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1. Introduction. In this paper we are concerned with a decay property
of solutions of the quasilinear wave equation with a strong dissipation:

utt − div{σ(|∇u|2)∇u} − Δut = 0 in Ω × [0,∞) (1.1)

with the initial-boundary conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x) and u|∂Ω = 0, (1.2)

where Ω is a bounded domain in R2 with a C2 class boundary ∂Ω and σ is
a nonlinear function like σ(v2) = 1/

√
1 + v2.

Let us consider the typical case σ = 1/
√

1 + v2. This equation was in-
troduced by Greenberg [3] for the one dimensional case: Ω ⊂ R1, and the
global existence and exponential decay of smooth solutions were proved by
Greenberg [4], Greenberg, Mizel and MacCamy [5] and Yamada [13]. For
N -dimensional case Ω ⊂ RN , the global existence and exponential decay
of small amplitude solutions with small data were proved by Ebihara [2]
and Kawashima and Shibata [7]. For large data in N -dimensional case,
Kobayashi, Pecher and Shibata [8] proved the global existence of smooth
solutions. In [8], however, no decay property of solutions is given for such
solutions.

Recently in [10], the present author has proved that if the mean curvature
H(x) of ∂Ω at x ∈ ∂Ω is nonpositive, then for (u0, u1) ∈ H2 ∩H0

1 ×H0
1 , the
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problem (1.1)–(1.2) admits a unique solution u(t) ∈ W 2,2([0,∞);L2(Ω)) ∩
W 1,∞([0,∞);H0

1 (Ω)) ∩ L∞([0,∞);H2(Ω)), satisfying the decay property

E(t) ≤
{

C0(1 + t)−(N+2)/(N−2) if N ≥ 3
Cq(1 + t)−q for any q > 0 if N = 2,

(1.3)

where

E(t) ≡ 1
2

(
‖ut(t)‖2 +

∫
Ω

∫ |∇u(t)|2

0

σ(η)dηdx

)

and C0, Cq are positive constants depending on ‖u0‖H2 + ‖u1‖H1 . (See also
[6].)

The object of this paper is to give a sharper decay estimate of E(t) for
the case N = 2. That is, we shall prove for the case N = 2,

E(t) ≤ C0e
−λt2/3

(1.4)

with some λ > 0.
For the proof we use a Trudinger type inequality, a sharper form of

Gagliardo-Nirenberg inequality,

‖u‖p ≤ Cp1/2‖u‖2/p‖∇u‖1−2/p, u ∈ H0
1 (Ω)

due to Cazenave [1] and Ogawa [12].
As a related problem we also consider the wave equation with a nonlinear

weak dissipation

utt − Δu + ρ(ut) = 0 in Ω × [0,∞) (1.5)

u(x, 0) = u0(x), ut(x, 0) = u1(x) and u|∂Ω, (1.6)

where Ω is abounded domain in R2, ρ is a nonlinear dissipation like ρ =
ut/

√
1 + |ut|2.

Since limv→±∞ |ρ(v)| < ∞ in our case, the dissipation effect by ρ(ut) is
much weaker compared with the usual one ρ(ut) = ut. So, we call such a
dissipation as ’ weak dissipation ’. Recently in [10], we have investigated
the decay property of the energy E(t) of the problem (1.5)–(1.6), and in
particular, for the case N = 2, we have proved that

E(t) ≤ Cq(1 + t)−q
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for any q > 0, where Cq again denotes a constant depending on ‖u0‖H2 +
‖u1‖H1 and q. By use of a similar technique deriving (1.4) we shall prove a
sharper estimate (1.4) also for the solutions of the problem (1.5)–(1.6).

2. Preliminaries and results. The function spaces we use are all
familiar and we omit the definition of them.

On the nonlinear term σ(|∇u|2) appearing in the equation (1.1), we make
the following hypotheses.
Hypotheses A. σ(·) is a differentiable function on R+ ≡ [0,∞), and satis-
fies the conditions:
(1) σ(v2) ≥ k0(1 + v2)−α, α > 0,
(2) σ(v2) + 2σ′v2 ≥ 0, and

(3) k0σ(v2)v2 ≤
∫ v2

0
σ(η)dη ≤ k1σ(v2)v2, where k0, k1 are positive con-

stants.
Hypotheses B. The mean curvature H(x) at x ∈ ∂Ω is nonpositive with
respect to the outward normal.

