A SHARPER DECAY ESTIMATE FOR THE QUASILINEAR WAVE EQUATION WITH VISCOSITY IN TWO SPACE DIMENSIONS

MITSUHIRO NAKAO

Graduate School of Mathematics, Kyushu University Ropponmatsu, Fukuoka 810, Japan

(Submitted by: James Serrin)

1. Introduction. In this paper we are concerned with a decay property of solutions of the quasilinear wave equation with a strong dissipation:

$$u_{tt} - \operatorname{div}\{\sigma(|\nabla u|^2)\nabla u\} - \Delta u_t = 0 \quad \text{in } \Omega \times [0, \infty)$$
(1.1)

with the initial-boundary conditions

$$u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x) \text{ and } u|_{\partial\Omega} = 0,$$
 (1.2)

where Ω is a bounded domain in R^2 with a C^2 class boundary $\partial\Omega$ and σ is a nonlinear function like $\sigma(v^2) = 1/\sqrt{1+v^2}$.

Let us consider the typical case $\sigma=1/\sqrt{1+v^2}$. This equation was introduced by Greenberg [3] for the one dimensional case: $\Omega\subset R^1$, and the global existence and exponential decay of smooth solutions were proved by Greenberg [4], Greenberg, Mizel and MacCamy [5] and Yamada [13]. For N-dimensional case $\Omega\subset R^N$, the global existence and exponential decay of small amplitude solutions with small data were proved by Ebihara [2] and Kawashima and Shibata [7]. For large data in N-dimensional case, Kobayashi, Pecher and Shibata [8] proved the global existence of smooth solutions. In [8], however, no decay property of solutions is given for such solutions.

Recently in [10], the present author has proved that if the mean curvature H(x) of $\partial\Omega$ at $x \in \partial\Omega$ is nonpositive, then for $(u_0, u_1) \in H_2 \cap H_1^0 \times H_1^0$, the

problem (1.1)–(1.2) admits a unique solution $u(t) \in W^{2,2}([0,\infty); L^2(\Omega)) \cap W^{1,\infty}([0,\infty); H_1^0(\Omega)) \cap L^{\infty}([0,\infty); H_2(\Omega))$, satisfying the decay property

$$E(t) \le \begin{cases} C_0(1+t)^{-(N+2)/(N-2)} & \text{if } N \ge 3\\ C_q(1+t)^{-q} & \text{for any } q > 0 & \text{if } N = 2, \end{cases}$$
 (1.3)

where

$$E(t) \equiv \frac{1}{2} \left(\|u_t(t)\|^2 + \int_{\Omega} \int_0^{|\nabla u(t)|^2} \sigma(\eta) d\eta dx \right)$$

and C_0, C_q are positive constants depending on $||u_0||_{H_2} + ||u_1||_{H_1}$. (See also [6].)

The object of this paper is to give a sharper decay estimate of E(t) for the case N=2. That is, we shall prove for the case N=2,

$$E(t) \le C_0 e^{-\lambda t^{2/3}} \tag{1.4}$$

with some $\lambda > 0$.

For the proof we use a Trudinger type inequality, a sharper form of Gagliardo-Nirenberg inequality,

$$||u||_p \le Cp^{1/2}||u||^{2/p}||\nabla u||^{1-2/p}, u \in H_1^0(\Omega)$$

due to Cazenave [1] and Ogawa [12].

As a related problem we also consider the wave equation with a nonlinear weak dissipation

$$u_{tt} - \Delta u + \rho(u_t) = 0 \quad \text{in } \Omega \times [0, \infty)$$
 (1.5)

$$u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x) \text{ and } u|_{\partial\Omega},$$
 (1.6)

where Ω is abounded domain in R^2 , ρ is a nonlinear dissipation like $\rho = u_t/\sqrt{1+|u_t|^2}$.

Since $\lim_{v\to\pm\infty} |\rho(v)| < \infty$ in our case, the dissipation effect by $\rho(u_t)$ is much weaker compared with the usual one $\rho(u_t) = u_t$. So, we call such a dissipation as 'weak dissipation'. Recently in [10], we have investigated the decay property of the energy E(t) of the problem (1.5)–(1.6), and in particular, for the case N=2, we have proved that

$$E(t) \leq C_q (1+t)^{-q}$$

for any q > 0, where C_q again denotes a constant depending on $||u_0||_{H_2} + ||u_1||_{H_1}$ and q. By use of a similar technique deriving (1.4) we shall prove a sharper estimate (1.4) also for the solutions of the problem (1.5)–(1.6).

