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Abstract. For every 2 < p < 3, we show that u ∈ W 1,p(B3;S2)

can be strongly approximated by maps in C∞(B3;S2) if, and only if,
the distributional Jacobian of u vanishes identically. This result was
originally proved by Bethuel-Coron-Demengel-Hélein, but we present a
different strategy which is motivated by the W 2,p-case.

1. Introduction

Let B3 be the unit ball and S2 be the unit sphere of R3. Given 1 ≤ p <∞,
consider

W 1,p(B3;S2) =
{
u ∈W 1,p(B3; R3) : u(x) ∈ S2 a.e.

}
. (1.1)

Although W 1,p(B3;S2) is not a vector space, it inherits the usual distance
from W 1,p(B3; R3); namely,

‖u− v‖W 1,p = ‖u− v‖Lp + ‖∇u−∇v‖Lp ∀u, v ∈W 1,p(B3;S2). (1.2)

Using standard extension and convolution arguments, it is easy to see that
every u ∈W 1,p(B3;S2) can be approximated by maps ϕ ∈ C∞(B3; R3) with
respect to the W 1,p-distance. If we assume in addition that p > 3, then by
Morrey’s estimates such approximations converge uniformly to u, and we can
project this sequence back to S2 to obtain an approximation in C∞(B3;S2).
Although Morrey’s estimates are no longer true in the critical case p = 3,
this argument still works as a consequence of the theory of vanishing mean
oscillation (VMO) functions.

Theorem 1.1 (Schoen-Uhlenbeck [10]). Let p ≥ 3. Then C∞(B3;S2) is
dense in W 1,p(B3;S2).

The reader may wonder what happens if 1 ≤ p < 3. It turns out that such
a conclusion is still true if 1 ≤ p < 2, but surprisingly it fails if 2 ≤ p < 3.
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Theorem 1.2 (Bethuel-Zheng [4]). Let 1 ≤ p < 3. Then, C∞(B3;S2) is
dense in W 1,p(B3;S2) if and only if 1 ≤ p < 2.

The reason for the lack of density in the case 2 ≤ p < 3 is the existence
of “topological singularities” of maps in W 1,p(B3;S2). For instance, given a
smooth map g : S2 → S2, let

u(x) = g
(
x
|x|
)
∀x ∈ B3 \ {0}. (1.3)

In this case, u ∈W 1,p(B3;S2) for every 2 ≤ p < 3, but u cannot be strongly
approximated by smooth maps ϕ : B3 → S2 in W 1,p if deg g 6= 0.

Indeed, assume by contradiction that there exists a sequence (ϕn) in
C∞(B3;S2) strongly converging to u in W 1,p(B3;S2). By Fubini’s theo-
rem, for almost every r > 0,

ϕn → u strongly in W 1,p(∂Br;S2).

If 2 < p < 3, then by Morrey’s estimates ϕn → u uniformly on ∂Br for any
such r (note that ∂Br has dimension 2) and thus

deg (ϕn|∂Br)→ deg (u|∂Br) = deg g. (1.4)

Since, for every n ≥ 1, deg (ϕn|∂Br) = 0, this would imply that deg g = 0,
which is a contradiction. When p = 2, by continuity of the degree under
VMO-convergence (see [8]) assertion (1.4) still holds and we can conclude as
before.

In the above example, u has a topological singularity at 0. This raises the
question of how to find such singularities for a general map u ∈W 1,p(B3;S2).
Their location and strength can be detected using a simple yet powerful tool
introduced by Brezis-Coron-Lieb [7]: the distributional Jacobian “Jac.”

Given p ≥ 2 and a map u ∈W 1,p(B3;S2), consider the vector field

D(u) =
(
u · ux2 ∧ ux3 , u · ux3 ∧ ux1 , u · ux1 ∧ ux2

)
, (1.5)

where uxi ∈ Lp(B3; R3) denotes the partial derivative of u in the weak
sense. Since u ∈ W 1,2 ∩ L∞, we have D(u) ∈ L1(B3; R3). We then define
the distributional Jacobian as

Jac (u) = 1
3 divD(u) in D′(B3); (1.6)

more precisely,

〈Jac (u), ζ〉 = −1
3

∫
B3

D(u) · ∇ζ ∀ζ ∈ C∞0 (B3).
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For instance, if u is smooth (in which case there are no singularities), then
one has

Jac (u) = ux1 · ux2 ∧ ux3 = 0.

On the other hand, if u is given by (1.3), then

Jac (u) =
4π
3

(deg g) δ0,

where δ0 denotes the Dirac mass at the origin.
Since smooth maps are not dense in W 1,p(B3;S2) when 2 ≤ p < 3, one

should be able to identify those maps in W 1,p(B3;S2) which can be approx-
imated by functions in C∞(B3;S2). It turns out that the only obstruction
to density of smooth maps is of a topological nature.

Theorem 1.3 (Bethuel [1]). Let u ∈ W 1,2(B3;S2). Then, there exists a
sequence (ϕn) ⊂ C∞(B3;S2) such that

ϕn → u strongly in W 1,2, (1.7)

if and only if

Jac (u) = 0 in D′(B3). (1.8)

The counterpart of Theorem 1.3 in the case 2 < p < 3 is the following.

Theorem 1.4 (Bethuel-Coron-Demengel-Hélein [3]). Let u ∈W 1,p(B3;S2),
where 2 < p < 3. Then, there exists a sequence (ϕn) ⊂ C∞(B3;S2) such
that

ϕn → u strongly in W 1,p, (1.9)

if and only if

Jac (u) = 0 in D′(B3). (1.10)

Although Theorem 1.4 is usually attributed to Bethuel [1], such a result
was never mentioned in [1]. Actually, Bethuel’s proof of Theorem 1.3 uses a
removing dipole technique and strongly relies on the fact that p = 2. The
proof of Theorem 1.4, instead, is based on a different strategy from another
work of Bethuel [2].

