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1. Introduction

Consider the differential equation

ẍ+ a sinx = p(t), (1.1)

where a > 0 is a parameter and p : R → R is an almost periodic function.
Almost periodicity will be understood in the classical sense defined by Bohr
[7]. The existence of almost periodic solutions has already been discussed in
several papers by Blot [5], Mawhin [19, 20] and Belley and Saadi Drissi [2].
Also, the papers by Fink [10] and Fournier, Szulkin and Willem [12] contain
results applicable to (1.1). In all these works there is some restriction on
the size of the forcing. This size is measured with respect to different norms
of p, always with the intention of locating the solution on an interval where
the sine function is decreasing, say (π2 ,

3π
2 ). The possible novelty of the

present paper is that it searches for results valid for forcings of arbitrary
size. There are many other papers on the forced pendulum equation but
they deal with the periodic case. See [20] for a recent survey. A nice feature
of the periodically forced pendulum is that most of the methods of nonlinear
analysis can be applied and lead to interesting conclusions. In this sense, the
equation (1.1) becomes a good illustration for nonlinear mathematics. The
almost periodic case is attractive just for opposite reasons. It seems that the
standard techniques1 are not applicable and that new phenomena appear.
This is my main motivation for the present study but future applications
in other fields cannot be discarded. Recently, I read an interesting paper
by Futakata and Iwasaki on animal locomotion. In [13] a neuronal circuit,
the so-called central pattern generator, is coupled with a forced pendulum
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modelling rhythmic body movements. Letting some parameters go to zero,
one arrives at equation (1.1). The circuit considered in [13] is of Van der Pol
type and so the torque p(t) is periodic. The consideration of electric circuits
with more degrees of freedom would lead easily to almost periodic torques.

The rest of the paper is organized in four sections. After some preliminar-
ies on almost periodic functions we will review an old result on the periodic
pendulum due to Hamel. See [14] and section 3.3 of [20]. Hamel’s theorem
guarantees the existence of a periodic solution when p is periodic and has
zero mean value. This result is proven using the variational method and it is
not known if it can be extended to the almost periodic world. A discussion
on the action functional acting on almost periodic functions will suggest the
impossibility of extending Hamel’s proof. Using different techniques we will
prove that Hamel’s result has at least a generic extension in the class of limit
periodic functions. This is a subclass of the almost periodic functions that
seems to be more treatable, the reason being that any function in this class
can be approximated by periodic functions. The possibility of finding exten-
sions of Hamel’s result to other classes of almost periodic functions cannot
be excluded and we refer to the work by Blot [4]. The quasi-periodic case
seems particularly intriguing.

The results in this paper were first presented in a meeting held in Brussels
in honor of Patrick Habets and Jean Mawhin. I have incorporated freely
some comments and suggestions from the participants in this conference. In
particular I thank J. Campos, C. De Coster, A. Fonda, M. Tarallo and F.
Verhulst for their useful comments.

2. Preliminaries on almost periodic functions

There are several equivalent definitions of an almost periodic function.
Among them is Bohr’s definition based on the quasi-periods and Bochner’s
characterization in terms of normal families of translates. For us it will be
convenient to take a point of view based on functional analysis. All the
results listed below were already proved in the memoir by Bohr [7].

Let us start with the Banach space

BC = {bounded and continuous functions p : R→ R},

with norm ‖p‖∞ = supt∈R |p(t)|. For each T > 0 we consider the linear
subspace

PerT = {continuous and T − periodic functions}.



The pendulum equation 803

The class of periodic functions

Per =
⋃
T>0

PerT ,

has not a linear structure. We define AP as the algebraic and topological
closure of Per in BC. That is, Per ⊂ AP ⊂ BC and AP is the smallest
Banach space satisfying this chain of inclusions. Two examples of functions
lying in AP are

p1(t) = sin t+ sin
√

2t and p2(t) =
∞∑
n=1

1
n2

sin(
t

n
).

The function p1 belongs to the linear closure of Per. This closure is un-
derstood in an algebraic sense. The function p2 belongs to the topological
closure.

Functions in AP have an average or mean value. Given p ∈ AP the mean
value is defined as

M{p} = lim
τ→+∞

1
τ

∫ a+τ

a
p(t)dt,

uniformly in a ∈ R. This limit exists and M{·} can be seen as a linear
functional in the dual space (AP )?.