2. Preliminaries and results. The function spaces we use are all familiar and we omit the definition of them.

On the nonlinear term $\sigma(|\nabla u|^2)$ appearing in the equation (1.1), we make the following hypotheses.

Hypotheses A. $\sigma(\cdot)$ is a differentiable function on $R^+ \equiv [0, \infty)$, and satisfies the conditions:

- (1) $\sigma(v^2) \ge k_0 (1 + v^2)^{-\alpha}, \alpha > 0$,
- (2) $\sigma(v^2) + 2\sigma'v^2 \ge 0$, and
- (3) $k_0 \sigma(v^2) v^2 \leq \int_0^{v^2} \sigma(\eta) d\eta \leq k_1 \sigma(v^2) v^2$, where k_0, k_1 are positive constants.

Hypotheses B. The mean curvature H(x) at $x \in \partial \Omega$ is nonpositive with respect to the outward normal.

Our result for (1.1)–(1.2) reads as follows.

Theorem 1. Let $(u_0, u_1) \in H_2(\Omega) \cap H_1^0(\Omega) \times H_1^0(\Omega)$. Then, under the Hypotheses A and B, the problem (1.1)–(1.2) admits a unique solution $u \in W^{2,2}([0,\infty);L^2(\Omega)) \cap W^{1,\infty}([0,\infty);H_1^0) \cap L^\infty([0,\infty);H_2)$, satisfying the decay property

$$E(t) \le C_0 e^{-\lambda t^{1/(1+\alpha)}},$$
 (2.1)

where C_0 and λ are positive constants depending on $||u_0||_{H_2} + ||u_1||_{H_1}$.

Concerning the nonlinearity $\rho(v)$ appearing in the equation (1.4) we make the following assumption:

Hypotheses \tilde{A} . $\rho(v)$ is a differentiable function on R, satisfying the conditions

- (1) $k_1|v|^2 \ge \rho(v)v \ge k_0v^2/(1+v^2)^{\alpha}$, $\alpha > 0$, with some $k_0, k_1 > 0$, and
- (2) $\rho'(v) > 0$.

Our result for (1.5)–(1.6) reads as follows.

Theorem 2. Let $(u_0, u_1) \in H_2 \cap H_1^0 \times H_1^0$. Then, under the Hypotheses \tilde{A} , the problem (1.4)–(1.5) admits a unique solution $u(t) \in W^{1,\infty}([0,\infty); H_1^0) \cap L^{\infty}([0,\infty); H_2 \cap H_1^0)$, satisfying

$$E(t) \le C_0 e^{-\lambda t^{1/(1+\alpha)}},$$
 (2.2)

where C_0 , λ are positive constants depending on $||u_0||_{H_2} + ||u_1||_{H_1}$.

To prove the theorems we use the following Lemma.

Lemma 1 ([7, 11]). Let Ω is a domain in \mathbb{R}^2 . For $u \in H_1^0(\Omega)$, it holds that

$$||u||_{p} \le (4\pi)^{-(2-p)/2p} \left(\frac{p}{2}\right)^{1/2} ||u||^{2/p} ||\nabla u||^{1-2/p}$$
(2.3)

for $p \geq 2$, where $\|\cdot\|$ denotes usual L^2 norm in Ω .

In fact, we use the above Lemma 1 in the following form:

Lemma 2. Let Ω be a bounded domain in \mathbb{R}^N with the \mathbb{C}^1 class boundary $\partial \Omega$. Then, for $u \in H_1(\Omega)$ we have

$$||u||_p \le Cp^{1/2}||u||_2^{2/p}||u||_{H_1}^{1-2/p}, \quad p \ge 2,$$
 (2.4)

for some C > 0 independent of p.

