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STEADY STATES OF THE 1D DOI-ONSAGER MODEL IN THE

STRONG SHEAR FLOW∗

GERALD WARNECKE† AND HUI ZHANG‡

Abstract. Here we will investigate the steady states of the Doi-Onsager model in general shear
flows. Generally we know that the equilibrium is not the Maxwell-Boltzmann distribution in the
shear flow. Here we will give not only the expression of the equilibrium for the 1D Doi-Onsager
model in shear flows by rigorous proof, but also a discussion of the critical points of the intensity
α and the shear rate γ by numerical calculation. The equilibrium of the particles depends on the
competition between the parameters α and γ. When α crosses the first critical point α1≈4.083
from a smaller value, the number of steady states will change from one to three through two. At
the same time the shear rate γ depends on α. When α crosses the second critical point α2≈5.125
from smaller values, the number of steady states will change from three to one through two for some
related γ. It can be found that some of the equilibria are stable with respect to the energy functional.
These results are partly consistent with the work of Marrucci and Maffettone in [20], in which formal
analysis was given.
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1. Introduction

It is well-known that the Doi model can describe the dynamical states in dilute
polymeric fluids. We consider the behaviour of chain molecules or rod particles.
Important effects were found in some numerical simulations, e.g., [9, 10, 11, 14, 19, 20],
and theoretical analysis, e.g., [1, 2, 3, 26]. In the simplest case of no flow (velocity
u=0), it is also called Doi-Onsager model [17, 23, 25]. It can describe phase transition
phenomena though it is very simple. Therefore, this model has recently attracted
considerable attention [4, 5, 6, 14], especially in the mathematics community [1, 2, 3,
7, 8, 12, 13, 16, 17, 18, 23, 24]. At first, Onsager [22] showed in 1949 that the steady
state is the prolate phase when the intensity among the particles is strong. The prolate
phase consists of aligned particles. He derived this result via a variational approach
under the assumption that the equilibrium was axially symmetric and possessed some
explicit expression for the Onsager interaction potential between molecules. This
name was attributed to the potential by later authors. In 1959 Maier and Saupe [21]
investigated the nematic phase for a simpler potential among the molecules, which is
now called Maier-Saupe potential, e.g., [4, 5]. In 2005, a rigorous proof of the Onsager
assumption for the Maier-Saupe potential was given in [17, 8, 23]. Meanwhile explicit
expressions for all equilibria were shown in [3, 17]. The phase transition phenomenon
was proved in the investigation of stability of these equilibria [24]. In [24], many steady
states were found in the weak flow for the Doi model, such as flow-aligning, tumbling,
log-rolling, and kayaking. Concerning the asymptotic states and the properties of the
Doi-Onsager model without flow, Constantin et al. [1, 2] gave many very interesting
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results. Here we will investigate the equilibrium of the Doi-Onsager model in the
strong shear flow while we restrict ourselves to rodlike particles on the circle.

The mathematical model we adopt is the Doi-Onsager equation on the circle for
shear flow

ψt =Dr[ψθθ +(ψUθ)θ]+γ(ψ sin2θ)θ, (1.1)

where ψ(θ,t) denotes the orientational probability distribution function (PDF) for
rod-like, rigid molecules. The constant Dr is the averaged rotational diffusivity, which
will be set to 1. The parameter γ is the shear rate. The function U is the mean-field
interaction potential, which here is considered to be the Maier-Saupe potential [21]
given as

U =α

∫ 2π

0

sin2(θ−θ
′

)ψ(θ′,t)dθ′. (1.2)

The parameter α describes the interaction intensity among the rod particles. Further-
more, we know that ψ(θ,t) is 2π periodic in θ. We are seeking solutions that satisfy
ψ≥0 and the normalization condition

∫ 2π

0

ψ(θ,t)dθ=1. (1.3)

When there is no flow, all equilibria of equation (1.1) were given in [3, 16]. It was
shown that if the interaction intensity parameter α is less than 4, the constant solution
is the only possible steady state solution, which describes the isotropic phase. If α is
larger than 4, then there is a new solution that corresponds to the nematic phase. All
other non-constant solutions are obtained from this solution by translation. It was
also proved that the nematic solutions have period π instead of 2π, which signifies
the fact that the rods are symmetric, i.e., they have orientations but no directions.
Later in [17], a new simple approach to reprove these results was found. Moreover,
an explicit expression for all the solutions was given in [17], which is

Theorem 1.1. [17] The number of stationary solutions to (1.1)–(1.3) with γ=0
depends on whether the intensity crosses the critical value α=4. More precisely,

(i) If α≤4, then the only stationary solution is the constant f =1/2π.

