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Abstract. Solutions in Rn+l of the linear, parabolic, nonhomogeneous partial differential 
equation 

and the related homogeneous equation are investigated. By entire solutions is meant solu­
tions of these equations defined in all of Rn+ 1 . Schauder-type a priori estimates are developed 
for entire solutions with prescribed behavior at infinity. These estimates lead to an existence 
theory for entire solutions with certain behavior required at infinity. Uniqueness of these 
solutions follows from the maximum principle. 

1. Introduction. We investigate here solutions in Rn+l of the linear, parabolic, nonho­
mogenous, variable coefficient, partial differential equation 

C<P: =a· TJ2 ¢ + b · TJ<jJ + c</J- 8¢j8t 

n n f)2<jJ n f)<jJ f)<jJ 
=.I: .I: ai,j ax-ax. +.I: bi ax- + c<P- at = J 

i=l j=l • J i=l • 

(NH) 

and the related homogeneous equation, 

C<jJ = 0. (H) 

Following the prevailing terminology in the literature, we refer to solutions of these equations 
defined in all of Rn+l as entire solutions. We shall develop Schauder-type a priori estimates 
for the entire solutions with prescribed behavior at infinity. These estimates, of perhaps 
independent interest themselves, lead to an existence theory for entire solutions with certain 
behavior required at infinity. Uniqueness of these solutions follows from the maximum 
principle. 

The coefficients a, b, c of C are assumed to be Holder-continuous in Rn+l U { oo }: and as 
x ---+ oo, the matrix a approaches the n x n identity matrix I, the vector b approaches the 
1 x n zero vector and the scalar c approaches zero. Thus C approaches the heat operator 
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near infinity. We also assume that C is uniformly parabolic in Rn+l, and c::; 0. With these 
assumptions, we shall establish a one-to-one correspondence between the entire solutions of 
(NH) that are O(lxl 2 + ltl)m/2 and the polynomial solutions to the heat equation of total 
degree no greater than m in x. 

Several authors, for example [1, 2, 6, 8-11, 13-15] have investigated existence and/or 
uniqueness questions for entire solutions of linear elliptic equations. Results analogous to 
the ones presented here have been obtained for elliptic equations by H. Begehr and G.N. 
Hile in [2]. 

The Schauder estimates for entire solutions are obtained from analogous estimates for 
bounded domains as found in the book of Friedman [5]. 

2. Norms and a Schauder estimate for entire solutions. For vectors v, win Rn+l, 
we let v · w denote the dot product of v and w, and lvl the Euclidean norm of v. For n x n 
matrices A= (ai,j), B = (bi,j) in Rnxn, we define 

n n 

A· B = L L ai,Jbi,J, and IAI = (A· A)112. 
i=l j=l 

(The inequality lA · Bl ::; IAIIBI holds.) We let x = (x, t) = (x1, x2, · · · , Xn, t), y = (y, s) = 
(y1,Y2, ... ,yn,s), and z = (z,r) = (z1,z2, ... ,Zn,r) denote variable points in Rn+l. The 
symbol 0 will denote the origin in Rn+l, and n will denote a bounded ( n + 1 )-dimensional 
domain in Rn+l bounded by F x {t =To} and Fr x {t = T} where Fr and Fare domains 
in Rn, T > T0 , and by a manifold (not necessarily connected) S lying in To ::; t ::; T. If 
x = (x, t) andy= (y, s), then we shall define 

d(x, fi) = V(lx- Yl 2 +It- sl) 

where 1·1 is the Euclidean norm. The function d(x, y) is a metric on Rn+l. Holder-continuity 
will be defined with respect to this metric. For¢= cp(x) a real valued function defined inn, 
we let 'D¢ and 'D2¢ represent the 1 x n vector of first derivatives of¢ and then x n matrix 
of second derivatives of ¢, respectively. Thus, 

Let a = ( ai,J )n xn, b = (b1, b2, · · · , bn), c be functions defined in n with values in Rnxn, Rn, 
R, respectively. The matrix a is always assumed to be symmetric. We consider the second 
order linear partial differential operator £, defined by 

£¢ : = a . D 2 ¢ + b . 'D¢ + c¢ - 8¢ I at 
n n 82¢ n 8¢ 8¢ 

= LLai,J8x·8x· + Lbi8x· +c¢- at. 
i=lj=l t J i=l t 

Associated with the operator C are the homogeneous equation 

C¢ = 0 (H) 

and the nonhomogeneous equation, 
Ccp=f, (NH) 
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where the right-hand side f is assumed to be a real valued function inn. We let D";' denote 
any partial derivative of order m with respect to x1, x2, · · · , Xn· We will write Dx for D~ 
and Dt will denote 8j8t. For functions u : n --t R, lui~ will denote sup{iu(x)l : x E 0}. 
We shall denote the Sr the set s n { (x, t) : t ~ T }. For any X = (x, t) in n, let dx = 
inf{ d(x, y) : y E F U St}. For any points x, y in n, let dx,'fi = min{ dx, dy}. For a real 
number a, 0 <a~ 1, integer m, and function u: n --t R, let 

n a iu(x)- u(y)l __ 
Ha(u) = sup{(dx,y) d(x,y)a : x,y En}, 

idmui~ =sup { (dx)miu(x)i : x E 0 }, idui~ = id1 ui~, 

Hn(dm ) _ {(d )m+a iu(x)- u(y)l . _ _ "} 
a u - sup x,'fi d(x, y)a . x, y E H , 

ldmul~ = ldmul~ + H~(dmu), lui~= ld0ul~, ldul~ = ld1 ul~, 
and 

where summations are over all possible derivatives. 
By a classical solution of C</> = J, we shall mean a solution </> with </>, Dx</>, Dt</>, n;¢ 

continuous. Friedman has shown (Theorem 11 on page 74 of [5]) that if ai,i• bi, c and fare 
Holder-continuous with exponent a in n and </>is a solution of C</> = f then ¢, Dx¢, n;¢, 
Dt</> are all locally Holder-continuous with exponent a in n. The following lemma appears 
as Theorem 5 on page 64 of [5]. 

Lemma 1. Consider the equation C</> =finn U Fr, and assume 

A) the entries of the matrix a are locally Holder-continuous with exponent a, 0 < a < 1, 
in n and there is K1 > 0 such that 

B) there is K 2 > 0 such that for all x inn and real (1 x n) vector~. 

n 

L ai,j(x)~i~i ~ K2l~l 2 , 
i,j=l 

C) the function f is locally Holder-continuous with exponent a inn and ld2 !I~ < oo. 

