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Abstract. The existence of solutions which are bounded on R, almost periodic or peri-
odic is considered for a nonautonomous, singularly perturbed system of ordinary di↵erential
equations. In addition, the stability properties of these solutions are characterized by the
construction of manifolds of initial data, the solutions for which approach the given solutions
as t! +1 (t! �1) at an exponential rate, ↵, independent of the small parameter. The key
hypotheses are that certain linear systems have exponential dichotomies on R. Applications
are made to traveling wave solutions of reaction di↵usion systems which are “forced” by a
traveling wave input.

0. Introduction. Consider the singularly perturbed system of ordinary di↵eren-
tial equations

x0 = F (t, x, y, ✏),
✏y0 = G(t, x, y, ✏)

(0.1)

where ✏ > 0 is a small parameter, x 2 Rn, y 2 Rm. We are interested in the existence
and stability properties of bounded (periodic or almost periodic) solutions of (0.1) in
the case that F and G are bounded (periodic or almost periodic) in t, uniformly for
(x, y) in compact sets. It is assumed that the reduced problem

x0 = F (t, x, y, 0), 0 = G(t, x, y, 0) (0.2)

at ✏ = 0 has a bounded (periodic or almost periodic) “outer” solution which we take
to be the trivial solution, that is, we suppose

F (t, 0, 0, 0) ⌘ G(t, 0, 0, 0) ⌘ 0

so that (x, y) = (0, 0) satisfies (0.2). Then expanding (0.1) about the trivial solution
gives

x0 = A(t, ✏)x + B(t, ✏)y + f(t, x, y, ✏),
✏y0 = C(t, ✏)x + D(t, ✏)y + g(t, x, y, ✏).

(0.3)

One can think of, e.g., A(t, ✏) as @F/@x(t, 0, 0, ✏), but, in fact, it is really (0.3) which
we study in this paper.
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We assume that the matrices A,B,C,D are continuous and bounded on R⇥ [0, ✏0],
for some ✏0 > 0, and are continuous in ✏, uniformly in t 2 R. The nonlinear terms
f and g are assumed to have small Lipschitz constants, uniformly in t, when |x| and
|y| are small and |f(t, 0, 0, ✏)|, |g(t, 0, 0, ✏)| are small and tend to zero as ✏ ! 0+,
uniformly in t 2 R.

The principle assumptions are that the linear systems

z0 = A(t, 0)z (0.4)
and

w0 = ✏�1D(t, ✏)w (0.5)

have exponential dichotomies on R. For (0.4) there is a projection P and positive
numbers ↵ and K such that

|Z(t)PZ�1(s)|  Ke�↵(t�s), t � s,

|Z(t)(I � P )Z�1(s)|  Ke�↵(s�t), s � t,
(0.6)

where Z(t), Z(0) = I, is a fundamental matrix for (0.2). For (0.5), there is a contin-
uous family of projections Q(✏), and positive constants K0 and � such that

|W (t, ✏)Q(✏)W�1(s, ✏)|  K0e��(t�s)/✏, t � s,

|W (t, ✏)(I �Q(✏))W�1(s, ✏)|  K0e��(s�t)/✏, s � t,
(0.7)

where W (t, ✏), W (0, ✏) = I, is the fundamental matrix for (0.5). There are several
circumstances under which (0.7) holds, one of which is that D(t, ✏)! D0 as ✏! 0+,
uniformly in t 2 R, where D0 is a constant matrix with no purely imaginary or zero
eigenvalues.

It is also assumed that C(t, 0) ⌘ 0. In the study of periodic (almost periodic)
solutions of (0.1), it is natural to assume that A,B,C,D, f, g are periodic of the same
period (almost periodic) in t.

Our main results, Theorems 1.4 and 3.1, establish the existence of a continuous
family of bounded (periodic, almost periodic) solutions (x⇤(t, ✏), y⇤(t, ✏)) of (0.1) which
tend to 0 uniformly in t as ✏ ! 0+ (Theorem 1.4) and, if C = ✏C, g = ✏ḡ, where
C is bounded, ḡ satisfies the same assumptions as does f , then (x⇤(t, ✏), y⇤(t, ✏)) has
a k-dimensional stable manifold S(�, ✏), k = dimR(P ) + dimR(Q(✏)), consisting of
initial conditions for (0.3) at t = � such that the corresponding solutions approach
(x⇤(t, ✏), y⇤(t, ✏)) as t! +1 at the exponential rate ↵̄ < ↵, where ↵̄ is independent of
✏ and is related to ↵ in (0.6), and an (n+m�k)-dimensional unstable manifold U(�, ✏),
consisting of initial values at t = � of solutions which approach (x⇤(t, ✏), y⇤(t, ✏)) as
t! �1 at the exponential rate ↵̄. It will be clear that our analysis leads immediately
to series expansions for (x⇤(t, ✏), y⇤(t, ✏)) in the case that A,B,C,D, f, g have conver-
gent series expansions in powers of ✏ with coe�cients which are bounded (periodic or
almost periodic) functions of t.
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In a sense, for our problem, the singular nature of (0.3) does not play a role. This
might be expected as there are no boundaries to bring out the singular character of
the equation; we are looking for bounded solutions on R. Basically, we find these
solutions by regular perturbation techniques as in [5, Ch. IV]. Chang [3] considers the
case that (0.1) is almost periodic and obtains the existence of the family of almost
periodic solutions (x⇤(t, ✏)), y⇤(t, ✏)) but does not consider their stability properties.
Work which is somewhat related to the subject of this paper but which influenced sig-
nificantly the final form it took are the paper of Sacker and Sell [8] and the treatment
of perturbed noncritical linear systems by Hale [5, Ch. IV]. Sacker and Sell assume the
existence of a family of solutions (x⇤(t, ✏), y⇤(t, ✏)) and consider the conditional sta-
bility of this branch. More precisely, they give su�cient conditions for the existence
of manifolds of initial data for which solutions approach (x⇤(t, ✏), y⇤(t, ✏)) as t ! 1
(t ! �1) at an exponential rate ↵/✏, ↵ > 0. This work builds on earlier results of
Hoppensteadt [6]. It also applies in the situation considered here as we make more
restrictive hypotheses than in [8].

At least in spirit, the work of Flatto and Levinson [4] and Anasov [1] is related
to ours. These authors considered the autonomous system (0.1) in the case that
the reduced problem (0.2) has a periodic orbit. They show that a family of periodic
solutions of (0.1) exists, and that these solutions approach the periodic solution of the
reduced problem as ✏ ! 0+, under suitable hypotheses. Our methods do not apply
to this situation since in this case, the variational equation (0.4) does not satisfy an
exponential dichotomy (0.6). A motivating example for this work is the singularly
perturbed second order system

✏Du00 + u0 � f(t, u, ✏) = 0. (0.8)

Suppose that for ✏ = 0, (0.8) has a bounded (periodic or almost periodic) solution
u0(t). The question that naturally arises is whether there is a continuous family of
solutions of (0.8), u✏(t), for ✏ > 0 su�ciently small, which are bounded (periodic or
almost periodic) and satisfy u✏ ! u0 uniformly as ✏! 0. If such a family exists, then
how are the stability properties of u✏ related to the stability properties of u0, as a
solution of the reduced problem

u0 = f(t, u, 0)

and the properties of the matrix D?
In order to answer these questions, assume that u000 exists and is bounded (periodic

or almost periodic) and introduce the change of variables

u = u0 + ū.