(ii) If α>4, then besides the constant solution f =1/2π, all other stationary
solutions are given by

f(θ)=
1

Z̃
e−η∗ cos2(θ−θ0), (1.4)

where Z̃=
∫ 2π

0
e−η∗ cos2θdθ and θ0 is arbitrary. η∗> α

2

√

1−4/α is uniquely determined
by the equation

∫ 2π

0
cos2θ e−η∗ cos2θdθ
∫ 2π

0
e−η∗ cos2θdθ

+
2η∗

α
=0. (1.5)

There are complete theoretical results for the full Doi model on a sphere given
in [17]. All equilibrium solutions are necessarily uniaxially symmetric, see [17, 23, 8].
The number of equilibrium states and their qualitative behavior for the Doi-Onsager
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equation hinge on whether the intensity α crosses two critical values [17]. It is also
shown that there is a phase transition when α changes. Additionally, we can see the
hysteresis phenomenon when the intensity α changes from small to large and from
large to small in [24].

In this paper we will determine all equilibria of the Doi equation on the circle
under strong shear flows. We obtain the result that there is no isotropic phase and
all equilibria are in the nematic phase.

Theorem 1.2. The PDF ψ of the equilibria of (1.1)–(1.3) possesses the form

ψ(θ)=
1

Z
[1+b(θ)]e−a(θ), (1.6)

where

a(θ)=
α

2
+ηcos2(θ−θ0)+

γθ

2
, (1.7)

b(θ)=(eγπ −1)

∫ θ

0
ea(τ)dτ

∫ 2π

0
ea(τ)dτ

, (1.8)

and Z is the normalization constant, given by

Z=

∫ 2π

0

[1+b(θ)]e−a(θ)dθ. (1.9)

Furthermore, the parameters η and θ0 are determined by the intensity α and the shear
rate γ through the relations

∫ 2π

0
cos2(θ−θ0)[1+b(θ)] e−a(θ)dθ
∫ 2π

0
[1+b(θ)] e−a(θ)dθ

+
2η

α
+
γ

2α
sin2θ0 =0, (1.10)

∫ 2π

0
sin2(θ−θ0)[1+b(θ)] e−a(θ)dθ
∫ 2π

0
[1+b(θ)] e−a(θ)dθ

+
γ

2α
cos2θ0 =0. (1.11)

Comparing the expression (1.6) with (1.4), we can formally see how far the equilib-
rium of the 1D Doi model in the general shear flow is from the Boltzmann distribution
(1.4) without shear flow. Let us change the form of (1.6) slightly as follows:

ψ(θ)=
Z̃

Z1
e−

γθ
2

1

Z̃
e−ηcos2(θ−θ0) +

1

Z
b(θ)e−a(θ),

where Z1 =
∫ 2π

0
e−( γθ

2
+ηcos2(θ−θ0))dθ and we have deleted a term e−α/2. Here the

first term is a dilation of Z̃
Z1
e−

γθ
2 of the Boltzmann distribution (1.4) due to the shear

flow, and we can take the second term as the additional perturbation of the Boltzmann
distribution (1.4).