Suppose further that </> is a classical solution of C</> = f and that </> is bounded on n. Then 
there exists K = K ( K 1, K 2) such that 

We will derive an analogue of Lemma 1 for the case n = Rn. For this purpose it is useful 
to define the following norms where again u E R, 0 < a ~ 1, and now u is a function defined 
on all of Rn+l. Let 
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I (1 + ltl + lxi2)(-<T+a)/21u~~x~y~~Y)I : l 
II u ii(<Ta)= sup , 

, x y- E Rn+1 0 < d(x y-) < 1 + it I + lxl2) 1/2 
' ' ' - 2 

II u II<T,a=ll u lilT+ II u II(<T,a)• and 

lllluiiii<T,a =II u II<T,1 + L II Dxu II<T-1,a + L II n;u II<T-2,a + II DtU II<T-2,al 
where the summations are over all partial derivatives. For brevity we shall denote (1 +It!+ 
lxl2)1/2 by [x]. 

Let BIT= {u: u is continuous and II u lilT< oo} and B<T,a = {u :II u II<T,a< oo}. The norms 
II u II<T and II u II(<T,a) may be viewed as analogous to the norms ldmul~ and Hf}(dmu) where 
the distance dx, which vanishes as x approaches 80, has been replaced by the quantity 
(1 + itl + lxl2)-112 , which likewise vanishes as x approaches the boundary point at infinity of 
Rn+1. The condition 0 < d(x, y) :::; (1 + itl + lxl2)112 /2 is a technical convenience, assuring 
that y approaches infinity along with x, and more or less in the same direction. 

We gather some miscellaneous observations regarding the spaces BIT and B<T,a into the 
following lemma: 

Lemma 2. Let (}, T E R, 0 < o:, (3 :::; 1, and let u and v denote functions defined on Rn 
(either both scalar valued, both vector valued or both matrix valued). 

a) If(}:::; T then BIT C Br and II u 11-r:s;ll u II<T· 
b) If(}:::; T and 0 < (3:::; o::::; 1, then B<T,a C Br,{3 and II u llr,f3::;11 u II<T,a· 
c) Ifu E BIT and v E Br, then u · v E B<T+r and II u · v II<T+r::;ll u II<TII v llr· 
d) If u E B<T,a and v E Br,a then u. v E B<T+r,a and II u. v II<T+T,a::;ll u II<T,all v llr,a· 
e) If¢; is a real valued function in C1(Rn+1) with each Dx¢ E B<T_ 1 and Dtc/J in B<T_2, 

then II ¢; II(<T,1) is finite and 

f) Let { um}~= 1 be a sequence of functions in B<T,a, with all the Um 's having values 
in the same space R, Rn, or Rnxn, and suppose that we have a uniform bound 
II Um II<T,a::; M for all m, where M 2:: 0. Then there is a subsequence { Umk} and a 
function u in B<T,a, with II u II<T,a::; M, such that Umk ----> u in the norm of any space 
Br or Br,{3 with T > (}, 0 < (3 < o:. 

g) Let f E B<T,a where o: > 0. Then f is locally Holder-continuous with exponent o:. 

h) The spaces Ba and Ba,a are Banach spaces. 

Proof: a) Since [x] = (1 + It! + lxl2)112 ;::: 1, then 

b) Since ([x]/d(x,y));::: 2, and [x];::: 1, then 

!lull (<T,a) 2:: sup { [x]-r ( d(~]y) )f3!u(x) - u(y)! : x, y E Rn+l, 0 < d(x, y) :::; [x]/2} 

= llu!l(r,{3)· 
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c) 

llu · vllu+r =sup { [xru-r lu · v(x) I : x E Rn+l} 

d) 

Now 

::; sup {[xt,.lu(x)l: X E Rn+l} sup {[Ytrlv(Y)I: f) E Rn+l} = lluiiO"IIvllr· 

llu · vllcu+r,a) = 

sup { [xru-r+a lu(x) . v~lx~y~~y) . v(y) I : x' Y E Rn+l' 0 < d(x' y) ::; [x]/2}. 

[xru-r+a lu(x) · v(x)- u(Y) · v(fJ)I 
d(x,y)a 

::; [xrO"-r+a(lu(x)llv(x)- v(y)l + lv(iJ)IIu(x)- u(iJ)I) 
d(x,y)a d(x,y)a 

::; llull,.llvllcr,a) + llullc,.,a)lv(f})l[xtr 

::; llull,.llvllcr,a) + llullc,.,a)([xtrlv(x)l + [xtrlv(x)- v(iJ)I([x]jd(x,y)) 0 ). 

The last inequality uses the fact that ([x]jd(x, y))a ~ 2° ~ 1. After taking sups, we get 

We add this to inequality c) to get 

e) By the mean value theorem 

tj>(x)- tj>(y) = (8¢>j8x 1 , · • • , 8¢>j8xn, 8¢>j8t)(z) · (x- y), 

where z is some point on the line connecting x and y in Rn+l. Thus 

Multiplying both sides of the above inequality by [x]-u+a jd(x, fJ) 0 , 0 <a ::; 1, yields 

[x]-u+alt/>(x)- ¢>(17)1/d(x, y) 0 ::; [xj-u+a ~)l8¢>j8xi(z)ilxi- Yil/d(x, fJ) 0 ) 

+ [x]-u+aiDtt/>(z)llt- si/d(x, fJ)a 

255 

::; [xj-u+a L(ll8¢>j8xill,.-dzt- 1 /d(x, y)a-l) + [xj-O"+aiiDtt/>II0"-2[2],._2 /d(x, y),._ 2 • 

(1) 
We claim that if d(x, y) ::; [x]/2, then [x]/4 ::; [z] ::; 2[x]. Geometric considerations show 
that for any fixed p > 0 and x E Rn+l, {y : d(x, y) ::; p} is convex; so in particular 
{y: d(x, y) :::; [x]/2} is convex and, therefore, z satisfies d(x, z) ::; [x]/2. Now 

[z]2 = 1 + d(O,z)2 ::; 1 + (d(x,O) + d(x,z)) 2 ::; 1 + ([x] + [x]/2)2 = 1 + 9[x]2/4::; 4[x] 2 , 
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since 1 ::; [x]. This shows 
[z] ::; 2[x]. {2) 

For any real number r ~ 0 we have by elementary algebra the inequality 

therefore, for any x E Rn+l we have that 

1+d(x,O) ~n 
1 ::; [:r] ::; v 2, {3) 

so 
d( __ ) [x] 1 + d(x, O) 

x,z ::;2::; 2 . 

