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Abstract. We first prove the existence of periodic solutions to systems
of the form

(φp(u′))′ +
d

dt
(∇F (u)) +∇G(u) = e(t).

We then study the asymptotic behavior of all solutions to such systems,
and give sufficient conditions for uniform ultimate boundedness of solu-
tions.

1. Introduction

Let p > 1, and Φp(x) = 1
p |x|

p for x = (x1, x2, ..., xN ) ∈ RN and φp(x) =
∇Φp(x) = |x|p−2 x. HereN ≥ 1 is an integer, R denotes the real numbers and
|x| = (x2

1+x2
2+...+x2

N )1/2 denotes the Euclidean norm on RN . The function
φp is invertible and it is easily verified that φ−1

p = φq, where 1/p+ 1/q = 1.
In this paper we will consider existence of T−periodic solutions and sta-

bility questions for systems of ordinary differential equations of the form

(φp(u′))′ +
d

dt
(∇F (u)) +∇G(u) = e(t) (1.1)

where F ∈ C2(RN ,R), G ∈ C1(RN ,R), and e : R → RN with appropriate
properties. Equations of the form (1.1) are said to be of Liénard type.
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A solution of (1.1) is a function u defined on an interval J into RN such
that u is C1 on J, φp(u′(t)) is differentiable almost everywhere on J , and u
satisfies (1.1) almost everywhere on J . A T−periodic solution is a solution
u defined on J = R which is also T−periodic; i.e., u(t + T ) = u(t) for all
t ∈ R.

The case that especially interests us is (1.1) with the Hessian matrix
( ∂2F
∂xi∂xj

(x)) = F ′′(x) uniformly positive (or negative) definite. The case of
greatest interest is when F ′′(x) is positive definite, that is, when damping is
present.

A purpose of this paper is to find conditions on F ,G, and e such that
(1.1) has periodic solutions, and there is a bounded region, containing the
periodic solutions, which all solutions eventually enter. Periodic solutions of
p-Laplacian and similar equations and systems have been considered lately
in several papers ([7], [11], [6], [16], and elsewhere). Periodic solutions of p-
Laplacian Liénard equations are considered in [11] and [6], and the relations
to this paper will be described later. Both [11] and [6] apply a continuation
theorem based on degree theory, proved in [7]. We will also apply that
continuation theorem here to prove the existence of periodic solutions. Using
Liapunov’s second method together with the Conley index we then proceed
to investigate long-time behavior of all solutions to (1.1) and show that,
under some natural conditions on G and e, damping implies the ultimate
boundedness of solutions (Theorems 5 and 8). This seems to be the first time
that such questions have been considered for differential equations involving
the p-Laplacian. For the study of periodic solutions to (1.1) with p = 2, see,
e.g., [18], [19], [13], [3], [20]. For the study of stability in systems of ordinary
differential equations, see [5], [18], [19], [13], and [12].

Section 2 contains some preliminaries, including a continuation result from
[7] that we will use to study existence of periodic solutions. In Section 3 we
consider, for simplicity, the existence of T−periodic solutions to the scalar
equation

(φp(u′))′ + cu′ + g(u) = e(t). (1.2)
In Section 4 we consider the existence of T -periodic solutions to (1.1). In
Section 5 we return to scalar equations and study stability aspects for an
equation more general than (1.2). We introduce a Liapunov function and use
it to prove that the solutions are uniformly ultimately bounded. In Section
6 we study long-time behavior in the N -dimensional case with no forcing,
e = 0. We provide sufficient conditions for asymptotic stability of the trivial
solution. In Section 7 we consider long-time behavior of solutions to (1.1)
with small forcing e(t) = µw(t) where w(t) is a bounded function and µ is a
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small positive parameter; indeed, by using the Conley index we are able to
connect the asymptotic stability of the unforced equation with the solution
behavior in the forced case for small µ. It would be interesting to remove
this smallness condition.

2. Preliminaries

For any normed space X with norm |·|X with x0 ∈ X and r > 0 let
B(x0, r) = {x ∈ X : |x− x0|X < r}. Let CT be the Banach space of
continuous functions u : [0, T ] → RN satisfying u(0) = u(T ) with norm
‖u‖0 := max

0≤t≤T
|u(t)|. Let C1

T be the Banach space of continuously differen-

tiable u ∈ CT satisfying u′(0) = u′(T ) with norm ‖u‖1 := ‖u‖0+‖u′‖0 for u ∈
C1
T . We let L2 = L2(0, T ) denote the Banach space of Lebesgue measurable

functions mapping [0, T ] into RN , which are square integrable, with norm
‖u‖L2 := (

∫ T
0 |u(t)|2 dt)1/2. Let s ≥ 1; a function f : [0, T ]×RN ×RN → RN

will be said to be Ls−Carathéodory provided:
(i) For all x, y ∈ RN the function t 7→ f(t, x, y) is Lebesgue measurable.
(ii) For almost all t ∈ [0, T ], the function (x, y) 7→ f(t, x, y) is continuous.
(iii) For every ρ ≥ 0 there is a Lebesgue measurable function αρ ∈ Ls(0, T )

with |f(t, x, y)| ≤ αρ(t) almost everywhere for |x| , |y| ≤ ρ.
Let f : [0, T ]×RN ×RN → RN be Ls−Carathéodory, s ≥ 1, and consider

the boundary-value problem

(φp(u′))′ = f(t, u, u′), (2.1)

u(0) = u(T ), u′(0) = u′(T ). (2.2)
The following theorem is a special case of a continuation theorem proved

in [7].