Unfortunately, here we cannot theoretically analyze equations (1.10) and (1.11) to
find the critical points of the intensity parameter α and the shear rate γ. However, by
numerical calculations for (1.10) and (1.11), it can be shown that the critical points of
the intensity α and the shear rate γ are approximate. Precisely, we find the following
results:

(a) When 0<α<α1(α1≈4.083), there is only one pair of (η,θ0) to satisfy (1.10)
and (1.11). This implies that the equilibrium is uniquely determined by the intensity
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α and the shear rate γ when α is less than the first critical point α1 and γ is any
given positive constant. Moreover, for α∈]0,α1[ fixed, the solution (η,θ0) depends on
the shear rate γ and θ0 is not a monotone function of γ. There is a critical point for
γ such that θ0 attains a minimum; for example, γ=3.5 is the critical point for α=1.0
(figure 2.7). We can see that η is a monotone increasing function of γ for fixed α from
Tables 2.1, 2.2 and 2.3 .

(b) When α1<α<α2(α2≈5.125), there are possibly many pairs of solutions
(η,θ0) to satisfy (1.10) and (1.11) for some γ. The number of solutions depends on the
choice of γ. It shows that the equilibrium of the particles in a polymeric fluid is possi-
ble for many steady states, but some steady states are not stable. For example, we can
see that (η,θ0)=(0.1333,0.8374),(0.967,1.728),(1.0596,1.935) are solutions of (1.10)
and (1.11) for γ=0.01 and α=4.5 from Table 2.2. But the solution (0.1333,0.8374)
is unstable with respect to the energy functional, while for α=4.5 and γ=0.1685,
there are two stable solutions (η,θ0)=(0.6,1.025),(1.1346,1.9092). But when α=4.5
and γ>0.6, there is only one solution. Moreover, it can be found that γ depends on
α for which there are multiple steady states.

(c) When α>α2, there is only one solution (η,θ0) which satisfies (1.10) and
(1.11). This implies that the steady state of the molecules in the flow is also uniquely
determined by the interaction intensity α and shear rate γ. Moreover, for α∈]α2,∞[
fixed, θ0 and η are increasing functions of the shear rate γ, e.g., from (figure 2.10),
we can see the profile of θ0(γ) for α=8.0.

Here we especially point out that these results are partly consistent with the work
of Marrucci and Maffettone in [20]. They formally analyzed the explicit expression

for PDF ψ=Ce−g(φ)(
∫ φ

0
e−g(x)dx+K) with g(φ)=−acos2φ+G(φ− 1

2 sin(2α+2φ))

and a=U
∫ π

0
ψ(φ)cos2φdφ by introducing θ=φ+β, where β is the angular shift

(−π/4≤β≤π/4). The latter is chosen so as to obtain

∫ π

0

ψ(φ)sin2φdφ=0. (1.12)

In fact, the parameter G is 1
2γ, and U is about 1

2α in our paper since we use the
different parameters with a different meaning. Then the result about the critical
point of α and γ was obtained by numerical calculation to (1.12) for given parameters
a and β in [20]. It is stated in [20] that:

the solution is not always found, however. We find one (and only one) solution
throughout the range of G values explored (0<G<103) only for values of U less than
ca. 2.41, thus encompassing the whole isotropic range (0≤U ≤2), as well as a small
segment of the nematic range (2<U <2.41). Conversely, for U >2.41, a lower bound
for G is found, call Gcritical, below which the stationary solution disappears. We
infer that, for G<Gcritical, the system switches to the tumbling situation. Gcritical

appears to grow steadily with increasing U .
Their result was partially correct in virtue of the formal solution. Here we rigor-

ously deduce the form of the solution, and we definitely find that the isotropic solution
ψ= 1

2π does not satisfy the steady state equation (2.2). So it is obvious that there is
no isotropic phase for any positive values of the parameters α and γ. Furthermore,
when α is larger than ca. 5.125, the unique stationary state is the nematic phase for
any values of the shear rate γ. This is also consistent with the result for the case of no
flow, see [3, 7, 16, 17, 20], which states that the unique stationary state is the nematic
phase for α>4. In our result we have not found the tumbling situation, which was
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reported in [20], since it is not stable stationary state, . In this work we report that
there are two stable stationary states for α∈]4.083,5.125[ and some shear rate γ. It
is possibly due to the presence of wagging state for the time dynamic system. The
boundary states of the wagging case would be the stable steady states we found.