- (2.4) easily follows from (2.3). Indeed, it is possible to extend u to a function $\tilde{u} \in H_1^0(\tilde{\Omega})$ with $\Omega \subset \tilde{\Omega}$ such that $\tilde{u} = u$ on Ω and $\|u\|_{L^2(\tilde{\Omega})} \leq C\|u\|_{L^2(\Omega)}, \|\tilde{u}\|_{H_1^0(\tilde{\Omega})} \leq C\|u\|_{H_1(\Omega)}$, which together with (2.3) implies (2.4).
- **3.** A difference inequality. For the proof of decay of E(t), we shall derive an inequality for the difference E(t) E(t+1), and we prepare the following proposition.

Proposition 1. Let $\phi(t)$ be a continuous nonnegative nonincreasing function on $[0,\infty)$ satisfying

$$\phi(t) \le C_0 \left(p^{\alpha} D(t)^2 + D(t)^{2-2k/p} \right)$$
 (3.1)

for any $p \geq 2k$, where k, α are some positive numbers and we set $D(t)^2 = \phi(t) - \phi(t+1)$. Then, there exist positive constants C_1 and λ depending on $\phi(0)$ and C_0 such that

$$\phi(t) \le C_1 e^{-\lambda t^{1/(1+\alpha)}}, \quad t \ge 0.$$
 (3.2)

Remark. (1) When $\phi(t)$ satisfies the inequality $\phi(t) \leq c_0 p^{\alpha} D(t)^2$ we have $\phi(t) \leq C\phi(0)e^{-\lambda_p t}$ with a certain $\lambda_p > 0$ tending to 0 as $p \to \infty$, while if $\phi(t)$ satisfies $\phi(t) \leq C_0 D(t)^{2-k/p}$, we see

$$\phi(t) \le C_p (1+t)^{-(2p-k)/k}$$
.

(See [9]). Thus, our inequality (3.1) is very delicate as $p \to \infty$.

(2) If (3.1) holds for any $p \ge p_0$ with some $p_0 > 0$, then it holds for any $p \ge 2k$ with C_0 replaced by another constant if necessary.

Proof of Proposition 1. We take K > 0 so large that

$$\phi(t) \le K e^{-\lambda t^{\theta}}, 0 \le t \le \max\{2, T_0\},\tag{3.3}$$

where we set $\theta = 1/(1+\alpha)$ (≤ 1) and T_0 is a positive constant to be fixed later.

If the estimate (3.2) with $C_1 = K$ was false for any $\lambda, 0 < \lambda \le 1$, there would exist $T \ge 2$ such that

$$\phi(t) < Ke^{-\lambda t^{\theta}} \text{ for } 0 \le t < T$$
 (3.4)

and

$$\phi(T) = Ke^{-\lambda T^{\theta}}. (3.5)$$

Then, taking t = T - 1 in the inequality (3.1), we have

$$Ke^{-\lambda T^{\theta}} \le \phi(T-1) \le C_0 \{ Kp^{\alpha} \left(e^{-\lambda (T-1)^{\theta}} - e^{-\lambda T^{\theta}} \right) + K^{2-k/p} \left(e^{-\lambda (T-1)^{\theta}} - e^{-\lambda T^{\theta}} \right)^{1-k/p} \}.$$
 (3.6)

Here,

$$e^{-\lambda(T-1)^{\theta}} - e^{-\lambda T^{\theta}} = \theta \lambda e^{-\lambda \tilde{T}^{\theta}} \tilde{T}^{\theta-1} \le \lambda \theta e^{-\lambda(T-1)^{\theta}} (T-1)^{\theta-1},$$

 $T-1 \leq \tilde{T} \leq T$. Therefore, we have from (3.6) that

$$1 \leq C_0 \{ p^{\alpha} \lambda \theta (T-1)^{\theta-1} + K^{1-k/p} (\lambda \theta)^{1-k/p} e^{\lambda k (T-1)^{\theta}/p}$$

$$\times (T-1)^{(\theta-1)(1-k/p)} \} e^{\lambda (T^{\theta} - (T-1)^{\theta})}$$

$$\leq C_0 \{ p^{\alpha} \lambda \theta (T-1)^{\theta-1} + K^{1-k/p} (\lambda \theta)^{1-k/p} e^{\lambda k (T-1)^{\theta}/p} \} e^{\lambda \theta}.$$
(3.7)

