(t)), F(t,x(t)) ~ H(t), n 2' 1, we can apply Theorem 3.2 of [15] and get that 

lim lot K(t,s)F(s,xn(s))ds ~lot limK(t,s)F(s,xn(s))ds. 

Using Lemma 3.1 and Theorem 3.1 of [10], we get that 

lot limK(t,s)F(s,xn(s))ds ~lot K(t,s)limF(s,xn(s))ds. 

Since F(t, ·) is u.s.c., we have limF(t, Xn(s)) ~ F(t, x(s)). Thus, finally, 

lim lot K(t,s)F(s,xn(s))ds ~lot K(t,s)F(s,x(s))ds. 

Also, since 

Xn(t) E g(t, (xn)t) +lot K(t, s)F(s, Xn(s)) ds, 

we have 

II Xn(t) liS a1(t) + b1(t)L +lot M(a2(s) + b2(s)L) ds a.e. 

So, because of the Dunford-Pettis compactness criterion, by passing to a subsequence, if 
necessary, we may assume that Xn ~ x in £ 1 (T, X). Using Theorem 3.1 of [15], we have: 

x(t) E conv lim{xn(t)}n~l a.e. ==> x(t) E g(t, xt) + conv lot K(t, s)F(s, x(s)) ds. 



INTEGRO-DIFFERENTIAL EQUATIONS 

But from [10] (see also Hiai-Umegaki [9]), we know that 

conv lot K(t,s)F(s,x(s))ds =lot K(t,s)F(s,x(s))ds 

==:;.x(t) E g(t,xt) +lot K(t,s)F(s,x(s))ds ==::;. x(·) E P(¢). 

Therefore, P(¢) is indeed compact in C(n, X). I 

The attainable (reachable) set of system ( *) at time instant t E T is defined by: 

R(t) = {z EX: z = x(t), x(·) E P(¢)}; 

i.e., R(t) = P(¢)(t). 
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An immediate, interesting consequence of Theorem 3.1 is the following result concerning 
the structure of the attainable sets R(t), t E T. 

Theorem 3.2. If the hypotheses of Theorem 3.1 hold, then for every t E T, R(t) E Pk(X). 

Proof: Note that for every t E T, R(t) = et(P(¢)), where et(-) is the evaluation map at 
t E T, defined on C(n, X). From topology (see for example Kuratowski [12]), we know that 
et(·) is continuous. Since by Theorem 3.1, P(¢) is compact in C(n,X), we conclude that 
R(t) = et(P(¢)) E Pk(X). I 

In the next result, we examine the dependence of the attainable set on the time variable. 

Theorem 3.3. If the hypotheses of Theorem 3.1 hold, then t--+ R(t) ish-continuous. 

Proof: Let E > 0 be given and choose fJ > 0 such that if IT' -TI < fJ, then II x(T') -x(T II< E 

for all x( ·) E P( ¢). This is possible due to the equicontinuity of the set P( ¢) (see Theorem 
3.1). Let z E R( T). Then by definition, there exists admissible pair ( x, u) such that 

z = x(T) = ¢(0) +lo-r g(t, Xt) dt + 1-r lot K(t, s)f(s, x(s), u(s)) ds dt 

So we have 

d(z,R(T')) ~II x(T) -x(T1 ) II< E ==::;. sup{d(z,R(T1 )), z E R(T)} ~E. 

Similarly, we get that 
sup{d(z', R(T)), z' E R(T')} ~E. 

So finally, we have: h(R(T), R(T')) < E for IT'- Tl < fJ. Thus, R(·) is indeed h-continuous. 1 
A useful consequence of Theorem 3.3 is the following property of the set of all reachable 

points at all time instants. 

Corollary. If the hypotheses of Theorem 3.1 hold, then R = UtETR(t) is compact in X. 