In addition, there is a paper [15], in which the weak shear case was investigated for
the dynamic model (1.1) with a variety of moment closure approaches. The authors
obtained the weak-shear solvability conditions for persistence of equilibria due to
the shear-perturbed approach, nearly isotropic branch (using bifurcation software
that gives full phase diagram whose regions are separated by bifurcations). These
phase diagrams and all bifurcations were compared with the work [21]. Here we
directly investigate the steady state equation of the model (1.1) without any closure
approach. We also claim that there are one or two stable steady states for some
intensity parameter α and the shear rate γ, which are consistent with the diagram of
mesoscopic models in [15].

This paper is organized as follows. Section 2 is devoted to the analysis of the
expression and some properties of the equilibrium states in the general shear flow.
Meanwhile, we will discuss the critical points of the intensity parameter α and the
shear rate γ, in which the number of the equilibrium changes. In section 3 the
stability of multiple solutions was discussed by calculating the energy functional.
Then conclusions are drawn in the final section.

2. Steady states in the shear flow

In this section we will explicitly investigate the expression of the steady states of
equation (1.1) in the shear flow. It follows from (1.2) that

Uθ =α

∫ 2π

0

sin2(θ−θ′)ψ(θ′,t)dθ′.

Furthermore,

Uθθ =2α

∫ 2π

0

cos2(θ−θ′)ψ(θ′,t)dθ′

=2α

∫ 2π

0

[1−2sin2(θ−θ′)]ψ(θ′,t)dθ′

=2α−4U,

where (1.3) has been used. Therefore, we obtain a decoupled equation for U

Uθθ +4U =2α.

Its general solution is

U =
α

2
+s1 cos2θ+s2 sin2θ, (2.1)

where s1,s2 are two parameters.
We consider the steady states, which satisfy

0=ψθθ +(ψUθ)θ +γ(ψ sin2θ)θ (2.2)

and (2.1). Integration of (2.2) from 0 to θ yields

ψθ +ψUθ +γψ sin2θ=C, (2.3)
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where C is a constant that is independent of θ. If the shear rate γ=0, we can easily
prove that C≡0 in the above equation similar to [16, 17]. Thus the distribution is the
Boltzmann distribution ψ= 1

Z e
−U , where Z is the normalization. However we have

C 6=0 when γ 6=0. In the following we want to determine C in (2.3).
Integration of (2.3) from 0 to 2π yields

∫ 2π

0

ψθdθ+

∫ 2π

0

ψUθdθ+

∫ 2π

0

γψ sin2θdθ=2πC. (2.4)

The first term in (2.4) is zero since ψ is a periodic function of period 2π. We denote
the second term by G. Then

G=

∫ 2π

0

ψUθdθ

=α

∫ 2π

0

∫ 2π

0

sin2(θ−θ′)ψ(θ)ψ(θ′)dθ′dθ

=α

∫ 2π

0

∫ 2π

0

(sin2θcos2θ′−cos2θsin2θ′)ψ(θ)ψ(θ′)dθ′dθ

=0.

The last equality is easily seen by writing the difference as two separate integrals and
interchanging the variables in one of them. So (2.4) implies

∫ 2π

0

γψ(θ)sin2θdθ=2πC.

Thus, we can obtain

C=
γ

2π

∫ 2π

0

sin2θψ(θ)dθ>0. (2.5)

Now we introduce a′(θ)=Uθ +γ sin2θ, then

a(θ)=U+γ

(

θ

2
−

1

4
sin2θ

)

=
α

2
+s1cos2θ+s2 sin2θ+γ

(

θ

2
−

1

4
sin2θ

)

=
α

2
+ηcos2(θ−θ0)+

γθ

2
, (2.6)

where η and θ0 are two new parameters replacing s1,s2 which satisfy

η2 =s21 +(s2−γ/4)2, tan2θ0 =(s2−γ/4)/s1.