More generally, we consider a smooth bounded domain Ω ⊂ RN with N ≥
2. The distributional Jacobian still makes sense for maps in W 1,p(Ω;SN−1)
as long as p ≥ N−1. The counterparts of Theorems 1.3 and 1.4 are presented
in the theorem below.
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Theorem 1.5 (Bethuel [1], Bethuel-Coron-Demengel-Hélein [3]). Let u ∈
W 1,p(Ω;SN−1), where N−1 ≤ p < N . Then, there exists a sequence (ϕn) ⊂
C∞(Ω;SN−1) satisfying (1.9) if and only if

Jac (u) = 0 in D′(Ω). (1.11)

In addition, one can estimate the W 1,N−1-distance between any given map
u ∈ W 1,N−1(Ω;SN−1) and the class of smooth maps in terms of L(u), the
length of the minimal connection of u (see definition (2.4) below).

Theorem 1.6 (Bethuel [1]). If u ∈W 1,N−1(Ω;SN−1), then

inf
{
‖∇u−∇ϕ‖LN−1 ; ϕ ∈ C∞(Ω;SN−1)

}
≤ C

(
L(u)

) 1
N−1 . (1.12)

The main goal of this paper is to use a different strategy from [1, 3] to
prove Theorem 1.5 for N − 1 < p < N . An advantage of our approach is
that it can be adapted to higher-order Sobolev spaces and in particular to
W 2,p; see [6]. As a by-product we also prove the following new counterpart
of Theorem 1.6 when N − 1 < p < N .

Theorem 1.7. If N − 1 < p < N , then for every u ∈W 1,p(Ω;SN−1),

inf
{
‖u− ϕ‖W 1,p ; ϕ ∈ C∞(Ω;SN−1)

}
≤ C‖∇u‖Lp(A), (1.13)

for some open set A ⊂ Ω such that

|A|1/p ≤ C L(u)‖∇u‖Lp(Ω). (1.14)

We now explain the main idea in the proof of Theorem 1.7. We first cover
the domain Ω with finitely many balls

(
Br(xi)

)
i∈I , and then we modify u

on Br(xi) according to whether∫
B2r(xi)

|∇u|p < λrN−p or
∫
B2r(xi)

|∇u|p ≥ λrN−p, (1.15)

for some parameter λ > 0 suitably chosen. In the first case, we call Br(xi)
a good ball, otherwise Br(xi) is a bad ball. This type of condition was intro-
duced in a remarkable work of Bethuel [2].

If Br(xi) is a good ball and λ > 0 is sufficiently small, then most of the
values of u(Br(xi)) lie in a small geodesic disk of SN−1. In this case, a
projection into this disk and a convolution allow us to replace u on Br(xi)
by a smooth map. In contrast, if Br(xi) is a bad ball, then u|∂Br(xi) need not
be contained in a small geodesic disk, but if the radius r is larger than the
length of the minimal connection L(u), we can slightly decrease the radius r
if necessary so that u|∂Br(xi) is homotopic to a constant. In this case, using
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an idea of Bethuel-Zheng [4], it is possible to use such a homotopy to replace
u by a smooth map, while keeping the energy on Br(xi) under control.

The detailed constructions on good and bad balls are presented in Sec-
tions 4 and 5 below. In the next section, we define the distributional Jacobian
for maps in W 1,p(Ω;SN−1) with p ≥ N −1, and we explain some of its main
properties. In Section 7, we prove Theorems 1.5 and 1.7.

2. The distributional Jacobian

Let N ≥ 2 and Ω ⊂ RN be a smooth bounded domain. Given a map
u ∈W 1,N−1(Ω; RN ) ∩ L∞, we consider the L1-vector field

D(u) = (D1, . . . , DN ), (2.1)

where
Dj = det

[
ux1 , . . . , uxj−1 , u, uxj+1 , . . . , uxN

]
. (2.2)

We then associate to the map u the distribution

Jac (u) =
1
N

divD(u); (2.3)

more precisely,

〈Jac (u), ζ〉 = − 1
N

N∑
j=1

∫
Ω
Djζxj ∀ζ ∈ C∞0 (Ω).

Given u ∈W 1,N−1(Ω;SN−1), we define the length of the minimal connection
of u as

L(u) =
1
ωN

sup
ζ∈C∞0 (Ω)
‖∇ζ‖L∞≤1

〈Jac (u), ζ〉, (2.4)

where ωN denotes the measure of the unit ball B1 ⊂ RN . The reason
for calling L(u) the length of the minimal connection of u comes from the
geometric meaning of L(u) (see equations (2.7) and (2.9) below). If u is
smooth, then

Jac (u) = det
[
ux1 , . . . , uxN

]
= 0.

More generally, if u is smooth except at finitely many points a1, . . . , ak ∈ Ω,
then (see e.g. [7])

Jac (u) = ωN

k∑
i=1

diδai in D′(Ω), (2.5)
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where di = deg (u, ai) denotes the degree of u with respect to any small
sphere centered at ai. Since we are not making any additional assumption
about u on ∂Ω, it may happen that

∑k
i=1 di 6= 0. However, by using points

from ∂Ω one can always rewrite (2.5) as

Jac (u) = ωN

k̃∑
i=1

(δpi − δni) in D′(Ω), (2.6)

where p1, . . . , pk̃, n1, . . . , nk̃ ∈ Ω (note that points on ∂Ω are harmless from
the point of view of test functions with compact support in Ω). In particular,
one always has L(u) ≤

∑k̃
i=1 |pi − ni|. Brezis-Coron-Lieb [7] proved that

these points can be chosen and rearranged so that

L(u) =
k̃∑
i=1

|pi − ni|. (2.7)

For a general map u ∈W 1,N−1(Ω;SN−1), not necessarily with finitely many
singularities, one has the following characterizations of Jac (u) and L(u).