Then ū satisfies
✏Dū00 + ū0 �A(t, ✏)ū = r(t, ū, ✏)

where
A(t, ✏) =

@f

@u
(t, u0(t), ✏)
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and

r(ū, t, ✏) = f(t, u0(t) + ū, ✏)� f(t, u0(t), ✏)�A(t, ✏)ū
+ f(t, u0(t), ✏)� f(t, u0(t), 0)� ✏Du000(t).

Finally, setting
x = ✏Dū0 + ū, y = ✏Dū0,

we obtain the system

x0 = A(t, ✏)x�A(t, ✏)y + r(t, x� y, ✏),

✏y0 = ✏A(t, ✏)x� (✏A(t, ✏) + D�1)y + ✏r(t, x� y, ✏).
(0.9)

The problem is to find a family of bounded solutions (x⇤(t, ✏), y⇤(t, ✏)) of (0.9) such
that (x⇤, y⇤) ! (0, 0) as ✏ ! 0+, and to determine the stability properties of the
family. This problem is treated in section 4 as an application of our main results,
where it is shown that such a family exists and that its stability is determined by the
stability properties of the variational equation

Z0 = A(t, 0)Z

and by the eigenvalues of D. In particular, if the variational equation is uniformly
asymptotically stable and the eigenvalues of D have positive real parts, then the
family of solutions (x⇤(t, ✏), y⇤(t, ✏)) is uniformly asymptotically stable for small ✏ > 0.
Moreover, nearby solutions are attracted to (x⇤(t, ✏), y⇤(t, ✏)) at an ✏-independent
exponential rate ↵ where ↵ is essentially determined by the exponential rate of decay
of solutions of the variational equation.

Singularly perturbed second order systems may arise in many ways. Consider, for
example, a reaction di↵usion system with a traveling wave input

ut = �Duxx + f(u) + h
⇣x

c
� t

⌘
, x 2 R, t > 0. (0.10)

The vector function u(x, t) 2 Rn, D is an n ⇥ n positive definite matrix, f is a
smooth vector field and h is a bounded function on R which might be periodic or
almost periodic. The parameters � > 0 and c > 0 are, respectively, a scale factor for
di↵usion and the speed of the traveling wave. A natural question related to (0.1) is
whether there is a traveling wave solution

u(x, t) = U(⌧), ⌧ =
x

c
� t, (0.11)

where U(⌧) is a bounded (periodic or almost periodic) function on R.
Putting (0.11) into (0.10) gives a second order system for U(⌧),

✏2D
d2U

d⌧2
+

dU

d⌧
+ f(U) + h(⌧) = 0, (0.12)



BOUNDED, ALMOST PERIODIC AND PERIODIC SOLUTIONS 2129

where ✏ =
p

�
c . If ✏ is a small parameter, in other words, if the speed c of the traveling

wave “forcing” is large compared to a measure of the characteristic speed of di↵usion
e↵ects, then (0.12) has the required form (0.8) where f(⌧, U, ✏) = �f(U)� h(⌧). Our
results justify dropping the leading term in (0.12) and looking for bounded (periodic
or almost periodic) solutions of the reduced system

dU

d⌧
+ f(U) + h(⌧) = 0. (0.13)

If, for example, (0.13) with h ⌘ 0 has a linearly asymptotically stable critical point
x0 with a substantial domain of attraction, then introducing a “blip” function h(⌧),
having compact support K in R, into (0.13) will give rise to a bounded solution U0

such that U0(⌧) = x0, ⌧ < K and U0(⌧)! x0 as ⌧ ! +1, provided that the forcing
h is not so large as to move the solution out of the basin of attraction of x0 during
the “on period” K. Furthermore, if h and f are su�ciently smooth, then d2U0/d⌧2

will be bounded and continuous on R. The variational equation about U0,

dZ

d⌧
+ f 0(U0(⌧))Z = 0,

is then uniformly asymptotically stable [5, Ch. III, Thm. 2.2]. Thus, our main results
imply the existence of a family of bounded solutions U(⌧, ✏) of (0.12) for small ✏ such
that U(⌧, ✏)! U0(⌧) uniformly in ⌧ 2 R. Hence, (0.10) has a traveling wave response
to such a “blip” traveling wave input.

Even more interesting than the previously considered case may be the case that
h is large enough to move the solution out of the basin of x0 into the basin of some
other attractor before it is shut o↵. This should give rise to an even more interesting
bounded solution U0. Another interesting case arises when h is T -periodic and (0.13)
has a T -periodic (or almost periodic) response.

The present work was in fact motivated by a reaction di↵usion system of the form
(0.10) which arises in the study of the competition between two microbial populations
for a limiting nutrient in a laboratory device called a gradostat which is arranged in a
circular configuration. Nutrient supplied to the vessels of the gradostat from a circular
configuration of reservoirs is arranged to have the form of a rotating wave. In the
continuum limit of a large number of vessels, the ordinary di↵erential equations for
the nutrient and microbial population concentrations reduce to a singularly perturbed
reaction di↵usion system (� = ✏2) of the form (0.10), where h represents a rotating
wave (x is understood modulo 1) of nutrient concentration, i.e., h is periodic. In [9],
we show that there are rotating wave solutions.

The organization of this paper is as follows. In the next section we prove the
existence of bounded (periodic or almost periodic) solutions of (0.3). In section 2, the
linear homogeneous system (0.3) with (f, g) = (0, 0) is shown to have an exponential
dichotomy on R and this dichotomy is related to the dichotomies (0.6) and (0.7). The
stability of the bounded solutions is investigated in section 3 and section 4 contains
an application of our results to the second order system (0.8).

Let B be the Banach space of bounded continuous functions on R with range in Rk

with norm kfk = sup{|f(t)| : t 2 R}. The particular value of k (n,m,m + n) should
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be clear from the context. Let AP denote the Banach subspace of almost periodic
functions on R and let PT be the subspace of T -periodic functions on R.

1. Existence of solutions in the spaces B, AP and PT . In this section we
consider the existence of solutions belonging to one of the spaces B, AP or PT of the
nonlinear system (0.3). Our main results will be stated for the space B with remarks
indicating the modifications for the spaces AP and PT . The following hypotheses are
assumed to hold throughout the section.