Here, we fix $T_0 > 0$ such that

$$\frac{k}{(T_0-1)^{(1-\theta)/\alpha}} \le \frac{1}{2}.$$

Since $p \geq 2k$ is arbitrary, we can take

$$p = (T-1)^{(1-\theta)/\alpha}.$$

Then, the inequality (3.7) implies

$$1 \leq C_0 \left(\lambda \theta + K^{1-k/p} (\lambda \theta)^{1-k/p} e^{\lambda k (T-1)^{\theta - (1-\theta)/\alpha}} \right) e^{\lambda \theta}$$

$$\leq C_0 \left(\lambda \theta + (K + \sqrt{K}) (\lambda \theta + \sqrt{\lambda \theta}) e^{\lambda k} \right) e^{\lambda \theta}, \tag{3.8}$$

where we have used the facts that $0 < k/p \le 1/2$ and $\theta - (1-\theta)/\alpha = 0$.

The inequality (3.8) is a contradiction if we choose a sufficiently small $\lambda > 0$, and we complete the proof of Proposition 1.

4. Proof of Theorem 1. The existence and uniqueness part is proved in [9] (see also [5]), and it suffices to prove the decay property (2.1). We shall derive the following difference inequality for E(t), which implies (2.1) by Proposition 1.

Proposition 2. Let u(t) be a solution of (1.1)–(1.2) in the class stated in Theorem 1. Then, it holds that

$$E(t) \le C_0 \left(p^{\alpha} D(t)^2 + D(t)^{(2p+4\alpha)/(p+4\alpha)} \right)$$
 (4.1)

for any $p \ge 1$, where C_0 is a constant depending on $||u_0||_{H_2} + ||u_1||_{H_1}$, but, independent of p.

Proof. The proof is given by refining the argument in [9] with N = 2. Multiplying the equation (1.1) by u_t and integrating we have

$$\int_{t}^{t+1} \|\nabla u_{t}(s)\|^{2} ds = E(t) - E(t+1) \equiv D(t)^{2}$$
(4.2)

where we recall

$$E(t) \equiv \frac{1}{2} \left(\|u_t(t)\|^2 + \int_{\Omega} \int_0^{|\nabla u(t)|^2} \sigma(\eta) d\eta dx \right).$$

 $(\|\cdot\| \equiv \|\cdot\|_2)$ From (4.2) we see

$$\int_{t}^{t+1} \|u_t(s)\|^2 ds \le CD(t)^2 \tag{4.3}$$

and there exist $t_1 \in [t, t + 1/4], t_2 \in [t + 3/4, t + 1]$ such that

$$||u_t(t_i)|| \le 2CD(t), \quad i = 1, 2.$$
 (4.4)

In what follows we denote by C any positive constant independent of (u_0, u_1) and p.

Next, multiplying the equation by u and integrating over $[t_1, t_2] \times \Omega$, we have

$$\int_{t_1}^{t_2} \int_{\Omega} \sigma |\nabla u|^2 dx \, ds = -(u_t(t_2), u(t_2)) + (u_t(t_1), u(t_1))
+ \int_{t_1}^{t_2} ||u_t(s)||^2 ds - \int_{t_1}^{t_2} \int_{\Omega} \nabla u_t \cdot \nabla u dx ds.$$
(4.5)

To estimate the right hand side of (4.5) we first derive an estimate for $\|\nabla u(t)\|_{1+\delta}$, $0 < \delta < 1$.

By Hypotheses $A_{1}(1)$,

$$\int_{\Omega} |\nabla u|^{1+\delta} dx = \int_{\Omega} \left(\sigma |\nabla u|^{2}\right)^{(1+\delta)/2} \sigma^{-(1+\delta)/2} dx$$

$$\leq C \left(\int_{\Omega} \sigma |\nabla u|^{2} dx\right)^{(1+\delta)/2} \left(\int_{\Omega} (1+|\nabla u|)^{2\alpha(1+\delta)/(1-\delta)} dx\right)^{(1-\delta)/2}$$

$$\leq CF(\nabla u)^{(1+\delta)/2} (1+||\nabla u||_{2\alpha(1+\delta)/(1-\delta)}^{\alpha(1+\delta)}),$$
(4.6)