We have 

so by {3) 

so by {2) 

[x] < [x] < [z] < 2[x]. 
4 2v'2- -

{4) 

This establishes the claim. 
Equation {4) allows us in {1) to replace [z] by [x] multiplied by a suitable constant, so we 

have 
[:r]-,.+al¢(x)- ¢(fi)l/d(x, Y)a 

::; M{a) ( ( d(~t)) l-a L ll8¢/8xdl,.-1 + { d{~t) )2-aiiDt¢11,.-2) 

::; M(a) ( L ll8¢/8xill,._1 + IIDt¢11,.-2) · 

Thus for all f) in {fJ: d(x, y) ~ [x]/2} we have 

Taking sups yields 

for all 0 < o: ::; 1. In particular, 
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f) We have llumllo-,a :S M where 

llumllo-,a =sup {[xt,.lum(x)l: i E Rn+l} 

+sup {[xtu+alum(x)- um(iJ)I/d(x, y-)a : i, y E Rn+l, 0 < d(x, y) :S [x]/2 }, 
(5) 

so { Um} is a uniformly bounded equicontinuous (with respect to the Euclidean metric) family 
on any compact subset of Rn+l. By the Arzela-Ascoli theorem, there is a subsequence, which 
we relabel { um}, coverging uniformly with respect to the Euclidean norm on compact subsets 
of Rn+l to some continuous function u. Taking limits in (5), we see that the inequality holds 
for u; i.e., u E B,.,a and llullo-,a :S M. 

To examine convergence in BT,/3 we need to investigate 

and 
Jm(i,fj) := [xtT+/31(um(i)- u(x))- (um(Y)- u(Y))I/d(x,y)13 , 

where 0 < d(x, y) :S [x]/2. Let R be a large positive number. 

Case 1: [x] ;::: R. If [x] ;::: R, then 

Similarly 

Case 2: 1 ::; [x] :SR. Since {x: 1 :S [x] :S R} is a compact set, 

where N(r) = 1, when T ;::: 0 and N(r) = R-T when T < 0. We break Case 2 into two 
subcases: 

Subcase 2i): 1 :S [x] :S R, 0 :S d(x, y) :S b. Using r >a, 0 < (3 < a, and [x] 2: 1, we get 

Subcase 2ii): 1 ::; [x] ::; R, d(x, y) 2: b. 

Jrn(x, y) ~max {1, R-r+/3}8-/3 (\um(x)- u(x))\ + \(urn(Y)- u(y))\). (7) 

Given E > 0 choose R large enough to make 2M Ru-T < E and then choose 8 small enough 
to make 2M{ja-/3 < E. Finally choose, by uniform convergence of Urn on the compact set 
{x : 1 :S [x] :S R}, m large enough to make the expressions (6) and (7) less than E. This 
makes Im(x) and Jm(i) less thanE for all x, f) so llurn- uiiT,/3 -t 0 as m -too. 

g) Let 0 be a bounded region in Rn+l such that for any x and f) in n, we have 0 < 
d(x, y) :S [x]/2. For all x, yin n we have that (lf(x)- f(y)l/d(x, y)a) :S Mllfllcu,a)> where 
M = M(O, a, a) is an upper bound of [x]o--a on 0. Thus f is locally Holder-continuous 
with exponent a. 

h) Let { ue} be a Cauchy sequence in B,.. Then, { u£/[xt} is uniformly Cauchy in the 
II · lloo norm and so there is a continuous function v defined on Rn+l, with the same range 
IRn, Rn+l, or IRnxn as the Uf., such that u£/[x] 17 -t v uniformly; i.e., llue/[x] 17 - vlloo ----t 0, 
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llud[x]u - v[x]u /[x]u lloo ~ 0, llut - v[x]u llu ~ 0. Let w(x) = v(x)[x]u. Then Ut - w in 
the norm of Bu. Since llwllu ::; llut- wllu + llutllu is finite, wE Bu. This shows that Bu is a 
Banach space. N~xt we show that Bu,o is a Banach space. Let { ut} be a Cauchy sequence 
in Bu,o· For all f > 0 th'ere is an integer N such that form, n > N, 

sup {[x]-ulum(x, t)- un(x, t)l : x E Rn+l }+ 

sup {[xru+o l[um(x)- un(~~~~y~:m(il)- un(il)JI : x, il E Rn+l, 0 < d(x, y)::; [~]} 

We already know that there is a continuous function w such that ut(x) ~ w(x) in the 
norm of Bu. If we define 

we have that {Ut} is uniformly Cauchy in { (x, y) E Rn+l : 0 < d(x, y) ::; [x]/2} and there is 
some function W defined on { (x, y) : 0 < d(x, y) ::; [x]/2} such that Ut ~ W uniformly in 
{x, y) : 0 < d(x, y) ::; [x]/2}. We see that 

since Ut(x) ~ w(x) pointwise and Ut(x, y) converges pointwise to 

(w(x)- w(y))/([x]<u-o)d(x, i/) 0 ) = W(x, y). 

To see that w E Bu,o, we observe that llue- wllu,o ~ 0 so 

llwllu,o :S llue- wllu,o + lluellu,o < 00. 

Theorem 3. (Schauder estimate). Let ¢ be a classical solution of the nonhomogeneous 
equation .C¢ = J, with ll¢11u finite for some u E R. Suppose that for some a, 0 < a < 
1, llfllu-2,o is finite and that for some nonnegative constant M1, 

llallo,o, llbll-l,o, llcll-2,o :S M1 · (8) 

Assume also that the matrix a is symmetric and that there is a constant M2 > 0 such that 
for all x = (x, t) in Rn+l and real (1 x n) vector~. 

n n 

LLai,J(x)~i~J ~ M21~1 2 -
i=l j=l 

Then there is a constant M = M(M1 , M2, n, a, u) such that 

llll¢llllu,o :S M(ll¢11u + llfllu-2,o)· 

Proof: Consider the set 

S = {x = (x, t): lxl ::; 5 and ltl ::; 5}. 
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We obtain an estimate for¢ on S. Let 

n = {x = (x,t): lxl < 9 and itl < 21}. 

We check that the hypotheses for Lemma 1 are satisfied in n and begin by showing that 
iai,jl~ :S N(M1,o:). Observe that jai,jl~ = sup{jai,j(x)l: x En} :S llai,illo· Since for all x, 
y in n the values of d:x, dg and dx,fj are no greater than 9, we have 

H 0 (a· ·) <go (sup { lai,j(x)- ai,j(x)- ai,j(Y)I : x y- E n and 0 < d(x y-) < [x]/2} 
a '·J - d(x, y)a ' , -

+sup{lai,j(~~--~~,j(Y)I: x,y En and d(x,y) ~ [xl/2}) 
x,y 

:S N(o:)(llai,jll(o,a) + llai,jllo) :S N(M1,o:). 

We will now show that ldbil~ :S N(M1, o:). We have 

H~(dbi) :S gl+a (sup { lbi~lx~y~~Y)I : x, y E n, 0 < d(x, y) :S [x]/2} 

{ lbi(x)- bi(Y)I _ _ n d(- _) > [-]/2}) 
+sup d(x,y)a :x,yEH, x,y _ x 

:S M(o:)(jlbll(-l,a) + llbll-1) = M(o:)llbll-l,a, 

and by hypothesis 
M(o:)llbll-l,a :S M(o:)M1 = N(M1, o:). 