Theorem 1. Assume Ω is a non-empty open bounded set in C1
T such that

the following conditions hold:
(1) For each λ ∈ (0, 1) the problem

(φp(u′))′ = λf(t, u, u′), u(0) = u(T ), u′(0) = u′(T )

has no solution on ∂Ω.
(2) The equation

f(a) :=
1
T

∫ T

0
f(t, a, 0)dt = 0

has no solution on ∂Ω ∩ RN .
(3) The Brouwer degree dB(f,Ω ∩ RN , 0) 6= 0.
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Then problem (2.1), (2.2) has a solution in Ω.

In Sections 3 and 4 we will apply Theorem 1 to prove the existence of
periodic solutions to (1.2) and (1.1). Let us here note that if f satisfies the
conditions of Theorem 1 and, in addition, f is defined on R×RN ×RN and
T−periodic in the first variable t ∈ R, then any solution to the boundary-
value problem (2.1), (2.2) on [0, T ] may be extended as a T−periodic C1

function on all of the real line R, and this T−periodic extension is a solution
to the differential equation (2.1) on R.

3. Periodic solutions in the scalar case

Here we consider the scalar boundary-value problem

(φp(u′))′ + cu′ + g(u) = e(t), u(0) = u(T ), u′(0) = u′(T ). (3.1)

For e ∈ L1(0, T ) let e = 1
T

∫ T
0 e(t)dt.

Theorem 2. Let p > 1, g ∈ C(R,R), e ∈ L2(0, T ), and c ∈ R. Suppose:
(i) There is a number r ≥ 0 such that (g(x)− e)x ≥ 0 (≤ 0) for |x| ≥ r.
(ii) c 6= 0.

Then (3.1) has a solution.

Proof. Initially we assume the inequality in (i) is strict, so that (g(x)−e)x >
0 (or < 0) for |x| ≥ r. We apply Theorem 1 with f(t, u, u′) = −cu′ − g(u) +
e(t). That is, we consider the family of boundary-value problems

(φp(u′))′ + λcu′ + λg(u) = λe(t), u(0) = u(T ), u′(0) = u′(T ) (3.2)

for λ ∈ (0, 1). Suppose (u, λ) is a solution to (3.2), and multiply the differ-
ential equation by u′ and integrate over [0, T ], to get∫ T

0
(φp(u′))′(t)u′(t)dt+ λc

∫ T

0

∣∣u′(t)∣∣2 dt = λ

∫ T

0
e(t)u′(t)dt (3.3)

since ∫ T

0
g(u(t))u′(t)dt = 0.

Now φp is a homeomorphism of R with inverse φ−1
p = φq where 1

p + 1
q = 1.

Thus φp(x)x = φp(x)φq(φp(x)), and hence, with Φq(x) = 1
q |x|

q so Φ′q = φq,
we have∫ T

0
(φp(u′))′(t)u′(t)dt =

∫ T

0
(φp(u′))′(t)φq(φp(u′(t))dt

= Φq(φp(u′(T )))− Φq(φp(u′(0))) = 0.
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Thus (3.3) becomes

λc

∫ T

0

∣∣u′(t)∣∣2 dt = λ

∫ T

0
e(t)u′(t)dt.

Therefore, since 0 < λ < 1,

|c|
∥∥u′∥∥2

L2 =
∣∣∣ ∫ T

0
e(t)u′(t)dt

∣∣∣ ≤ ‖e‖L2

∥∥u′∥∥
L2

and ∥∥u′∥∥
L2 ≤

1
|c|
‖e‖L2 . (3.4)

Integrating the differential equation in (3.2) over [0, T ] and using periodicity,
we get

1
T

∫ T

0
g(u(t))dt = e.

By the integral mean value theorem there is a z ∈ [0, T ] such that g(u(z)) =
e. Since we are assuming that (g(x)− e)x > 0 for |x| ≥ r, we conclude that
|u(z)| < r. Thus, for t ∈ [0, T ],

u(t) = u(z) +
∫ t

z
u′(s)ds

and hence

|u(t)| < r +
√
T
∥∥u′∥∥

L2 ≤ r +
√
T

|c|
‖e‖L2 = b0 (3.5)

by the Cauchy-Schwarz inequality. We now need a bound on u′(t). Since u
is T−periodic, there is a number w ∈ [0, T ] at which u′(w) = 0. Integrating
(3.2) we get

φp(u′(t))− φp(u′(w)) + λcu(t)− λcu(w) + λ

∫ t

w
g(u(s))ds = λ

∫ t

w
e(s)ds

and

φp(
∣∣u′(t)∣∣) =

∣∣φp(u′(t))∣∣ ≤ 2 |c| ‖u‖0 + TM +
√
T ‖e‖L2

< 2 |c| b0 + TM +
√
T ‖e‖L2 := b1

where M = max
|x|≤b0

|g(x)| . Therefore,∣∣u′(t)∣∣ < φq(b1). (3.6)

By (3.5) and (3.6) we have that, for all λ ∈ (0, 1),

‖u‖1 < b0 + φq(b1) := R0(b0, b1). (3.7)
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Thus if we let Ω = {u ∈ C1
T : ‖u‖1 < R0(b0, b1)}, then (3.2) has no solutions

on ∂Ω for any λ ∈ (0, 1). This verifies condition (1) of Theorem 1. Now let
f(t, u, u′) = −cu′ − g(u) + e(t). We have

f(a) =
1
T

∫ T

0
f(t, a, 0)dt =

1
T

∫ T

0
(−g(a) + e(t))dt = −g(a) + e.

For |a| ≥ R0 > r, we have f(a)a = (−g(a) + e)a < 0 which verifies condition
(2) of Theorem 1, and also shows that dB(f,Ω ∩ R1, 0) = −1, verifying
condition (3) of Theorem 1. This proves the theorem in case (g(x)− e)x > 0
for |x| ≥ r. We now prove it in case the inequality is weak.
Thus suppose that (g(x)− e)x ≥ 0 for |x| ≥ r. Let n ∈ N and define

gn(x) := g(x) +
x

n(1 + |x|)
.