Our result for (1.1)–(1.2) reads as follows.

Theorem 1. Let (u0, u1) ∈ H2(Ω) ∩ H0
1 (Ω) × H0

1 (Ω). Then, under the
Hypotheses A and B, the problem (1.1)–(1.2) admits a unique solution u ∈
W 2,2([0,∞);L2(Ω))∩W 1,∞([0,∞);H0

1 )∩L∞([0,∞);H2), satisfying the de-
cay property

E(t) ≤ C0e
−λt1/(1+α)

, (2.1)

where C0 and λ are positive constants depending on ‖u0‖H2 + ‖u1‖H1 .

Concerning the nonlinearity ρ(v) appearing in the equation (1.4) we make
the following assumption:
Hypotheses Ã. ρ(v) is a differentiable function on R, satisfying the condi-
tions
(1) k1|v|2 ≥ ρ(v)v ≥ k0v

2/(1 + v2)α, α > 0, with some k0, k1 > 0, and
(2) ρ′(v) ≥ 0.
Our result for (1.5)–(1.6) reads as follows.

Theorem 2. Let (u0, u1) ∈ H2 ∩H0
1 ×H0

1 . Then, under the Hypotheses Ã,
the problem (1.4)–(1.5) admits a unique solution u(t) ∈ W 1,∞([0,∞);H0

1 ) ∩
L∞([0,∞);H2 ∩ H0

1 ), satisfying

E(t) ≤ C0e
−λt1/(1+α)

, (2.2)
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where C0, λ are positive constants depending on ||u0||H2 + ||u1||H1 .

To prove the theorems we use the following Lemma.

Lemma 1 ([7, 11]). Let Ω is a domain in R2. For u ∈ H0
1 (Ω), it holds that

‖u‖p ≤ (4π)−(2−p)/2p(
p

2
)1/2‖u‖2/p‖∇u‖1−2/p (2.3)

for p ≥ 2, where ‖ · ‖ denotes usual L2 norm in Ω.

In fact, we use the above Lemma 1 in the following form:

Lemma 2. Let Ω be a bounded domain in RN with the C1 class boundary
∂Ω. Then, for u ∈ H1(Ω) we have

‖u‖p ≤ Cp1/2‖u‖2/p
2 ‖u‖1−2/p

H1
, p ≥ 2, (2.4)

for some C > 0 independent of p.

(2.4) easily follows from (2.3). Indeed, it is possible to extend u to a
function ũ ∈ H0

1 (Ω̃) with Ω ⊂ Ω̃ such that ũ = u on Ω and ‖u‖L2(Ω̃) ≤
C‖u‖L2(Ω), ‖ũ‖Ho

1 (Ω̃) ≤ C‖u‖H1(Ω), which together with (2.3) implies (2.4).

3. A difference inequality. For the proof of decay of E(t), we shall
derive an inequality for the difference E(t) − E(t + 1), and we prepare the
following proposition.

Proposition 1. Let φ(t) be a continuous nonnegative nonincreasing func-
tion on [0,∞) satisfying

φ(t) ≤ C0

(
pαD(t)2 + D(t)2−2k/p

)
(3.1)

for any p ≥ 2k, where k, α are some positive numbers and we set D(t)2 =
φ(t) − φ(t + 1). Then, there exist positive constants C1 and λ depending on
φ(0) and C0 such that

φ(t) ≤ C1e
−λt1/(1+α)

, t ≥ 0. (3.2)

Remark. (1) When φ(t) satisfies the inequality φ(t) ≤ c0p
αD(t)2 we have

φ(t) ≤ Cφ(0)e−λpt with a certain λp > 0 tending to 0 as p → ∞, while if
φ(t) satisfies φ(t) ≤ C0D(t)2−k/p, we see

φ(t) ≤ Cp(1 + t)−(2p−k)/k.
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(See [9]). Thus, our inequality (3.1) is very delicate as p → ∞.
(2) If (3.1) holds for any p ≥ p0 with some p0 > 0, then it holds for any

p ≥ 2k with C0 replaced by another constant if necessary.
Proof of Proposition 1. We take K > 0 so large that

φ(t) ≤ Ke−λtθ

, 0 ≤ t ≤ max{2, T0}, (3.3)

where we set θ = 1/(1 + α) (≤ 1) and T0 is a positive constant to be fixed
later.