Proof: From Theorem 3.3, we get that R(T) = R is compact in (Pk(X), h). Recalling that 
in (Pk(X), h), the Vietoris and Hausdorff topologies coincide, we can apply Proposition 2.3.2 
of Klein-Thompson [11], and get that R E Pk(X). I 

With additional hypotheses on the data, we can say more about the structure of the 
trajectory set P(¢). Namely assume that hypotheses H, H(g), H(K), He remain as before, 
while hypotheses H(U) and H(f) take the following form: 

H(U)' : U : T --+ Pkc(X) is u.s.c.; 
H(f)': f: T x X x Z--+ X is a function such that 

(1) (t, y, u) --+ (f(t, y, u) is continuous; 

(2) II f(t,y,u) II~ N for all (t,y,u) E T x XL x V, where XL= {x EX: llxll ~ L} 
(Las in the proof of Theorem 3.1) and V = u(T). 
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Theorem 3.4. If hypotheses H, H(g), H(K), H'(u), H'(f) and He hold and for all (t, y) E 
T x X, f(t, y, U(t)) is convex then P(¢) is a compact, connected subset of C(n, X). 

Proof: As before, let F{t, y) = j(t, y, U(t)). Working as in the proof of Theorem 3.1 and 
using hypotheses H'(U) and H'(f), we get that (t,y)-+ F(t,y) is u.s.c. Invoking Theorem 
4.5 of DeBlasi [7], we get Fn : T x XL -+ Pkc(X) such that F(t, y) ~ · · · ~ Fn(t, y) ~ 

Fn+l(t, y) ~ ... , Fn(t, y) .!:; F(t, y), IFn(t, y)l ~Nand Fn(t, y) = LkEln P'k(t, y)G'k, where 
In is a finite index set {p'k (-, ·) hEin is a locally Lipschitz partition of unity ofT x XL and 
{ Gk hE In ~ Pkc(X). 

Consider the following approximating multivalued problems: 

x(t) E g(t, Xt) +lot K(t, s)Fn(s, x(s)) ds a.e. on T 

x(v) = ¢(v), vETo. 

Let Pn ( ¢) be the solution set of ( * )~. Clearly, P ~ · · · ~ Pn+l ~ . . . . Also, let Sn = 
ITkEln Bbr,:· Clearly this is a convex subset of rrkEln L1(X). Let vn E Sn· Then vn = 
( v;: )kEin, with v;: E Sbr,:. Consider the following single valued integrodifferential equation: 

x(t) = g(t, Xt) + 1t K(t, s) L P'k(s, x(s))v'k(s) ds, x(O) = ¢(0). 
O kEln 

This has a unique solution x( ·, vn ). We claim that v -+ x( ·, v) is continuous from Sn into 
C(T, X). To simplify the already cumbersome notation, assume that lin I = 1. Then, let 
v~ -+ vn in L1(X) as m-+ oo. We have: 

II Xm(r)- x(r) II~ loT II g(t, (xm)t)- g(t,xt) II dt 

+loT lot II K(t, s) 1111 p(s,xm(s))v~(s)- p(s,x(s))v~(s) 
+ p(s,x(s))v~(s)- p(s,x(s))vn(s)) II dsdt 

~loT 'lj;(t) II (xm)t- Xt II= dt +loT lot M ·l(s) II Xm(s)- x(s) II 

+ p(s,x(s)) II v~(s)- vn(s) ll)dsdt. 

Let hm(t) =II (xm)t- Xt II=. We have: 

hm(T) ~II V~- Vn II +loT 'lj;(t)hm(t) dt + M loT lot l(s)hm(s) ds dt. 

Set -J;(t) = max('lj;(t), 1) E L~. Then, 

hm(T) ~II v~- Vn ll1 +loT '¢(t)hm(t) dt + M 1T -J;(t) 1t l(s)hm(s) ds dt. 

Applying Theorem 1 of Pachpatte [14], we get that 

hm(T) ~~~ V~- Vn ll1 (1+ II '¢ ll1 exp(ll '¢ lh + llllh)) -+ 0 
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uniformly in r. Therefore, we have that 

===> q: v ~ x(·,v) is continuous from Sn into C(T,X) ===> q(Sn) = Pn(¢))Jr is connected 
since Sn is convex===> Pn(¢) is connected and, in fact, compact in C(n,X) (the latter 
property can be obtained as in the proof of Theorem 3.1). 

