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Abstract. Anisotropic Maxwell equations with electric conductivity
are considered. Electromagnetic waves propagate in the exterior of a
bounded connected obstacle with Lipschitz boundary. Our main result
says that we can obtain uniform rates of decay of the total energy as
t → +∞. No special requirements on the geometry of the obstacle are
required. Previous results of this type were only given in the isotropic
case. We use multipliers and properties of an associated evolution cou-
pled system of first order.

1. Introduction

In many situations of practical importance, engineers, physicists and in
general applied technicians must deal with reflections of electromagnetic
waves from a rigid body. Maxwell equations provide the mathematical foun-
dations for analyzing such kinds of problems. In most cases it is enough to
consider the isotropic situation, that is, when the permittivity and perme-
ability are positive constants or scalar-valued functions. In recent years, due
to the enormous amount of research in applied technologies, say for instance
“smart materials” ([1], [30]), crystal optics ([19]) or biomedical technologies
for sensor applications and photodynamic therapy, Maxwell equations are
the fundamental equations governing the interaction of the radiation with
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the tissue ([22], [27], [13]). In those situations the correct models are the
anisotropic Maxwell equations. In this case, the permittivity ε(x) and per-
meability µ(x) are 3 × 3 symmetric matrices, uniformly positive definite.
Analytical results in this case became harder to obtain because it is not pos-
sible to reduce Maxwell equations to a second-order vector wave equation
for which large amounts of techniques and results are available.

This work is devoted to studying the anisotropic Maxwell equations in
the exterior of a bounded connected obstacle with Lipschitz boundary. Our
main result says that we can find uniform rates of decay of the total energy
L(t) associated with the system. The rates of decay are of polynomial type.

The anisotropic Maxwell equations with electric conductivity read as fol-
lows:  ε(x)Et − curl H + σE = 0

µ(x)Ht + curl E = 0 in Ω× (0,+∞)
div (µ(x)H) = 0.

(1.1)

Here, E = E(x, t) and H = H(x, t) denote the electric and magnetic fields,
respectively, ε(x) and µ(x) denote the electric permittivity and magnetic per-
meability respectively. They are 3×3 symmetric matrices, uniformly positive
definite whose entries are real-valued functions and belong to L∞(Ω). The
parameter σ > 0 is called the conductivity constant. Observe that the con-
dition div (εE) = 0 does not appear in (1.1) because it is not in concordance
when we take the divergence of the first equation in (1.1).

We complement (1.1) with boundary conditions

E × η = 0 on ∂Ω× (0,+∞), (1.2)

where η = η(x) denotes the exterior unit normal at x ∈ ∂Ω and × is the
usual vector product in R3.

The initial conditions of (1.1) are

E(x, 0) = E0(x), H(x, 0) = H0(x), x ∈ Ω, (1.3)

where E0 and H0 will belong to standard functional spaces.
There are very few papers in the mathematical literature giving rigorous

results in the anisotropic case for Maxwell equations. Let us mention some
of them. M. M. Eller [6] established an observability inequality also known
as an inverse inequality. By a duality argument this observability inequality
implies exact controllability of an electromagnetic field in Ω by a current
flux on the boundary ∂Ω. V. Vogelsang [29] and T. Okaji [25] both proved
strong unique continuation in the time-harmonic case, M. M. Eller and M.
Yamamoto [8] established a Carleman estimate for the stationary anisotropic
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Maxwell equations. The total energy of system (1.1)-(1.3) is given by

L(t) =
1
2

∫
Ω

{
ε(x)E(x, t) . E(x, t) + µ(x)H(x, t) . H(x, t)

}
dx.

Here the dot . means the usual inner product in R3. Formally, an easy
calculation shows that the derivative of L(t) is given by

dL
dt

(t) = −σ
∫

Ω
|E(x, t)|2 dx ≤ 0, (1.4)

because σ > 0. Thus, the total energy L(t) decreases along trajectories.
In this work we are interested in finding uniform rates of decay for the

total energy L(t) associated with problem (1.1)-(1.3).
The decay rates obtained are of polynomial type. This result is in agree-

ment with known results in the special case when Ω = R3. Related results
can be found in W. Dan and Y. Shibata [3] for the linear wave equation in
an exterior domain, M. Nakao [23], R. Ikehata [15], [16] among many others
and M. V. Ferreira and G. P. Menzala [10], R. C. Charão and R. Ikehata [2]
in the case of elastic waves in exterior domains.