Without the loss of the generality we assume here that η>0. For η<0 we can modify
the definition of θ0 to θ0 +π/2 to give the same form of a(θ). Then from (2.3), we
can obtain

(ψea(θ))θ =Cea(θ). (2.7)

Integration of (2.7) from 0 to θ yields

ψ(θ)ea(θ) =K+C

∫ θ

0

ea(τ)dτ,
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where K is a constant. Therefore, we obtain that the distribution function is

ψ(θ)=Ke−a(θ) +Ce−a(θ)

∫ θ

0

ea(τ)dτ, (2.8)

where a(θ) and C are given by (2.6) and (2.5), respectively. Here we can see that
there are five parameters K,α,γ,η,θ0 in the expression (2.8). However they are not
completely independent. They certainly satisfy some relations as follows:

(1) The distribution function ψ(θ) satisfies the normalization (1.3). So we have

K

∫ 2π

0

e−a(θ)dθ+C

∫ 2π

0

e−a(θ)

∫ θ

0

ea(τ)dτdθ=1. (2.9)

(2) The function ψ(θ) is periodic, i.e., ψ(2π)=ψ(0). From (2.8) and (2.6), we obtain

ψ(2π)=Ke−a(2π) +Ce−a(2π)

∫ 2π

0

ea(τ)dτ, ψ(0)=Ke−a(0),

a(2π)=
α

2
+ηcos2θ0 +γπ=a(0)+γπ.

Thus, we have from ψ(2π)=ψ(0) the relation

K[eγπ −1]=C

∫ 2π

0

ea(τ)dτ. (2.10)

From the relation (2.10) we can see that K has the same sign as the shear rate γ

because C>0 and
∫ 2π

0
ea(τ)dτ >0.

(3) On the other hand, from (2.1) and (2.6)

U =
α

2
+s1 cos2θ+s2 sin2θ

=
α

2
+ηcos2(θ−θ0)+

γ

4
sin2θ. (2.11)

Invoking (1.2) we have

α

2
+ηcos2(θ−θ0)+

γ

4
sin2θ=α

∫ 2π

0

sin2(θ−θ
′

)ψ(θ′)dθ. (2.12)

From the above relations (2.9)-(2.12) for the parameters K,α,γ,η,θ0, we can now
conclude the result of Theorem 1.2.

The proof of Theorem 1.2.

Proof. From (2.10) we obtain

C=K
eγπ −1

∫ 2π

0
ea(τ)dτ

.

We insert this into (2.8) to obtain

ψ(θ)=K

[

1+
eγπ −1

∫ 2π

0
ea(τ)dτ

∫ θ

0

ea(τ)dτ

]

e−a(θ).
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Now the definition Z=1/K, b(θ) given by (1.8), and a(θ) already defined in (2.6)
gives the form (1.6) of the solution. The formula (1.9) for Z is defined by (2.9) using
(2.10) again. Finally we insert the solution (1.6) into (2.12) to obtain

∫ 2π

0
sin2(θ−θ′)[1+b(θ′)] e−a(θ′)dθ′

Z
=

1

2
+
η

α
cos2(θ−θ0)+

γ

4α
sin2θ. (2.13)

Now combining (2.13) with (1.9) for the nonlocal term Z we can obtain
∫ 2π

0
sin2(θ−θ′)[1+b(θ′)] e−a(θ′)dθ′
∫ 2π

0
[1+b(θ)] e−a(θ)dθ

=
1

2
+
η

α
cos2(θ−θ0)+

γ

4α
sin2θ

=
1

2
+[

η

α
+
γ

4α
sin2θ0]cos2(θ−θ0)+

γ

4α
cos2θ0 sin2(θ−θ0). (2.14)

Since

sin2(θ−θ′)=
1

2
[1−cos2(θ−θ′)]=

1

2
−

1

2
cos[2(θ−θ0)+2(θ0−θ

′)]

=
1

2
−

1

2
[cos2(θ−θ0)cos2(θ0−θ

′)−sin2(θ−θ0)sin2(θ0−θ
′)]

=
1

2
−

1

2
[cos2(θ−θ0)cos2(θ′−θ0)+sin2(θ−θ0)sin2(θ′−θ0)],

we have that the left side of (2.14) is equal to

1

2
−

1

2

∫ 2π

0
cos2(θ′−θ0)[1+b(θ′)] e−a(θ′)dθ′
∫ 2π

0
[1+b(θ)] e−a(θ)dθ

cos2(θ−θ0)

−
1

2

∫ 2π

0
sin2(θ′−θ0)[1+b(θ′)] e−a(θ′)dθ′
∫ 2π

0
[1+b(θ)] e−a(θ)dθ

sin2(θ−θ0).