Then

lim
n→∞

gn(x) = g(x)

uniformly on R. We have that (gn(x) − x)x > 0 for |x| ≥ r, so there is a
solution to (3.1) with gn in place of g. That is, there is, for any n ∈ N, a
solution un to

(φp(u′))′ + cu′ + gn(u) = e(t), u(0) = u(T ), u′(0) = u′(T ). (3.8)

We claim there is a constant C1 > 0 such that ‖un‖1 < C1 for all n ∈
N. But the bounds obtained in the first part, under the assumption that
(g(x) − e)x > 0 for |x| ≥ r, must also hold here, so we have from (3.7)
that ‖un‖1 < R0 for all n ∈ N. It follows that the sequence of functions
{un : n ∈ N} is uniformly bounded and equicontinuous on [0, T ]. By the
Arzelà-Ascoli theorem there is a subsequence, which we renumber the same,
which converges uniformly on [0, T ] to a function u0 ∈ CT . We claim u0 is a
solution to (3.1).

For each n ∈ N we have

(φp(u′n))′ + cu′n + gn(un) = e(t), un(0) = un(T ), u′n(0) = u′n(T ).

We may extend e(t) to ẽ(t) and each un(t) to ũn(t), T−periodic on R. Then
each ũn ∈ C1(R) and ũn(t+ T ) = ũn(t), ũ′n(t+ T ) = ũ′n(t) for all t ∈ R and
n ∈ N, and {ũn} converges uniformly on R to ũ0, the T−periodic extension
of u0. Now ũn satisfies

(φp(ũ′n))′ + cũ′n + gn(ũn) = e(t) a.e. on R. (3.9)
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For each n ∈ N there is a number τn ∈ [0, T ] such that ũ′n(τn) = 0, so
integrating (3.9) over (τn, τ) or (τ, τn) gives

φp(ũ′n(τ)) = cũn(τn)− cũn(τ) +
∫ τ

τn

(e(s)− g(ũn(s)))ds

and

ũ′n(τ) = φq

[
cũn(τn)− cũn(τ) +

∫ τ

τn

(e(s)− g(ũn(s)))ds
]

so that

ũn(t) = ũn(0)+
∫ t

0
φq

[
cũn(τn)−cũn(τ)+

∫ τ

τn

(e(s)−g(ũn(s)))ds
]
dτ. (3.10)

Without loss of generality we may assume that τn → τ∗ ∈ [0, T ], so that
ũn(τn) → ũ0(τ∗). Letting n → ∞ in (3.10) and using the uniform conver-
gence of the sequence {ũn} we get, for t ∈ R,

ũ0(t) = ũ0(0) +
∫ t

0
φq

[
cũ0(τ∗)− cũ0(τ) +

∫ τ

τ∗
(e(s)− g(ũ0(s)))ds

]
dτ

and from this it follows that ũ0 is C1and, since ũ0 is also T−periodic, its
continuous derivative ũ′0 must also be T−periodic. It follows that ũ0 re-
stricted to [0, T ] is a solution to (3.1). Or, since ũ0(t) = u0(t) for t ∈ [0, 1],
u0 is a solution to (3.1). This proves the theorem. �

4. Periodic solutions in the system case

Here we consider the boundary-value problem

(φp(u′))′ +
d

dt
(∇F (u)) +∇G(u) = e(t), u(0) = u(T ), u′(0) = u′(T ), (4.1)

where G ∈ C1(RN ,R), F ∈ C2(RN ,R), and e∈L2(0, T ) with e= 1
T

∫ T
0 e(t)dt.

In the following we let F ′′(x) denote the Hessian matrix of F (x).

Theorem 3. Let p > 1, G ∈ C1(RN ,R), F ∈ C2(RN ,R), and e ∈ L2(0, T ).
Suppose:

(i) There is a number r ≥ 0 and sets S and S′ with S∪S′ = {1, 2, .., N}
and S ∩ S′ = ∅ such that ( ∂G∂xi

(x)− ei)xi ≥ 0 for i ∈ S and |xi| ≥ r

and ( ∂G∂xi
(x)− ei)xi ≤ 0 for i ∈ S′ and |xi| ≥ r.

(ii) There is a constant m > 0 such that < F ′′(x)y, y >≥ m |y|2 for all
x, y ∈ RN .

Then (4.1) has a solution.
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Proof. Initially we assume the inequalities in (i) are strict, so that ( ∂G∂xi
(x)−

ei)xi > 0 for i ∈ S, |xi| ≥ r and .( ∂G∂xi
(x)− ei)xi < 0 for i ∈ S′, |xi| ≥ r. We

will apply Theorem 1 with f(t, u, u′) = −F ′′(u)u′ −∇G(u) + e(t). That is,
we consider the family of boundary-value problems

(φp(u′))′ + λF ′′(u)u′ + λ∇G(u) = λe(t), u(0) = u(T ), u′(0) = u′(T ) (4.2)

for λ ∈ (0, 1). Suppose (u, λ) is a solution to (4.2), and take the scalar
product of each term in the differential equation with u′ and integrate over
[0, T ], to get∫ T

0
〈(φp(u′))′(t), u′(t)〉dt+ λ

∫ T

0
〈 d
dt

(∇F (u), u′(t)〉dt = λ

∫ T

0
〈e(t), u′(t)〉dt

(4.3)
since

∫ T
0 〈∇G(u(t)), u′(t)〉dt = 0. Now∫ T

0
〈(φp(u′))′(t), u′(t)〉dt =

∫ T

0

d

dt
Φq(φp(u′))dt

= Φq(φp(u′(T )))− Φq(φp(u′(0))) = 0.