If the estimate (3.2) with C1 = K was false for any λ, 0 < λ ≤ 1, there
would exist T ≥ 2 such that

φ(t) < Ke−λtθ

for 0 ≤ t < T (3.4)

and
φ(T ) = Ke−λT θ

. (3.5)

Then, taking t = T − 1 in the inequality (3.1), we have

Ke−λT θ ≤ φ(T − 1) ≤ C0{Kpα
(
e−λ(T−1)θ − e−λT θ

)
+ K2−k/p

(
e−λ(T−1)θ − e−λT θ

)1−k/p

}. (3.6)

Here,

e−λ(T−1)θ − e−λT θ

= θλe−λT̃ θ

T̃ θ−1 ≤ λθe−λ(T−1)θ

(T − 1)θ−1,

T − 1 ≤ T̃ ≤ T. Therefore, we have from (3.6) that

1 ≤ C0{pαλθ(T − 1)θ−1 + K1−k/p(λθ)1−k/peλk(T−1)θ/p

× (T − 1)(θ−1)(1−k/p)}eλ(T θ−(T−1)θ

(3.7)

≤ C0{pαλθ(T − 1)θ−1 + K1−k/p(λθ)1−k/peλk(T−1)θ/p}eλθ.

Here, we fix T0 > 0 such that

k

(T0 − 1)(1−θ)/α
≤ 1

2
.



446 MITSUHIRO NAKAO

Since p ≥ 2k is arbitrary, we can take

p = (T − 1)(1−θ)/α.

Then, the inequality (3.7) implies

1 ≤ C0

(
λθ + K1−k/p(λθ)1−k/peλk(T−1)θ−(1−θ)/α

)
eλθ

≤ C0

(
λθ + (K +

√
K)(λθ +

√
λθ)eλk

)
eλθ, (3.8)

where we have used the facts that 0 < k/p ≤ 1/2 and θ − (1 − θ)/α = 0.
The inequality (3.8) is a contradiction if we choose a sufficiently small

λ > 0, and we complete the proof of Proposition 1.

4. Proof of Theorem 1. The existence and uniqueness part is proved
in [9] (see also [5]), and it suffices to prove the decay property (2.1). We
shall derive the following difference inequality for E(t), which implies (2.1)
by Proposition 1.

Proposition 2. Let u(t) be a solution of (1.1)–(1.2) in the class stated in
Theorem 1. Then, it holds that

E(t) ≤ C0

(
pαD(t)2 + D(t)(2p+4α)/(p+4α)

)
(4.1)

for any p ≥ 1, where C0 is a constant depending on ‖u0‖H2 + ‖u1‖H1 , but,
independent of p.

Proof. The proof is given by refining the argument in [9] with N = 2.
Multiplying the equation (1.1) by ut and integrating we have∫ t+1

t

‖∇ut(s)‖2ds = E(t) − E(t + 1) ≡ D(t)2 (4.2)

where we recall

E(t) ≡ 1
2

(
‖ut(t)‖2 +

∫
Ω

∫ |∇u(t)|2

0

σ(η)dηdx

)
.

(‖ · ‖ ≡ ‖ · ‖2.) From (4.2) we see∫ t+1

t

‖ut(s)‖2ds ≤ CD(t)2 (4.3)
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and there exist t1 ∈ [t, t + 1/4], t2 ∈ [t + 3/4, t + 1] such that

‖ut(ti)‖ ≤ 2CD(t), i = 1, 2. (4.4)

In what follows we denote by C any positive constant independent of (u0, u1)
and p.

Next, multiplying the equation by u and integrating over [t1, t2] × Ω, we
have

∫ t2

t1

∫
Ω

σ|∇u|2dx ds = −(ut(t2), u(t2)) + (ut(t1), u(t1))

+
∫ t2

t1

‖ut(s)‖2ds −
∫ t2

t1

∫
Ω

∇ut · ∇udxds. (4.5)

To estimate the right hand side of (4.5) we first derive an estimate for
‖∇u(t)‖1+δ, 0 < δ < 1.