Theorem 2.1 (Bourgain-Brezis-Mironescu [5]). Given u ∈W 1,N−1(Ω;SN−1),
there exist sequences of points (pi), (ni) ⊂ Ω such that

∑∞
i=1 |pi − ni| < ∞

and

Jac (u) = ωN

∞∑
i=1

(δpi − δni) in D′(Ω). (2.8)

Moreover,

L(u) = inf
{ ∞∑
i=1

|pi − ni| ; (pi), (ni) ⊂ Ω satisfy (2.8)
}
. (2.9)

In contrast with the case of finitely many singularities, the infimum in
(2.9) need not be achieved in general; see [9].

We end this section by showing the well-known fact that L(u) is continuous
with respect to the strong convergence in W 1,N−1(Ω;SN−1).

Proposition 2.1. Let (un) ⊂ W 1,N−1(Ω;SN−1) be a sequence such that
un → u in W 1,N−1. Then

L(un)→ L(u). (2.10)

Proof. Note that for every u, v ∈W 1,N−1(Ω; RN ) ∩ L∞ we have∣∣〈Jac (u)− Jac (v), ζ〉
∣∣ ≤ ‖D(u)−D(v)‖L1‖∇ζ‖L∞ ∀ζ ∈ C∞0 (Ω). (2.11)
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Thus, a standard argument gives∣∣L(u)− L(v)
∣∣ ≤ ‖D(u)−D(v)‖L1 . (2.12)

If (un) is a sequence converging strongly to u in W 1,N−1, then by dominated
convergence D(un)→ D(u) in L1 and the conclusion holds. �

3. A Fubini-type argument

In Sections 4–5, we present the main ingredients in the proof of Theo-
rem 1.7. The construction in those sections relies on an argument based on
Fubini’s theorem which we shall explain below. But first, given 1 ≤ p <∞,
let us introduce the following class of functions:

R1,p(Ω) =

{
v ∈W 1,p(Ω;SN−1)

∣∣∣∣∣ there exist a1, . . . , ak ∈ Ω such that

v is smooth in Ω \ {a1, . . . , ak}

}
.

(3.1)
For later use, given v ∈ R1,p(Ω), we denote by S(v) the set of points of Ω
where v is not smooth (by definition this set is finite).

As we have already explained, smooth maps are not dense in W 1,p(Ω;SN−1)
if N − 1 ≤ p < N . However, we have the following.

Theorem 3.1 (Bethuel-Zheng [4]). If N−1 ≤ p < N , then R1,p(Ω) is dense
in W 1,p(Ω;SN−1).

This result is particularly useful since it reduces the problem of studying
maps in W 1,p(Ω;SN−1) into a problem where all maps have finitely many
singularities. This is for instance one of the main ingredients in the proof
of Theorem 2.1 above. For the sake of Theorem 1.7, one could avoid Theo-
rem 3.1, but the proof becomes less transparent.

We show, in this section, that if v ∈ R1,p(Ω) and if Br(x0) is a sufficiently
large ball contained in Ω, then it is possible to find a sphere ∂Bs(x0) such
that v|∂Bs(x0) is homotopic to a constant.

Lemma 3.1. Let N −1 ≤ p < N . Given v ∈ R1,p(Ω), let r > 0 be such that

r > 4L(v). (3.2)

Then, for every x0 ∈ Ω with B2r(x0) ⊂ Ω there exists s ∈
(

3r
2 , 2r

)
such that

deg (v|∂Bs(x0)) = 0 and ‖∇v‖Lp(∂Bs(x0)) ≤
C

r1/p
‖∇v‖Lp(B2r(x0)); (3.3)

moreover, there exists ψ ∈ C∞0 (B2r(x0)) such that ψ = 1 on Bs(x0) and∣∣〈Jac (v), (1− ψ)ζ〉
∣∣ ≤ L(v)‖∇ζ‖L∞(Ω) ∀ζ ∈ C∞0 (Ω). (3.4)
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Proof. By scaling and translation we can assume that r = 1 and x0 = 0.
Let p1, . . . , pk̃ and n1, . . . , nk̃ in Ω be such that

Jac (v) = ωN

k̃∑
i=1

(δpi − δni) in D′(Ω), (3.5)

and

L(v) =
k̃∑
i=1

|pi − ni|. (3.6)

Denote by [pi, ni] the segment joining pi to ni. Let

T =
{
t ∈
(

3
2 , 2
)

: ∂Bt ∩ [pi, ni] = ∅ ∀i ∈
{

1, . . . , k̃
}}

.

Since L(v) < 1/4, it follows from the area formula that |T | > 1/4. On the
other hand, by Fubini’s theorem,∫

T
dt

∫
∂Bt

|∇v|p ≤
∫
B2

|∇v|p.