Now we claim that P(¢) = nn~lPn(¢). Clearly, P(¢) ~ nn~lPn(¢). Let X E nn?_lPn(¢). 
Then, for all n 2: 1, we have 

x(t) = g(t, Xt) +lot K(t, s)Fn(s, x(s)) ds, t E T. 

But recall that Fn(s,x(s)) ~ F(s,x(s)). From Proposition 4.4 of [16] we get, that 

K(t,s)Fn(s,x(s)) ~ K(t,s)F(s,x(s)). Invoking Theorem 3.5 of [15], we get that 

lot K(t, s)Fn(s, x(s)) ds ~lot K(t, s)F(s, x(s)) ds 

===>±(t) E g(t,xt) +lot K(t,s)F(s,x(s))ds t E T. 

Clearly, x(v) = ¢(v), v E To. Hence, x E P(¢) ===> P(¢) = nn~IPn(¢). But the intersec
tion of a decreasing sequence of compact, connected sets is connected. Therefore, P( ¢) is 
compact, connected in C(n, X). 1 

Again, this property of connectedness passes to the attainable sets. 

Theorem 3.5. If the hypotheses of Theorem 3.4 hold, then for all r E T, R( r) is connected. 

Proof: Again, note that R(r) = e7 (P(¢)) and recall that the evaluation map e7 {-) is 
continuous, while by Theorem 3.4, P( ¢) is connected. 

Remarks. (1) To get convexity of the values of R(-), we need to impose additional hy
potheses on f (-, ·, ·) which are close to linearity of the system. 

(2) If tn ~ t, then it is easy to check that R(tn) ~ R(t) in the Kuratowski sense (see 
Kuratowski [12]). Since R(t) is connected (Theorem 3.5), from Corollary 3A of Salinetti-

Wets [18], we get that R(tn) ~ R(t). So we recover, from a different path, the h-continuity 
of the attainability multifunction R( · ), proved in Theorem 3.3. 

4. Relaxation and "bang-bang" results. The next result, shows that convexification 
of the velocity field of(*) (see also(*)'), does not change the attainability multifunction. 

Often an optimization problem has no optimal solution, but the mathematical problem 
and the corresponding set of solutions can be modified in such a way that an optimal 
solution exists, and yet neither the system of trajectories nor the value of the optimization 
problem are essentially modified. This new system and its solutions are very important from 
a theoretical point of view and often have a significant physical interpretation. 

Here, we will assume that the control constraint multifunction is state independent (open 
loop). So, we have 

H"(U): U: T ~ PJ(z) is u.s.c. 
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Following Angell [2] and Berkovitz [4], to system ( * ), we associate the following "relaxed 
system:" 

t n+l 

x(t) = g(t, Xt) + r L Ak(s)f(s, x(s), uk(s)) ds a.e. on T 
lo k=l 

x(v) = .P(v), vETo. 

Here, n =dim X, Ak : T-+ R+ are measurable such that 

n+l 

L >.k(t) = 1 a.e. and uk(t) E U(t) a.e. k E {1, ... , n + 1}. 
k=l 

As we will see, this augmented system ( * )c, corresponds to the convexification of the original 
velocity field F(t,x) = f(t,x,U(t)). Let Rc(t) = {y EX: y = x(t), x E Pc(¢)}, where 
Pc( ¢) is the set of admissible trajectories of (*)c. Clearly, P( ¢) ~ Pc( ¢) and therefore, 
R(t) ~ Rc(t) for all t E T. 

Theorem 4.1. If hypotheses H, H(g), H(K), If' (U), H(f) and He hold, then for all rET, 
R(r) = Rc(r). 

Proof: We claim that ( * )c is equivalent to the following integrodifferential inclusion: 

x(t) E g(t, Xt) +lot conv K(t, s)F(s, x(s)) ds a.e. on T 

x(v) = ¢(v), vETo. 