In a similar fashion, we can show that ld2 cl~ :S N(M1, o:), ld2 fl~ :S M(u, o:)ll/llu-2,a < oo, 
and that 1¢1~ :S M(u)ll¢11u· 

By Lemma 1 and the preceding estimates, there isM= M(M1, M 2 , n, o:, u) such that 

l¢1~+a :S M(l¢1~ + ld2 fl~) :S M(ll¢11u + 11JIIu-2,a)· 

Now if lxl < 5, ltl < 5 and 0 < d(x, y) < [x]/2 then we have 

1 :S d:x, dg, dx,tJ :S 9, and 1 :S [x] :S y'(l + 5 + 25) < 6, 

so we may write (9) as 

[x]-O'I¢(x)l + [xt-0' I¢~~~Yf~y) 

+ L ([xF-u1Dx¢(x)l + [xp+a-u 1Dx¢~~x~y~x¢(fl)l) 

+"" ([x]z-u1Dz¢(x)l + [x]2+a-u ID;¢(x)- n;¢(fl)l) 
L...., x d(x, y)a 

+ [x]z-u1Dt¢(x)l + [xf+a-u 1Dt¢~lx~yf:¢(Y)I 

:S M(II4JIIu + ll/llu-2,a)· 

(9) 

(10) 
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We will presently show the inequality (10) to hold in all of Rn+l and then taking sups in 
(10) we will obtain 

ll¢lla + ll¢ll(a,a) + L (11Dx¢lla-l + 11Dx¢ll(a-l,a)) 

+ L (IID;¢IIa-2 + IID;¢II(a-2,a)) + IIDt¢lla-2 + 11Dt¢ll(a-2,a) (ll) 

:::; M(ll¢lla + 11JIIa-2,a). 

We now derive the inequality (10) for a point x from {(x, t) : lxl 2': 5 or ltl 2': 5}. For this 
point x we shall define p = p(x) = [x]/6. Let 

O(x) = { z = (z, r) E Rn+l : p < max{lzl, M} < lOp}. 

We show that x E O(x). If x ~ O(x) then either lxl :::; p and ltl :::; p2 , or lxl 2': lOp or 
It I 2': 100p2. Suppose that lxl :::; p and It I :::; p2 • Then 

I 2l I I 2 2 2(1 + ltl + lxl2) 
X + t < p < 36 ' 

and hence 17lxl2 + 17ltl < 1. This is impossible since either lxl 2': 5 or ltl 2': 5. Now suppose 
that lxl 2': lOp. Then 

I 12 > 100(1 + ltl + lxl2) 21 12 
X - 36 > X ' 

which is a contradiction. If It I 2': 100p2, then 

I I 1oo(1 + ltl + lxl2) I I 
t 2': 36 > 2 t 0 

Again this is a contradiction and so x E O(x). 
We now check that the hypotheses for Lemma 1 are satisfied in O(x). We first note that 

for z, '[}in O(x) we have, dz, dy, dx,y :::; lOp(x). Also for all z = (x, r) E 0, 

so 1/6 < p:::; [z]:::; 15p. We show that lai,jl~:::; M(M1,a). We have 

[ai,j[~ = sup{[ai,j(z)l: zED}::::; llai,j[[o::::; M1, 

H:J(ai,j):::; (lOp)a( sup{llai,jll(o,a)[z]-a: z E 0} 

+ sup{lai,j(z)- ai,j(iJ)I/([z]/2)a : z, '[} E 0 and d(z, y) 2': [z]/2}) 

:::; N(a)pa (llai,jllo,a)P-a + sup{lai,j(z)- ai,j(Y)I/(pj2)a : z, y E 0 and d(z, y) 2': [z]/2}), 

since for z E 0 we have p:::; [z] :::; 15p. Hence 
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We now show that we have ldbil~ :-s; M. 

H~(dbi) :-s; M(a)llbll-l,a :-s; M(a)M1 = M(M1, a). 

Similarly we can show that ld2cl~ :-s; M. 
We have now shown that part A of the hypotheses of Lemma 1 is satisfied. We proceed 

to show that part C is satisfied. It follows from Lemma 2g that f is Holder-continuous with 
expoent a. We show that ld2 Jl~ :-s; N(a, a)pallflla-2,a < oo. We estimate 

ld2 Jl~ = ld2 Jl~ + H~(d2 f). 

ld2 fl~ :-s; (10p)2 sup{lf(z)l : z E 0} :-s; (10p)2 sup{llflla-2[zt-2 : z E 0} 

< { 
(10p)2(15p)a-211JIIa-2 0" 2: 2 

- (10p)2pa-2IIJIIa-2, 0" < 2 
:-s; M(a)pallflla-2, 

n 2 +2{ IIJII(a-2,a)(15p)a-2-a + llflla-2(15)a-2-a, 
Ha (d f) :-s; M(a)pa 

IIJII(a-2,a)Pa-2-a + llflla-2Pa-2-a, 

:-s; N(a, a)pallflla-2,a· 

Finally we show that 1¢1~ < N(a)paii<PIIa < oo. We have by hypothesis 

II<PIIa = sup{[zral¢(z)l: zEn}< oo. 

For z E 0, we have p :-s; [z] :-s; 15p, so 

so 

{ 
(15p)all¢lla' 

1¢1~ = sup{l¢(z)l :zEn} :-s; sup{[zrii<PIIa :zEn} :-s; 
Paii<PIIa' 

1¢1~ :-s; N(a)paii<PIIa < 00. 

We apply Lemma 1 to n(x) and get 

thus 

a2:2+a 

a<2+a 

if0"2:0 

if (T :-s; 0 

where summations are over all possible derivatives. Since [x] = 6p, it follows that p ~ 1/6. 
We claim that if d(x, jj) :-s; [x]/2 = 3p, then j} E O(x). We note that 6p2 ~ 1 as follows from 
6p2 = [(1 + ltl + lxl 2)/6] 2: 1, since either lxl 2: 5 or ltl ~ 5. We now show that j} E n. From 
[x] = 6p, we get that 
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so 

and hence 
J3Qp ::; d(x, O) < 6p. 

We now have the conditions 0 ::; d(x, jj) ::; 3p and J3Qp ::; d(x, 0) < 6p, which give us by 
the triangle inequality that 

( J30- 3)p ::; d(jj, 0) < 9p, 2p ::; d(jj, 0) < 9p 

so 
4p2 ::; IYI2 + lsi < 81p2. 