(H1) A(t, ✏), B(t, ✏), C(t, ✏),D(t, ✏) are continuous and bounded matrix functions
(of sizes n⇥ n, n⇥m, m⇥ n, m⇥m, respectively) defined on R⇥ [0, ✏0]. Moreover,
they are continuous in ✏, uniformly in t 2 R. We let M denote a common bound for
the norm of each of these matrices for (t, ✏) 2 R⇥ [0, ✏0].

(H2) D(t, 0) = D0 is a constant matrix having no eigenvalues on the imaginary
axis; C(t, 0) ⌘ 0.

(H3) The system z0 = A(t, 0)z has an exponential dichotomy on R with projection
P , exponent ↵ > 0 and constant K > 0:

|Z(t)PZ�1(s)|  Ke�↵(t�s), t � s,

|Z(t)(I � P )Z�1(s)|  Ke�↵(s�t), s � t
(1.1)

where Z(t) is a fundamental matrix solution.
We find the notation A✏(t) ⌘ A(t, ✏) convenient in some calculations of this section.

Lemma 1.1. There exists K > 0 such that for each g 2 B, 0 < ✏  ✏0, there exists
a unique solution u⇤(g, ✏) 2 B of the equation

✏u0 = D0u + g.

Moreover, the map g 7! u⇤(g, ✏) defines a bounded linear operator K✏g satisfying
kK✏k  K, 0 < ✏  ✏0. The map ✏ 7! K✏ is continuous for 0 < ✏  ✏0.

Proof. This is just [5, Ch. IV, Lemma 4.2] except for the last statement which
trivially follows from the earlier part. Indeed, if we write u(t, ✏) = u⇤(g, ✏)(t) for
0 < ✏  ✏0, g 2 B, then z(t) = u(t, ✏)� u(t, ✏0) 2 B satisfies

✏z0 = D0z +
✏� ✏0

✏0
[D0u(t, ✏0) + g(t)].

It follows that

kzk  K
|✏� ✏0|

✏0
[kD0k ku(t, ✏0)k+ kgk]  K

|✏� ✏0|
✏0

[kD0kK + 1]kgk.

This implies the last assertion.
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Lemma 1.2. There exists N > 0 such that for each f 2 B there is a unique solution
v(f) 2 B of the equation

v0 = A0(t)v + f(t).

The map f 7! v(f) defines a bounded linear operator satisfying kvk  Nkfk.
Proof. This is a well-known consequence of hypothesis (H3). See [2, Prop. 2, pg.
69]. ⇤

We remark that Lemma 1.1 holds with B replaced by AP or PT . Lemma 1.2 also
holds with B replaced by AP or PT provided A0(t) belongs to AP , respectively, PT .
In the AP case, one has the usual module containment relations [5, 2, 7]. In the case
that A0 2 PT and f 2 PT one can replace the assumption (H3) by the assumption
that one is not a Floquet multiplier for z0 = A0(t)z.

We now consider the inhomogeneous equation

x0 = A(t, ✏)x + B(t, ✏)y + f(t),
✏y0 = C(t, ✏)x + D(t, ✏)y + g(t)

(1.2)

where (f, g) 2 B.

Proposition 1.3. There exists ✏1, 0 < ✏1  ✏0, positive functions a(✏), b(✏), c(✏), d(✏)
defined for 0 < ✏  ✏1, satisfying

lim
✏!0+

a(✏) = 1 = lim
✏!0+

d(✏), lim
✏!0+

c(✏) = 0, lim
✏!0+

b(✏) = M,

a(✏), b(✏), c(✏), d(✏) M + 1

such that for each (f, g) 2 B, 0 < ✏  ✏1, there is a unique solution

(x(f, g, ✏), y(f, g, ✏)) 2 B

of (1.2). The solution satisfies

kxk  a(✏)kfk+ b(✏)kgk, kyk  c(✏)kfk+ d(✏)kgk. (1.3)

The map (f, g)! (x(f, g, ✏), y(f, g, ✏)) defines a bounded linear operator L(✏) satisfy-
ing kL(✏)k  2M + 2 and ✏! L(✏) is continuous for 0 < ✏  ✏1.

Proof. Choose ✏1  ✏0 so small that

NkA✏ �A0k+ KkC✏k(1 + MN)  1
2
, (NM + 1)KkD✏ �D0k 

1
2
,

(1�NkA✏ �A0k)�1(1�KkD✏ �D0k)�1MkC✏k < 1

for 0 < ✏  ✏1. Hypotheses (H1) and (H2) ensure that such an ✏1 exists. Given
(f, g) 2 B, (x0, y0) 2 B, and 0 < ✏  ✏1, define (x, y) 2 B as the unique solution in B
of

x0 = A0(t)x + [A✏(t)�A0(t)]x0(t) + B✏(t)y(t) + f(t),
✏y0 = D0y + [D✏(t)�D0]y0(t) + C✏(t)x0(t) + g(t).

(1.4)
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Note that the second equation in (1.4) is solved first. It has a unique solution y 2 B
by Lemma 1.1 and (H1). Then this y is put into the first equation in (1.4) which is
then solved for x 2 B using Lemma 1.2 and (H1). Writing (x, y) = T (x0, y0; f, g, ✏),
then solving (1.2) is equivalent to finding a fixed point of T (·, ·; f, g, ✏).

If (x, y) = T (x0, y0; f, g, ✏) and (x̄, ȳ) = T (x̄0, ȳ0; f, g, ✏) and letting u = x � x̄,
v = y � ȳ we find that u and v satisfy

u0 = A0(t)u + [A✏(t)�A0(t)](x0 � x̄0) + B✏(t)v,

✏v0 = D0v + [D✏(t)�D0(t)](y0 � ȳ0) + C✏(t)(x0 � x̄0).

Lemmas 1.1 and 1.2 and (H1) imply that

kuk  N [kA✏ �A0k kx0 � x̄0k+ Mkvk],
kvk  K[kD✏ �D0k ky0 � ȳ0k+ kC✏k kx0 � x̄0k],

and this leads to the estimate

kx� x̄k+ ky � ȳk  [NkA✏ �A0k+ (MN + 1)KkC✏k]kx0 � x̄0k
+ [(NM + 1)KkD✏ �D0k]ky0 � ȳ0k

 1
2
[kx0 � x̄0k+ ky0 � ȳ0k].

The contraction mapping principle implies that T has a unique fixed point (x⇤, y⇤) 2 B
which is obviously a linear function of (f, g) 2 B and also depends on ✏ 2 (0, ✏1]. We
may estimate (x⇤, y⇤) directly from (1.4) using Lemmas 1.1 and 1.2 as follows:

kx⇤k  NkA✏ �A0k kx⇤k+ Mky⇤k+ kfk,
ky⇤k  KkD✏ �D0k ky⇤k+ kC✏k kx⇤k+ kgk

which imply
kx⇤k  (1�NkA✏ �A0k)�1[Mky⇤k+ kfk],
ky⇤k  (1�KkD✏ �D0k)�1[kC✏k kx⇤k+ kgk].