Clearly, a solution of ( *) also SUlvto ( * )~. Next, let x(-) be a trajectory of ( * )~. Then, since 
conv K(t, s)F(s, x(s)) = K(t, s) conv F(s, x(s)), we have: 

x(r) = ¢(0) +for g(t,xt)dt+ for lot K(t,s)h(s)dsdt, T E T 

1 . sn xn+! 
for some h E sconv F(-,x(· )) . Let sn be the n-slmplex and define L : T - 2 X by 

n+l 

L(t) = { (>., 17) E sn X xn+l : h(t) = L Ak'f7k, 17k E F(t, x(t)) }. 
k=l 

From Caratheodory's theorem, we know that for all t E T, L(t) -::/= 0. Set 

n+l 

Fn+ 1 (t, x(t)) = IJ F(t, x(t)). 
k=l 

Clearly, t-+ Fn+l(t, x(t)) is measurable. Define 

n+l 

c1(t, >., 17) = h(t)- L Ak'f7k 
k=l 

and 
cz(t, 17) = d(ry, pn+1(t, x(t))). 
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Note that t ___. c1 ( t, .\, TJ) is measurable and ( .\, TJ) ___. c 1 ( t, .\, TJ) is continuous. Similarly, 
t ___. c2(t, ry) is measurable, while TJ ___. c2(t, TJ) is continuous. Therefore, both are jointly 
measurable. Then observe that 

Apply Aumann's selection theorem to find .\ : T ___. sn and TJ: T ___. xn+l measurable such 
that (.\(t), ry(t)) E L(t) for all t E T. For each k E {1, ... , n + 1 }, we have TJk(t) E F(t, x(t)). 
Define 

L~(t) = { u E U(t) : TJk(t) = f(t, x(t), u)}. 

Set c~(t, u) = TJk(t)- f(t, x(t), u). Then, t ___. c~(t, u) is measurable, while u ---; c~(t, u) is 
continuous. Thus, (t, u) ___. c~(t, u) is measurable and so 

GrL~ = {(t, u) E T x Z: c~(t, u) = 0} E ~(T) x B(Z). 

Once again, through Aumann's selection theorem (see Saint-Beuve [17]), we get uk : T ___. Z 
measurable such that uk(t) E L~(t), for all t E T. Then, TJk(t) = f(t, x(t), uk(t)). So finally, 
we have 

n+l 

h(t) = L .\k(t)f(t, x(t), uk(t)) ===? x(·) E Pc(¢). 
k=l 

Therefore, ( * )c and (*)~are equivalent. Through Theorem 3.1 of (10] (see also Hiai-Umegaki 
(9]), we get 

lot K(t, s) conv F(s, x(s)) ds =lot conv K(t, s)F(s, x(s)) ds =lot K(t, s)F(s, x(s)) ds. 

Recalling that ( *) is equivalent to the multivalued system ( * )', we conclude that R( r) = 
Rc(r), T E T. I 

Another result in this direction is the following "bang-bang" type theorem. It says that 
essentially all reachable points can be attained by using only "bang-bang" controls. These 
are controls moving only through the extremal points of the control constraint set. So let 
Re(r) = {y EX: y = x(u)(r), x(u)(·) E P(¢), with u(t) E extU(t) a.e. }. We will need 
the following modifications of hypotheses H(f) and H(u). 

H(f)": f: T x X x X x Z ....... X is a function such that 

(1) t ___. f(t, x, u) is measurable; 

(2) (x, u) ___. f(t, x, u) is continuous and linear in u; 

(3) II f(t, x, u) II~ a2(t) + b2(t) II x II a.e. with a2(·), b2(·) E L~, u E U(t); 

(4) II j(t,x1,u)- j(t,x2,u) II~ 1/J2(t) II x1- x2 II a.e., for all u E U(t) and with 
1/12( ·) E L~. 

H(u)'": U: T ___. Pkc(X) is integrably bounded. 

Theorem 4.2. If hypotheses H, H(g), H(k), H(U)111 , H(f)" and He hold, then for every 
T E T, R(r) = Re(r). 