Thus IYI < 9p, lsi < 81p2 , and either IYI ~ 2p or lsi ~ 4p2 , giving jj E O(x). Also, p ::; dx, 
dy, dx,y ::; 15p, which gives [x]/6::; dx, dy, dx,y ::; 15[x]/6. As (10) follows from (9), we now 
have (11), which gives 

11</JIIu + L 11Dx¢11u-l,a + L IID;¢11u-2,a + IIDt<PIIu-2,a ::; M(ll¢11u + llfllu-2,a)· (12) 

By Lemma 2e, 

ll¢11cu,l) ::; M(O") ( L 11Dx¢11u-1 + IIDt<PIIu-2) 

so we can add ll¢11cu,l) to the left-hand side of (12) to get 

11</JIIu,l + L 11Dx¢11u-l,a + L IID;¢11u-2,a + IIDt<PIIu-2,a ::; M(ll¢11u + 11JIIu-2,a), 

i.e., 

llll¢1111u,l::; M(ll¢11u + llfllu-2,a)· 

This proves Theorem 3. 

3. The nonhomogeneous heat equation. Before further discussing entire solutions 
of the general parabolic equation, it is useful both as motivation and as a mathematical aid 
to study entire solutions of the equation 

n a2¢ a¢ L a 2 - -a + f = o. 
X· t 

i=l • 

In Rn+l, let k denote the heat kernel 

t>O 

t ::; 0, 

and for a real valued function f on Rn+l let 

KJ(x) = f k(x - y)j(y) dy ds. 
}Rn+! 
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f k((x, t)- (y, s)) dy = { 1' 
}Rn 0, 

t>s 

t S: s. 
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Lemma 4. Let f be a real valued function in Rn+l in the space B_r where 2 < T < n + 2. 
Then for x E Rn+l the integral KJ(x) exists and 

IKJ(x)l S: [x] 2-r M(n, r)llfll-r· 

Proof: We first show that 

IKJ(x)l S: M(r)llfll-r if d(x,O) S: 1. 

We have 

IKJ(x)l S: 11!11-r [ k(x- y)(1 +lsi+ IYI 2)-r/2 dy ds, 
}Rn+l 

and 

Since ltl S: d(x, 0) 2 S: 1, it follows that 

(14) 5 { lsl-r/2 ds + { ds = M(r). 
ls-:=,-1 }lt-sl-:;,2 

This establishes (13). 
We now show that 

IKJ(Ax, A2 t)1 5 A2-rllfll-rM(n, r) 

if d(x, 0) = 1, A> 0. We have 

IKJ(Ax, A2 t)1 S: J 
Rn+l 
.X2 t>s 

Let y = Az and s = A2r. Then 

JKj(Ax, A2t)J S: A2-rllfll-r f k(x- z)(izi 2 + Jri)-r/2 dz dr. 
}Rn+l 

We derive an upper bound for 

Let 

(13) 

(14) 

(15) 

0 1 = {(z,r) E Rn+l: JzJ 2 + JrJ ~ 1/2}, and 02 = {(z,r) E Rn+l: Jzj 2 + JrJ::; 1/2}. 

In 01, 1 + Jzl 2 + JrJ 5 3(JzJ 2 + JrJ), so 

[ k(x- z)(Jzl 2 + JrJ)-r/2 dzdr S: 3r/2 [ k(x- 2)(1 + lzl 2 + JrJ)-r/2 dz drS: M(T) Jn1 }Rn+l 
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as was shown in the derivation of (13). 
In fh, lzl2 + lrl = d(O, z)2 ~ 1/2 and lxl2 + ltl = 1, so 

d(x, o) ~ d(x, z) + d(O, z) ~ d(x, O) + d(O, z) + d(O, z), 

hence 
1 ~ d(x, z) + 1/v'2 ~ 1 + v'2, 

1/20 < (1- 1/v'2)2 ~ d(x, z)2 = ix- zl 2 +it- rl ~ (1 + v'2)2 ~ 6. 

Thus either lx- zl 2 2: 1/40 or it- rl 2: 1/40. If It- rl 2: 1/40, then 

k(x- y) ~ it- ~in/2 ~ 4on/2 = M(n). 

Suppose that lx- zl 2 2: 1/40 and let m = [n/2] + 1, where [n/2] is the greatest integer no 
larger than n/2. Then 

_ _ m! 4lt - rim 
k(x- y) ~ I I /2 I 12 ~ M(n). t-rn x-z m 

Therefore, 

This establishes (15). 
Suppose now that y E Rn+l and d(O, y) = A 2: 1. Then we can write (y, s) as (Ax, A2t) 

where x = yj A and t = sf A2 • Observe that d(x, 0) = 1. We have from (15) that 

If d(O, y) ~ 1 then, by (13) 

(1 +lsi+ IYI2)(T-2)/2IK/(iJ)I :'S 2(T-2)12 II/II-TM(r). 

Thus the inequality of Lemma 4 is verified in all cases. 

Lemma 5. Let f be real valued on Rn+l and in some space B-T,a, 0 <a< 1, and T > 2. 
Then Kf(x) has a continuous derivative with respect tot and continuous second derivatives 
with respect to the Xi's at each point of IRn+l, and Kf satisfies 

Moreover, Kj vanishes at infinity. 

Proof: By making T smaller if necessary, we have by Lemma 4 that Kf exists and vanishes 
at infinity. Let R be some large number and let 

SR = {(y,s): IYI :'S Rand lsi :'S R}. 
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We investigate the region 

n = {x: lxl < R/3 and iti < R/3}. 

Let x E n. We write 

Kf(x) = f k(x - fJ)!(fJ) dy ds + f k(x- y)f(fJ) dy ds. J SR }Rn+I \SR 

It follows from results of Dressel ([3] and [4]) and Friedman (Theorem 11 on page 74 of 
[5]), that iff is Holder continuous with exponent a, the first integral has continuous second 
derivatives with respect to the Xi's and a continuous derivative with respect to t and it 
satisfies t a2~ - a¢ + f = o 

i=l axi at 

for x E 0. For x E 0, the second integral gives upon differentiation under the integral sign 
any number of times with respect to the Xi's and/ or with respect to t a linear combination 
of expressions of the form 

where a(i) are nonnegative integers. To justify differentiation under the integral sign, we 
shall show that if a is a nonnegative integer, integrals of the form 

converge uniformly in x for x E n, i.e., there is a function F(n, f)) = F(R, f)) such that 

IF(R, fJ)I ~ k(x- fJ)if(fJ)ilx- yj'-" /it- sl'-" 

for all x E O(R) and 

r IF(R, fJ)I dy ds < 00. 
}Rn+l\SR 

We shall assume that T > 2 + 2t:, where E > 0. Let /3 = n/2 +a+ E. We shall write 

where 

and 

I(x) = J1(x) + h(x) + h(x) 

J1(x) =I k(x- fJ)if(f))ilx- yj'-" /it- sl'-" dyds, 
lsi:SR 
IYI2:R 

h(x) =I k(x- fJ)if(fJ)iix- yj'-" /it- sl'-" dy ds, 
isi2:R 
IYI2:R 

h(x) =I k(x- fJ)if(f))iix- yi'-" /it- sia dy ds. 
isi2:R 
IYI:SR 
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We first consider J1(x). If \sl ::; Rand !vi ~Rand x En, then 