By Hypotheses A,(1),

∫
Ω

|∇u|1+δdx =
∫

Ω

(
σ|∇u|2

)(1+δ)/2
σ−(1+δ)/2dx

≤ C

(∫
Ω

σ|∇u|2dx

)(1+δ)/2 (∫
Ω

(1 + |∇u|)2α(1+δ)/(1−δ)dx

)(1−δ)/2

(4.6)

≤ CF (∇u)(1+δ)/2(1 + ‖∇u‖α(1+δ)
2α(1+δ)/(1−δ)),

where we set
F (∇u) ≡

∫
Ω

σ|∇u|2dx.

We note that by assumption Hypotheses A,(3), F (∇u) is equivalent to

∫
Ω

∫ |∇u|2

0

σ(η)dηdx.

Taking 1 > δ ≥ (1 − α)/(1 + α) and setting p = 2α(1 + δ)/(1 − δ) ≥ 2, we
have by Lemma 2 that

‖∇u‖p ≤ Cp1/2‖∇u‖2/p‖Δu‖1−2/p
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and hence, from (4.6),

‖∇u‖1+δ
1+δ ≤ CF (∇u)(1+δ)/2(1 + pα(1+δ)/2‖∇u‖2α(1+δ)/p‖Δu‖α(1+δ)(1−2/p)).

(4.7)
Further, we use Gagliardo-Nirenberg inequality (cf. Friedmann [4])

‖∇u‖ ≤ C‖∇u‖(1+δ)/2
1+δ ‖Δu‖(1−δ)/2

to get from (4.7) that

‖∇u‖ ≤ CF (∇u)(1+δ)/4(1 + pα(1+δ)/4‖∇u‖α(1+δ)/p‖Δu‖α(1+δ)(p−2)/2p)

× ‖Δu‖(1−δ)/2 (4.8)

≤ CF (∇u)p/2(p+2α)(1+ ppα/2(p+2α)‖∇u‖2α/(p+2α)‖Δu‖(p−2)α/(p+2α))

× ‖Δu‖2α/(p+2α),

where we note that δ = (p− 2α)/(p+2α). To estimate ‖Δu(t)‖ we multiply
the equation (1.1) by −Δu(t) to get (see [10])

d

dt

(
(ut,−Δu) +

1
2
‖Δu(t)‖2

)
+

∫
Ω

(
σ|D2u|2 + 2σ′

∑
j

|∇u · ∇uj |2
)
dx

+
∫

∂Ω

σ|∂u

∂n
|2H(x)dx = ‖∇ut‖2, (4.9)

where D2u =
(

∂2u
∂xi∂xj

)
and uj = ∂u

∂xj
. Thus, by the use of Hypotheses A,(2),

Hypotheses B and the fact∫ ∞

0

‖∇ut(s)‖2ds ≤ E(0) < ∞

(see (4.2)), we have

‖Δu(t)‖2 ≤ C(‖u0‖H2 + ‖u1‖) < ∞. (4.10)

Hereafter, we denote by C0 any constants depending on ‖u0‖H2 + ‖u1‖. It
follows from (4.8) and (4.10) that

‖∇u(t)‖ ≤ C0E(t)p/2(p+2α)
(
1 + pα/2‖∇u‖2α/(p+2α)

)
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and, by Young’s inequality,

‖∇u(t)‖ ≤ C0

(
E(t)p/2(p+2α) + p(p+2α)α/2p

√
E(t)

)
≤ C0

(
E(t)p/2(p+2α) + pα/2

√
E(t)

)
. (4.11)

Let us return to (4.5). Then, by(4.11) just obtained, we see

|
∫ t2

t1

∫
Ω

(∇ut · ∇u)dxds| ≤
(∫ t+1

t

‖∇ut‖2ds

)1/2

sup
t≤s≤t+1

‖∇u(s)‖

≤ C0D(t)(E(t)p/2(p+2α) + pα/2
√

E(t)) ≡ A(t)2.
(4.12)

Similarly,

| (ut(ti), u(ti)) | ≤ C sup
t≤s≤t+1

‖ut(s)‖‖∇u(s)‖ ≤ A(t)2.