Thus, there exists s ∈ T such that∫
∂Bs

|∇v|p ≤ 4
∫
B2

|∇v|p. (3.7)

Moreover, since s ∈ T , the number of points pi and ni inside the ball Bs
(including multiplicities) are equal, thus, deg (v|∂Bs) = 0. It remains to show
(3.4). To prove this we use the fact that ∂Bs does not intersect any of the
segments [pi, ni]. Thus, for some ε > 0 small, the annulus Bs+ε \ Bs does
not intersect any of those segments. Let ψ ∈ C∞0 (B2) be such that ψ = 1 in
Bs. Denoting by I ⊂ {1, . . . , k̃} the set of indices such that [pi, ni] is not in
Bs+ε, we then have

〈Jac (v), (1− ψ)ζ〉 =
∑
i∈I

[
ζ(pi)− ζ(ni)

]
∀ζ ∈ C∞0 (Ω),

and thus ∣∣〈Jac (v), (1− ψ)ζ〉
∣∣ ≤ L(v)‖∇ζ‖L∞(Ω) ∀ζ ∈ C∞0 (Ω). �
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4. Replacing u on bad balls

Given λ > 0 and a ball Br(x0) such that B2r(x0) ⊂ Ω, we say that Br(x0)
is a bad ball for a map v ∈W 1,p(Ω;SN−1) if∫

B2r(x0)
|∇v|p ≥ λrN−p. (4.1)

We explain below how to replace v by a smooth map on bad balls. This
construction is possible if the radius r is large enough compared to the length
of the minimal connection L(v). At this stage, the choice of the parameter
λ > 0 plays no role whatsoever in the proof.

Proposition 4.1. Let N−1 < p < N . If Br(x0) is a bad ball for v ∈ R1,p(Ω)
and if

r > 4L(v), (4.2)

then one can find w ∈ R1,p(Ω) such that
(B1) w is smooth in Br(x0);
(B2) w = v in Ω \B2r(x0);
(B3) L(w) ≤ L(v) and S(w) ⊂ S(v);
(B4) ‖w − v‖Lp(Ω) ≤ Cr‖∇w −∇v‖Lp(B2r(x0));
(B5) ‖∇w −∇v‖Lp(Ω) ≤ C‖∇v‖Lp(B2r(x0)).

Proof. We shall use a strategy similar to the proof of [2, Lemma 1].
We may assume that ‖∇v‖Lp(B2r(x0)) > 0, for otherwise v is constant in
B2r(x0) and there is nothing to prove. By scaling and translation, we may
also suppose that r = 1 and x0 = 0. Since r satisfies (4.2), by Lemma 3.1
there exists s ∈

(
3
2 , 2
)

such that

deg (v|∂Bs) = 0 and ‖∇v‖Lp(∂Bs) ≤ C‖∇v‖Lp(B2). (4.3)

Let

ṽ(x) =

{
v(x) if x ∈ Ω \Bs,
v
(
s x|x|
)

if x ∈ Bs.

Then, ṽ ∈ R1,p(Ω), ṽ is continuous in Bs \ {0} and, by the choice of s,

‖∇ṽ‖Lp(Bs) = C‖∇v‖Lp(∂Bs) ≤ C‖∇v‖Lp(B2).

Using the triangle inequality, we then get

‖∇ṽ −∇v‖Lp(Ω) = ‖∇ṽ −∇v‖Lp(Bs)

≤ ‖∇ṽ‖Lp(Bs) + ‖∇v‖Lp(Bs) ≤ C̃‖∇v‖Lp(B2).
(4.4)
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Note that ṽ is continuous in a neighborhood of ∂Bs but ṽ is not necessarily
smooth there. By convolution and projection we may modify ṽ to make it
smooth near ∂Bs. For this reason, we shall henceforth suppose that we do
have ṽ ∈ R1,p(Ω).

By (4.4), the map ṽ satisfies (B5) but ṽ need not satisfy (B1) because of its
possible singularity at 0. We now use the fact that deg (v|∂Bs) = 0 to remove
that singularity. Indeed, by the Hopf theorem, v|∂Bs is homotopic to a
constant. One can thus find a continuous homotopy H : [0, 1]×∂Bs → SN−1

such that H(t, ·) = p0 if 0 ≤ t ≤ 1
3 for some p0 ∈ SN−1 and H(t, ·) = v|∂Bs if

2
3 ≤ t ≤ 1. Making a convolution of H and projecting the resulting map back
to SN−1, one can even assume that H belongs to C∞

(
[0, 1] × ∂Bs;SN−1

)
(recall that H was just assumed to be continuous and needed not be even in
W 1,p). Since H is constant on [0, 1

3 ], for every 0 < ε < t, the map

wε(x) =

{
ṽ(x) if x ∈ Ω \Bε,
H
( |x|
ε , x

)
if x ∈ Bε,

belongs to W 1,p(Ω;SN−1) and is continuous in Bs. Since wε → ṽ strongly
in W 1,p as ε→ 0, we can take ε > 0 sufficiently small so that

‖∇wε −∇ṽ‖Lp(Ω) ≤ ‖∇v‖Lp(B2). (4.5)

Combining (4.4)–(4.5) we deduce that wε also satisfies (B5). Since wε = v
outside the ball B2, by Poincaré’s inequality,

‖w − v‖Lp(Ω) = ‖w − v‖Lp(B2) ≤ C‖∇w −∇v‖Lp(B2),

and, thus, (B4) also holds. In order to check property (B3) we can use (3.4).
Indeed, since wε is smooth on Bs, Jac (wε) = 0 on Bs. Thus, if ψ ∈ C∞0 (B2)
denotes the function given by Lemma 3.1, then

〈Jac (wε), ζ〉 = 〈Jac (wε), ψζ〉+ 〈Jac (wε), (1− ψ)ζ〉 = 〈Jac (wε), (1− ψ)ζ〉,

for every ζ ∈ C∞0 (Ω). Since v = wε on Ω \ Bs and ψ = 1 on Bs, it follows
that

〈Jac (wε), ζ〉 = 〈Jac (v), (1− ψ)ζ〉.
Taking the supremum over all test functions ζ with ‖∇ζ‖L∞ ≤ 1, we deduce
from (3.4) that L(wε) ≤ L(v), which is the desired inequality. �

Remark 4.1. Strictly speaking, in the previous proof we have not used the
fact that Br(x0) was a bad ball, but we do it now. In fact, since Br(x0) is a
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bad ball,

|B2r(x0)|1/p =
(
ωN (2r)N

)1/p =
(2NωN

λ

)1/p
r(λrN−p)1/p

≤ Cr‖∇v‖Lp(B2r(x0)),

where the constant C > 0 depends on the choice of λ. We can thus rewrite
property (B5) in the way it will be used in the proof of Theorem 1.7:

(B′5) ‖∇w−∇v‖Lp(Ω) ≤ C‖∇v‖Lp(A), for some open set A ⊂ B2r(x0) such
that |A|1/p ≤ Cr‖∇v‖Lp(B2r(x0)).