Putting the second inequality into the first gives

kx⇤k [1� (1�NkA✏ �A0k)�1M(1�KkD✏ �D0k)�1kC✏k]�1

⇥ (1�NkA✏ �A0k)�1[kfk+ M(1�KkD✏ �D0k)�1kgk].

Let p(✏) = [1�NkA✏�A0k)�1 and q(✏) = (1�KkD✏�D0k)�1. Then we obtain the
estimates (1.3) with

a(✏) = (1� p(✏)q(✏)MkC✏k)�1p(✏), b(✏) = a(✏)Mq(✏),
c(✏) = q(✏)kC✏ka(✏), d(✏) = q(✏)(kC✏kb(✏) + 1).
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The linear operator (x⇤, y⇤) = L(✏)(f, g) is bounded with

kx⇤k+ ky⇤k = kL(✏)(f, g)k  (a(✏) + c(✏))kfk+ (b(✏) + d(✏))kgk
 (2M + 2)(kfk+ kgk)

provided ✏1 is su�ciently small that a, b, c, d M +1 for 0 < ✏  ✏1, which we assume
is the case. Thus, kL✏k  2M +2. The continuity of the map ✏ 7! L(✏) can be shown
exactly as in Lemma 1.1, although with much more work. ⇤

Proposition 1.3 remains valid if B is replaced by AP or PT provided that A, B,
C, D belong to AP , respectively PT . In the AP case, the usual module contain-
ment relations hold. In the PT case, (H3) can be relaxed as in the remark following
Lemma 1.2.

Later, we will want to consider the case that C(t, ✏) = ✏C(t, ✏), |C(t, ✏)|  M ,
C(t, ✏) satisfies the hypothesis (H1), and g(t) = ✏ḡ(t), ḡ 2 B, AP or PT . In this case,
the estimates of Proposition 1.3 imply that y(f, ✏g, ✏) = ✏ȳ(f, g, ✏) where ȳ satisfies
an estimate like that of the second part of (1.3).

Consider the nonlinear system

x0 = A(t, ✏)x + B(t, ✏)y + f(t, x, y, ✏),
✏y0 = C(t, ✏)x + D(t, ✏)y + g(t, x, y, ✏).

(1.4)

The following assumptions are made concerning f and g (see, e.g., [5, Ch. IV]).
(H4) f, g are continuous functions of all four arguments (t, x, y, ✏) such that t 2 R,

|x|, |y|  ⇢0, 0  ✏  ✏0 and both functions are continuous in (x, y, ✏) uniformly in
t 2 R. Furthermore, there exist nondecreasing functions M(✏) and ⌘(⇢, ✏), 0  ✏  ✏0,
0  ⇢  ⇢0 satisfying lim✏!0 M(✏) = 0, lim(⇢,✏)!(0,0) ⌘(⇢, ✏) = 0, such that

|f(t, 0, 0, ✏)| M(✏), |g(t, 0, 0, ✏)| M(✏), t 2 R, 0  ✏  ✏0,

and
|f(t, x, y, ✏)� f(t, x̄, ȳ, ✏)|  ⌘(⇢, ✏)[|x� x̄|+ |y � ȳ|],
|g(t, x, y, ✏)� g(t, x̄, ȳ, ✏)|  ⌘(⇢, ✏)[|x� x̄|+ |y � ȳ|]

holds for all t 2 R, |x|, |x̄|, |y|, |ȳ|  ⇢, 0  ✏  ✏0, ⇢  ⇢0.

Theorem 1.4. Assume (H1)–(H4) hold. Then there exists ✏2, ⇢1, 0 < ✏2  ✏1 and
0 < ⇢1  ⇢0 such that for each ✏ satisfying 0 < ✏  ✏2, (1.4) has a unique solution
(x⇤(t, ✏), y⇤(t, ✏)) 2 B satisfying kxk  ⇢1, kyk  ⇢1 and this solution is continuous
in ✏ uniformly in t 2 R and satisfies kx⇤(✏)k+ ky⇤(✏)k = O(M(✏)) as ✏! 0.

Proof. This is a routine application of the uniform contraction principle as in [5,
IV.2, Theorem 2.1]. We sketch the proof. Choose ⇢1 and ✏2 such that

⇢1 > (2M + 2)[2⇢1⌘(⇢1, ✏2) + M(✏2)], 2(2M + 2)⌘(⇢1, ✏2) 
1
2
.
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Given (x0, y0) 2 B with kx0k  ⇢1, ky0k  ⇢1 and 0 < ✏  ✏2, let (x, y) be the unique
solution in B of

x0 = A(t, ✏)x + B(t, ✏)y + f(t, x0(t), y0(t), ✏),
✏y0 = C(t, ✏)x + D(t, ✏)y + g(t, x0(t), y0(t), ✏).

Such an (x, y) 2 B exists by Proposition (1.3) and the estimate

|f(t, x0(t), y0(t), ✏)|  ⌘(⇢1, ✏2)[kx0k+ ky0k] + M(✏2)
 2⇢1⌘(⇢1, ✏2) + M(✏2), t 2 R, 0 < ✏  ✏2.

In fact, (x, y) = L(✏)(f(·, x0, y0, ✏), g(·, x0, y0, ✏)) ⌘ T (x0, y0, ✏). The existence of a
solution of (1.4) in B is equivalent to the existence of a fixed point of the mapping T .
We may estimate (x, y) using Proposition 1.3 as

kxk  (a(✏) + b(✏))(2⇢1⌘(⇢1, ✏2) + M(✏2))  (2M + 2)(2⇢1⌘(⇢1, ✏2) + M(✏2)) < ⇢1

and similarly for kyk. Thus, T (·, ·, ✏) maps the closed set F = {(x0, y0) 2 B : kx0k 
⇢1, ky0k  ⇢1} into itself for each ✏ with 0 < ✏  ✏2.

Setting (x, y) = T (x0, y0, ✏) and (x̄, ȳ) = T (x̄0, ȳ0, ✏), it is easily shown that

kx� x̄k  (2M + 2)⌘(⇢1, ✏2)[kx0 � x̄0k+ ky0 � ȳ0k]

and similarly for ky � ȳk, yielding

kx� x̄k+ ky � ȳk  2(2M + 2)⌘(⇢1, ✏2)[kx0 � x̄0k+ ky0 � ȳ0k]

 1
2
[kx0 � x̄0k+ ky0 � ȳ0k].

Hence T is a uniform contraction. Since f, g are continuous in (x, y, ✏) uniformly in t 2
R it follows that ✏ 7! (f✏(t), g✏(t)) 2 B is continuous, where f✏(t) = f(t, x0(t), y0(t), ✏).
Since ✏ ! L(✏) is continuous, we conclude that for fixed (x0, y0) 2 B, the map
✏ 7! T (x0, y0, ✏) is continuous on (0, ✏2]. The uniform contraction principle implies
the existence of a unique fixed point (x⇤(✏), y⇤(✏)) 2 F which is a continuous function
of ✏, 0 < ✏  ✏2.