Proof: Let z E R(r). Then, by definition, there exists admissible pair (x,u) such that 

z = x(r) = ¢(0) +loT g(t, Xt) dt +loT lot K(t, s)f(s, x(s), u(s)) ds dt. 
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--::----W 

Note that u E Sij and from Corollary II of [10], we know that Sij = S!xt u . Since Sij is w-
compact in L 1(x) and the latter is separable, the relative weak topology on Sij is metrizable. 
Thus, we can work with sequences and find Un E S!xtU such that Un ~ u in L1 (X). Set 

Zn = ¢(0) + lT g(t, (xn)t) dt + lT lt K(t, s)f(s, Xn(s), un(s)) ds dt. 

Observe that {xn(·)}n>l ~ P(¢) and the latter is compact in C(n, X) (Theorem 3.1). So, 
by passing to a subseq;ence if necessary, we may assume that Xn -+ x E P(¢) in C(Tb, X). 
So g(t, (xn)t)-+ g(t, xt) and from the dominated convergence theorem, we have that: 

Furthermore, let 

<I>(x, u)(t) = lt K(t, s)f(s, x(s), u(s)) ds. 

Then, from hypothesis H(f)"(2), we see that u -+ <I>(x, u)(t) is continuous, linear, while 
x-+ <I>(x, u)(t) is Lipschitz, namely for x 1 , x 2 E C(T, X), we have 

II <I>(x1, u)(t)- <I>(x2, u)(t) II:SII1/J2 lid X1- X2 lloo · 
Then, for every t E T, we have 

II <I>(xn, Un)(t)- <I>(x, u)(t) II ::;II <I>(xn, Un)(t)- <I>(x, Un)(t) II + II <I>(x, Un)(t)- <I>(x, u)(t) II 
::;II1/J2 ll1ll X1 - X2 lloo + II <I>(x, Un)(t)- <I>(x, u)(t) II 

Since a continuous linear map is weakly continuous, we have that 

II <I>(x, Un)(t)- <I>(x, u)(t) II-+ 0 as n-+ oo ::::::=}II <I>(xn, un)(t)- <I>(x, u)(t) II-+ 0. 

So from the dominated convergence theorem, we get that 

17 
<I>(xn,un)(t)dt -loT <I>(x,u)(t)dt ::::::::=} Zn-+ z. 

Since Zn E Re(r), we conclude that Re(r) = R(r). 

5. Optimal control problems. In this section, we solve some optimization problems 
involving the control system ( * ). 

We start with a time optimal control problem. So let L: T-+ PJ(x) be a moving target 
set and assume that ¢(0) E L(O). Also assume that 

Ho: C={tET:L(t)nR(t)i-0}-t-0. 

This is a controllability type hypothesis with respect to L( ·). For L( ·), we will make the 
following hypothesis: 

H(L) : L: T-+ PJ(x) is u.s.c. 

Our goal is to find an admissible control so as to hit the moving target in minimum time 
moving along admissible trajectories of system ( *). 

An admissible pair (x, u) solving this problem is known as an optimal pair. In particular 
u( ·) is the time optimal control and i;( ·) is the corresponding time optimal trajectory. 
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Theorem 5.1. If hypotheses H, H(g), H(K), H(U), H(f), He, Ho and H(L) hold, then there 
exists time optimal control. 

Proof: LetT= infC. Let tn E C and let tn! T. By definition, we can find {xnC)}n>l s;;; 
P(¢) such that xn(tn) E L(tn)· But from Theorem 3.1, we know that P is compact in 
C(Tb, X). So we may assume that Xn -+ x E P(¢) in C(n, X). Then xn(tn) -+ x(r) ===> 
x(r) E limL(tn) ~ L(r), since L(·) is u.s.c. Let it(·) be the admissible control generating 
the admissible trajectory x( ·). Clearly, this is the desired time optimal control. 1 

Next we will consider a Lagrange problem involving ( * ). So consider the following integral 
functional: 

J(x, u) =fob h(t, x(t), u(t)) dt. 

We will make the following hypothesis concerning the cost integrand h(-, ·, · ). 

H(h): h : T x X x Z -+ R = RU { +oo} is a function such that 

(I) (t,x,u)-+ h(t,x,u) is measurable; 
(2) (x, u) -+ h(t, x, u) is l.s.c. and convex in u; 
(3) h(t, x, u) ~ .>.(t) - a II x II almost everywhere for all u E U(t), with a ~ 0, 

.>.(·) E £1; 
(4) there exists (x, u) E A(¢) such that J(x, u) < +oo. 