where we set

$$F(\nabla u) \equiv \int_{\Omega} \sigma |\nabla u|^2 dx.$$

We note that by assumption Hypotheses A,(3), $F(\nabla u)$ is equivalent to

$$\int_{\Omega} \int_{0}^{|\nabla u|^{2}} \sigma(\eta) d\eta dx.$$

Taking $1 > \delta \ge (1 - \alpha)/(1 + \alpha)$ and setting $p = 2\alpha(1 + \delta)/(1 - \delta) \ge 2$, we have by Lemma 2 that

$$\|\nabla u\|_p \le Cp^{1/2} \|\nabla u\|^{2/p} \|\Delta u\|^{1-2/p}$$

and hence, from (4.6),

$$\|\nabla u\|_{1+\delta}^{1+\delta} \le CF(\nabla u)^{(1+\delta)/2} (1 + p^{\alpha(1+\delta)/2} \|\nabla u\|^{2\alpha(1+\delta)/p} \|\Delta u\|^{\alpha(1+\delta)(1-2/p)}). \tag{4.7}$$

Further, we use Gagliardo-Nirenberg inequality (cf. Friedmann [4])

$$\|\nabla u\| \le C \|\nabla u\|_{1+\delta}^{(1+\delta)/2} \|\Delta u\|^{(1-\delta)/2}$$

to get from (4.7) that

$$\|\nabla u\| \le CF(\nabla u)^{(1+\delta)/4} (1 + p^{\alpha(1+\delta)/4} \|\nabla u\|^{\alpha(1+\delta)/p} \|\Delta u\|^{\alpha(1+\delta)(p-2)/2p}) \times \|\Delta u\|^{(1-\delta)/2}$$

$$\le CF(\nabla u)^{p/2(p+2\alpha)} (1 + p^{p\alpha/2(p+2\alpha)} \|\nabla u\|^{2\alpha/(p+2\alpha)} \|\Delta u\|^{(p-2)\alpha/(p+2\alpha)}) \times \|\Delta u\|^{2\alpha/(p+2\alpha)},$$
(4.8)

where we note that $\delta = (p-2\alpha)/(p+2\alpha)$. To estimate $||\Delta u(t)||$ we multiply the equation (1.1) by $-\Delta u(t)$ to get (see [10])

$$\frac{d}{dt} ((u_t, -\Delta u) + \frac{1}{2} ||\Delta u(t)||^2) + \int_{\Omega} (\sigma |D^2 u|^2 + 2\sigma' \sum_j |\nabla u \cdot \nabla u_j|^2) dx
+ \int_{\partial \Omega} \sigma |\frac{\partial u}{\partial n}|^2 H(x) dx = ||\nabla u_t||^2,$$
(4.9)

where $D^2u = \left(\frac{\partial^2 u}{\partial x_i \partial x_j}\right)$ and $u_j = \frac{\partial u}{\partial x_j}$. Thus, by the use of Hypotheses A,(2), Hypotheses B and the fact

$$\int_0^\infty \|\nabla u_t(s)\|^2 ds \le E(0) < \infty$$

(see (4.2)), we have

$$\|\Delta u(t)\|^2 \le C(\|u_0\|_{H_2} + \|u_1\|) < \infty. \tag{4.10}$$

Hereafter, we denote by C_0 any constants depending on $||u_0||_{H_2} + ||u_1||$. It follows from (4.8) and (4.10) that

$$\|\nabla u(t)\| \le C_0 E(t)^{p/2(p+2\alpha)} \left(1 + p^{\alpha/2} \|\nabla u\|^{2\alpha/(p+2\alpha)}\right)$$

and, by Young's inequality,

$$\|\nabla u(t)\| \le C_0 \left(E(t)^{p/2(p+2\alpha)} + p^{(p+2\alpha)\alpha/2p} \sqrt{E(t)} \right)$$

$$\le C_0 \left(E(t)^{p/2(p+2\alpha)} + p^{\alpha/2} \sqrt{E(t)} \right).$$
(4.11)

Let us return to (4.5). Then, by (4.11) just obtained, we see

$$|\int_{t_1}^{t_2} \int_{\Omega} (\nabla u_t \cdot \nabla u) dx ds| \leq \left(\int_{t}^{t+1} \|\nabla u_t\|^2 ds \right)^{1/2} \sup_{t \leq s \leq t+1} \|\nabla u(s)\|$$

$$\leq C_0 D(t) (E(t)^{p/2(p+2\alpha)} + p^{\alpha/2} \sqrt{E(t)}) \equiv A(t)^2.$$
(4.12)