5. Replacing u on good balls

Given λ > 0 and a ball Br(x0) such that B2r(x0) ⊂ Ω, we say that Br(x0)
is a good ball for a map v ∈W 1,p(Ω;SN−1) if∫

B2r(x0)
|∇v|p < λrN−p. (5.1)

In this section we explain how to replace v by a smooth map on good
balls. This construction strongly relies on a suitable choice of the parameter
λ.

Proposition 5.1. Let N − 1 < p < N . There exists λ = λ(N, p) > 0 such
that if Br(x0) is a good ball for v ∈ R1,p(Ω) and if

r > 4L(v), (5.2)

then one can find w ∈ R1,p(Ω) such that
(G1) w is smooth in Br(x0);
(G2) w = v in Ω \B2r(x0);
(G3) L(w) ≤ L(v) and S(w) ⊂ S(v);
(G4) ‖w − v‖Lp(Ω) ≤ Cr‖∇w −∇v‖Lp(B2r(x0));
(G5) ‖∇w−∇v‖Lp(Ω) ≤ C‖∇v‖Lp(A), for some open set A ⊂ B2r(x0) such

that |A|1/p ≤ Cr‖∇v‖Lp(B2r(x0)).

Proof. We can assume that

‖∇v‖Lp(B2r(x0)) > 0, (5.3)

for otherwise v is constant in Br(x0) and the conclusion is obvious. By
scaling and translation, we may also assume that r = 1 and x0 = 0. Since r
satisfies (5.2), by Lemma 3.1 there exists s ∈

(
3
2 , 2
)

such that

deg (v|∂Bs) = 0 and ‖∇v‖Lp(∂Bs) ≤ C‖∇v‖Lp(B2). (5.4)
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Since p > N−1, it follows from Morrey’s estimates that v|∂Bs is a continuous
function and there exists λ1 > 0 (depending only on N and p) such that, if

‖∇v‖Lp(∂Bs) ≤ λ1, (5.5)

then v(∂Bs) is a subset of SN−1 of diameter at most 1/3. We then choose
λ so that

Cλ1/p = λ1,

where C is the constant in (5.4). We denote by D1/3(ξ0) a closed geodesic
disk of SN−1 of radius 1/3 containing v(∂Bs) and centered at ξ0. Let Φ :
SN−1 → SN−1 be a smooth function such that Φ(x) = x, for all x ∈ D2/3(ξ0),
‖Φ′‖L∞ ≤ 2 and

Φ(SN−1) ⊂ D1(ξ0). (5.6)
Let

ṽ =

{
v in Ω \Bs,
Φ ◦ v in Bs.

(5.7)

Then, ṽ ∈ R1,p(Ω) and∫
Ω
|∇v −∇ṽ|p =

∫
Bs

|1− Φ′(v)|p|∇v|p ≤ C
∫
U
|∇v|p, (5.8)

where
A =

{
x ∈ Bs \ S(v) : v(x) 6∈ D2/3(ξ0)

}
. (5.9)

Since v is continuous on Bs \ S(v), A is an open set. We now show that

|A|1/p ≤ C‖∇v‖Lp(B2). (5.10)

For this purpose, consider the function

f(x) =
[
3 d(v(x), ξ0)− 1

]+ ∀x ∈ Bs,

where d denotes the geodesic distance in SN−1. Note that

f ≥ 1 on A, f = 0 on ∂Bs and |∇f | ≤ 3|∇v| a.e.

Thus, by Chebyshev’s and Poincaré’s inequalities,

|A| ≤
∫
Bs

|f |p ≤ C
∫
Bs

|∇f |p ≤ 3pC
∫
Bs

|∇v|p ≤ 3pC
∫
B2

|∇v|p, (5.11)

which gives (5.10). Although ṽ need not be continuous in B1, its image is
contained in a geodesic disk of SN−1. A standard argument allows us to
replace Φ ◦ v by a function which is smooth in B1.
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We present a detailed proof for the convenience of the reader. We first take
a family of nonnegative smooth mollifiers (ρε) ⊂ C∞0 (RN ) and ζ ∈ C∞0 (B3/2)
such that supp ζ ⊂ B3/2 and ζ = 1 on B1. Consider

vε = (1− ζ)Φ(v) + ζ
[
ρε ∗ Φ(v)

]
in Bs. (5.12)

Denote by V the convex hull in RN of the geodesic disk D1(ξ0). By (5.6) we
have

Φ(v(x)) ∈ V and
[
ρε ∗ Φ(v)

]
(x) ∈ V ∀x ∈ Bs.

Thus,
vε(x) ∈ V ∀x ∈ Bs.