Thus for λ 6= 0 (4.3) becomes∫ T

0
〈 d
dt
∇F (u), u′(t)〉dt =

∫ T

0
〈e(t), u′(t)〉dt

or ∫ T

0
< F ′′(u(t))u′(t), u′(t) >≤ ‖e‖L2

∥∥u′∥∥
L2 (4.4)

implying by assumption (ii) that∫ T

0
m
∣∣u′(t)∣∣2 dt ≤ ‖e‖L2

∥∥u′∥∥
L2

and hence ∥∥u′∥∥
L2 ≤ ‖e‖L2 /m := K1. (4.5)

Integrating the differential equation in (4.2) over [0, T ] and using periodicity,
we get

1
T

∫ T

0
∇G(u(t))dt = e

and thus
1
T

∫ T

0

∂G

∂xi
(u(t))dt = ei
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for i = 1, 2, ...N . By the integral mean value theorem there is a zi ∈ [0, T ]
such that ∂G

∂xi
(u(zi)) = ei. Since we are assuming that ( ∂G∂xi

(x) − ei)xi 6= 0
for |xi| ≥ r, we conclude that |ui(zi)| < r. Thus, for t ∈ [0, T ],

ui(t) = ui(zi) +
∫ t

zi

u′i(s)ds

and hence

|ui(t)| < r +
√
T
∥∥u′i∥∥L2 ≤ r +

√
T
∥∥u′∥∥

L2 ≤ r +
√
TK1 (4.6)

for i = 1, 2, ..., N and t ∈ [0, T ]. It now follows that, for t ∈ [0, T ],

|u(t)| < N(r +
√
TK1) := b0

and ‖u‖0 < b0. We now need a bound on u′(t). First of all, there is a point
w ∈ [0, T ] such that |u′(w)| ≤ K1/

√
T . This follows from (4.5), since if

|u′(t)| > K1/
√
T for all t ∈ [0, T ], then∥∥u′∥∥2

L2 =
∫ T

0

∣∣u′(t)∣∣2 dt > K2
1

which contradicts (4.5).
Integrating (4.2) from w to t we get

φp(u′(t))− φp(u′(w)) + λ∇F (u(t))− λ∇F (u(w)) + λ

∫ t

w
∇G(u(s))ds

= λ

∫ t

w
e(s)ds

and ∣∣φp(u′(t))∣∣ ≤ B0 + 2 |F (u(t))|+ TM +
√
T ‖e‖L2

< B0 + 2C0 + TM +
√
T ‖e‖L2 := b1

where

B0 = max
|x|≤K1/

√
T
|φp(x)| , C0 = max

|x|≤b0
|F (x)| , and M = max

|x|≤b0
|∇G(x)| .

Therefore ∣∣u′(t)∣∣ < bq−1
1 . (4.7)

By (4.6) and (4.7) we have that for all λ ∈ (0, 1),

‖u‖1 < b0 + bq−1
1 := R0. (4.8)
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Thus if we let Ω = {u ∈ C1
T : ‖u‖1 < R0}, then (4.2) has no solutions on ∂Ω

for any λ ∈ (0, 1). This verifies condition (1) of Theorem 1. Now since

f(t, u, u′) = − d

dt
∇F (u)−∇G(u) + e(t),

we have

f(a) =
1
T

∫ T

0
f(t, a, 0)dt =

1
T

∫ T

0
(−∇G(a) + e(t))dt = −∇G(a) + e.

If a = (a1, ..., aN ) and f(a) = 0, then

−∂Gi
∂xi

(a) + ei = 0

and therefore, by hypothesis,
|ai| < r (4.9)

for i = 1, 2, ..., N . Let Λ = [−r, r] × [−r, r] × ... × [−r, r] (N factors). If
x ∈ Λ then |x| ≤ Nr so that Λ ⊂ Ω ∩ RN . By (4.9) the equation f(a) = 0
has no solutions in Ω∩RN\Λ so by the excision property of Brouwer degree

d(f,Ω, 0) = d(f,Λ, 0). (4.10)

Let f = (f1, f2, ...fN ) and Ei = {x ∈ Λ : xi = r} and E′i = {x ∈ Λ : xi =
−r}. By hypothesis, if x ∈ Ei and x′ ∈ E′i, then

f i(x)f i(x
′) = (−∂G

∂xi
(x) + ei)(−

∂G

∂xi
(x′) + ei) < 0.

It follows from (4.10) and Miranda’s theorem (cf. [8]) that

dB(f,Λ, 0) = dB(f,Ω ∩ RN , 0) = ±1

verifying condition (3) of Theorem 1. This proves the theorem in case the
inequalities in (i) are strict. The proof in the case of weak inequalities now
follows by a limit argument, as in the scalar case. �

The proofs of Theorems 2 and 3 contain ideas which go back at least to
Faure [2], who observed that in some scalar cases with p = 2, c 6= 0 in (1.2)
may be used to obtain an a priori L2 bound on u′. This idea was used again
for some systems in [13], section 5.6. Peng and Xu [11] use the same idea
for some nonlinear Liénard systems related to (1.1) but with φp defined dif-
ferently from here, letting φp(x) := (|x1|p−2 x1, ..., |xN |p−2 xN ).They require
1 < p < 2 in one of their results, and assume growth conditions on G(x) or
∇G(x) in all their results. Liu [6] considers the Liénard p-Laplacian equation
(1.1) in the scalar case N = 1, under the assumption that g(x) = ∇G(x)
is decreasing; the same assumption is made in several recent papers. This
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is quite different from here. In this paper we are interested in finding con-
ditions for periodic solutions and for some kind of stability or attracting
region, which is not to be expected if g(x) is decreasing. We turn to these
questions in the next section.