Similarly,

$$|(u_t(t_i), u(t_i))| \le C \sup_{t \le s \le t+1} ||u_t(s)|| ||\nabla u(s)|| \le A(t)^2.$$

Thus, we obtain from (4.5) that

$$\int_{t_1}^{t_2} \int_{\Omega} \sigma |\nabla u|^2 dx \, ds \le C(D(t)^2 + A(t)^2). \tag{4.13}$$

It follows from (4.2) and (4.13) that

$$E(t+1) \le \int_{t}^{t+1} E(s)ds \le C(D(t)^2 + A(t)^2)$$

and consequently,

$$E(t) \le C(D(t)^2 + A(t)^2). \tag{4.14}$$

Recalling (4.12), the definition of $A(t)^2$, we can easily derive from (4.14) the desired inequality

$$E(t) \le C_0 \left(p^{\alpha} D(t)^2 + D(t)^{(2p+4\alpha)/(p+4\alpha)} \right).$$

5. Proof of Theorem 2. For the proof of Theorem 2 it suffices to derive the decay estimate (2.2). Here, the geometrical condition on Ω is not required. The following proposition together with Proposition 3.1 will give the desired result.

Proposition 3. Let u(t) be a solution in the class stated in Theorem 2. Then we have

$$E(t) \le C_0 \left(p^{\alpha} D(t)^2 + D(t)^{2p/(p+2\alpha)} \right).$$

Proof. The proof is given by a similar and simpler way than that of Proposition 4.1, and we sketch it briefly.

Multiplying the equation (1.4) by u_t , we have

$$\int_{t}^{t+1} \int_{\Omega} \rho(u_t) u_t dx \, ds = E(t) - E(t+1) \equiv D(t)^2. \tag{5.1}$$

By Hypotheses \tilde{A} , we see, for $0 < \delta < 1$,

$$\int_{1}^{t+1} \|u_{t}(s)\|_{1+\delta}^{1+\delta} = \int_{t}^{t+1} \int_{\Omega} \left(\frac{|u_{t}|^{2}}{(1+|u_{t}|^{2})^{\alpha}}\right)^{(1+\delta)/2} (1+|u_{t}|^{2})^{-(1+\delta)\alpha/2} dx ds
\leq C \left(\int_{t}^{t+1} \int_{\Omega} \rho(u_{t}) u_{t} dx ds\right)^{(1+\delta)/2} \left(1+\int_{t}^{t+1} \|u_{t}(s)\|_{2\alpha(1+\delta)/(1-\delta)}^{\alpha(1+\delta)} ds\right)
\leq C D(t)^{(1+\delta)} \left(1+\sup_{t \leq s \leq t+1} \|u_{t}(s)\|_{2\alpha(1+\delta)/(1-\delta)}^{\alpha(1+\delta)}\right).$$
(5.2)

Here, setting $p = 2\alpha(1+\delta)/(1-\delta)$, we have

$$||u_t||_p \le Cp^{1/2}||u_t||^{2/p}||\nabla u_t||^{1-2/p} \le C_0p^{1/2}E(t)^{1/p},$$
 (5.3)

where we have used the fact that

$$||u_{tt}(t)|| + ||\nabla u_t(t)|| \le C_0 = C_0(||u_0||_{H_2}, ||u_1||_{H_1}) < \infty,$$

which follows by multiplying the equation by $-\Delta u_t$. Hence,

$$\int_{t}^{t+1} \|u_{t}(s)\|_{1+\delta}^{1+\delta} ds \le CD(t)^{1+\delta} \left(1 + C_{0} p^{\alpha(1+\delta)/2} E(t)^{\alpha(1+\delta)/p}\right) \equiv A(t)^{2}.$$
(5.4)

Then, by Gagliardo-Nirenberg inequality, we have

$$\int_{t}^{t+1} \|u_{t}(s)\|^{2} \le C \int_{t}^{t+1} \|u_{t}(s)\|_{1+\delta}^{1+\delta} \|\nabla u_{t}(s)\|^{1-\delta} ds \le C_{0} A(t)^{2}.$$
 (5.5)