Let m = inf{J(x,u): (x,u) E A(¢)}. Because of hypothesis H(h)(4), m < oo. 

Theorem 5.2. If hypotheses H, H(g), H(K), H(U), H(f)", He and H(h) hold, then there 
exists (i:, it) E A(¢) such that m = J(i:, it). 

Proof: Let {(xn, un)}n>l ~A(¢) be a minimizing sequence of admissible pairs, i.e., 
J(xn,un) ! m. From Theorem 3.1, we have that {xn}n>l is compact in C(n,X). So we 
may assume that Xn-+ i: E P(¢). Also set H(t) = [un~l U(t, Xn(t))] UU(t, x(t)). Exploiting 
the upper semicontinuity of U(t, ·),we get that H(·) is a Pk(X)-valued, integrably bounded 
multifunction. So from the Dunford-Pettis theorem we have that Sl___H is w-compact in 

conv 

L 1(X). Thus, we may assume that Un ~it in L1 (X). Let ~(t) = .>.(t)-asup II Xn lloo. Then, 
h(t, xn(t), un(t)) ~ ~(t) almost everywhere and so we can apply Theorem 2.1 of Balder [3], 
to get that 

J(i:, it) s; lim J(xn, Un) = m. 

If we can show that (i:, u) E A(¢), we are done. But for all n 2': 1, 

As in the proof of Theorem 4.2, in the limit as n-+ oo, we get 

i:(r) = ¢(0) +loT g(t, (i:)t) dt +loT lot K(t, s)f(s, i:(s), u(s)) ds. 

Also, from Theorem 3.1 of [15], we have 

it(t) E conv lim U(t, Xn(t)) s;;; U(t, i:(t)) a.e. 

since U(t, ·) is u.s.c. Therefore, (i:, it) E A(¢)===> m = J(i:, u). I 
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Sometimes it is required to regulate the system so that the period of its stay inside a 
certain region is maximized. Such optimal control problems, with dynamics described by 
( * ), appear often in mathematical economics in connection with growth models, where the 
rate of growth of the capital depends on the past history of the capital (state x(t)) and of 
the investment (control or input u(t)). 

Let L: T---+ PJ(x) be the target multifunction. We want to find an admissible control so 
as to maximize A{t E T: x(t) E L(t))} where x E P(</>) and A is the Lebesgue measure on 
T. For L( ·) we will assume that 

H(L)': L: T---+ Pj(X) is measurable. 

Theorem 5.3. If hypotheses H, H(g), H(K), H(U), H(f), He and H(L)' hold, then there 
exists an optimal control solving the !J,bove problem. 

Proof: Consider the function k : C(T, X) ---+ R+ defined by 

k(x) = A{t E T: x(t) E L(t)}. 

Let Xn---+ x in C(T,X). Set Bn = {t E T: Xn(t) E L(t)} and B = {t E T: x(t) E L(t)}. 
Note that Bn = {t E T: d(xn(t),L(t)) = 0}. Since (t,y)---+ d(y,L(t)) is a Caratheodory 

function (i.e., measurable in t, continuous in y), is jointly measurable. Hence, t---+ d(xn(t), 
L(t)) is measurable ==> Bn E ~(T) = Lebesgue a--field ofT. Similarly for B. Also from 
their definitions is clear that 

limsupBn = n U Bn ~B. 
k2:1n2:k 

Therefore from Chung [6, p. 74], we have that 

limA(Bn):::; A(limsupBn):::; A(B) ==> limk(xn):::; k(x) ==> k(·) u.s.c. 

Also, P(</>) is compact in C(Tb, X) (Theorem 3.1). Now note that our problem is to maximize 
k(·) over P(<J>)ir· From Weierstrass theorem we can find x E P(</>) such that sup{k(x): x E 
P(</>)} = k(x). Let u(·) be the corresponding control. Then, (x,u) is the desired optimal 
pair. 
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