5. Liapunov function for the scalar case

Let p > 1, g, f ∈ C(R,R), e ∈ L∞(R,R)∩C(R,R), and c ∈ R with c > 0.
Suppose:

(i0) g(x)→∞ as x→∞ and g(x)→ −∞ as x→ −∞.
(ii0) f(x) ≥ c > 0 for all x ∈ R.
(iii0) There exists K > 0 such that |g(x)| ≥ Kf(x) for all |x| sufficiently

large.
In this section we construct a Liapunov function to show that under the

above conditions the solutions to

(φp(u′))′ + f(u)u′ + g(u) = e(t) (5.1)

are uniformly ultimately bounded (see the definition below). Set

u′ = φq(v), v′ = −f(u)φq(v)− g(u) + e(t), (5.2)

The system (5.2) is equivalent to (5.1).

Definition 4. The solutions to (5.2) are said to be uniformly ultimately
bounded provided there exists a B > 0, and corresponding to any α > 0, there
exists a T (α) > 0 such that for any t0 ∈ R, if (u, v) = (u(t), v(t), t ≥ t0, is
a solution to (5.2), then |u(t0)|+ |v(t0)| < α implies that |u(t)|+ |v(t)| < B
for all t ≥ t0 + T (α).

If the solutions to (5.2) are uniformly ultimately bounded then the equiv-
alence of (5.2) and (5.1) implies the existence of a constant B′, and, cor-
responding to any α > 0, there exists T ′(α) such that, for any t0 ∈ R, if
u = u(t), t ≥ t0, is a solution to (5.1) then |u(t0)|+ |u′(t0)| < α implies that
|u(t)| + |u′(t)| < B′ for all t ≥ t0 + T ′(α). In this case we say the solutions
to (5.1) are uniformly ultimately bounded. We shall prove the following.

Theorem 5. Let p > 1, g, f ∈ C(R,R), e ∈ L∞(R,R)∩C(R,R), and c > 0
satisfy conditions (i0)-(iii0) listed above. Then the solutions to (5.1) are
uniformly ultimately bounded.

We will construct a Liapunov function S(u, v) (see [18], [19]) which will be
used to show that the solutions to (5.2) are uniformly ultimately bounded.
We will apply a general result due to Yoshizawa ([18],[19]). We need the fact
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that the Liapunov function is continuous and locally Lipshitz. There must
also be an R0 ≥ 0 such that S(u, v) satisfies

(PA) There exists an increasing, positive, continuous function A(r), with
A(r)→∞ as r →∞ such that

S(u, v) ≤ A(|u|+ |v|) for all |u|+ |v| ≥ R0.

(PB) There exists an increasing, nonnegative, continuous function B(r),
with B(r)→∞ as r →∞ such that

S(u, v) ≥ B(|u|+ |v|) for all |u|+ |v| ≥ R0.

(PC) There exists a positive continuous function C(r) such that

d

dt
S(u, v) ≤ −C(|u|+ |v|). (5.3)

Proof. To construct S we first modify the functions Φq and G so the mod-
ifications are bounded below by linear functions. First, choose a and b so
that

(10) a > 0 is such that

2|φq(y)|||e||∞ − c|φq(y)|2 < −K for all |y| ≥ a;

(20) b > 0 is such that

b ≥ 4Ka
||e||∞

, ||e||∞
(φq(a)

K
+ 2
)

+ 1 < g(x) for all |x| ≥ b.

Now let r1 > 0 such that Φq(v)− 2K |v| ≥ |v| whenever |v| ≥ r1 and let

m1 = min
|v|≤r1

(Φq(v)− 2K |v|).

We define Φ̃q(v) := Φq(v) + |m1|+ r1. It is easy to check that

Φ̃q(v)− 2K |v| ≥ |v| (5.4)

holds for all v ∈ R.
Now G(u) may be negative in a bounded region, but since

G(u) =
∫ u

0
g(s)ds

and g(u)→ ±∞ as u→ ±∞ it follows that G(u)/ |u| → ∞ as |u| → ∞. Let
r2 > 0 such that G(u)− 4Ka

b |u| ≥ |u| whenever |u| ≥ r2,

m2 = min
|u|≤r2

(G(u)− 4Ka
b
|u|)
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and define G̃(u) := G(u)+|m2|+r2+4Ka. It is easy to check that G̃(u) ≥ |u|
for all u ∈ R.

We define

S(u, v) :=



Φ̃q(v) + G̃(u), if v ≥ a,
Φ̃q(v) + G̃(u)− 2Kv + 2Ka, if |v| ≤ a, u ≤ −b,
Φ̃q(v) + G̃(u) + 4Ka, if v ≤ −a, u ≤ −b,
Φ̃q(v) + G̃(u)− 4Ka

b u, if v ≤ −a, |u| ≤ b,
Φ̃q(v) + G̃(u)− 4Ka, if v ≤ −a, u ≥ b,
Φ̃q(v) + G̃(u) + 2Kv − 2Ka, if |v| ≤ a, u ≥ b,

where as before G(s) =
∫ s
0 g(t)dt and Φq(s) =

∫ s
0 φq(t)dt.

It can now be readily verified that conditions PA and PB hold. We will
now verify that PC holds.

We find d
dtS(u(t), v(t)):

d

dt
S(u(t), v(t)) =

φq(v)
(
e(t)− f(u)φq(v)

)
, if v > a,

φq(v)
(
e(t)− f(u)φq(v)

)
−2K

(
e(t)− g(u)− f(u)φq(v)

)
, if |v| < a, u < −b,

φq(v)
(
e(t)− f(u)φq(v)

)
, if v < −a, u < −b,

φq(v)
(
e(t)− f(u)φq(v)

)
− 4Ka

b φq(v), if v < −a, |u| < b,
φq(v)

(
e(t)− f(u)φq(v)

)
, if v < −a, u > b,

φq(v)
(
e(t)− f(u)φq(v)

)
+2K

(
e(t)− g(u)− f(u)φq(v)

)
, if |v| < a, u > b.