Thus, we obtain from (4.5) that∫ t2

t1

∫
Ω

σ|∇u|2dx ds ≤ C(D(t)2 + A(t)2). (4.13)

It follows from (4.2) and (4.13) that

E(t + 1) ≤
∫ t+1

t

E(s)ds ≤ C(D(t)2 + A(t)2)

and consequently,
E(t) ≤ C(D(t)2 + A(t)2). (4.14)

Recalling (4.12), the definition of A(t)2, we can easily derive from (4.14) the
desired inequality

E(t) ≤ C0

(
pαD(t)2 + D(t)(2p+4α)/(p+4α)

)
.

5. Proof of Theorem 2. For the proof of Theorem 2 it suffices to
derive the decay estimate (2.2). Here, the geometrical condition on Ω is not
required. The following proposition together with Proposition 3.1 will give
the desired result.
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Proposition 3. Let u(t) be a solution in the class stated in Theorem 2.
Then we have

E(t) ≤ C0

(
pαD(t)2 + D(t)2p/(p+2α)

)
.

Proof. The proof is given by a similar and simpler way than that of Propo-
sition 4.1, and we sketch it briefly.

Multiplying the equation (1.4) by ut, we have

∫ t+1

t

∫
Ω

ρ(ut)utdx ds = E(t) − E(t + 1) ≡ D(t)2. (5.1)

By Hypotheses Ã, we see, for 0 < δ < 1,

∫ t+1

1

‖ut(s)‖1+δ
1+δ =

∫ t+1

t

∫
Ω

( |ut|2
(1 + |ut|2)α

)(1+δ)/2(1 + |ut|2)−(1+δ)α/2dx ds

≤ C
(∫ t+1

t

∫
Ω

ρ(ut)utdx ds
)(1+δ)/2(1 +

∫ t+1

t

‖ut(s)‖α(1+δ)
2α(1+δ)/(1−δ)ds

)
≤ CD(t)(1+δ)

(
1 + sup

t≤s≤t+1
‖ut(s)‖α(1+δ)

2α(1+δ)/(1−δ)

)
. (5.2)

Here, setting p = 2α(1 + δ)/(1 − δ), we have

‖ut‖p ≤ Cp1/2‖ut‖2/p‖∇ut‖1−2/p ≤ C0p
1/2E(t)1/p, (5.3)

where we have used the fact that

‖utt(t)‖ + ‖∇ut(t)‖ ≤ C0 = C0(‖u0‖H2 , ‖u1‖H1) < ∞,

which follows by multiplying the equation by −Δut. Hence,

∫ t+1

t

‖ut(s)‖1+δ
1+δds ≤ CD(t)1+δ

(
1 + C0p

α(1+δ)/2E(t)α(1+δ)/p
)
≡ A(t)2.

(5.4)
Then, by Gagliardo-Nirenberg inequality, we have

∫ t+1

t

‖ut(s)‖2 ≤ C

∫ t+1

t

‖ut(s)‖1+δ
1+δ‖∇ut(s)‖1−δds ≤ C0A(t)2. (5.5)
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There exist t1 ∈ [t, t + 1/4], t2 ∈ [t + 3/4, t + 1] such that

‖ut(ti)‖ ≤ 2C0A(t), i = 1, 2,

and, multiplying the equation by u, we have

∫ t2

t1

‖∇u(s)‖2ds = −(ut(t2), u(t2)) + (ut(t1), u(t1))

+
∫ t2

t1

‖ut(s)‖2ds −
∫ t2

t1

∫
Ω

ρ(ut)udxds

≤ C0A(t)
√

E(T ) + C0A(t)2 +
(∫ t+1

t

∫
Ω

ρ(ut)utds
)1/2(∫ t+1

t

‖u‖2ds
)1/2

≤ C0A(t)
√

E(t) + C0A(t)2 + CD(t)
√

E(t), (5.6)

where we have used the inequality |ρ(ut)|2 ≤ k1ρ(ut)ut.
It follows from (5.5) and (5.6) that

E(t + 1) ≤ C0A(T )
√

E(T ) + C0A(T )2 + CD(t)
√

E(t)

and

E(t) ≤ C0A(t)
√

E(t) + C0A(t)2 + CD(t)
√

E(t) + D(t)2. (5.7)

This gives
E(t) ≤ C0A(t)2 + CD(T )2

and hence,
E(t) ≤ C0

(
pαD(t)2 + C0D(t)2p/(p+2α)

)
.

The proof of Proposition 3 is complete.
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