The behavior of L(t) as t → +∞ has been previously considered only
in the isotropic bounded domain case with internal or boundary dissipation
(see [7], [18], [20], [24] and the references therein). For isotropic Maxwell
equations in exterior domains and Silver-Muller boundary conditions, B.
V. Kapitonov [17] obtained the decay of the local energy as t → ∞. M.
V. Ferreira and G. P. Menzala [11] proved the uniform stabilization with
polynomial rates for the second-order energy of the solutions of coupled
systems of electromagnetic-elasticity in an exterior domain.

The paper is organized as follows. Well posedness of the problem is ana-
lyzed in Section 2 using semigroup theory. Uniform decay of the total energy
is established in Section 3 using the multiplier method and properties of an
evolution coupled system of first order.

2. Well posedness

Let Ω be an open set in R3 which is the exterior of an open bounded
connected body in R3 with Lipschitz boundary. Let us describe the func-
tion spaces where we will consider the solution of problem (1.1)-(1.3). We
consider the setM of matrices α(x) such that α(x) =

[
αij(x)

]
3×3

is a sym-
metric and uniformly positive definite matrix; that is, there exist α0 > 0
such that

ξt α(x) ξ ≥ α0 | ξ |2, for every ξ ∈ R3, a.e. on Ω;



564 Cleverson R. da Luz and G. Perla Menzala

here if ξ =

ξ1

ξ2

ξ3

 we denote by ξt =
(
ξ1 ξ2 ξ3

)
and | ξ|2 =

3∑
j=1

ξ2
j . We

assume that all entries αij of α belong to L∞(Ω). Clearly different such
matrices α(x) could have different constants α0.

If α belongs to M we consider the space

L2(Ω;α) =
{
v = (v1, v2, v3) : vi measurable, i = 1, 2, 3 and

3∑
i,j=1

∫
Ω
αi,j(x) vi(x) vj(x) dx < +∞

}
,

with inner product

(v, u)L2(Ω;α) =
3∑

i,j=1

∫
Ω
αi,j(x) vi(x)uj(x) dx =

∫
Ω

[u(x)]t α(x) v(x) dx,

and norm

‖v‖2L2(Ω;α) =
3∑

i,j=1

∫
Ω
αi,j(x) vi(x) vj(x) dx =

∫
Ω

[v(x)]t α(x) v(x) dx.

Clearly, L2(Ω;α) = [L2(Ω)]3 and the norms ‖ . ‖L2(Ω;α) , ‖ . ‖[L2(Ω)]3 are
equivalent in the space [L2(Ω)]3. Throughout this work we shall denote by
‖ . ‖ the norm in [L2(Ω)]3.

Let ε(x) and µ(x) belong to M with constants ε0 and µ0 respectively.
In this section we briefly describe well posedness for problem (1.1)-(1.3)

using semigroup theory. Let X = L2(Ω; ε) × L2(Ω;µ) be the Hilbert space
equipped with the inner product

〈w, v〉X = (w1, v1)L2(Ω; ε) + (w2, v2)L2(Ω;µ),

for every w = (w1, w2) and v = (v1, v2) in X.
We also consider the Hilbert space

H(curl; Ω) =
{
v ∈ [L2(Ω)]3 : curl v ∈ [L2(Ω)]3

}
,

with inner product

〈v, u〉H(curl; Ω) = (v, u)[L2(Ω)]3 + (curl v, curl u)[L2(Ω)]3

=
∫

Ω
v(x) . u(x) dx+

∫
Ω
curl v(x) . curl u(x) dx.

It is well known (see for instance [5]) that the map w −→ η × w
∣∣
∂Ω

from
[C1

0 (Ω̄)]3 into [C1(∂Ω)]3 extends by continuity to a continuous linear map
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from H(curl; Ω) into [H−1/2(∂Ω)]3. This result allows us to consider the
subspace

H0(curl; Ω) =
{
w ∈ H(curl; Ω) : η × w = 0 on ∂Ω

}
.

It follows that H0(curl; Ω) is a closed subspace and [C∞0 (Ω)]3 is dense in
H0(curl; Ω) (see [5]). If v ∈ H0(curl; Ω) and u ∈ H(curl; Ω), then the
following equality is true:∫

Ω
v(x) . curl u(x) dx =

∫
Ω
curl v(x) . u(x) dx.