There exist $t_1 \in [t, t + 1/4], t_2 \in [t + 3/4, t + 1]$ such that

$$||u_t(t_i)|| \le 2C_0 A(t), \quad i = 1, 2,$$

and, multiplying the equation by u, we have

$$\int_{t_1}^{t_2} \|\nabla u(s)\|^2 ds = -(u_t(t_2), u(t_2)) + (u_t(t_1), u(t_1))
+ \int_{t_1}^{t_2} \|u_t(s)\|^2 ds - \int_{t_1}^{t_2} \int_{\Omega} \rho(u_t) u dx ds
\leq C_0 A(t) \sqrt{E(T)} + C_0 A(t)^2 + \left(\int_t^{t+1} \int_{\Omega} \rho(u_t) u_t ds\right)^{1/2} \left(\int_t^{t+1} \|u\|^2 ds\right)^{1/2}
\leq C_0 A(t) \sqrt{E(t)} + C_0 A(t)^2 + CD(t) \sqrt{E(t)},$$
(5.6)

where we have used the inequality $|\rho(u_t)|^2 \le k_1 \rho(u_t) u_t$. It follows from (5.5) and (5.6) that

$$E(t+1) \le C_0 A(T) \sqrt{E(T)} + C_0 A(T)^2 + CD(t) \sqrt{E(t)}$$

and

$$E(t) \le C_0 A(t) \sqrt{E(t)} + C_0 A(t)^2 + CD(t) \sqrt{E(t)} + D(t)^2.$$
 (5.7)

This gives

$$E(t) \le C_0 A(t)^2 + CD(T)^2$$

and hence,

$$E(t) \le C_0 \left(p^{\alpha} D(t)^2 + C_0 D(t)^{2p/(p+2\alpha)} \right).$$

The proof of Proposition 3 is complete.

Acknowledgment. The author would like to thank the referee for careful reading of the manuscript and useful comments.

REFERENCES

- [1] T. Cazenabe, Equations de Shrodinger nonline'ares en dimension deux, Proc. Royal Society Edinburgh, 84A, (1979), 327–346.
- [2] Y. Ebihara, On some nonlinear evolution equation with the strong dissipation J. Differential Equations, 30 (1978), 149–164.

- [3] A. Friedman, "Partial Differential Equations," New York, Academic Press, 1969.
- [4] J. Greenberg On the existence, uniqueness and stability of the equation $\rho_0 X_{tt} = E(X_x)X_{xx} + X_{xxt}$, J. Math. Anal. Appl., 25 (1969), 575–591.
- [5] J. Greenberg, R. MacCamy, and V. Mizel, On the existence, uniqueness and stability of the equation $\sigma'(u_x)u_{xx} \lambda u_{xxt} = \rho_0 u_{tt}$, J. Math. Mech., 17 (1968), 707–728.
- [6] R. Ikehata, T. Matsuyama, and M. Nakao, Global solutions to the initial-boundary value problem for the quasilinear visco-elastic wave equation with a perturbation, Funk. Ekvac., 40 (1997), 293–312.
- [7] S. Kawashima and Y. Shibata, Global existence and exponential stability of small solutions to nonlinear viscoelasticity, Comm. Math. Phys., 148 (1992), 189–208.
- [8] T. Kobayashi, H. Pecher, and Y.Shibata, On a global in time existence theorem of smooth solutions to nonlinear wave equation with viscosity, Math. Ann., 296 (1993), 215–234.
- M. Nakao, Asymptotic stability of the bounded or almost periodic solutions of the wave equations with nonlinear dissipative term, J. Math. Anal. Appl., 58 (1977), 336–343.
- [10] M. Nakao, Energy decay for the quasilinear wave equation with viscosity, Math. Z., 219 (1995), 289–299.
- [11] M. Nakao, Energy decay for the wave equation with a nonlinear weak dissipation, Diff. Integral Eqns., 8 (1995), 681–688.
- [12] T. Ogawa, A proof of Trudinger's inequality and its applications to nonlinear Schrodinger equations, Nonlinear Anal., T.M.A., 14 (1990), 765–769.
- [13] Y. Yamada, Some remarks on the equation $y_{tt} \sigma(y_x)y_{xx} y_{xtx} = f$, Osaka J. Math., 17 (1980), 303–323.