Given a periodic function, the primitive is also periodic whenever the
average vanishes. This equivalence is no longer valid in almost periodic
functions. Indeed, given p ∈ AP , the primitive

P (t) =
∫ t

0
p(s)ds

belongs to AP if and only if P is bounded. This requires, in particular, that
M{p} = 0 but there are AP -functions with zero mean value and unbounded
primitive. This fact seems to be at the origin of most differences between
the periodic and the almost periodic worlds.

3. Remarks on Hamel’s Theorem

Among other results it is proved in [14] that if p(t) = β sin t the equation
(1.1) has a 2π-periodic solution. The proof extends to any periodic forcing
with zero mean value. This result was rediscovered independently by Willem
and Dancer. More details can be found in [20].

Theorem 1. (Hamel) Assume that p ∈ PerT and M{p} = 0. Then the
equation (1.1) has a T -periodic solution.



804 Rafael Ortega

There are several ways of proving this result and all of them are based on
variational methods. See [14, 20, 24]. The best known proof considers the
action functional

AT [x] =
∫ T

0
{1

2
ẋ(t)2 + a cosx(t) + p(t)x(t)}dt,

acting on functions on the Sobolev space of T -periodic functions H1 =
H1(R/TZ), and shows that it reaches a minimum. The minimizer is a peri-
odic solution. This program is achieved following the direct method in the
calculus of variations. First one proves that AT is bounded below. This is
easy after the integration by parts∫ T

0
p(t)x(t)dt = −

∫ T

0
P (t)ẋ(t)dt,

where we have used the fact that the primitive P (t) is also periodic. Now,
the action can be expressed as AT [x] = I1 + I2 with

I1 =
∫ T

0
{1

2
ẋ(t)2 − P (t)ẋ(t)}dt and I2 =

∫ T

0
a cosx(t)dt.

The quadratic function y 7→ 1
2y

2 − P (t)y has the minimum value −1
2P (t)2

and so I1 ≥ −1
2 ||P ||

2
∞T . The second integral satisfies I2 ≥ −aT .

Once we know that AT is bounded below, it is possible to extract a mini-
mizing sequence that is bounded in H1. This uses the fact that the functional
is coercive on the hyperplane M{x} = 0 and the periodicity of the poten-
tial. From this minimizing sequence one extracts a subsequence converging
to the minimizer. The convergence is uniform in R and weak in H1. This is
possible since the inclusion H1 ⊂ C(R/TZ) is compact and H1 is a Hilbert
space. Having finished the sketch of the proof it may be interesting to notice
that this method always leads to a periodic solution that is unstable in the
Lyapunov sense. This is a consequence of the results in [22] or [25].

We can now formulate the main question of the paper:
Assume that p ∈ AP and M{p} = 0; is there a solution of (1.1) in AP?

The same question can be posed for the more restrictive class of forcings
in AP with bounded primitive. As far as I know these questions are open
but my impression is that they will have a negative answer. There are some
examples in first-order equations that seem to support this point of view. It
is possible to construct a negative function p in AP such that the equation

ẋ = p(t) + cos 2x
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has a pathological behavior in the strip −π
4 ≤ x ≤

π
4 . This means that there

are no AP solutions in this region and at the same time there exist two
bounded solutions

−π
4
≤ x1(t) < x2(t) ≤ π

4
, t ∈ R,

satisfying

lim inf
t→±∞

(x2(t)− x1(t)) = 0 and lim sup
t→±∞

(x2(t)− x1(t)) > 0.

This phenomenon of non-separated bounded solutions cannot occur in first-
order periodic equations. For more information and dynamical insight the
reader is referred to the paper by Johnson [16]. This is perhaps a good
starting point to produce an example refuting an almost periodic version
of Hamel’s theorem. Going back to our second-order equation (1.1) it is
interesting to observe that the variational proof previously discussed cannot
be extended to the almost periodic case. The next section will be devoted
to explaining this.

4. The variational approach in AP

The action functional was defined on the Sobolev space H1 = H1
T and the

critical points will not change if we multiply it by a positive number. More
precisely we define

A[x] =
1
T

∫ T

0
{1

2
ẋ(t)2 + a cosx(t) + p(t)x(t)}dt, x ∈ H1

T .

This averaged functional has the advantage of unifying the value of the action
for different periods. Indeed if x ∈ H1

T then the value of the modified action
with respect to the periods T, 2T, 3T, . . . is the same. Also, we can interpret
this action as the mean value of the Lagrangian and this point of view leads
to a definition in the almost periodic setting.