!t- s! ::; lsi+ !t! ::; R + R/3 = 4Rj3, !x- vi ~ !v!-!x! ~ !vi- R/3 ~ 2\vl/3. 
Noting that 

k( - _) M (4!t- s!)f3 
X - y < .,.-------:-----:-:- ..:.,.....:--_~ 

- !t - s!n/2 !x - y\2/3 

for some constant M, we have 

~-via k(x- y)!f(Y)! ::; !x- Y!a k(x- V)l!fl!-r{l +Is!+ lv\2)-r/2 
!t - s!a It - s!a 

!x - via { 4\t - s!)13 a-2/3 -· -
::; M{f, T) !t- s!a+n/2 !x- v!2f3 ::; M{f, T, a, {3, R)!v! -. F(R, v), 

and since a - 2{3 + n < 0, then 

1 r (!y!)a- 2!3 dy ds < 00. 

lsi::;R }IYI?.R 
Next we consider J2(x). If lsi ~Rand !YI ~Rand x En, then 

!t- s! ~ is!- !t! ~ R- R/3 = 2R/3 and !x- Y! ~ !Y!-!x! ~ !vi- R/3 ~ 2\vl/3. 
Further since It-s! ::; it! +Is! and it! ::; R/3 ::; !t- s\/2, it follows that lsi ~ !t- s!/2. Thus 

!x- Y!a k(x- y)!f(y)! ::; !x- Y!a k(x- y)l!fl!-r(l +is!+ !Y\2)-r/2 
!t- s!a !t- s!a 

< M !x- via ( 4\t- s!)13 !s!(2E-r)/2 < M(!v!)a-2f3!s!(2E-r)/2 := F(R, y), 
- It - s!a+n/2 !x - y\2/3 It - s!E -

and since a- 2{3 + n < 0, T > 2 + 2£, then 

1 !s!(2E-T)/2 { (!Y!)a-2/3 dv ds < OO 

lsi?_R }IYI?.R 
Finally we consider h(x). If is! ~Rand !YI ::; Rand x En, then 

!t- s! ~ is! -It! ~ R- R/3 = 2R/3 and !x- vi ::; !vi+ !x! ::; !vi+ R/3::; 4R/3, 

so 
!x- Y!a k(x- y)!f(y)! < M !x- via !s!-r/2 
!t- s!a - !t- s!a+n/2 

:S M(2Rj3)-a-n/2 Ra!s!-r/2 =: F(R, y), 
since T > 2, then 

1 !s!-T/2 r dyds < 00 

lsi?_R }IYI::;R 
Since differentiation under the integral sign is allowed for x E O.(R), the integral 

r k(x - y)f(y) dy ds 
}Rn+l\Sn 

satisfies 
n 82¢ 8¢ . L 8 2 - -8 = o m n. 

i=l xi t 
Thus since R can be arbitrarily large, JCf satisfies 

~ 82¢ _ 8¢ + J = O · on+l 
~ 82 8 Inn. 

X· t 
i=l t 



SCHAUDER ESTIMATES AND EXISTENCE THEORY 267 

Theorem 6. Let f be real valued on Rn+l and in some space B-r,o:, r > 2, 0 < o: < 1. 
Then there exists exactly one entire classical solution ¢ of the equation 

~ fP¢ _ a¢ f = 0 
~ax; at+ 

vanishing at infinity, namely the solution¢= Kf. Moreover, if2 < r < n + 2, we have for 
this solution the bound 

1111¢11112-r,o: ~ M(n,o:,r)IIJII-r,o:· 

Proof: Uniqueness of the solution follows from the fact that the difference of two solutions 
would satisfy the heat equation and vanish an infinity, thereby being identically zero by the 
maximum principle of [12]. Lemma 5 states that ¢ = Kf is a solution vanishing at infinity. 
To derive the bound on ¢, we apply Theorem 3 to the case of the heat operator to obtain 

1111¢11112-r,o: ~ M(ll¢112-r + IIJII-r,o:)· 

However, Lemma 4 implies 

11¢112-r = IIKJII2-r =sup {[x]-(2-r)IKJ(x)l: x E IRn+l} 

= M(n, r) sup {[x]-(2-r)llfll-r[x]2-r: x E IRn+l} = M(n, r)llfll-r· 

Hence 

1111¢11112-r,o: ~ M(n, r)IIJII-r,o:· 

4. An a priori bound for the general parabolic equation. We consider the equation 

£¢:=a· TP¢ + b · V¢ + c¢- 8¢j8t = f (NH) 

and derive an a priori bound for entire solutions analogous to Theorem 6. The conditions 
on the coefficients will guarantee that the operator £ approaches the heat operator near 
infinity at a certain rate. Let I denote the n x n identity matrix. We require: 

(C1) There exist constants 6, o:, M1 with 6 > 0, 0 < o: < 1, M1 ~ 0 such that 

lla- Ill-8,o:, llbll-1-8,o:, llcll-2-8,o: < M1. 

(C2) The matrix a is symmetric. For all (x, t) E Rn+l and real1 x n vectors,, 

n n 

L L ai,j(x)'i'j ~ M2l,l 2 for some M2 > 0. 
i=l j=l 
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Theorem 7. Suppose conditions (Ct), (C2), (C3 ) hold on the coefficients of£ and that 
f E B-r,a for some T, 2 < T < n + 2, and o: the same as in (C1). If <Pis an entire classical 
solution of (NH) and ¢ E B2-n then 

' 

1111¢11112-r,a ~ M(n, o:, 8, T, M1, M2)IIJII-r,a· (16) 

Proof: We have 

llallo,a ~ lla- Illo,a + IIIIIo,a ~ lla- Ill-a,a + IIIIIo,a by Lemma 2(b), (17) 

= lla- Ill-a,a + IIIIIo ~ M1 + Vfi. 