Using the linear independence of cos2(θ−θ0) and sin2(θ−θ0) gives the two relations
(1.10) and (1.11).

From the expression (1.6) we can see that the distribution function ψ is an ap-
proximate Boltzmann distribution (1.4) in [17] when the shear rate γ is sufficiently
small since

eγπ −1≈0 as γ≪1

and

α

2
+ηcos2(θ−θ0)+

γθ

2
≈
α

2
+ηcos2(θ−θ0) as γ≪1.

Next we will prove the periodicity property of this distribution function in the
strong shear flow similar to the equilibrium of the distribution function in no flow
[16, 17].

Proposition 2.1. The solution ψ(θ) defined by (1.6) is periodic with period π.

Proof. By using (1.7), we can obtain

∫ θ+π

0

ea(τ)dτ =(

∫ π

0

+

∫ θ+π

π

)ea(τ)dτ

=

∫ π

0

ea(τ)dτ+e
γπ
2

∫ θ

0

ea(τ)dτ.
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Thus, in virtue of (1.6)–(1.8)

ψ(θ+π)=
1

Z
[1+b(θ+π)]e−a(θ+π)

=
1

Z

[

1+
eγπ −1

∫ 2π

0
ea(τ)dτ

(

∫ π

0

ea(τ)dτ+e
γπ
2

∫ θ

0

ea(τ)dτ

)]

e−a(θ)− γπ
2

=
1

Z

[

1+
eγπ −1

∫ 2π

0
ea(τ)dτ

∫ π

0

ea(τ)dτ

]

e−a(θ)− γπ
2 +

1

Z

eγπ −1
∫ 2π

0
ea(τ)dτ

∫ θ

0

ea(τ)dτe−a(θ)

=
1

Z
[1+b(π)]e−

γπ
2 e−a(θ) +

1

Z
b(θ)e−a(θ)

=
1

Z
[1+b(π)]e−

γπ
2 e−a(θ) +ψ(θ)−

1

Z
e−a(θ).

If we want to prove ψ(θ+π)=ψ(θ), we have to verify

[1+b(π)]e−
γπ
2 =1. (2.15)

That is, by using (1.8) again,

(eγπ −1)

∫ π

0

ea(τ)dτ =(eγπ/2−1)

∫ 2π

0

ea(τ)dτ. (2.16)

In fact, from (1.7) we know that a(π+θ)=a(θ)+ γπ
2 . Thus

∫ 2π

0

ea(τ)dτ =

(
∫ π

0

+

∫ 2π

π

)

ea(τ)dτ

=

∫ π

0

ea(τ)dτ+

∫ π

0

ea(π+τ)dτ

=(1+eγπ/2)

∫ π

0

ea(τ)dτ.

Multiplying by (eγπ/2−1) implies (2.16) and completes the proof.

From this assertion, we know that the rods are symmetric, i.e they have orienta-
tions but no directions. This is similar to the result in [16, 17].

In the following we will determine the critical points of α and γ numerically. Set

B(α,η,γ,θ0)=

∫ 2π

0
cos2(θ−θ0)[1+b(θ)] e−a(θ)dθ
∫ 2π

0
[1+b(θ)] e−a(θ)dθ

+
2η

α
+
γ

2α
sin2θ0, (2.17)

F (α,η,γ,θ0)=

∫ 2π

0
sin2(θ−θ0)[1+b(θ)] e−a(θ)dθ
∫ 2π

0
[1+b(θ)] e−a(θ)dθ

+
γ

2α
cos2θ0, (2.18)

for the terms obtained in (1.10) and (1.11). We will directly calculate (2.17) and
(2.18) for given α,γ,η,θ0. Then we take the contour line of value 0 for B and F . The
intersection points are what we want to find. The following figures are the contour
lines of value 0 of B (continuous line) and F (dashed line) in (figures 2.1–2.6).