On the other hand, we have |y| ≥ 1/2 for every y ∈ V . Therefore,

|vε(x)| ≥ 1
2
∀x ∈ Bs. (5.13)

In particular,
vε
|vε|
→ Φ(v) in W 1,p. (5.14)

Take ε > 0 sufficiently small so that∫
Bs

∣∣∣∇( vε|vε|
)
−∇

(
Φ(v)

)∣∣∣p ≤ ∫
A
|∇v|p. (5.15)

If the integral in the right-hand side vanishes, take A ⊂ B1 to be any open
set of measure at most ‖∇v‖pLp(B2) for which the right-hand side is not zero;
this is possible in view of (5.3). Let w be the function given by

w =

v in Ω \Bs,
vε
|vε|

in Bs.
(5.16)

This function satisfies (B5) and, by Poincaré’s inequality, also satisfies (B4).
The proof of the inequality L(w) ≤ L(v) follows the same lines as in the
previous lemma. Indeed, since the image of vε

|vε| is contained in a small
geodesic disk, all singularities of w in Bs have degree zero. Thus, Jac (w) = 0
in Bs. Thus, if ψ ∈ C∞0 (B2) denotes the function given by Lemma 3.1, then,
for every ζ ∈ C∞0 (Ω),

〈Jac (wε), ζ〉 = 〈Jac (v), (1− ψ)ζ〉,

which implies L(w) ≤ L(v). �
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6. Replacing u on balls near the boundary

The reader probably has noticed that even though the constructions per-
formed on bad balls and on good balls are different, the conclusions of Propo-
sitions 4.1 and 5.1 —taking into account Remark 4.1— are the same. The
goal of this section is two-fold: to merge both statements and to take into
account the possibility of performing the same construction on balls which
need not be entirely contained in Ω.

Note that the underlying notions of good balls and bad balls can be
adapted to balls which are not entirely contained in Ω in a straightforward
way. Actually, there are essentially two types of balls Br(x0) one should
really take care of: those such that B2r(x0) ⊂ Ω, which have been studied
in Sections 4 and 5 above, and those such that x0 ∈ ∂Ω, which will be our
main concern in the proof below. Indeed, the general construction can be
always reduced to one of these types.

Proposition 6.1. Let N − 1 < p < N . There exists δ = δ(Ω) > 0 such that
if v ∈ R1,p(Ω) and if

δ > r > 4L(v), (6.1)

then for every x0 ∈ Ω there exists w ∈ R1,p(Ω) such that

(M1) w is smooth in Br(x0) ∩ Ω;
(M2) w = v in Ω \B8r(x0);
(M3) L(w) ≤ L(v) and S(w) ⊂ S(v);
(M4) ‖w − v‖Lp(Ω) ≤ Cr‖∇w −∇v‖Lp(B8r(x0)∩Ω);
(M5) ‖∇w−∇v‖Lp(Ω) ≤ C‖∇v‖Lp(A), for some open set A ⊂ B8r(x0)∩Ω

such that |A|1/p ≤ Cr‖∇v‖Lp(B8r(x0)∩Ω).

Proof. If B2r(x0) ⊂ Ω, the conclusion follows from Proposition 4.1 (and
Remark 4.1) or from Proposition 5.1 depending on whether Br(x0) is a
bad ball or a good ball. We may then restrict ourselves to the case where
B2r(x0) ∩ ∂Ω 6= ∅. We shall reduce the problem to a situation where the
ball is centered at some point of ∂Ω. Indeed, since B2r(x0) ∩ ∂Ω 6= ∅, there
exists y0 ∈ ∂Ω such that |y0 − x0| < 2r and, thus,

Br(x0) ⊂ B3r(y0) and B6r(y0) ⊂ B8r(x0).

It thus suffices to construct a map w ∈ R1,p(Ω) such that w is smooth in
B3r(y0) ∩ Ω, w = v in Ω \B6r(y0) and satisfies (M3)–(M5).

In what follows, we assume that B6r(y0)∩ ∂Ω is flat and thus B6r(y0)∩Ω
coincides with a half-ball. By a translation and a scaling argument, we may
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suppose that y0 = 0 and r = 1
3 . By the Fubini-type argument of Lemma 3.1,

one finds s ∈
(

3
2 , 2
)

such that

‖∇v‖Lp(∂Bs∩Ω) ≤ C‖∇v‖Lp(B2), (6.2)

and ∂Bs does not intersect any of the segments [pi, ni], where the points pi
and ni denote the singularities of v arranged so as to satisfy (3.6).

If B1 is a bad ball for v, in the sense that∫
B2∩Ω

|∇v|p ≥ λ,

for some parameter λ > 0 to be chosen later on, then we proceed as in the
proof of Proposition 4.1 and define

ṽ(x) =

{
v(x) if x ∈ Ω \Bs,
v
(
s x|x|
)

if x ∈ Bs ∩ Ω,

which is continuous except possibly at 0 and satisfies

‖∇ṽ −∇v‖Lp(Ω) ≤ C‖∇v‖Lp(B2∩Ω). (6.3)

Since u|∂Bs∩Ω is necessarily homotopic to a constant map (recall that ∂Bs∩Ω
is a half-sphere, which is topologically trivial), one can remove that singu-
larity at 0 as in Proposition 4.1 without losing property (6.3). Thus, we get
a map w ∈ R1,p(Ω) which is now smooth on Bs ∩ Ω and

‖∇w −∇v‖Lp(Ω) ≤ C‖∇v‖Lp(B2∩Ω).

Since B1 was assumed to be a bad ball, as in Remark 4.1 we have

|B2 ∩ Ω|1/p ≤ Cλ‖∇v‖Lp(B2∩Ω),

and thus w satisfies (M5) with A = B6r(y0) (which corresponds to B2 after
translation and scaling). Property (M4) just follows from Poincaré’s inequal-
ity. Finally, since ∂Bs does not intersect any of the segments [pi, ni], one
deduces that L(w) ≤ L(v). Thus, w satisfies all the required properties.