Let AP 1 be the space of functions x : R→ R of class C1 such that x and
ẋ belong to AP . Given p ∈ AP we define

A[x] = M{1
2 ẋ

2 + a cosx+ px}, x ∈ AP 1.

The basic properties of AP functions imply that this quantity is well defined
and extends the action from Per1 = Per ∩ C1(R) to AP 1. Incidentally, we
notice that AP 1 $ AP ∩ C1(R).

A similar functional but with cubic potential was introduced by Moser
in [21] with the purpose of assigning a Hamiltonian structure to the KdV
equation. Blot considered the functional associated to a general Lagrangian
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and studied in [3] the basic aspects of the so-called calculus of variations in
mean.

The class AP 1 becomes a Banach space with the norm ||x||∞+ ||ẋ||∞ but
it will be convenient to introduce new topologies in AP and AP 1. First, we
define the inner product

〈p, q〉 = M{pq} = lim
T→+∞

1
2T

∫ T

−T
p(t)q(t)dt, if p, q ∈ AP.

In this way AP becomes a pre-Hilbert space that will be denoted by H.
Analogously V will be the space AP 1 with the inner product

〈p, q〉V = 〈p, q〉+ 〈ṗ, q̇〉.

The spaces H and V could be completed but the resulting spaces would be
somehow unusual. Quoting the book on functional analysis by Riesz and
Sz.-Nagy [23]: we could complete H by adding certain ideal elements, but
since these elements do not have an obvious representation as functions we
prefer to use the incomplete space. Later, we will find additional reasons to
remain in H.

The rest of the section is devoted to the study of the functional

A : V→ R, A[x] = M{1
2 ẋ

2 − U ◦ x+ px},

where U : R→ R is a C1 function having a Lipschitz-continuous derivative.
This includes the case U(x) = − cosx.

Lemma 2. The functional A is of class C1 (in the Fréchet sense) with
derivative

A′[x]δ = 〈ẋ, δ̇〉 − 〈U ′ ◦ x, δ〉+ 〈p, δ〉, if δ ∈ V.

Proof. We consider the simpler functional

B : V→ R, B[x] = M{U ◦ x}.

The remaining terms appearing in the definition of A are discussed easily.
First we prove the Gateaux differentiability of B. For each δ ∈ V,

|1
ε

(B[x+ εδ]− B[x])− 〈U ′ ◦ x, δ〉| ≤ |M{U ◦ (x+ εδ)− U ◦ x
ε

− (U ′ ◦ x)δ}|

≤ ||U ◦ (x+ εδ)− U ◦ x
ε

− (U ′ ◦ x)δ||∞ ≤ ε[U ′]Lip||δ||2∞,

where we have used the mean value theorem to arrive at the last inequality.
The best Lipschitz constant of U ′ has been denoted by [U ′]Lip.
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The differential
B′[x]δ = 〈U ′ ◦ x, δ〉, δ ∈ V,

defines a map x ∈ V 7→ B′[x] ∈ V?. We will prove that this map is Lipschitz-
continuous and this will complete the proof of the lemma. With this purpose
we first observe that, given x, y ∈ V,

||U ′ ◦ x− U ′ ◦ y||2H = lim
T→+∞

1
2T

∫ T

−T
|U ′(x(t))− U ′(y(t))|2dt

≤ [U ′]2Lip||x− y||2H ≤ [U ′]2Lip||x− y||2V.
Given δ ∈ V, ||δ||V ≤ 1, we apply the Cauchy-Schwarz inequality and the
estimate above, to obtain

|(B′[x]− B′[y])δ| = |〈U ′ ◦ x− U ′ ◦ y, δ〉| ≤ ||U ′ ◦ x− U ′ ◦ y||H||δ||H ≤
[U ′]Lip||x− y||V.

This proves that [U ′]Lip is also a Lipschitz constant for B′.
Next, we present a result that shows the consistency of the functional A

with the almost periodic problem.

Proposition 3. Assume that x ∈ V is a critical point of A. Then x(t) is of
class C2 and solves

ẍ+ V ′(x) = p(t). (4.1)
Conversely, if x(t) is a solution of (4.1) in AP, then it also belongs to V and
A′[x] = 0.

This result is essentially a particular case of Theorem 1 in [3] but we will
present a different proof based on the following result, that is inspired by
the theory of distributions.

Lemma 4. Assume that u, v ∈ H and

〈u, φ̇〉 = −〈v, φ〉 for each φ ∈ V.
Then u ∈ V and u̇ = v.