Finally, (x⇤, y⇤) can be estimated directly from the defining system as

kx⇤(✏)k  (2M + 2)[(kx⇤(✏)k+ ky⇤(✏)k)⌘(⇢1, ✏2) + M(✏)].

This, and a similar estimate for ky⇤k yields

kx⇤(✏)k+ ky⇤(✏)k  2(2M + 2)[(kx⇤(✏)k+ ky⇤(✏)k)⌘(⇢1, ✏2) + M(✏)]

 1
2
(kx⇤(✏)k+ ky⇤(✏)k) + 2(2M + 2)M(✏)

and, hence,
kx⇤(✏)k+ ky⇤(✏)k  2M(✏)(2M + 2),
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completing our proof. ⇤
If A,B,C,D 2 PT and f, g are T -periodic in t, then (x⇤, y⇤) 2 PT . In this case

(H3) can be relaxed as noted, following Lemma 1.2. If A,B,C,D 2 AP and f, g are
almost periodic in t for each fixed (x, y, ✏) with |x|  ⇢0, |y|  ⇢0, 0 < ✏  ✏0, then
(x⇤, y⇤) 2 AP . Indeed, as f, g satisfy the lipschitz condition of (H4), uniformly in
t 2 R, it follows that f and g are almost periodic in t uniformly in (x, y) satisfying
|x|  ⇢0 and |y|  ⇢0, for each ✏, 0 < ✏  ✏0.

An important special case of Theorem 1.4 occurs when C(t, ✏) = ✏C(t, ✏), |C(t, ✏)|
M and when g(t, x, y, ✏) = ✏ḡ(t, x, y, ✏) where both f and ḡ satisfy the estimates of
(H4). Using the remarks following Proposition 1.3, it is easily shown that in this case
the estimates for (x⇤(t, ✏), y⇤(t, ✏)) can be sharpened as follows:

kx⇤(✏)k = O(M(✏)), ky⇤(✏)k = ✏O(M(✏)) as ✏! 0.

2. Exponential dichotomies. By virtue of Proposition 1.3, the linear inhomoge-
neous system (1.2) has a unique bounded solution for each bounded (f, g). Because
of (H1), this implies that the homogeneous linear system (1.2) with (f, g) = 0 has an
exponential dichotomy on R [7, 2]. In this section we relate the exponential dichotomy
to the exponential dichotomies for the systems

z0 = A(t, 0)z (2.1)

and
w0 = D0w. (2.2)

Throughout this section, we assume that (H1), (H2) and (H3) hold except that the
hypotheses C(t, 0) ⌘ 0 in (H2) is no longer required since we will consider the equation

x0 = A(t, ✏)x + B(t, ✏)y,

✏y0 = ✏C(t, ✏)x + D(t, ✏)y.
(2.3)

As D0 has no eigenvalues on the imaginary axis, (2.2) has an exponential dichotomy
with projection which we denote by Q and exponent � > 0 and constant L > 0,

|eD0tQe�D0s|  Le��(t�s), t � s,

|eD0t(I �Q)e�D0s|  Le��(s�t), s � t.

The next two results are immediate consequences of the stability of exponential di-
chotomies to perturbation of the linear system [7, 2].

Lemma 2.1. There exists ✏̄1 2 (0, ✏0], K0 > 0, ↵̄ 2 (3/4↵,↵) and a continuous
family of projections P (✏), 0  ✏  ✏̄1, P (0) = P , such that

|Z(t, ✏)P (✏)Z�1(s, ✏)|  K0e�↵̄(t�s), t � s,

|Z(t, ✏)(I � P (✏))Z�1(s)|  K0e�↵̄(s�t), s � t,

where Z(t, ✏), Z(0, ✏) = I, is the fundamental matrix for the linear system

z0 = A(t, ✏)z. (2.4)
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Lemma 2.2. By choosing ✏̄1 and K0 of Lemma 2.1 smaller and larger, respectively,
there exists �̄ 2 (0,�) and a continuous family of projections Q(✏), 0 < ✏  ✏̄1,
Q(✏)! Q as ✏! 0+, such that

|W (t, ✏)Q(✏)W�1(s, ✏)|  K0e��̄(t�s)/✏, t � s,

|W (t, ✏)(I �Q(✏))W�1(s, ✏)|  K0e��̄(s�t)/✏, s � t,

where W (t, ✏), W (0, ✏) = I, is the fundamental matrix for the linear system

W 0 = ✏�1D(t, ✏)W. (2.5)

Lemma 2.2 follows easily from the “roughness” of exponential dichotomies by pass-
ing to the fast time ⌧ = t/✏. Then (2.5) has the form dW/d⌧ = D(✏⌧, ✏)W and
D(✏⌧, ✏)! D0 uniformly in ⌧ 2 R by (H1).

For the results of this section, only the conclusion of Lemma 2.2 is used and, hence,
we can replace the hypothesis “D(t, 0) ⌘ D0” in (H2) by any hypotheses which are
su�cient for Lemma 2.2 to hold, or just assume that Lemma 2.2 holds.

The change of variables u = x, v = ⌘y in (2.3), where ⌘ > 0 satisfying ⌘M <
min{↵̄/36(K0)2,↵/24K0}, is fixed, gives the system

u0 = A(t, ✏)u + ⌘�1B(t, ✏)v,

v0 = ⌘C(t, ✏)u + ✏�1D(t, ✏)v.
(2.6)

We view (2.6) as a perturbation of the system

ū0 = A(t, ✏)ū + ⌘�1B(t, ✏)v̄,

v̄0 = ✏�1D(t, ✏)v̄.
(2.7)

The exponential dichotomy for (2.7) will be exhibited explicitly in terms of the di-
chotomies of Lemmas 2.1 and 2.2 and the dichotomy for (2.6) will be obtained by the
perturbation theory for dichotomies. A fundamental matrix for (2.7) has the form

 (t, ✏) =


Z(t, ✏) X(t, ✏)
0 W (t, ✏)

�
,

where X(t, ✏) is an n⇥m matrix solution of

X 0 = A(t, ✏)X + ⌘�1B(t, ✏)W (t, ✏). (2.8)

Lemma 2.3. There exists ✏̄2 2 (0, ✏̄1) such that for 0 < ✏  ✏̄2, (2.8) has a matrix
solution X(t, ✏) = U(t, ✏)W (t, ✏) where the n⇥m matrix function U(t, ✏) is continuous
in ✏ uniformly in t 2 R and satisfies

|U(t, ✏)|  4MK0⌘�1✏

�̄
, t 2 R, 0 < ✏  ✏̄2.
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Proof. If X(t, ✏) = U(t, ✏)W (t, ✏) satisfies (2.8) then U(t, ✏) satisfies

U 0 = �✏�1UD(t, ✏) + A(t, ✏)U + ⌘�1B(t, ✏)

and, conversely, if U(t, ✏) satisfies the equation above then X(t, ✏) = U(t, ✏)W (t, ✏)
satisfies (2.8). The transpose, U⇤(t, ✏), of U(t, ✏) must satisfy

U⇤0 = �✏�1D⇤(t, ✏)U⇤ + U⇤A⇤(t, ✏) + ⌘�1B⇤(t, ✏).