From figures (2.1-2.6), we can see that there are multiple points of the contour
lines of value 0 of B and F of (2.17) and (2.18), respectively. In the following we give
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Fig. 2.1. α=5.0 and γ =3.0
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Fig. 2.2. α=8.0 and γ =0.5
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Fig. 2.3. α=5.1175 and γ =0.1
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Fig. 2.4. α=4.3615 and γ =0.1
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Fig. 2.5. α=4.5 and γ =0.1

θ
0

η

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 2.6. α=5.0 and γ =0.5

γ 0.01 0.01 0.01 0.15 0.15 0.15 0.17 0.17 0.2 0.3
η 0.133 0.97 1.06 0.47 0.78 1.12 0.60 1.13 1.15 1.19
θ0 0.84 1.73 1.94 0.97 1.10 1.91 1.03 1.91 1.90 1.90
En -0.70 -0.72 -0.72 -0.59 -0.59 -0.63 -0.57 -0.62 -0.60 -0.53

Table 2.1. α=4.5, En=energy
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Fig. 2.10. α=8.0

γ 0.4 0.5 0.75 1.0 1.5 2.0 3.0 4.0 4.5 5.0
η 1.23 1.27 1.33 1.38 1.47 1.59 1.73 1.93 2.02 2.03
θ0 1.88 1.87 1.86 1.86 1.87 1.89 1.93 1.98 1.99 2.06

Table 2.2. α=4.5

γ 0.05 0.05 0.05 0.1 0.1 0.1 0.4 0.4 0.4
η 0.07 1.46 1.48 0.14 1.45 1.49 0.57 1.33 1.52
θ0 0.81 1.44 1.70 0.84 1.43 1.70 1.03 1.38 1.69

energy -0.55 -0.59 -0.60 -0.51 -0.55 -0.56 -0.25 -0.28 -0.34

Table 2.3. α=5.0

γ 0.5 0.5 0.5 0.57 0.6 0.8 1.0 1.5 2.0
η 0.77 1.23 1.53 1.54 1.54 1.56 1.57 1.62 1.68
θ0 1.12 1.34 1.70 1.70 1.70 1.71 1.73 1.75 1.79

energy -0.16 -0.18 -0.27 -0.22 -0.19 -0.14 -0.11 0.48 0.86

Table 2.4. α=5.0
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γ 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0 8.0 10.0
η 1.75 1.82 1.92 2.00 2.10 2.21 2.42 2.64 2.86 3.32
θ0 1.75 1.86 1.89 1.91 1.94 1.96 2.00 2.03 2.06 2.10

Table 2.5. α=5.0

γ 0.3 0.5 1.0 3.0 5.0 8.0 10.0 12.0 15.0
η 0.12 0.19 0.38 1.08 1.80 2.85 3.44 3.99 4.76
θ0 0.84 0.88 0.98 1.35 1.61 1.82 1.91 1.97 2.03

Table 2.6. α=8.0

γ 0.5 0.8 1.0 3.0 5.0 8.0 10.0 12.0 15.0
η 0.14 0.22 0.28 0.81 1.39 2.38 3.06 3.71 4.63
θ0 0.86 0.90 0.930 1.23 1.47 1.70 1.79 1.86 1.94

Table 2.7. α=10.0.

some tables, which are zeros of B and F for different α and γ. These tables show the
following facts:

(a) When 0<α<α1(α1≈4.083), there is only one pair of (η,θ0) such that B=0
and F =0 (figure 2.1). Moreover, for α∈]0,α1[ fixed, the solution (η,θ0) depends on
the shear rate γ and θ0 is not a monotone function of γ. There is a critical point
of γ such that θ0 attains the minimum. For example, γ=3.5 is the critical point for
α=1.0 (figure 2.7). The values γ=2.5,1.5 are also the critical points for α=3.0,4.0
(figures 2.8, 2.9), respectively, while the solution η is an increasing function of γ for
α fixed. In fact from the form (2.6) of a(θ) there is another pair of zeros, denoted by
(η∗,θ∗0), then η∗ =−η and θ∗0 =θ0 +π/2.