On the boundary points between the six regions, the time derivative of S
must be calculated using the limit supremum of the difference quotient (see
[18],[19]). However at such points this limit will simply be the larger of the
limits of the derivative as found above, the limits taken from each side of
the boundary line, and the inequalities we calculate below will still hold.

By (ii0) and (10) it holds that whenever v ≥ a and u ∈ R, then, using the
fact that f(u) ≥ c > 0,

d

dt
S(u(t), v(t)) = φq(v)

(
e(t)− f(u)φq(v)

)
≤ ||e||∞φq(|v|)− c(φq(|v|))2 < −K.

Also, for |v| < a, u < −b, we have by (iii0) and (20) that
d

dt
S(u(t), v(t)) = φq(v)

(
e(t)− f(u)φq(v)

)
− 2K

(
e(t)− g(u)− f(u)φq(v)

)
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= −f(u)
[
φq(v)−K

]2
+K2f(u) +Ke(t)

(φq(v)
K
− 2
)

+ 2Kg(u)

≤ K
(
Kf(u) + g(u) + ||e||∞

(φq(a)
K

+ 2
)

+ g(u)
)

≤ K||e||∞
(φq(a)

K
+ 2
)

+ g(u)
)
< K · (−1) = −K.

For v < −a, |u| < b we have that
d

dt
S(u(t), v(t)) = φq(v)

(
e(t)− f(u)φq(v)

)
− 4Ka

b
φq(v)

≤
(4Ka

b
+ ||e||∞

)
φq(|v|)− f(u)(φq(|v|))2,

≤ 2||e||∞φq(|v|)− c(φq(|v|))2 < −K.
Finally, for |v| < a, u > b we have that
d

dt
S(u(t), v(t)) = φq(v)

(
e(t)− f(u)φq(v)

)
+ 2K

(
e(t)− g(u)− f(u)φq(v)

)
= −f(u)

[
φq(v) +K

]2
+K2f(u) +Ke(t)

(φq(v)
K

+ 2
)
− 2Kg(u)

≤ K
(
Kf(u)− g(u) + ||e||∞

(φq(a)
K

+ 2
)
− g(u)

)
< −K.

The choice of a and b and the calculations above show that d
dtS(u(t), v(t)) <

−K and thus S has the property PC with C(r) = −K
It now follows from a theorem of Yoshizawa (Theorem 7 in [18], also stated

as Theorem 8.10 in [19]) that the solutions of (5.2) are uniformly ultimately
bounded. It follows that the solutions to (5.1) are also uniformly ultimately
bounded. We have proved the theorem. �

6. Stability of the trivial solution in higher dimensions

We now consider long-term behavior for the system case,

(φp(u′))′ +
d

dt
(∇F (u)) +∇G(u) = 0, (6.1)

where p > 1, G ∈ C1(RN ,R), F ∈ C2(RN ,R). We are interested in condi-
tions that imply asymptotic stability of the trivial solution, partly in prepa-
ration for studying uniform ultimate boundedness in the forced equation.
With this in mind, we make assumptions similar to those in Theorem 3.
To be precise, we assume G(x) > 0 for all x ∈ RN\{0}, G(x) → ∞ as
|x| → ∞, G(0) = 0, ∇G(x) = 0 if and only if x = 0, and ∇F (x) = 0 if
and only if x = 0. In addition, assume there is a constant m > 0 such that
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< F ′′(x)y, y >≥ m |y|2 for all x, y ∈ RN . We may rewrite (6.1) equivalently
as

u′ = φq(v), v′ = − d

dt
(∇F (u))−∇G(u),

since φ−1
p (x) = φq(x), where 1

p + 1
q = 1. As before, for x ∈ RN let

Φq(x) =
1
q
|x|q .

Define S = S(u, v) by S(u, v) = Φq(v) + G(u). Note that if S(u, v) > 0 for
all (u, v) 6= (0, 0). We have for the derivative of S along solutions:

d

dt
S =φq(v) · v′ +∇G(u) · u′=φq(v) · (−F ′′(u)u′ −∇G(u)) +∇G(u) · φq(v)

= −φq(v) · F ′′(u)φq(v) ≤ −m |φq(v)|2 ≤ 0.

Let R > 0 and ΩR be the set in RN ×RN where S(u, v) < R. It is clear that
ΩR is bounded and S(u, v) > 0 for (u, v) ∈ ΩR\{(0, 0)}. We have seen that
d
dtS ≤ 0. Let A be the set of all points in ΩR where d

dtS(u, v) = 0, and let
E be the largest invariant set in A. LaSalle’s invariance theorem states that
every solution (u(t), v(t)) ∈ ΩR tends to E as t→∞ (see, e.g., [5], Theorem
VI, page 58). Now A consists of those points in ΩR satisfying φq(v) = 0
so that v = 0. The solutions in the largest invariant set in A must satisfy
u′ = 0, so u = u0 is constant, and 0 = v′ = −∇F (u0). Thus ∇F (u0) = 0
and hence u0 = 0. Thus E consists of only the origin (0, 0). It follows that
the origin is globally asymptotically stable. We have proved the following.

Theorem 6. Let p > 1, G ∈ C1(RN ,R), F ∈ C2(RN ,R). Assume G(x) > 0,
for all x ∈ RN\{0}, G(0) = 0, G(x) → ∞ as |x| → ∞, and ∇F (x) = 0
if and only if x = 0. Also assume there is a constant m > 0 such that
< F ′′(x)y, y >≥ m |y|2 for all x, y ∈ RN . Then the origin is a globally
asymptotically stable solution to (6.1).