We will show that this last equation has a unique bounded solution for all small
✏. Observe that �(t, ✏) = [W ⇤(t, ✏)]�1 = [W (t, ✏)�1]⇤ is the fundamental matrix,
�(0, ✏) = I, of

�0 = �✏�1D⇤(t, ✏)�
which is the equation adjoint to (2.5). Obviously, this linear system has an exponential
dichotomy with projection (I � Q⇤(✏)), exponent �̄/✏ and constant K0, where Q(✏),
�̄ and K0 are as in Lemma 2.2. Choose ✏̄2  ✏̄1 such that 2✏̄2K0M/�̄  1/2. Given
an m⇥ n matrix function Ũ0 2 B and 0 < ✏  ✏̄2, let Ũ1(t, ✏) be the unique solution
in B of

Ũ 01 = �✏�1D⇤(t, ✏)Ũ1 + Ũ0A
⇤(t, ✏) + ⌘�1B⇤(t, ✏).

This solution is given by [2, Prop. 2, p. 69]

Ũ1(t, ✏) =
Z t

�1
W ⇤(t, ✏)�1(I �Q⇤(✏))W ⇤(s, ✏)[Ũ0(s)A⇤(s, ✏) + ⌘�1B⇤(s, ✏)] ds

�
Z 1

t
W ⇤(t, ✏)�1Q⇤(✏)W ⇤(s, ✏)[Ũ0(s)A⇤(s, ✏) + ⌘�1B⇤(s, ✏)] ds

⌘ T (Ũ0, ✏).

If Ũ0, U0 2 B and Ũ1 = T (Ũ0, ✏), Ū1 = T (U0, ✏), then

|Ũ1(t, ✏)� U1(t, ✏)|


Z t

�1
K0e��̄(t�s)/✏MkŨ0 � U0k ds +

Z 1

t
K0e��̄(s�t)/✏MkŨ0 � U0k ds

 2K0M✏

�̄
kŨ0 � U0k 

1
2
kŨ0 � U0k

for 0 < ✏  ✏̄2. Thus, T : B ⇥ (0, ✏̄2) ! B is a uniform contraction mapping. It
is easy to see that for each fixed Ũ0 2 B, the map ✏ ! T (U0, ✏) is continuous for
0 < ✏  ✏̄2. The uniform contraction principle implies that there exists a continuous
mapping ✏ ! Û(✏) 2 B such that T (Û(✏), ✏) = Û(✏). We estimate Û(t, ✏) directly
from the integral equation as

|Û(t, ✏)| 
Z t

�1
K0e��̄(t�s)/✏[M |Û(s, ✏)|+ ⌘�1M ] ds

+
Z 1

t
K0e��̄(s�t)/✏[M |Û(s, ✏)|+ ⌘�1M ] ds

 2✏K0M

�̄
[kÛk+ ⌘�1],
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which implies that

kÛ(✏)k 
�
1� 2✏K0M

�̄

��1 2✏K0M

�̄
⌘�1  4✏K0M

�̄
⌘�1.

If U(t, ✏) = Û⇤(t, ✏), then X(t, ✏) = U(t, ✏)W (t, ✏) satisfies (2.8) proving the lemma.
Now let

⇧(✏) =


P (✏) 0
0 Q(✏)

�

and observe that

 (t, ✏)⇧(✏) �1(s, ✏) =
Z(t, ✏)P (✏)Z�1(s, ✏) �Z(t, ✏)P (✏)Z�1(s, ✏)U(s, ✏) + U(t, ✏)W (t, ✏)Q(✏)W�1(s, ✏)

0 W (t, ✏)Q(✏)W�1(s, ✏)

�
.

This implies the estimate

| (t, ✏)⇧(✏) �1(s, ✏)|  K0[1 + kU(✏)k][e�↵̄(t�s) + e��̄(t�s)/✏]

 2K0
h1 + 4MK0⌘�1✏

�̄

i
e�↵̄(t�s), t � s

 3K0e�↵̄(t�s), t � s

if 0 < ✏  ✏̄3 where ✏̄3  ✏̄2 is chosen so that ✏̄3↵̄  �̄ and 4MK0⌘�1✏̄3/�̄  1. A
corresponding estimate is easily obtained for | (t, ✏)[I �⇧(✏)] �1(s, ✏)| with t and s
interchanged. Thus, (2.7) has an exponential dichotomy with projection

⇧̃(✏) ⌘  (0, ✏)⇧(✏) �1(0, ✏),

exponent ↵̄ and constant 3K0, for 0 < ✏  ✏̄3.
The projection ⇧̃(✏) is given by

⇧̃(✏) =


P (✏) �P (✏)U(0, ✏) + U(0, ✏)Q(✏)
0 Q(✏)

�

from which it follows that ✏! ⇧̃(✏) is continuous for 0 < ✏  ✏̄3 and ⇧̃(✏) = ⇧(✏)+O(✏)
as ✏ ! 0+. The above considerations, together with the roughness of exponential
dichotomies, lead to the main result of this section.

Theorem 2.4. For 0 < ✏  ✏̄3, there exists a continuous family of projections
P

(✏)
and a constant K00 > 0 such that

|�(t, ✏)⌃(✏)��1(s, ✏)|  K00e�↵(t�s)/2, t � s,

|�(t, ✏)(I � ⌃(✏))��1(s, ✏)|  K00e�↵(s�t)/2, s � t
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where �(t, ✏), �(0, ✏) = I, is the fundamental matrix of (2.3).

Proof It su�ces to show that (2.6) has an exponential dichotomy with projections
⌃(✏) and exponent ↵/2. The coe�cient matrix of (2.6) di↵ers from that of (2.7) by
the term ⌘C(t, ✏), the norm of which satisfies

|⌘C(t, ✏)|  ⌘M <
↵̄

4(3K0)2

by our choice of ⌘. By [2, Prop. 1, p. 34], (2.6) has an exponential dichotomy with
projection ⌃(✏) and exponent ↵̄ � 2(3K0)⌘M > 3↵/4 � ↵/4 = ↵/2. This completes
the proof.

3. Stable and unstable manifolds for (x⇤(t, ✏), y⇤(t, ✏)). In this section we
discuss the stability of the small solutions in B, AP or PT of the system

x0 = A(t, ✏)x + B(t, ✏)y + f(t, x, y, ✏),

y0 = C(t, ✏)x + ✏�1D(t, ✏)y + g(t, x, y, ✏),
(3.1)

for small positive ✏. Note that (3.1) has a slightly di↵erent form than (1.4); C and g
of (1.4) are now ✏C and ✏g in (3.1) and we have divided through by ✏.

