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INTRASEASONAL MULTI-SCALE MOIST DYNAMICS OF THE
TROPICAL TROPOSPHERE*

JOSEPH A. BIELLOT AND ANDREW J. MAJDA%

Abstract. We derive a multi-scale model of moist tropical dynamics which is valid on horizontal
synoptic scales, zonal planetary scales, and synoptic and intraseasonal time scales. The Intraseasonal
Multi-Scale Moist Dynamics (IMMD) framework builds on the IPESD framework of [A.J. Majda and
R. Klein, J. Atmos. Sci., 60, 393408, 2003]. It generalizes the latter by allowing for strong zonal
winds (the Trade Winds) and the pressure and stratification variations that they generate. The
framework consists of three pieces. The first, called TH, are planetary scale climatology modulation
equations which govern the Trade Winds and Hadley Circulation. Self-consistency of the asymptotic
theory requires that the meridional component of the Hadley Circulation is an order of magnitude
weaker than the zonal component. The second piece, S, is a linear system of equations which
govern synoptic scale velocity, temperature, and pressure fluctuations forced by synoptic scale heating
fluctuations. Unlike the IPESD theory, these fluctuations are advected by part of the planetary scale
climatology from TH. Since the meridional component of TH is an order of magnitude weaker than
the zonal component, the synoptic scale fluctuations are only advected by the latter. The third,
P, govern the planetary scale anomalies which, like IPESD, are driven both by planetary scale
mean heating and by upscale fluxes from the synoptic scales. These planetary scale anomalies are
advected both by the zonal component of the Trade Winds and by the meridional component of the
Hadley Circulation and, furthermore, respond to an in-scale flux from the mean climatology. We
also present an asymptotic analysis of the equations of bulk cloud thermodynamics in order to lay
out a self-contained path for incorporating synoptic scale cloud models into the IMMD framework.
This framework has potentially important implications for the development of models describing the
Madden-Julian Oscillation (MJO) since the MJO manifests itself as planetary scale anomalies from
a mean climatology which it modulates on intraseasonal time scales.
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1. Introduction

The dominant component of intraseasonal variability in the tropics is the 40—
50 day tropical intraseasonal oscillation, often called the Madden-Julian oscillation
(MJO) after its discoverers [23]. In the troposphere, the MJO is an equatorial plan-
etary scale wave envelope of complex multi-scale convective processes which prop-
agates across the Indian Ocean and Western Pacific at a speed of roughly 5ms™!
[34, 11, 10, 29]. The planetary scale circulation anomalies associated with the MJO sig-
nificantly affect monsoon development, intraseasonal predictability in mid-latitudes,
and impact the development of the El Nino Southern Oscillation (ENSO) in the Pa-
cific Ocean [24, 38, 40, 41]. An overview lecture by the co-discoverer of the MJO, R.
Madden, describing its dynamics is provided as a webcast in [22]. This non-technical
description is well suited for mathematically inclined readers who seek a more in
depth, yet accessible description of the phenomenon; such a description is beyond the
scope of this paper.

It has been hypothesized that organized convection on multiple scales is an es-
sential ingredient of the Madden-Julian oscillation [33, 20, 9, 37, 39, 41]; this paper
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will specifically focus on the multi-scale nature of the phenomenon. Present day com-
puter general circulation models (GCM) typically poorly represent the MJO [35] and
it is likely that this poor performance of GCMs is due to the inadequate treatment
across multiple spatial scales of the interaction of the hierarchy of organized structures
which generate the MJO as their envelope. This multi-scale organization in the MJO
is manifested in part as correlations between different components of the dynamical
fields (i.e. velocity or temperature) which yield net upscale fluxes in those fields and
drive the planetary scale organized flow.

Recently the authors have developed a multi-scale theory of the Madden-Julian
oscillation (MJO) [26, 2, 3, 5] in which the structure of the planetary scale MJO is
determined by upscale momentum and temperature fluxes from the synoptic scales in
addition to direct heating on the planetary scale. The model begins with a prescribed
phase speed for the MJO and is shown to have many features in common with the
observational record [10, 11, 20, 13, 12, 14] in particular the spatial correlation of
synoptic scale vertically tilted convective structures with the large scale organization
of the MJO.

In this theory, the synoptic scale flows are determined by diabatic fluctuating
heating due to latent heat release, resolved on the synoptic scales. The equations
governing synoptic scale fluctuations are the linear equatorial equations forced by
latent heating [32, 8]. Planetary scale flows are governed by quasi-linear equatorial
long wave equations forced by upscale fluxes from the planetary scales and direct,
though weaker heating, resolved on the planetary scale.

The multi-scale asymptotic framework which underlies this model is the Intrasea-
sonal Planetary/Equatorial Synoptic Dynamics (IPESD) framework, first derived in
[27]; for alternate derivations see [25, 3]. IPESD is, inherently, a theory of anomalies
from a mean climatology. The derivation relies on the assumption that the heating
due to the release of latent heat of condensation is about 10 Kelvin per day when
averaged on the synoptic scales and less than about 2 Kelvin per day when averaged
on the planetary scales.