We also have 
llbll-l,a ~ llbll-1-a,a ~ M1 (18) 

and 
llcll-2,a ~ llcll-2-.5,a ~ M1. (19) 

Hence Theorem 3 can be applied with a = 2 - T to get the estimate 

(20) 

It is, therefore, sufficient to derive instead of (16) the estimate 

(21) 

Suppose that (21) is false. Then there exist sequences {am}, {bm}, {em}, Um}, {¢m}, 
m = 1, 2, 3, · · · such that all am, bm, Cm satisfy the conditions (Ct), (C2), (Ca) with the 
same constants M1, M2, o:, 8 such that fm is in B-r,a, and also each <Pm is in B2-r and 

(22) 

and with 
llfmll-r,a ~ 1/m. (23) 

The inequalities (17), (18), (19) are satisfied by am, bm, em, respectively, and (20) holds for 
all pairs (¢m, fm)· We also have that {am -I}, {bm}, {em}, Um}, {¢m}, {Dx<Pm}, {D;¢m} 
and {Dt<Pm} are all uniformly bounded with respect to the appropriate norms in the spaces 
B-a,a, B-1-a,a, B2-a,a, B-r,a, B2-r,a, B1-r,a, B-r,a and B-r,a· By Lemma 2(f) there 
exist functions a- I, b, c, j, ¢contained in the same spaces as the corresponding sequences, 
with ¢, Dx¢, n;¢, Dt<P continuous and with ¢ in B 2_r [we have uniform convergence]. 
After passing to subsequences [preserving (23)], we have with respect to the norms involved 

(am- I)- (a- I) in Bo, and hence am- a in Bo, 

fm- J in B-2, <Pm- ¢in B2-r+.5, 

D¢m - D¢ in B1-rH, n;¢m - n;¢ in B-rH, 

and 
(24) 
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So by (23) 
llfll-2 =lim llfmll-2 :::; lim llfmll-r :::; lim(1/m) = 0. 

Therefore, passing to the limit in (22), we find that ¢ is an entire classical solution of the 
homogeneous equation 

a· V2¢ + b · V¢ + c¢- {)cpj{)t = 0. (25) 

Clearly the conditions (C2) and (C3) on a and care fulfilled, so the maximum and minimum 
principles [12] may be applied to the solutions of (25). Since¢ E B 2_n ¢vanishes at infinity 
and so by applying the maximum and minimum principles to arbitrarily large spheres in 
Rn+I, we conclude that¢:= 0. Hence from (24), 

We rewrite (22) as 
(27) 

where 
(28) 

and observe that 

ll9mll-r 

:::; ll(am- J)ll-.siiV2¢mll-r+6 + llbmii-1-611Vc/Jmlh-r+8 + llcmll-2-8llc/Jmll2-r+8 + llfmll-r 

$ M1 (IIV2¢mll-r+6 + IIV¢mlll-r+6 + llc/Jmll2-r+8) + 1/m. 

By (26), the right-hand side goes to zero as m--+ oo so ll9mll-r--+ 0 as m--+ oo. Note that 

so from {28), 9m E B-r,o· Note further that if we let ~ represent L::~=l {)2 j8x~, then (27) 
implies 

Since ¢m E B 2_n ¢m also vanishes at infinity. Hence, Theorem 6 may be applied and we 
have ¢m = ICgm. However from Lemma 4, 

which contradicts (23). 

5. Existence of solutions. We now demonstrate the existence of entire solutions of the 
nonhomogenous equation 

(NH) 

that vanish at infinity. Again we assume conditions ( C1 ), ( C2), ( C3) on the coefficients of 
c. 
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Theorem 8. Suppose conditions (Ct), (C2), (C3 ) hold on the coeflicients of£ and that 
f E B-r,o: for some T > 2. Then there exists a unique entire classical solution <P of (NH) 
such that <P vanishes at infinity, and moreover if 2 < T < n + 2 we have the bound 

IIII<PIIII2-r :S M(n,a,8,r,Ml,M2)IIJII-r,o:· 

Proof: The uniqueness of the solution follows from the maximum principle since the dif­
ference of two solutions would solve the homogeneous equation and vanish at infinity. In 
order to establish the existence of a solution, we consider the Banach space B defined by 

with norm 

where the summations are over all partial derivatives. That B is a Banach space follows 
from Lemma 2(h). We consider the family of linear operators Lr, 0 :::; r :::; 1, defined by 

setting ar = (1- r)I + ra, br = rb and Cr = rc, we have 

We will show that Lr maps B into B-r,o:· We first note that 

llarll-6,o: = llr(a- I)+ Ill-8,o: :S rlla- Ill-8,o: + Vn :S M1 + .fii. 

We also have 

so 

IICr<PII-r,o::::; (Ml + vn)II'D21>II-r,o: + Mlii'D¢111-T,O: + Mlii¢112-T,O: + II8<Pf8tll-r,o: 

s (M1 + vn)ll<~>ll;,o:. 

Hence, Lr maps B into B-r,o: and in fact Lr is a bounded linear operator from B to B-r,o:· 
We also get from ( C3 ) that Cr = rc :::; 0 in Rn+l, and from ( C2 ) we have for x E Rn+l -and 
~ a real n x n vector 

Hence, Theorem 7 can be applied and for all¢ E B and 0:::; r :::; 1, we have 
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According to Theorem 5.2 in [7], the Schauder continuation method applies. Theorem 6 
asserts that the operator 

maps B onto B-r,a· Hence, any Lr, 0 ~ r ~ 1 does the same and in particular £ 1 =£maps 
B onto B-r,a· 

Before we study the behavior of entire solutions of (NH) at infinity, it will be useful to 
study the behavior of entire solutions of the heat equation. We shall show that the class of 
entire solutions of the heat equation in Bm is the same as the class of polynomial solutions 
of the heat equation of degree at most m in x. We shall for brevity use the notation 

n &2 
~=I:~· 

UX· 
i=1 z 

Lemma 9. (a) If P(x, t) is a polynomial solution of the heat equation of degree no greater 
than m in x and .e any nonnegative integer, then 

(i) P has degree at most [m/2] in t and therefore P E Bm, 

(ii) P E Bm,b 

(iii) DxP E Bm-1,I. 
(iv) n;P E Bm-i,l· 

b) If¢ is an entire classical solution of the heat equation and ¢ E Bm for some nonegative 
integer m then¢ is a polynomial of degree at most minx and degree at most [m/2] in t. 

Proof: (a) i) The derivative 

will for fixed t be a polynomial of degree at most m -- 2 in x, and since &¢/at also solves 
the heat equation, 

is a polynomial of degree at most m-4 in x and (alm-2l¢)/(atlm-2l)(x, t) is a polynomial of 
degree at most m- 2[m/2] = 0 or 1 in x, so (alm/2l+1 ¢)/(atlm/2l+1 )(x, t) is identically zero. 
This implies that for fixed x, (&lm/2l¢)/(atlm/2l) is a constant and thus ¢ is a polynomial 
of degree at most [m/2] in t. 

ii) Any derivative &P /&xi solves the heat equation and either constant or of degree at most 
m -1 in x and degree at most [m2 1 ] in t, so IDxP(x, t)l/[x]<m- 1) is bounded and, therefore, 
DxP E Bm-1· DtP solves the heat equation and has degree at most ([T]- 1) ~ [m22 ] in t 
and degree at most m- 2 in x so DtP is in Bm-2· By Lemma 2(e), P(x, t) E B(m-l)· 

iii) Apply part ii) to each 8Pjax1. 
iv) Apply part ii) to each n;P. 