We assume that (H1)–(H3) hold except that we no longer require C(t, 0) = 0 in
(H2). In addition, f and g are assumed to satisfy (H4). As remarked following
Theorem 1.4, the estimates

kx⇤(✏)k = O(M(✏)), ky⇤(✏)k = ✏O(M(✏)), ✏! 0,

hold for the small solutions (x⇤(t, ✏), y⇤(t, ✏)) in B of (3.1). As in previous sections,
results will be stated for the space B and remarks following the results will treat the
special cases AP and PT .

We redefine ✏0 so that for 0 < ✏  ✏0, the conclusions of Theorem 1.4 and Theorem
2.4 hold. Furthermore, in order to simplify notation, let

↵̄ =
↵

2
, K = K00

in Theorem 2.4. We write z =
⇣

x
y

⌘
and rewrite (3.1) as

z0 = E(t, ✏)z + F (t, z, ✏). (3.2)

Let z⇤(t, ✏) =
⇣

x⇤(t,✏)
y⇤(t,✏)

⌘
be the solution of (3.2) in B given by Theorem 1.4 and let

z(t,�, z0, ✏) be the maximally extended solution of (3.2) satisfying z(�,�, z0, ✏) = z0.
As in Theorem 2.4, we let �(t, ✏), �(0, ✏) = I, be the fundamental matrix for the

linear system
z0 = E(t, ✏)z (3.3)
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and ⌃(✏) be the projection corresponding to the exponential dichotomy described in
Theorem 2.4. Denote

⌃(�, ✏) = �(�, ✏)⌃(✏)��1(�, ✏), � 2 R.

Then ⌃(�, ✏)Rn+m is the subspace of initial data z0 such that the solution

z(t) = �(t, ✏)��1(�, ✏)z0

tends to zero as t ! +1 at the exponential rate ↵̄ and (I � ⌃(�, ✏))Rn+m is the
subspace of initial data for which that solution approaches zero as t ! �1 at the
exponential rate ↵̄.

Given � > 0, define

S(�, ✏) = {z̄ 2 Rn+m :|⌃(�, ✏)z̄| < �

2K
and for z0 = z̄ + z⇤(�, ✏),

|z(t,�, z0, ✏)� z⇤(t, ✏)| < �, t � �},

and

U(�, ✏) = {z̄ 2 Rn+m :|(I � ⌃(�, ✏))z̄| < �

2K
and for z0 = z̄ + z⇤(�; ✏),

|z(t,�, z0, ✏)� z⇤(t, ✏)| < �, t  �}.

Let B(r) denote the ball of radius r in Rn+m.
The set S(�, ✏) describes a set of initial data z0 = z⇤(�, ✏) + z̄ for (3.2) at time

t = � such that the corresponding solution z(t,�, z0, ✏) remains close to z⇤(t, ✏) for
t � �.

Theorem 3.1. Assume the hypotheses described in the beginning of this section hold.
Then there exists � > 0 and ✏1 2 (0, ✏0] such that the mapping ⌃(�, ✏) is a homeo-
morphism of S(�, ✏) onto ⌃(�, ✏)Rn+m \B(�/2K) and for each z0 = z̄ + z⇤(�, ✏) with
z̄ 2 S(�, ✏), 0 < ✏  ✏1,

|z(t,�, z0, ✏)� z⇤(t, ✏)|  2K|⌃(�, ✏)z̄|e�↵̄(t��)/2, t � �.

The map
gs(·,�, ✏) : ⌃(�, ✏)Rn+m \B(�/2K)! S(�, ✏),

inverse to ⌃(�, ✏)|S(�,✏), is Lipschitz with constant 2K. The mapping I � ⌃(�, ✏) is
a homeomorphism of U(�, ✏) onto (I � ⌃(�, ✏))Rn+m \ B(�/2K) and for each z0 =
z̄ + z⇤(�, ✏) with z̄ 2 U(�, ✏), 0 < ✏  ✏1,

|z(t,�, z0, ✏)� z⇤(t, ✏)|  2K|(I � ⌃(�, ✏))z̄|e↵̄(t��)/2, t  �.

The map
gU (·,�, ✏) : (I � ⌃(�, ✏))Rn+m \B(�/2K)! U(�, ✏),
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inverse to (I � ⌃(�, ✏))|U(�,✏), is Lipschitz with constant 2K.

An immediate consequence of Theorem 3.1 is that z⇤(t, ✏) is uniformly asymptot-
ically stable if ⌃(�, ✏)Rn+m = Rn+m and it is unstable when ⌃(�, ✏)Rn+m 6= Rn+m.
In terms of the linear equations (2.1) and (2.2), z⇤(t, ✏) is uniformly asymptotically
stable provided (2.1) and (2.2) are uniformly asymptotically stable.

In the general case, S(�, ✏) and U(�, ✏) are Lipschitz manifolds in Rn+m, of di-
mensions k ⌘ dim

h⇣
P O
O Q

⌘
Rn+m

i
and m + n � k, respectively, where P and Q are

the projections associated with the exponential dichotomies for (2.1) and (2.2), re-
spectively. Solutions of (3.2), z(t,�, z0, ✏) with z0 = z⇤(�, ✏) + z̄ and z̄ 2 S(�, ✏)
(z̄ 2 U(�, ✏)), approach z⇤(t, ✏) as t! +1 (t! �1) at the exponential rate ↵̄/2.

The proof of Theorem 3.1 follows standard lines (see, e.g., [5, IV.3, Thm. 3.1]) so
we will merely sketch the main points. It is convenient to change variables in (3.2) to
transform z⇤(t, ✏) to the trivial solution z = z⇤(t, ✏) + z̄. Then (3.2) becomes

z̄0 = E(t, ✏)z̄ + F (t, z̄, ✏) (3.4)

where F (t, 0, ✏) ⌘ 0 and the components of F satisfy similar bounds and lipschitz
conditions to those satisfied by the components of F .

The solutions of (3.4) which are bounded for t � �, satisfy the integral equation

z̄(t) = �(t, ✏)��1(�, ✏)zs +
Z t

�
�(t, ✏)⌃(✏)��1(s, ✏)F (s, z̄(s), ✏) ds

�
Z 1

t
�(t, ✏)(I � ⌃(✏))��1(s, ✏)F (s, z̄(s), ✏) ds,

(3.5)

where zs 2 ⌃(�, ✏)Rn+m is determined by ⌃(�, ✏)z̄(�) = zs. Conversely, a bounded
solution of the integral equation on [�,1) is a bounded solution of (3.4). For each
fixed zs 2 ⌃(�, ✏)Rn+m \ B(�/2K), one can apply the uniform contraction mapping
principle to obtain a unique solution ẑ(t,�, zs, ✏) of (3.5) satisfying |ẑ(t,�, zs, ✏)| < �
for t � � (�, ✏1 su�ciently small). Note that in the notation “ẑ(t,�, zs, ✏),” zs is not
the initial value at t = �. This solution is continuous in �, zs, ✏. An estimate gives

|ẑ(t,�, zs, ✏)� ẑ(t,�, z̃s, ✏)|  2Ke�
↵̄
2 (t��)|zs � z̃s|, t � �. (3.6)

Then
S(�, ✏) = {ẑ(�,�, zs, ✏)� z⇤(�, ✏) : zs 2 ⌃(�, ✏)Rn+m \B(�/2K)}

and the inverse mapping gs(zs,�, ✏) is given by

gs(zs,�, ✏) = ẑ(�,�, zs, ✏)� z⇤(�, ✏)

which is Lipschitz with constant 2K by (3.6). As in [5, IV.3, Thm. 3.1], an estimate
yields

|gs(zs,�, ✏)� gs(z̃s,�, ✏)| � |zs � z̃s|
2

,
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so gs is a Lipschitz homeomorphism. Similar arguments apply to obtain the analogous
statements for U(�, ✏). This completes our sketch of the proof.