7. Conley index and ultimate boundedness

In this section we will consider the long-time behavior of the non-autono-
mous differential equation

(φp(u′))′ +
d

dt
(∇F (u)) +∇G(u) = µw(t), (7.1)

where p > 1, G ∈ C1(RN ,R), F ∈ C2(RN ,R), w ∈ C(R,RN ) and µ ∈ [0, 1].
Assume that F and G satisfy the conditions in Theorem 6. We assume
that w is bounded; i.e., there is a constant M ≥ 0 such that for all t ∈ R,
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|w(t)| ≤ M. We will also assume that w is uniformly continuous on R.
Topological methods will be used to study asymptotic behavior of solutions
to (7.1). In particular, we will apply Conley index [1], [14],[9] to associated
skew product flows [15] to study (7.1). We first apply Conley index ideas to
the unforced differential system (6.1). We will continue to assume all of the
conditions on F and G made in Theorem 6. We prove that the solutions are
ultimately bounded.

Definition 7. The solutions to (7.1) are ultimately bounded for bound B if
there exists a B > 0 and a T > 0 such that, for every solution (u(t), v(t)) =
(u(t; t0, u0, v0), v(t; t0, u0, v0)) of (7.1), |u(t)|+ |v(t)| < B for all t ≥ t0 + T ,
where B is independent of the particular solution while T may depend on
each solution.

We shall prove the following theorem.

Theorem 8. Let p > 1, G ∈ C1(RN ,R), F ∈ C2(RN ,R), satisfy the condi-
tions assumed in Theorem 6. Let h ∈ C(R,RN )∩L∞(R,RN ) and µ ∈ [0, 1].
Further assume that w is uniformly continuous on R. Then there is a B > 0
and µ0 > 0 such that for all 0 ≤ µ < µ0 solutions to (7.1) are ultimately
bounded for bound B. If in addition the function w is periodic then the so-
lutions are equiultimately bounded for bound B, for all 0 ≤ µ < µ0.

Proof. We first apply Conley index methods to the autonomous system
(6.1). The system of differential equations (6.1) defines a dynamical system
on RN×RN which we will identify with R2N , writing either (u, v) ∈ RN×RN

or (u, v) = x ∈ R2N as may add to clarity. Thus let x = (u, v) and

W (x) := (φq(v),−F ′′(u)φq(v)−∇G(u)).

The initial-value problem

x′(t) = W (x(t)), x(0) = x0 (7.2)

defines a local dynamical system π̃ on R2N . The equilibrium x = 0 is
asymptotically stable, and has therefore Conley index Σ0, the two-point
pointed space; see Conley [1] or [14]. We should like to define a critical point
at infinity, which should be a repeller. However, it is not clear that solutions
extend in backward time all the way to t = −∞. We thus modify (7.2) to

x′(t) =
W (x(t))

1 + |W (x(t))|
, x(0) = x0 (7.3)

which has the same orbits as does (7.2), but solutions are defined for all
time. Let π denote the dynamical system defined by (7.3). Let R2N

∗ be
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the one-point compactification of R2N , which consists of R2N ∪ {∞}, with
U ⊂ R2N

∗ an open set if either (i) U is an open subset of R2N , or (ii),
R2N
∗ \U is a compact subset of R2N . We define the flow π∗ on R2N

∗ by (i)
π∗(x, t) = π(x, t) if x ∈ R2N , and (ii) π(∞, t) =∞ (see [4], page 54).

There are two equilibrium points for π∗, the origin 0 and the point ∞.
The origin 0 is an attractor and ∞ is a repeller, and the Conley indices
are h(π∗, 0) = Σ0 and h(π∗,∞) = Σ2N , the pointed 2N -sphere. If x ∈
R2N
∗ \{0,∞} then the orbit through x connects the points ∞ and 0. The

pair (0,∞) is said to be an attractor-repeller decomposition of R2N
∗ (see [1],

[9], [10]).
We now consider the non-autonomous differential equation (7.1) and prove

Theorem 8. First rewrite the system as before,

u′ = φq(v), v′ = − d

dt
(∇F (u))−∇G(u) + µw(t). (7.4)

We will associate (7.4) with a skew product flow, as we now explain. Let
g ∈ C(R × Rm,Rm) and assume that g satisfies a uniform local Lipshitz
condition; that is, for each r > 0 there is a K(r) such that

|g(t, x)− g(t, y)| ≤ K(r) |x− y|

holds for x, y ∈ B(0, r) and t ∈ R. Assume also that g(t, x) is bounded and
uniformly continuous on sets of the form R × K, K compact in Rm. We
let, for τ ∈ R, gτ ∈ CR × Rm,Rm) be defined by gτ (t, x) = g(τ + t, x).
Let Cc(R × Rm,Rm) denote C(R × Rm,Rm) with the topology of uniform
convergence on compact sets and and let H(g) denote the closure in Cc(R×
Rm,Rm) of the set of time translates {gτ : τ ∈ R}. H(g) is called the hull
of g. The hull H(g) is compact in Cc(R × Rm,Rm). If g∗ ∈ H(g) then the
solutions to initial-value problems

x′(t) = g∗(t, x(t)), x(0) = x0 (7.5)

are unique, for all τ ∈ R and x0 ∈ Rm. Let x(t;x0, g
∗) denote the solution

to (7.5). We may define a local dynamical system or flow π on Rm ×H(g)
by

π((x0, g
∗), t) := (u(t;x0, g

∗), g∗t )) (7.6)