We postpone the proof to the end of the section.
Proof of Proposition 3. Assume first that x ∈ V and A′[x] = 0. We apply
the previous lemma with u = ẋ and v = −U ′ ◦x+p and deduce that x is C2

and satisfies (4.1). Conversely, if x is a solution of (4.1) in AP we will prove
that also ẋ and ẍ belong to AP . For the second derivative this is obvious
from the equation. To prove that ẋ is in AP it is sufficient to observe that it
is the derivative of an almost periodic function and it is uniformly continuous
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(||ẍ||∞ <∞). Now we know that x ∈ V and the conclusion A′[x] = 0 follows
from the identity 〈ẋ, δ̇〉 = −〈ẍ, δ〉.

The identity taken from AP 1 onto V is a bounded linear operator and so
the previous results also hold if one takes AP 1 as the domain of A. Thus,
we can choose for the domain of the functional a pre-Hilbert space or a non-
reflexive Banach space. These are not optimal settings from the point of
view of the direct method of the calculus of variations and it seems natural
to consider the completion of V. This is the approach taken by Blot in [6].
The price to pay is that the consistency with the almost periodic problem is
lost. We illustrate this phenomenon with a concrete example.

Example. Let us start with the function

b(t) =
∞∑
n=1

1
n

sin2(
t

n
).

This is a series of positive terms dominated by
∑
t2n−3. We also observe that

the series obtained by successive differentiation are uniformly convergent in
the whole line. From here it is easy to conclude that b is in C∞(R) and
the derivatives ḃ, b̈, . . . belong to AP . The function b is not almost periodic
since it is unbounded. Indeed,

b(tN ) ≥
N∑
k=0

1
2k + 1

→∞ if tN =
π

2
· 1 · 3 · 5 · · · (2N + 1).

Consider now the action functional with U ≡ 0 and p = b̈. It can be
expressed as

A[x] = 1
2 ||ẋ||

2
H − 〈ḃ, ẋ〉,

and so A is bounded below. More precisely, infVA = −1
2 ||ḃ||

2
H. A straight-

forward computation shows that A[xn]→ infVA, with

xN (t) = −
N∑
n=1

1
2n

cos(
2t
n

).

Moreover, {xN} is a Cauchy sequence in V. The limit in the completion of
V should be a minimizer but the Euler-Lagrange equation associated to A
has no almost periodic solutions. By construction this equation is ẍ = p(t)
and the solutions are x(t) = c1 + c2t+ b(t). This example is in contrast with
the periodic situation where C1-minimizers coincide with H1-minimizers.
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Next, we show a second difference between the periodic and almost peri-
odic situation. To this end we introduce the Banach space

ÃP = {p ∈ AP : M{p} = 0},

and employ the notation Ap to emphasize the dependence of the action with
respect to the forcing. We will prove that infVAp = −∞ for a typical p(t)
in ÃP . This is inspired by the results of Johnson in [15].

Proposition 5. Assume that the potential U is bounded. Then the set

B = {p ∈ ÃP : Ap is bounded below}

is of first category in ÃP .

Proof. Consider the class of functions p ∈ ÃP satisfying∑
| pn
Λn
|2 <∞,

where p(t) ∼
∑
pne

iΛnt is the Fourier expansion of p. Since p(t) is real
valued we are assuming that Λ−n = −Λn, p−n = pn and p0 = 0. This class
is a proper linear subspace of ÃP . Indeed, it is of first category because the
complement can be expressed as the countable intersection of the sets

GN = {p ∈ ÃP :
∑
| pn
Λn
|2 > N},

that are open and dense. To justify that GN is open it is sufficient to observe
that the Fourier coefficients are continuous with respect to the uniform norm.
To prove the density we select a function q ∈ ÃP with

∑
| qnΛn
|2 = ∞, say

q(t) =
∑∞

n=1
1
n2 sin( t

n4 ). Given any p ∈ ÃP \GN we observe that p+εq ∈ GN
if ε 6= 0. Now it is sufficient to prove that B is contained in the class described
above. A computation shows that

Ap[xN ] ≤ −1
2

∑
0<|n|≤N

| pn
Λn
|2 + ||U ||∞,

with
xN (t) = −

∑
0<|n|≤N

pn
Λ2
n

eiΛnt.

Proof of Lemma 4. Let us recall a construction employed by Bohr to prove
his Fundamental Theorem in [7]. Given a countable set of real numbers, say
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{Λn : n ∈ Z} with Λ0 = 0, one associates to it an appropriate double
sequence of numbers {k(q)

n }n∈Z,q∈N satisfying

0 ≤ k(q)
n ≤ 1, lim

q→∞
k(q)
n = 1 for fixed n.