4. Application to the Singularly Perturbed Second Order System. In
this section our main results are applied to the singularly perturbed second order
system (0.8), which we recall for the reader’s convenience:

✏Du00 + u0 � f(t, u, ✏) = 0. (4.1)

In (4.1), ✏ is a small positive parameter, D is an n⇥n matrix described below and f is
continuous in all variables, as is @f/@u and @f/@✏. In addition, f, @f/@u, @f/@✏ are
continuous in (u, ✏) uniformly in t 2 R and bounded on bounded (u, ✏) sets uniformly
in t 2 R.

We assume that D has no purely imaginary eigenvalues except possibly zero and
if zero is an eigenvalue then N(D) = N(D2), where N(D) denotes the nullspace of
D. Therefore, D is similar to

✓
D 0
0 Or

◆
,

where D and Or are square matrices, Or is the r⇥ r 0 matrix, r = dimN(D), and D
is an (n � r) ⇥ (n � r) matrix with no purely imaginary eigenvalues. Of course, we
are interested in the case that r < n. In turn, D is similar to

✓
D+ 0
0 D�

◆
,

where D+ (D�) is an m ⇥ m (l ⇥ l) matrix all of whose eigenvalues have positive
(negative) real part and m � 0, l � 0, m + l = n� r.

In appropriate coordinates u = (u1, u2) 2 Rn�r ⇥ Rr (4.1) has the form

✏Du001 + u01 � f1(t, u1, u2, ✏) = 0,
u02 � f2(t, u1, u2, ✏) = 0.

(4.2)

We assume that the reduced equation

u0 = f(t, u, 0) (4.3)

has a solution û = (û1, û2) defined on R such that û and û001 are bounded on R. The
change of variables

u = û + ū, x1 = ✏Dū01 + ū1, x2 = ū2, y = ✏Dū01,

leads to the system

x0 = A(t, ✏)x + B(t, ✏)y + r1(t, x, y, ✏),

✏y0 = ✏C(t, ✏)x� [D�1 + ✏E(t, ✏)]y + ✏r2(t, x, y, ✏),
(4.4)
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where
A(t, ✏) =

@f

@u
(t, û(t), ✏) =


A11(t, ✏) A12(t, ✏)
A21(t, ✏) A22(t, ✏)

�

with

Aij(t, ✏) =
@fi

@uj
(t, û(t), ✏), B(t, ✏) = �


A11(t, ✏)
A21(t, ✏)

�
,

C(t, ✏) = [A11(t, ✏)A12(t, ✏)], E(t, ✏) = A11(t, ✏), r1(t, x, y, ✏) = (s1, s2),

s1 = f1(t, û1 + x1 � y, û2 + x2, ✏)� f1(t, û1, û2, 0)�A11(t, ✏)(x1 � y)

�A12(t, ✏)x2 � ✏Dû001 ,

s2 = f2(t, û1 + x1 � y, û2 + x2, ✏)� f2(t, û1, û2, 0)�A21(t, ✏)(x1 � y)
�A22(t, ✏)x2,

r2(t, x, y, ✏) = s1.

We assume that the variational equation for (4.3) about u0(t),

z0 = A(t, 0)z, (4.5)

satisfies an exponential dichotomy as in (H3) of section 1. It is apparent that (4.4)
has the form (3.1) considered in Section 3. As an immediate consequence of Theorem
1.4 we have the following.

Corollary 4.1. There exist positive constants ✏2 and ⇢1 such that for each ✏ satisfying
0 < ✏  ✏2, (4.2) has a unique solution u⇤(t, ✏) 2 B satisfying ku⇤ � ûk  ⇢1. This
solution is continuous in ✏ uniformly in t 2 R and satisfies the estimates

ku⇤(✏)� ûk+ ku⇤01 (✏)� û01k = O(✏) as ✏! 0 + .

Proof. Theorem 1.4 gives a continuous family of solutions (x⇤(t, ✏), y⇤(t, ✏)) of (4.3)
which satisfy kx⇤(✏)k = O(M(✏)) and ky⇤(✏)k = ✏O(M(✏)) as ✏ ! 0 (see remarks
following Theorem 1.4). It is easily seen that M(✏) = C✏ for some C > 0. Hence,
u⇤(✏) = û + (x⇤1(✏), x⇤2(✏))� (y⇤(✏), 0) satisfies ku⇤(✏)� ûk = O(✏) and ku⇤01 (✏)� û01k =
kū01k  ✏�1|D�1| k✏Dū01k = ✏�1|D�1| ky⇤k = O(✏). ⇤

In case f is T -periodic in t and û is T -periodic in t, then the hypothesis (H3) can
be relaxed to the assumption that one is not a Floquet multiplier of (4.5). In this
case u⇤(t, ✏) is T -periodic. If f is almost periodic in t and û(t) is almost periodic,
then u⇤(t, ✏) is almost periodic. Note that in this case, our hypotheses imply that f
is almost periodic in t uniformly in compact (x, ✏) sets.

Viewed as a first order system of di↵erential equations, (4.2) or (4.4) is (2n � r)-
dimensional where r = dimN(A). Let P be the projection onto the stable subspace of
(4.5), given in the definition of the exponential dichotomy for (4.5), k = dimR(P ) =
dimension of stable subspace, and m(l) the number of eigenvalues, counting multi-
plicity, of D having positive (negative) real part. Then the following result describes
the stability properties of the solution u⇤(t, ✏) of (4.2).
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Corollary 4.2. For all su�ciently small ✏ > 0 and for all � 2 R, there is a Lipschitz
manifold, S(�, ✏)(U(�, ✏)), of initial data at t = �, having dimension k+m (n�k+ l)
in R2n�r, corresponding to solutions of (4.2) which are asymptotic to the solution
(u⇤1(t, ✏), u⇤01 (t, ✏), u⇤2(t, ✏)) with an exponential rate of attraction as t ! +1 (t !
�1). In particular, the latter solution is uniformly asymptotically stable if and only
if the trivial solution of (4.5) is uniformly asymptotically stable and m = n � r (so
l = 0).
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