On the other hand, if B1 is a good ball for v, in the sense that∫
B2∩Ω

|∇v|p < λ,

then in view of (6.2), ‖∇v‖Lp(∂Bs∩Ω) < Cλ1/p. Therefore, by Morrey’s
estimates we can fix some λ > 0 sufficiently small (depending on N and p)
so that v(∂Bs ∩ Ω) is contained in a small geodesic disk of SN−1. One can
then proceed exactly as in the proof of Proposition 5.1 by taking a family
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of convolutions (ρε) supported in B1 ∩ Ω; this way the function vε remains
well defined and the conclusion follows.

We now deal with the case where B6r(y0)∩ ∂Ω is not necessarily flat. By
choosing δ > 0 sufficiently small (depending on Ω) it is possible to find a
diffeomorphism Φ such that the image of B3r(y0) ∩ Ω is contained in the
half-ball B+

3r and the image of B6r(y0) ∩ Ω contains the half-ball B+
6r. We

can then apply the previous construction to the map v ◦ Φ−1. The proof of
the proposition is complete. �

7. Proofs of Theorems 1.5 and 1.7

Proof of Theorem 1.7. Let us assume momentarily that we have proved
(1.13) for maps u ∈ R1,p(Ω). We show that this implies a similar estimate
for every

u ∈W 1,p(Ω;SN−1).
Indeed, given u ∈W 1,p(Ω;SN−1) we consider two separate cases, depending
on whether L(u) = 0 or L(u) > 0. We first assume that L(u) = 0. Taking
a sequence (un) ⊂ R1,p(Ω) such that un → u strongly in W 1,p, then by
continuity of the length of the minimal connection,

L(un)→ L(u) = 0.

By (1.13) applied to un and Lebesgue’s dominated convergence theorem,

inf
{
‖un − ϕ‖W 1,p ; ϕ ∈ C∞(Ω;SN−1)

}
→ 0.

Therefore, there exists a sequence (ϕn) ⊂ C∞(Ω;SN−1) such that ϕn → u
strongly in W 1,p. Hence, u satisfies (1.13) with A = ∅. On the other hand,
if L(u) > 0, then we first take an open set A1 ⊂ Ω such that

‖∇u‖Lp(A1) > 0 and |A1|1/p ≤ L(u)‖∇u‖Lp(Ω),

and then, by Theorem 2.1, one can choose v ∈ R1,p(Ω) such that

‖u− v‖W 1,p(Ω) ≤ ‖∇u‖Lp(A1).

We may also assume that v satisfies

L(v) ≤ 2L(u) and ‖∇v‖Lp(Ω) ≤ 2‖∇u‖Lp(Ω).

Since by assumption estimate (1.13) holds for v, there exists

ϕ ∈ C∞(Ω;SN−1)

such that
‖v − ϕ‖W 1,p(Ω) ≤ 2C‖∇v‖Lp(A2),
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where A2 ⊂ Ω is an open set satisfying |A2| ≤ CL(v)‖∇v‖Lp(Ω). We then
have

‖u− ϕ‖W 1,p ≤ ‖u− v‖W 1,p + ‖v − ϕ‖W 1,p

≤ ‖∇u‖Lp(A1) + C‖∇v‖Lp(A2)

≤ ‖∇u‖Lp(A1) + C
(
‖∇u‖Lp(A2) + ‖∇u−∇v‖Lp(A2)

)
≤ ‖∇u‖Lp(A1) + C

(
‖∇u‖Lp(A2) + ‖∇u‖Lp(A1)

)
≤ (1 + 2C)‖∇u‖Lp(A1∪A2),

where

|A1 ∪A2|1/p ≤ |A1|1/p + |A2|1/p ≤ L(u)‖∇u‖Lp(Ω) + CL(v)‖∇v‖Lp(Ω)

≤ L(u)‖∇u‖Lp(Ω) + 4CL(u)‖∇u‖Lp(Ω)

= (1 + 4C)L(u)‖∇u‖Lp(Ω).

Thus, u also satisfies an estimate of the type (1.13).
In view of the above it suffices to establish (1.13) for maps u ∈ R1,p(Ω).

Let δ > 0 be the quantity given by Proposition 6.1, depending only on Ω.
We consider two separate cases.
Case 1. 4L(u) < δ. Let r > 0 be such that 4L(u) < r < δ. We can cover Ω
with balls (Br(xi))i∈I in such a way that, for every i ∈ I, xi ∈ Ω and each
ball B8r(xi) intersects at most θ balls B8r(xj), where θ depends only on the
dimension N . We can thus split the set of indices I as I = I1 ∪ · · · ∪ Iθ+1

so that for any i = 1, . . . , θ + 1 and any distinct indices j1, j2 ∈ Ii we have
B8r(xj1) ∩B8r(xj2) = ∅.

Starting from u0 = u, we construct maps u1, . . . , uθ+1 ∈ W 1,p(Ω;SN−1)
inductively as follows. Given k ≥ 0 and uk we apply Proposition 6.1 to the
map uk and to each ball Br(xi) with i ∈ Ik+1 until we exhaust Ik+1; denote
by uk+1 the map obtained by this procedure. Since the balls

(
B8r(xi)

)
i∈Ik+1

are disjoint, by properties (M4)–(M5) we have

‖uk+1 − uk‖Lp(Ω) ≤ Cr‖∇uk+1 −∇uk‖Lp(Ω) (7.1)

‖∇uk+1 −∇uk‖Lp(Ω) ≤ C‖∇uk‖Lp(Ek), (7.2)

for some open set Ek ⊂ Ω such that |Ek|1/p ≤ Cr‖∇uk‖Lp(Ω); Ek is the
union of all sets A arising from Proposition 6.1.