Now, let us consider the linear unbounded operator A : D(A) ⊂ X → X
with domain

D(A) = H0(curl; Ω)×H(curl; Ω),

given by

Aw = (ε−1 curl w2,−µ−1 curl w1), for every w = (w1, w2) ∈ D(A).
(2.1)

Here, ε−1(x) and µ−1(x) denote the inverses of ε(x) and µ(x) respectively.
The matrices ε and µ are invertible almost everywhere in Ω because they
belong to M, therefore the eigenvalues of ε(x) and µ(x) are positive (see
[28] page 243). Consequently the determinant of each of those matrices is
positive. Hence, ε and µ are invertible almost everywhere in Ω. We can also
prove that the entries of ε−1 and µ−1 belong to L∞(Ω).

Now, we consider the bounded linear operator B : X −→ X given by

Bw = (−σε−1w1, 0), for every w = (w1, w2) ∈ X.

With the above notation, (1.1)-(1.3) can be written as

dU

dt
(t) = (A+B)U(t), U(0) = U0,

where U(t) = (E(t), H(t)) and U0 = (E0, H0). Clearly D(A) is dense in X
since [D(Ω)]3 × [D(Ω)]3 ⊂ D(A). We will show that A is skew adjoint.

Lemma 2.1. Let A∗ the adjoint operator of A. Then D(A) ⊂ D(A∗) and,
for any v ∈ D(A), A∗v = −Av.

Proof. Let v = (v1, v2) ∈ D(A); then for every w = (w1, w2) ∈ D(A) we
have

〈Aw, v〉X =
〈
(ε−1 curl w2,−µ−1 curl w1), (v1, v2)

〉
X

= (ε−1 curl w2, v1)L2(Ω; ε) − (µ−1 curl w1, v2)L2(Ω;µ)
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=
∫

Ω
[ε−1 curl w2]t ε v1 dx−

∫
Ω

[µ−1 curl w1]t µ v2 dx

=
∫

Ω
curl w2 . v1 dx−

∫
Ω
curl w1 . v2 dx,

due to the symmetry of ε and µ . Since v1, w1 ∈ H0(curl; Ω) and v2, w2 ∈
H(curl; Ω), from the above identity it follows that

〈Aw, v〉X =
∫

Ω
w2 . curl v1 dx−

∫
Ω
w1 . curl v2 dx

=
〈
(w1, w2), (−ε−1 curl v2, µ

−1 curl v1)
〉
X
.

Thus, if v ∈ D(A) we can choose g = (−ε−1 curl v2, µ
−1 curl v1) ∈ X and

〈Aw, v〉X = 〈w, g〉X , for every w ∈ D(A).

Therefore, v ∈ D(A∗) and A∗v = −Av, for every v ∈ D(A) which proves
Lemma 2.1. �

Lemma 2.2. D(A∗) ⊂ D(A) and, for any v ∈ D(A∗),

A∗v = −Av.

Proof. Let v ∈ D(A∗). Thus, there exists g = (g1, g2) ∈ X such that

〈Aw, v〉X = 〈w, g〉X , for every w ∈ D(A). (2.2)

In particular, if w = (0, w2) ∈ D(A) with w2 ∈ [D(Ω)]3, from (2.2) we
obtain ∫

Ω
curl w2 . v1 dx =

∫
Ω
w2 . [µg2] dx.

Hence, curl v1 ∈ [L2(Ω)]3. Thus, v1 ∈ H(curl; Ω) and

g2 = µ−1 curl v1 in [L2(Ω)]3.

Next, we consider w = (w1, 0) ∈ D(A) with w1 ∈ [D(Ω)]3. Using (2.2) we
obtain that v2 ∈ H(curl; Ω) and

g1 = −ε−1 curl v2 in [L2(Ω)]3.