b) Observe that ¢ E Bm implies l¢(x)l ~ llc/JIIm[x]m for x E Rn+l. Let ¢ E Bm be an entire 
solution of the heat equation. Using Theorem 3 with f = 0, a = In, b = 0, c = 0, we get 
llllc/JIIIIm,a ~ Mll¢llm for any a E (0, 1) where M is a suitable constant. In particular all the 
norms 11Dx¢11m-l are finite. Dx¢ also solves the heat equation so all the norms IID;¢IIm-2 
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are finite. We continue in this fashion and get that IID~+ 1 ¢II-1 is finite. Thus any D~+l¢ 
is a solution of the heat equation and 

i.e., D~+ 1 ¢ vanishes at infinity. Hence, D~+1¢ is identically zero. This implies that any 
D~~¢ is constant as a function of x, and for fixed t, ¢is a polynomial in x of degree at most 
m; and hence, for fixed x, ¢is a polynomial of degree at most [m/2] in t. Thus 

[m/2] 
¢>(x, t) = L xe fe(t) = L tigi(x). 

i=O 

We show that the functions gi(x) are polynomials in x. Note that 

¢(x, 0) = go(x) = L xe fe(O) 
1e1sm 

so g0 (x) is a polynomial in x of degree at most m. 

so g1(x) is a polynomial in x of degree at most m- 2. Similarly for 1::::; i::::; [m/2], 

so gi(x) is a polynomial in x of degree at most m- 2i. Thus 

[m/2] 
¢(x, t) = L ti L rexe 

i=O le1Sm-2i 

where re are real constants. 

We introduce a new condition on the coefficients of the operator£. 

(DI) There exist constants 6, a, A, m, with {j > 0, 0 < a < 1, A < 0, m a positive integer, 
such that 

lla- Ill-m-6,a, \lbll-m-l-6,a, llcll-m-2-6,a ::SA· 

When we replace (Cl) by (D1) the coefficients ai,j• bi and cas well as the Holder quotients 
lai,j(x)- ai,j(tl)l/d(x, ij) 0 , lbi(x)- bi(Y))I/d(x, ij) 0 and lc(x)- c(tl)l/d(x, ij) 0 are required to 
decay faster at infinity by a factor of [x]-m. 

Theorem 10. a) Suppose that conditions (D1 ), (C2 ), (C3 ) hold on the coefficients of£, and 
that f E B-T,a for some r > 2. Then, for any polynomial solution P of the heat equation, 
there exists a unique entire classical solution ¢ of (NH) such that ¢(x, t) - P(x, t) ---+ 0 as 
(x,t)---+ oo. 
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b) If¢ is an entire classical solution of (NH) with ¢ E Bm, then there exists a unique 
polynomial P(x, t) of degree at most m in x with b..P- (aPjat) = 0 such that ¢(x, t) -
P(x, t) ---+ 0 as (x, t) --+ oo. 

Proof: a) Uniqueness is a consequence of the maximum principle. We have 

n a2 P aP n a2 a 
CP= I:-2 --+ (c-L-2 +-)P 

. ax. at . ax. at 
t=l • t=l • 

=a· V2 P + b · VP + cP- aPjat- I· V2 P + aPjat =(a- I)· V2 P + b · VP + cP, 

JJCPJI-2-8,a ~ JJ(a- I)· V2 Pll-2-8,a +lib· VPJI-2-8,a + JJcPJI-2-8,a 

~ JJ(a- I)IJ-m-8,oJJV2 PJJm-2,o + IJbJJ-m-1-8,oJJVPJJm-l,o + JJcJJ-m-2-8,aJJPJim,a• 

so CP E B-2-8,o· Noting that for small f > 0, f- CP E B-(2+e),a C B-r,a and that (D 1 ) 

implies (Cl), we have by Theorem 8 a unique entire classical solution of£¢= f- CP such 
that ¢ ---+ 0 as x--+ oo. We set ¢ = ¢ + P to obtain the desired solution of (NH). 

b) Uniqueness of Pis clear for if P1 and P2 were two polynomial solutions of the heat 
equation satisfying the required condition, then the difference P1 - P2 would vanish at 
infinity giving H = P2. 

To show existence of P, we observe that if ¢ is a classical solution of (NH) with ¢ E Bm, 
then by Theorem 3, ¢ E Bm,l, Dx¢ E Bm-l,a, D;¢ E Bm-2,a· Further 

a¢ a ) 2 6.¢-- = £¢-(£-(b..--))¢= f- (a- I · V ¢- b · V¢- c¢. 
at at 

We claim that K(D.¢- %'f) has a continuous derivative with respect to t and continous 
second derivatives with respect to the Xi at all points x in Rn+l, and that 

a a¢ a¢ 
(6.-- )(K(D.¢- -))=b..¢--

at at at 

and further that K ( 6.¢ - %'f) vanishes at infinity. To establish the claim we need to show 

that (b..¢- %'f) is in B-2--y,a for some r > 0 so that the hypotheses for Lemma 5 are 
satisfied. We have 

a¢ 
liD.¢- at 11-2--y,a 

~ IIJJI-2--y,o + il(a- I)· V2f/JII-2--y,o +lib· V¢11-2--y,o + llc¢11-2--y,o 

~ llfll-2--y,o + il(a- I)ll-m--y,aiiV2¢1lm-2,a + llbll-m-1--y,oiiV¢11m-l,o 

+ llcll-m-2--y,oii¢1Jm,a 

~ IIJII-2--y,o + AIJV2¢1Jm-2,a + AIIV¢1Jm-l,o + AIJ¢1lm,o < 00 

for small enouth /, since f E B-r,o and r > 2. The claim is now established. The function 
P = ¢ - K(b..¢ - ~) therefore, satisfies the heat equation b..¢ - ~ = 0 in Rn+l. Since 

¢ E Bm and K(D.¢- !Jjf) in Bo it follows that P E Bm and so by Lemma 9b, P is a 

polynomial in x and t with degree at most minx. Further since¢- P = K(D.¢- ~), it 
follows that ¢(x, t) --+ 0 as (x, t) ---+ oo. 
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Corollary 11. Suppose that conditions (D1), (C2 ), (C3) hold on the coeffleints of C. Then 
the entire classical solutions of (H) which are in Bm form a finite-dimensional vector space. 
There is a one-to-one correspondence between this space and the space of all polynomial 
solutions to the heat equation of degree no greater than m determined by Theorem 10. 

We finally remark that the space of all polynomial solutions to the heat equation of 
degree no greater than m is spanned by Widder's heat polynomials [16]. There is one heat 
polynomial for each monomial x~(l)x~(2 ) · · · x~(n) so the dimension of the space of entire 
classical solutions of (H) which are in Bm is the same as the dimension of the space of all 
polynomials in x1, x2, · · · , Xn of degree no greater than m. 
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