Given q, k(q)
n = 0 for |n| large enough.

This sequence enjoys a universal property: for any f ∈ AP with Fourier
series

f(t) ∼
∑

fne
iΛnt,

it holds that
lim
q→∞

||sq(f)− f ||∞ = 0.

Here, sq(f) stands for the trigonometric polynomial

sq(f)(t) =
∑
n

k(q)
n fne

iΛnt.

Now, we are ready to prove the lemma. We choose for {Λn}n∈Z a set contain-
ing all the exponents of the function v(t). Notice that 0 is not an exponent
of v, as can be checked by testing the function φ(t) ≡ 1. With the help
of the test functions φ(t) = eiλt we observe that the exponents of u(t) are
contained in {Λn}n 6=0 ∪ {0} and

v(t) ∼
∑

vne
iΛnt, u(t) ∼ u0 +

∑ vn
iΛn

eiΛnt.

Next, we observe that sq(u) is a primitive of sq(v). At the same time,
sq(u) → u and sq(v) → v, uniformly in R. The classical result on the
passage to the limit under differentiation implies that u is C1 and u̇ = v. In
particular u belongs to V.

5. Limit periodic forcings

Throughout this section, T is a positive number and LPerT is the class
of functions obtained as uniform limits of periodic functions with periods
of the type T, 2T, . . . , NT, . . . From the point of view of functional analysis
LPerT can be described as the closure in AP of a linear subspace, namely

LPerT =
⋃
N≥1

PerNT .

This construction shows that LPerT is a Banach space with respect to the
L∞-norm. Several limit periodic functions have already appeared in the
paper, in particular in the example of the last section. The function ḃ(t)
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belongs to LPer2π. This is a function with zero mean value and unbounded
primitive. More properties of limit periodic functions can be found in [1].

We will work in the Banach space

X = {p ∈ LPerT : M{p} = 0}.
This is a closed hyperplane in LPerT .

Theorem 6. Given a > 0 there exists an open and dense set G ⊂ X such
that the pendulum equation

ẍ+ a sinx = p(t)

has a solution in LPerT for each p ∈ G.

Blot obtained a result that can be considered as the first theorem of
Hamel’s type for almost periodic forcings. In [4] he proved that, given any
p ∈ AP with M{p} = 0, there exists q ∈ AP with ||q−p||B arbitrarily small
such that ẍ + a sinx = q(t) has an almost periodic solution. Compared to
the previous theorem, Blot’s result has the advantage of applying to gen-
eral functions in AP and not only to those in LPerT . However, the norm
employed in this density result is rather weak, namely

||p||B = sup{〈p, φ〉 : φ ∈ V, ||φ||V ≤ 1}.
A nice feature of Theorem 6 is that the nonlinearity plays a role. Actually,
the conclusion is false for the linear equation obtained when a = 0. For that
case it is enough to observe that the class

{p ∈ X : ẍ = p(t) has a solution in LPerT }
is a proper linear subspace of first category in X. This can be justified using
Theorem 4.4 in [15] or with Fourier analysis, as in the proof of Proposition 5.
Notice that, now, all frequencies are commensurable with 2π

T ; that is, 2π
T /Λn

is a rational number.
Proof of Theorem 6. First, we recall some terminology on periodic equa-
tions. Assuming that x(t) is a τ -periodic solution of

ẍ+ a sinx = q(t), q ∈ Perτ ,
the linearized equation is

ÿ + a cosx(t)y = 0, (5.1)

and the Floquet multipliers associated to this equation are µ1 and µ2. The
solution x(t) is called degenerate with respect to period τ if (5.1) has τ -
periodic solutions different from y ≡ 0. This is equivalent to µ1 = µ2 = 1.
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When the Floquet multipliers are not in S1, |µi| 6= 1, i = 1, 2, we say that
x(t) is hyperbolic.

The following sequence of Banach spaces will play an important role. For
each integer n ≥ 1 define

Xn = {p ∈ PernT : M{p} = 0},

so that X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X. Notice that
⋃
Xn is dense in X.

The proof will be structured in three steps.
Step 1. For each n ≥ 1 there exists a set Gn open and dense in Xn such

that if q ∈ Gn then the equation ẍ + a sinx = q(t) has a hyperbolic periodic
solution of period nT .