In conclusion, we proved that D(A∗) ⊂ H(curl; Ω) × H(curl; Ω) and the
element g ∈ X which satisfies (2.2) is

g = (−ε−1 curl v2, µ
−1 curl v1). (2.3)

To conclude the proof it only remains to show that η × v1 = 0 on ∂Ω.
Again we use identity (2.2) together with (2.3) to obtain∫

Ω
curl w2 . v1 dx =

∫
Ω
w2 . curl v1 dx, for every w2 ∈ H(curl; Ω).
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The above identity implies that v1 ∈ H0(curl; Ω) (see for instance Lemma
1, Chapter IX in [4]). Thus v ∈ D(A) and g = −Av. �

From Lemmas 2.1 and 2.2 it follows that D(A∗) = D(A) and A∗ = −A.
Thus, using Stone’s theorem (see [26]) we conclude that the operator A
given by (2.1) is the infinitesimal generator of a group of unitary operators{
T (t)

}
t∈R of class C0 in X. Since B is linear and bounded, it follows that the

operator A+B with domain D(A+B) = D(A) is the infinitesimal generator
of a group of operators

{
S(t)

}
t∈R of class C0 in X (see for instance Theorem

13.2.2 in [14]). It remains to fulfill the requirement that µH is divergence
free. However, taking the divergence of the second equation in (1.1) we
obtain

div (µHt(t)) + div curl E(t) = 0,
in the sense of distributions. Consequently,

div (µH(t)) = div (µH0),

in the sense of distributions. Thus, it is natural to consider the subspace

Y = {(w, v) ∈ X : div (µ v) = 0}.
The above considerations imply the following.

Theorem 2.1. Let the assumptions at the beginning of this section hold for
Ω, σ, ε and µ. Let (E0, H0) ∈ Y . Then there is a unique mild solution
(E,H) of problem (1.1)-(1.3) which belongs to C([0,∞);Y ). Furthermore, if
(E0, H0) ∈ D(A)∩Y , then the initial-boundary-value problem (1.1)-(1.3) has
a unique strong solution (E,H) ∈ C([0,∞);D(A) ∩ Y ) ∩ C1([0,∞);Y ).

Remark 2.1. In the standard way we could obtain more regular solutions
if we assume that the initial data has more regularity. For example, if
(E0, H0) ∈ D(A2)∩Y we would obtain that the solution of (1.1)-(1.3) belongs
to the space

C([0,∞);D(A2) ∩ Y ) ∩ C1([0,∞);D(A) ∩ Y ) ∩ C2([0,∞);Y ).

3. Stabilization

We consider Ω = R3\Ō, with O an open bounded connected subset of
R3 having Lipschitz boundary ∂O. The matrices ε and µ belong to M
as in the previous section. In order to study the asymptotic behavior of
solutions of problem (1.1)-(1.3), we consider three cases: If (E0, H0) ∈ Y and
µH0 = curl ψ0 for some ψ0 ∈ H0(curl; Ω); the case (E0, H0) ∈ D(A) ∩ Y
without additional assumptions and finally when (E0, H0) ∈ D(A) ∩ Y and
µH0 = curl ψ0, with ψ0 ∈ H0(curl; Ω).
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Remark 3.1. Note that if H0 ∈ H(curl, Ω) is a function different from zero
such that div (µH0) = curl H0 = 0 in Ω, then (E(t), H(t)) = (0, H0) is the
solution of the problem (1.1)-(1.3) in Ω. Obviously, the total energy does not
decay to zero when t→ +∞.

Theorem 3.1. Let (E0, H0) ∈ Y such that µH0 = curl ψ0, for some ψ0 ∈
H0(curl; Ω). Then the mild solution (E,H) of problem (1.1)-(1.3) satisfies

‖E(t)‖2 + ‖H(t)‖2 ≤ CI0(1 + t)−1, for every t ≥ 0,

with C a positive constant which does not depend on the initial data and
I0 = ‖E0‖2 + ‖H0‖2 + ‖ψ0‖2.

The proof of Theorem 3.1 follows from the next two lemmas.

Lemma 3.1. Let (E,H) be the mild solution of system (1.1)-(1.3) with ini-
tial data (E0, H0) ∈ Y . Then, the following identities hold:

a) ‖E(t)‖2L2(Ω;ε) + ‖H(t)‖2L2(Ω;µ) + 2σ
∫ t

0
‖E(s)‖2ds

= ‖E0‖2L2(Ω;ε) + ‖H0‖2L2(Ω;µ),

b) (1 + t)‖E(t)‖2L2(Ω;ε) + (1 + t)‖H(t)‖2L2(Ω;µ) + 2σ
∫ t

0
(1 + s)‖E(s)‖2ds

= ‖E0‖2L2(Ω; ε) + ‖H0‖2L2(Ω;µ) +
∫ t

0
‖E(s)‖2L2(Ω;ε)ds+

∫ t

0
‖H(s)‖2L2(Ω;µ)ds.