(b) When α1<α<α2(α2≈5.125), there are multiple pairs of solutions (η,θ0)
such that B=0 and F =0 (ref. Tables 2.1–2.4). The number of solutions de-
pends on the choice of γ. For example, we can see that (η,θ0)=(0.1333,0.8374),
(0.967,1.728), (1.0596,1.935) are solutions of B=0 and F =0 for γ=0.01 and α=4.5
from Table 2.2. When α=4.5 and γ=0.1685, there are two solutions (η,θ0)=
(0.6,1.025), (1.1346,1.9092). But when α=4.5 and γ >0.6, there is only one solu-
tion. Moreover, comparing Table 2.4 and Table 2.2, we can see that γ depends on
α∈]α1,α2[, for which the equations B=0 and F =0 has multiple solutions. But not
all these solutions are stable. In section 4 we will investigate the stability of these
solutions.

(c) When α>α2, there is only a pair of solution (η,θ0) which satisfies B=0 and
F =0 (figure 2.2). Moreover, for α∈]α2,∞[ fixed, θ0 and η are increasing functions of
the shear rate γ, e.g., from (figure 2.10) we can see the profile of θ0(γ) for α=8.0.
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3. Stability of multiple solutions

In this section we will investigate the stability of the multiple solutions with
respect to the energy functional. We use (1.6) and (2.11) to obtain

E(ψ)=

∫ 2π

0

[ψ lnψ+
1

2
ψa(θ)]dθ

=

∫ 2π

0

ψ[ln(1+b(θ))−a(θ)− lnZ]+
1

2
ψ

[

α

2
+ηcos2(θ−θ0)+

γθ

2

]

dθ.

Then (2.6) gives

E(ψ)=

∫ 2π

0

{

ψ

[

ln(1+b(θ))−

(

α

2
+ηcos2(θ−θ0)+

γθ

2

)

− lnZ

]

+
1

2
ψ

[

α

2
+ηcos2(θ−θ0)+

γθ

2

]}

dθ

=

∫ 2π

0

ψ

{

ln(1+b(θ))−
1

2

[α

2
+ηcos2(θ−θ0)+γθ−

γ

4
sin2θ

]

− lnZ

}

dθ

=
1

Z

∫ 2π

0

[1+b(θ)]e−a(θ)

[

ln(1+b(θ))−
η

2
cos2(θ−θ0)−

γθ

4

]

dθ

−
α

4
− lnZ.

Thus, we can calculate the energy functional for η,θ0 determined by (1.10) and (1.11)
as α,γ given. For example, from Table 2.1, we can see that the energies of points
(η,θ0)=(0.967, 1.728), (1.0596, 1.935) are almost −0.72 and less than the energy of
other solution as α=4.5 and γ=0.01. So these two points are stable points. Here we
show the Table 2.3 and 2.4 to display the energy for the multiple solutions of (1.10)
and (1.11) for α=4.5, 5.0, respectively, and γ given. The points with low values are
the stable points.

4. Conclusion

In this work we have given the explicit expression of the equilibrium to the 1D
Doi model in the shear flow. The difference from this expression to the Maxwell-
Boltzmann distribution without flow can be seen. Here are two parameters, the
interaction intensity among particles α and the shear rate γ, to determine the states
of the particles in the general one dimension shear flow of polymeric fluids. According
to our discussion, we know that the equilibrium of these particles depends on the
competition between α and γ. When the interaction intensity α is less than the
first critical point α1≈4.083 or larger than the second critical point α2≈5.125, the
steady state of these molecules is uniquely determined by α and γ, where γ can be
arbitrary. But when α∈]α1,α2[, it is another story. There are multiple steady states of
these particles. It is possible to have one, two, or three equilibria. This is completely
dependent on the shear rate. When the shear rate is very large, the equilibrium is also
uniquely determined. While the shear rate is not large enough, the equilibrium will
be multiple steady states. However, not all equilibria are stable. From the discussion
of the energy functional, we can see that it is possible that there are one or two stable
equilibria for some α and γ.
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