The proof follows an argument already employed by Bosetto, Serra and
Terracini in [8]. If q ∈ Xn the periodic action functional

AnT [x] =
∫ nT

0
{1

2
ẋ(t)2 + a cosx(t) + q(t)x(t)}dt, x ∈ H1

nT ,

has a minimizer, say xn. By a well-known argument in the calculus of varia-
tions xn is either degenerate or hyperbolic as a periodic solution (see Chapter
17 in [9] and Chapter 4 in [17]). The results in [18] say that degenerate so-
lutions are unusual. More precisely, it follows from Theorem 3 of that paper
that there exists a set Gn open and dense in Xn such that if p ∈ Gn then the
minimizer xn is non-degenerate and therefore hyperbolic.

Step 2. Given n ≥ 1 and q ∈ Gn there exists Uq, an open neighborhood
of p in X, such that ẍ+ a sinx = p(t) has a solution in LPerT if p ∈ Uq.

In the theory of almost periodic equations, it is well known that an almost
periodic solution is persistent if the linearized equation has an exponential
dichotomy (see [11]). Moreover, the module of frequencies of the perturbed
solution is contained in the module of the equation. From step 1, we know
that if q ∈ Gn, then there is a hyperbolic periodic solution xn(t). In the
periodic context, this is equivalent to saying that the linearized equation has
an exponential dichotomy. When p ∈ LPerT is such that ||p− q||∞ is small,
the equation ẍ + a sinx = p(t) can be interpreted as a perturbation of ẍ +
a sinx = q(t). Therefore, there exists an AP solution x(t) of the perturbed
equation that is close to xn(t) and such that its module of frequencies is
contained in mod(p) ⊂ 2π

T Q. This property of the module characterizes
functions in LPerT (see for instance Proposition 2.7 in [1]).

Step 3. G =
⋃
n≥1

⋃
q∈Gn

Uq.
By construction, there exists a solution in LPerT for each p ∈ G. More-

over, G is open since it is defined as a union of open sets. To prove the
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density of G in X we observe that each Gn is dense in Xn and
⋃
Xn is dense

in X.

The variational framework developed in Section 4 can be adapted to the
limit periodic setting. We consider the space

LPer1
T = {x ∈ C1(R) : x, ẋ ∈ LPerT } = AP 1 ∩ LPerT ,

and, for each p ∈ X, the functional

Ap : LPer1
T → R, Ap[x] = M{1

2 ẋ
2 + a cosx+ px}.

The proof of Proposition 3 can be adapted to conclude that the critical
points of Ap are the solutions of (1.1) lying in LPerT . Also Proposition 5
has a limit periodic version saying that

BL = {p ∈ X : Ap is bounded below}
is of first category. It is interesting to notice that BL contains

⋃
Xn and

so is dense in X. To justify this take p in some periodic space Xn. There
exists a periodic minimizer of Ap among functions of period nT , say x?(t).
A classical result in the calculus of variations (again see [9]) implies that x?
is also a minimizer among the periodic functions with period a multiple of
nT ; that is, in the Sobolev spaces H1

νnT , ν = 2, 3, . . . This implies that

Ap[x] ≥ Ap[x?] for each x ∈
∞⋃
ν=1

Per1
νT .

It is easy to prove that
⋃∞
ν=1 Per

1
νT is dense in LPer1

T and so the continuity
of Ap implies that x? is also a minimizer in LPer1

T . Finally, we can apply
the previous theorem to deduce that G ∩ (X \ BL) is residual in X. This
means that for a generic forcing p of X the functional Ap has critical points
and inf Ap = −∞. At the same time there is a dense set of forcings (p ∈ BL)
for which Ap reaches its minimum.
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[20] J. Mawhin, Global results for the forced pendulum equation, Handbook of Differential
Equations, Vol. 1, Chapter 6, pages 533–589, Elsevier 2004.

[21] J. Moser, “Integrable Hamiltonian Systems and Spectral Theory,” Lezioni Fermiane,
Pisa 1981.

[22] R. Ortega, The number of stable periodic solutions of time-dependent hamiltonian sys-
tems with one degree of freedom, Ergodic Theory and Dynamical Systems, 18 (1998),
1007–1018.

[23] F. Riesz and B. Sz.-Nagy, “Functional Analysis,” Dover 1990.
[24] E. Serra and M. Tarallo, A reduction method for periodic solutions of second order

subquadratic equations, Adv. Differential Equations, 3 (1998), 199–226.
[25] A.J. Ureña, All periodic minimizers are unstable, Arch. Math., 91 (2008), 63–75.