Proof. a) follows from identity (1.4). To prove b) we multiply (1.4) by
(1 + t) and integrate by parts.

Lemma 3.2. Assume the hypotheses of Theorem 3.1. Then the estimate∫ ∞
0
‖H(s)‖2L2(Ω;µ) ds ≤ CI0

holds. Here the positive constant C does not depends on the initial data.

Proof. Let (E0, H0) ∈ D(A). We define

W (t) =
∫ t

0
E(s) ds and F (t) =

∫ t

0
H(s) ds;

then {W,F} is a solution of the following system:

εWt − curl F + σW = εE0 in Ω× (0,∞), (3.1)

µFt + curlW = µH0 in Ω× (0,∞), (3.2)

W (x, 0) = 0, F (x, 0) = 0 in Ω, (3.3)
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W × η = 0 on ∂Ω× (0,∞). (3.4)

We find the derivative of equation (3.1) with respect to t and take the inner
product in L2(Ω) with W (t). Afterwards, take the inner product of equation
(3.2) with Ft(t) in L2(Ω). Adding the results we obtain

d

dt
(Wt(t),W (t))L2(Ω; ε) − ‖Wt(t)‖2L2(Ω; ε) + ‖Ft(t)‖2L2(Ω;µ)

+
σ

2
d

dt
‖W (t)‖2 =

d

dt

∫
Ω

[µH0] . F (t) dx.

Since Wt(t) = E(t) and Ft(t) = H(t), integrating over the interval [0, t] the
previous identity we obtain

σ

4
‖W (t)‖2 +

∫ t

0
‖H(s)‖2L2(Ω;µ) ds ≤ CI0 +

∫
Ω

[µH0] . F (t) dx.

Since D(A) is dense in X, the above estimate is valid whenever (E0, H0) ∈ X.
By the hypotheses, there exists ψ0 ∈ H0(curl; Ω) such that µH0 = curl ψ0.
Thus,

σ

4
‖W (t)‖2 +

∫ t

0
‖H(s)‖2L2(Ω;µ) ds ≤ CI0 +

∫
Ω
ψ0 . curl F (t) dx.

Using (3.1), we conclude that

σ

4
‖W (t)‖2 +

∫ t

0
‖H(s)‖2L2(Ω;µ) ds ≤ CI0 +

1
2
‖E(t)‖2L2(Ω; ε) +

σ

8
‖W (t)‖2.

Thus, by Lemma 3.1 we deduce∫ t

0
‖H(s)‖2L2(Ω;µ) ds ≤ CI0 for any t ≥ 0. �

Clearly, the proof of Theorem 3.1 follows from Lemmas 3.1 and 3.2.

Theorem 3.2. Let (E,H) be the strong solution of problem (1.1)-(1.3) for
initial data (E0, H0) ∈ D(A)∩Y . Then, there exists a constant C > 0, which
does not depends on the initial data, such that

‖E(t)‖2 + ‖curl H(t)‖2 ≤ CI1(1 + t)−1, for every t ≥ 0,

‖Et(t)‖2 + ‖Ht(t)‖2 + ‖curl E(t)‖2 ≤ CI1(1 + t)−2, for every t ≥ 0,

where I1 = ‖E0‖2 + ‖curl E0‖2 + ‖H0‖2 + ‖curl H0‖2.

Proof. Initially we assume that (E0, H0) ∈ D(A2). We differentiate system
(1.1)− (1.3) with respect to t to obtain

εEtt − curl Ht + σEt = 0 in Ω× (0,∞), (3.5)
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µHtt + curl Et = 0 in Ω× (0,∞), (3.6)

Et × η = 0 on ∂Ω× (0,∞), (3.7)

Et(0) = E1 = ε−1curl H0 − σε−1E0 in Ω, (3.8)

Ht(0) = H1 = −µ−1curl E0 in Ω. (3.9)

We take the inner product of (3.5) with Et(t) and of (3.6) with Ht(t); inte-
gration over Ω and addition give us

d

dt

{
‖Et(t)‖2L2(Ω; ε) + ‖Ht(t)‖2L2(Ω;µ)

}
+ 2σ‖Et(t)‖2 = 0. (3.10)

Integrating (3.10) over the interval [0, t] it follows that

‖Et(t)‖2L2(Ω; ε) + ‖Ht(t)‖2L2(Ω;µ) + 2σ
∫ t

0
‖Es(s)‖2 ds (3.11)

= ‖E1‖2L2(Ω; ε) + ‖H1‖2L2(Ω;µ).