By induction, it follows from (7.1)–(7.2) that for every k = 1, . . . , θ + 1
we have

‖uk − u‖Lp(Ω) ≤ Ckr‖∇u‖L2p(Ω) (7.3)
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‖∇uk −∇u‖Lp(Ω) ≤ Ck‖∇u‖Lp(Fk), (7.4)

where Fk =
⋃k−1
j=0 Ej . We first prove (7.4). Since the conclusion is clear if

k = 1, we may assume that (7.3) holds for some k ≥ 1. We then have

‖∇uk+1 −∇u‖Lp(Ω) ≤ ‖∇uk+1 −∇uk‖Lp(Ω) + ‖∇uk −∇u‖Lp(Ω)

(by (7.2)) ≤ C‖∇uk‖Lp(Ek) + ‖∇uk −∇u‖Lp(Ω)

(by triangle inequality) ≤ C‖∇u‖Lp(Ek) + (1 + C)‖∇uk −∇u‖Lp(Ω)

(by induction) ≤ C‖∇u‖Lp(Ek) + (1 + C)Ck‖∇u‖Lp(Fk−1)

≤
[
C + (1 + C)Ck

]
‖∇u‖Lp(Fk−1∪Ek).

This establishes (7.4). Combining (7.1) and (7.4), one gets (7.3). Note, in
addition, that the set Fk satisfies |Fk|1/p ≤ Ckr‖∇u‖Lp(Ω). Indeed, proceed-
ing by induction we have

|Fk+1|1/p ≤ |Fk|1/p + |Ek|1/p

(by estimate on |Ek|) ≤ |Fk|1/p + Cr‖∇uk‖Lp(Ω)

(by induction) ≤ Ckr‖∇u‖Lp(Ω) + Cr‖∇uk‖Lp(Ω)

(by triangle inequality) ≤ Ckr‖∇u‖Lp(Ω)+Cr
(
‖∇u‖Lp(Ω)+‖∇uk −∇u‖Lp(Ω)

)
(by (7.4)) ≤ Ckr‖∇u‖Lp(Ω) + Cr

(
‖∇u‖Lp(Ω) + Ck‖∇u‖Lp(Fk)

)
≤ (Ck + C(1 + Ck))r‖∇u‖Lp(Ω),

which gives the estimate for the sets |Fk|. Since the balls (Br(xi))i∈I cover
Ω and we have swept away all the singularities of u from these balls, the
map uθ+1 is smooth. We have, thus, obtained for every r > 4L(u) a map
ϕr ∈ C∞(Ω;SN−1), namely uθ+1, such that

‖ϕr − u‖Lp(Ω) ≤ Cr‖∇u‖L2p(Ω) (7.5)

‖∇ϕr −∇u‖Lp(Ω) ≤ C‖∇u‖Lp(Ar), (7.6)

where Ar ⊂ Ω is an open set such that |Ar|1/p ≤ Cr‖∇u‖Lp(Ω). If L(u) = 0,
it follows from dominated convergence that ϕr → u strongly in W 1,p and
thus (1.13) holds with A = ∅. Otherwise, L(u) > 0, in which case we can
take r ≈ 4L(u).

Case 2. 4L(u) ≥ δ. We show the conclusion holds by taking A = Ω. Indeed,
by an easy variant of Poincaré’s inequality, there exists αu ∈ SN−1 such that

‖u− αu‖Lp(Ω) ≤ C‖∇u‖Lp(Ω), (7.7)



Closure of smooth maps in W 1,p(B3;S2) 899

where the constant C > 0 does not depend on u; thus,

‖u− αu‖W 1,p(Ω) ≤ (1 + C)‖∇u‖Lp(Ω).

On the other hand, by Hölder’s inequality,

L(u) ≤ |Ω|1−
N−1

p ‖∇u‖N−1
Lp(Ω).

Thus,

L(u)‖∇u‖Lp(Ω) ≥
(
L(u)

) N
N−1

|Ω|
1

N−1
− 1

p

≥ (δ/4)
N

N−1

|Ω|
1

N−1

|Ω|1/p = C0|Ω|1/p, (7.8)

where C0 > 0 is a constant depending on N and Ω.
In both cases, we have obtained estimate (1.13). The proof of the theorem

is complete. �

Proof of Theorem 1.5. The implication (⇐) follows from Theorem 1.7 if
N − 1 < p < N or from Theorem 1.6 if p = N − 1. To prove the converse,
let (ϕn) ⊂ C∞(Ω;SN−1) be a sequence such that

ϕn → u strongly in W 1,p.

For every n ≥ 1, we have Jac (ϕn) = 0; thus, L(ϕn) = 0. In view of
Proposition 2.1, this implies L(u) = 0 or, equivalently, Jac (u) = 0 in D′(Ω).

�
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density of smooth maps in Sobolev spaces between two manifolds, Nematics (Orsay,
1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 332 (1991), 15–23.

[4] F. Bethuel and X.M. Zheng, Density of smooth functions between two manifolds in
Sobolev spaces, J. Funct. Anal., 80 (1988), 60–75.

[5] J. Bourgain, H. Brezis, and P. Mironescu, H1/2 maps with values into the circle:
minimal connections, lifting, and the Ginzburg-Landau equation, Publ. Math. Inst.

Hautes Études Sci., 99 (2004), 1–115.



900 Augusto C. Ponce and Jean Van Schaftingen

[6] P. Bousquet, A.C. Ponce, and J. Van Schaftingen, A case of density in W 2,p(M ;N),
C. R. Math. Acad. Sci. Paris, 346 (2008), 735–740.

[7] H. Brezis, J.-M. Coron, and E.H. Lieb, Harmonic maps with defects, Comm. Math.
Phys., 107 (1986), 649–705.

[8] H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without
boundaries, Selecta Math. (N.S.) 1 (1995), 197–263.

[9] A.C. Ponce, On the distributions of the form
P

i(δpi − δni), J. Funct. Anal., 210
(2004), 391–435.

[10] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for har-
monic maps, J. Differential Geom., 18 (1983), 253–268.