(see [15]). The flow β : H(g) × R → H(g) defined by β(g∗, t) = g∗t is called
the Bebutov flow on H(g). The skew product flow enables us to study the
nonautonomous system as a dynamical system in a meaningful way. It is to
be noted that H(g) is an isolated compact invariant set for the flow β. Its
only isolating block is itself, and it has an empty exit set. Thus its Conley
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index h(β,H(g)) is (homotopic to) the pointed space [H(g), Z] := H(g)0

where Z is a point disjoint from H(g).
We have assumed that w = w(t) is bounded and uniformly continuous on

R. It follows that the hull of w, H(w), is compact in the space of bounded
continuous functions with the sup norm. Let µ ∈ [0, 1]. We consider the
family of initial-value problems

u′ = φq(v), v′ = −F ′′(u)φq(v)−∇G(u) + µw∗(t) (7.7)

u(0) = u0, v(0) = v0,

where µ ∈ [0, 1] and w∗ ∈ H(w). Let x = (u, v) and

F ∗(x, t, µ) := (φq(v), F ′′(u)φq(v)−∇G(u) + µw∗(t)).

We define a flow πµ on RN × RN ×H(w) as follows:

πµ((x0, w
∗), t) = ((x(t;x0, µ), w∗t )

where x0 = (u0, v0) are the initial conditions. It is not hard to show that
πµ is continuous in µ (see [1], [14]). Notice that when µ = 0 we have the
product flow on R2N ×H(p) given by

π0((x0, w
∗), t) = ((x(t;x0, 0), w∗t )

where x(t;x0, 0) is a solution to the autonomous system (7.2), which obtains
when µ = 0 in (7.7). We see that π0 = π̃ × β, where π̃ is the flow defined
above on R2N and β is the Bebutov flow on H(w). We extend the flows πµ
to flows π∗µ on R2N

∗ ×H(w) analogously to what we did with π̃ in the µ = 0
case. We now analyze the flows π∗µ. First of all, π∗0 = π∗ × β which has the
two isolated invariant sets {0} ×H(w) and {∞} ×H(w). Now h(π∗0, {0} ×
H(w))is homotopic to the smash product h(π∗, {0}) ∧ h(β,H(w)) = Σ0 ∧
H(w)0 = H(w)0. It follows that {0} × H(w) is an attractor. The set
{∞} × H(w) is the associated repeller with index h(π∗0, {∞} × H(w)) =
Σ2N ∧H(w)0. The sets {0} ×H(w) and {∞} ×H(w) are attractor-repeller
pairs and form an attractor-repeller decomposition of the space R2N

∗ ×H(w)
for the flow π∗0. Now attractor-repeller decompositions continue [10], so
there are disjoint compact isolating neighborhoods N0, N∞ of {0} × H(w)
and {∞} ×H(w), respectively, such that for 0 ≤ µ < µ0 there are maximal
invariant sets I0

µ ⊂ N0 and I∞µ ⊂ N∞ which form attractor-repeller pair
decompositions of R2N

∗ ×H(p) for π∗µ. Thus the orbit through every point
(x0, w0) ∈ R2N

∗ × H(w)\{{0} × H(w), {∞} × H(w)} eventually enters N0

and approaches I0
µ. The neighborhood N0 is necessarily of the form N0 =

N00 × H(w) where N00 is a bounded region in R2N with N00 ⊂ B(0, R1)
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for some R1 > 0. Thus we can conclude that for any x0 ∈ R2N and 0 ≤
µ < µ0 the solution x(t;x0, µw) = (u(t), v(t)) to (7.4) with (u(0), v(0)) =
(u0, v0) = x0 eventually enters B(0, R1) and stays there. This proves the
first part of Theorem 8. Now assume that w is a periodic function. A
theorem of Yoshizawa implies that if initial-value problems for (7.4) are
unique, w is periodic, and solutions are ultimately bounded, then solutions
are equiultimately bounded ([18], page 85 and [19], Theorem 8.5). This
completes the proof of Theorem 8 �

Earlier in Section 4 we provided sufficient conditions on F and G that
guarantee a periodic solution exists for (7.1) when the forcing is periodic. If
w = w(t) is almost-periodic the preceding result may be applied to prove the
existence of a solution defined and bounded on R. We have the following.

Theorem 9. Suppose the conditions on F and G assumed in Theorem 8
hold. Let w = w(t) be an almost-periodic function. Let µ0 > 0 be the
number guaranteed by Theorem 8. Then for each µ ∈ [0, µ0) the system (7.1)
has a full bounded solution (u0(t), v0(t)) with (u0(t), v0(t)) ∈ B(0, R1) for all
t ∈ R.

Proof. Let X(t) := (u(t), v(t)) be any solution of (7.1). There is a time
T ≥ 0 such that X(t) ∈ B(0, R1) for all t ≥ T . Now because w = w(t)
is almost periodic, there is a sequence {tn} with tn → ∞ as n → ∞ such
that wn(t) := w(t + tn) → w(t) as n → ∞, uniformly on R. Let Xn(t) :=
(un(t), vn(t)) = (u(t+ tn), v(t+ tn)). Then we have

u′n = φq(vn), v′n = −F ′′(un)φq(vn)−∇G(un) + µwn(t)

and |un(t)|2 + |vn(t)|2 ≤ R2
1 for t ≥ T − tn. From the differential equation

we have that the (u′n(t), v′n(t)) are also uniformly bounded for t ≥ T − tn.
It follows from standard limiting arguments that there is a subsequence of
{(un, vn)} uniformly convergent on compact sets to a function (u0(t), v0(t))
with |u0(t)|2 + |v0(t)|2 ≤ R2

1 for t ∈ R and for all t ∈ R

u′0 = φq(v0), v′0 = −F ′′(u0)φq(v0)−∇G(u0) + µw(t).

This proves the theorem. �
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