Multiplying identity (3.10) by (1 + t) and integrating over [0, t] we obtain

(1 + t)‖Et(t)‖2L2(Ω;ε) + (1 + t)‖Ht(t)‖2L2(Ω;µ) + 2σ
∫ t

0
(1 + s)‖Es(s)‖2ds

(3.12)

= ‖E1‖2L2(Ω;ε) + ‖H1‖2L2(Ω;µ) +
∫ t

0
‖Es(s)‖2L2(Ω;ε)ds+

∫ t

0
‖Hs(s)‖2L2(Ω;µ)ds.

We take the inner product of (3.5) with E(t) and of the second equation of
(1.1) with Ht(t); integration over Ω and addition give us
d

dt
(Et(t), E(t))L2(Ω;ε) − ‖Et(t)‖2L2(Ω;ε) + ‖Ht(t)‖2L2(Ω;µ) +

σ

2
d

dt
‖E(t)‖2 = 0.

(3.13)
Let δ > 0. Integrating over the interval [0, t] we obtain∫ t

0
‖Hs(s)‖2L2(Ω;µ) ds+

σ

2
‖E(t)‖2 =

σ

2
‖E0‖2 +

∫ t

0
‖Es(s)‖2L2(Ω; ε) ds

− (Et(t), E(t))L2(Ω; ε) + (E1, E0)L2(Ω; ε) ≤ C‖E0‖2 + ‖E1‖2L2(Ω; ε)

+ C

∫ t

0
‖Es(s)‖2 ds+ δ−1‖Et(t)‖2L2(Ω; ε) + Cδ‖E(t)‖2,

where we use the equivalence of the norms ‖ . ‖L2(Ω;α) and ‖ . ‖. Choosing
δ small enough and using (3.11) we have∫ t

0
‖Hs(s)‖2L2(Ω;µ) ds ≤ CI1.
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Thus, combining the above estimate and identity (3.11) with (3.12) we con-
clude that

(1+t)‖Et(t)‖2L2(Ω; ε) +(1+t)‖Ht(t)‖2L2(Ω;µ) +2σ
∫ t

0
(1+s)‖Es(s)‖2 ds ≤ CI1.

(3.14)
Now, we multiply (3.10) by (1 + t)2 and integrate on [0, t] to have that

(1 + t)2‖Et(t)‖2L2(Ω;ε) + (1 + t)2‖Ht(t)‖2L2(Ω;µ) + 2σ
∫ t

0
(1 + s)2‖Es(s)‖2ds

= ‖E1‖2L2(Ω;ε) + ‖H1‖2L2(Ω;µ) + 2
∫ t

0
(1 + s)‖Es(s)‖2L2(Ω;ε)ds

+ 2
∫ t

0
(1 + s)‖Hs(s)‖2L2(Ω;µ)ds. (3.15)

Multiplying identity (3.13) by (1 + t) and integrating over [0, t] we obtain∫ t

0
(1 + s)‖Hs(s)‖2L2(Ω;µ)ds+

σ

2
(1 + t)‖E(t)‖2

=
σ

2
‖E0‖2 +

σ

2

∫ t

0
‖E(s)‖2ds+

∫ t

0
(1 + s)‖Es(s)‖2L2(Ω;ε)ds

− (1 + t)(Et(t), E(t))L2(Ω;ε) + (E1, E0)L2(Ω;ε) +
∫ t

0
(Es(s), E(s))L2(Ω;ε)ds

≤ CI1 + C

∫ t

0
‖E(s)‖2ds+ C

∫ t

0
(1 + s)‖Es(s)‖2ds

+ δ−1(1 + t)‖Et(t)‖2L2(Ω;ε) + Cδ(1 + t)‖E(t)‖2.

Choosing δ small enough, using (3.14) and Lemma 3.1, we have∫ t

0
(1 + s)‖Hs(s)‖2L2(Ω;µ)ds+

σ

4
(1 + t)‖E(t)‖2 ≤ CI1. (3.16)

Placing information obtained in (3.14) and (3.16) into (3.15) we deduce

(1 + t)2‖Et(t)‖2L2(Ω;ε) + (1 + t)2‖Ht(t)‖2L2(Ω;µ) (3.17)

+ 2σ
∫ t

0
(1 + s)2‖Es(s)‖2ds+ σ(1 + t)‖E(t)‖2 ≤ CI1.

By density arguments the above estimate also holds for initial data (E0, H0)
∈ D(A). The conclusions of Theorem 3.2 follow due to the equivalence of
the norms ‖ . ‖L2(Ω;α) and ‖ . ‖ and using equation (1.1). �
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Theorem 3.3. Let (E,H) be the strong solution of problem (1.1)-(1.3) with
initial data (E0, H0) ∈ D(A) ∩ Y . Suppose µH0 = curl ψ0, with ψ0 ∈
H0(curl; Ω). Then, there exists a constant C > 0, which does not depends
on the initial data, such that

‖H(t)‖2 ≤ CI0(1 + t)−1, for every t ≥ 0,

‖E(t)‖2 + ‖curl H(t)‖2 ≤ CI2(1 + t)−2, for every t ≥ 0,

‖Et(t)‖2 + ‖Ht(t)‖2 + ‖curl E(t)‖2 ≤ CI2(1 + t)−3, for every t ≥ 0,

where I2 = ‖E0‖2 + ‖curl E0‖2 + ‖H0‖2 + ‖curl H0‖2 + ‖ψ0‖2 and I0 is as
in Theorem 3.1.

Proof. Initially we assume that (E0, H0) ∈ D(A2). Multiplying (3.10) by
(1 + t)3 and integrating over [0, t] we obtain

(1 + t)3‖Et(t)‖2L2(Ω;ε) + (1 + t)3‖Ht(t)‖2L2(Ω;µ) + 2σ
∫ t

0
(1 + s)3‖Es(s)‖2ds

= ‖E1‖2L2(Ω;ε) + ‖H1‖2L2(Ω;µ) + 3
∫ t

0
(1 + s)2‖Es(s)‖2L2(Ω;ε)ds

+ 3
∫ t

0
(1 + s)2‖Hs(s)‖2L2(Ω;µ)ds. (3.18)

Multiplying (3.13) by (1 + t)2 and integrating over [0, t] we deduce∫ t

0
(1 + s)2‖Hs(s)‖2L2(Ω;µ)ds+

σ

2
(1 + t)2‖E(t)‖2

=
σ

2
‖E0‖2 + σ

∫ t

0
(1 + s)‖E(s)‖2ds

+
∫ t

0
(1 + s)2‖Es(s)‖2L2(Ω;ε)ds− (1 + t)2(Et(t), E(t))L2(Ω;ε)

+ (E1, E0)L2(Ω;ε) + 2
∫ t

0
(1 + s)(Es(s), E(s))L2(Ω;ε)ds

≤ CI1 + C

∫ t

0
(1 + s)‖E(s)‖2ds+ C

∫ t

0
(1 + s)2‖Es(s)‖2ds

+ δ−1(1 + t)2‖Et(t)‖2L2(Ω;ε) + Cδ(1 + t)2‖E(t)‖2.

Choosing δ small enough and using (3.17) it follows that∫ t

0
(1 + s)2‖Hs(s)‖2L2(Ω;µ)ds+

σ

4
(1 + t)2‖E(t)‖2 (3.19)
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≤ CI1 + C

∫ t

0
(1 + s)‖E(s)‖2ds.

Placing information obtained in (3.17) and (3.19) into (3.18) we deduce

(1 + t)3‖Et(t)‖2L2(Ω;ε) + (1 + t)3‖Ht(t)‖2L2(Ω;µ) + σ(1 + t)2‖E(t)‖2

≤ CI1 + C

∫ t

0
(1 + s)‖E(s)‖2ds.

Using density arguments the above estimate also holds for initial data
(E0, H0) ∈ D(A). Thus, by Lemmas 3.1 and 3.2 we deduce

(1+t)3‖Et(t)‖2L2(Ω;ε)+(1+t)3‖Ht(t)‖2L2(Ω;µ)+σ(1+t)2‖E(t)‖2 ≤ CI2. (3.20)

Using system (1.1), it follows from (3.20) that

(1 + t)2‖curlH(t)‖2 + (1 + t)3‖curlE(t)‖2 ≤ CI2. (3.21)

Theorem 3.3 follows from estimate (3.20), the equivalence of the norms
‖ . ‖L2(Ω;α), ‖ . ‖, estimate (3.21) and Theorem 3.1. �
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