In order to construct a predictive closed theory of the Madden-Julian oscillation
the dynamic effects of moisture must be included in the IPESD framework and the
MJO model. As a particular example, the multi-cloud moisture models of Khouider
and Majda [15, 16, 17, 18, 19] (hereafter we shall refer to this body of work as KM) can
be processed through the asymptotic procedure stipulated in the derivation of IPESD.
Ideally this would yield a closed MJO model where synoptic scale fluctuations drive
upscale fluxes of temperature and momentum while large scale flows modify the local
synoptic scale environment where the fluctuations are generated. Practically, though,
there is no a priori way to ensure that latent heating on the planetary scale remains of
order 2 K/day, as is required by the IPESD asymptotics. Physically, this corresponds
to the fact that the nonlinearities in any model of cloud physics have the ability to
generate mean heating which exceeds a few Kelvin per day, thereby modifying the
local radiative-convective equilibrium and the large scale flow in which the Madden-
Julian oscillation is embedded. In the tropics, this large scale flow consists of the
Hadley Circulation, and most importantly for the IMMD theory, the stronger zonal
component of this flow.

Therefore, in order to include moist dynamics in a multi-scale model of the tropics,
the IPESD framework must be generalized to allow for stronger mean zonal winds
and thermodynamic stratification, both of which can be modulated on the zonal
planetary scales and on intraseasonal time scales. Though the IPESD framework
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does allow for stronger heating and thereby generates a Hadley circulation, it requires
that this stronger heating be exactly balanced by zonal momentum dissipation (e.g.
from cumulus drag). By introducing the stronger zonal flows, this exact balance is
no longer required since the lack of balance is naturally directed to the forcing of
the zonal component of the Trade Winds. We call the resulting non-linear multi-scale
framework the “Intraseasonal Multi-scale Moist Dynamics” (IMMD), and it naturally
separates into three systems of equations for the flow which are coupled through
advective nonlinearities, cross-scale fluxes, and scale averaged diabatic heating.

S: Synoptic scale fluctuating flows forced by synoptic scale fluctuating forcing (di-
abatic heating, drag and radiation), advected by the zonal trade winds and
modulated by the potential temperature and moisture environment. The syn-
optic scale fluctuations also respond to the the cross-scale flux of zonal mo-
mentum and potential temperature through the divergence of fluxes which
couple the synoptic scale flows to the planetary scale climatology.

P: Planetary scale mean flows which are anomalies from a mean climatology. These
are allowed to vary on both synoptic and intraseasonal time scales, and their
evolution on each of these time scales separate into two systems of equations.
These flows are advected by the Trade Winds and, on the intraseasonal time
scale, also by the Hadley circulation. As with the synoptic scale fluctuating
flow, they also respond to the stronger potential temperature stratification
which is modulated on the intraseasonal time scale. Like the original IPESD,
they are forced by upscale fluxes from the synoptic scales. However, unlike
IPESD, they are also coupled to the mean climatology through the flux of
zonal momentum and potential temperature from the mean climatology to
the fluctuations.

TH: Stronger planetary scale zonal flow, pressure, potential temperature, and mois-
ture stratification which is modulated on the intraseasonal time scale and
determines the Trade Winds and the Hadley circulation. The assumption
that the synoptic scale fluctuating heating is order 10 K/day implies that the
upscale fluxes from the synoptic scales are too weak to modulate this flow on
intraseasonal timescales. Therefore, all of the upscale fluxes drive the plan-
etary scale anomalies, P, and the Trade Winds and Hadley circulation are
driven solely by planetary scale and intraseasonally averaged latent heating
and dissipation.

There are nonlinearities in the systems of equations for each of the scales of the
dynamics owing to advective coupling with the large scale flows, fluxes across the
scales, and coupling due to latent heat release. However, the system of equations
describing Hadley Circulation (TH) is coupled to the other components of the flow
only through the forcing terms arising from the planetary scale mean of the latent
heat release; therefore, only in this system of equations are the advective terms fully
non-linear.

Before we construct the multi-scale asymptotic framework, we will present the
derivation of the equations of moisture dynamics which are relevant on the synoptic
(and larger) scales in section 2. This derivation follows that of [7, 16], but is included
here in order to provide a fully self-contained moist asymptotic theory for synoptic
and larger scales in the tropics and in order to clearly spell out the scales of validity
of the asymptotic theory. In section 3 the large scale equation for water vapor derived
in section 2 is coupled to the hydrostatic equatorial g-plane equations to derive the
multi-scale IMMD framework. Through the course of the derivation we detail the
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relevant scales and magnitudes which the theory describes. Ultimately, the IMMD
framework is completely independent of the particular physics associated with either
a cloud model or boundary layer coupling. The derivation that we present lays out
a precise procedure for taking a particular cloud/boundary layer model (specifically,
the multi-cloud model of KM) and including it in a full multi-scale model for tropical
dynamics on synoptic/planetary length scales and synoptic/intraseasonal time scales.
We will present this more detailed application in a forthcoming paper.

2. Moisture dynamics on synoptic scales

The starting point for the derivation are the anelastic, hydrostatic Euler equations
on an equatorial g-plane, which are widely accepted as the appropriate equations for
large scale (synoptic or larger) phenomena in the tropics

D
S UTYU=—py+ Sy

Dt
D
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—0+w= H~+5°
i +w +S
p-=10
(pw)z+ (pv)y+ (pw): =0, (2.1)

where

D 0 0 0 0 9.9

E—§+u%+va—y+w$ (2.2)
is the three dimensional advective derivative. The equations have been non-
dimensionalized [2, 3] so that time is measured in units of the equatorial time
scale, Tp=(cf)~"/?~8.3hrs~1/3day, the horizontal length scales are in units of
the equatorial deformation radius, Lz = (¢/3)"/? =1500km, the vertical length scale
is in units of the troposphere height divided by m, Hp/ma5km, and the temper-
ature is measured in units of the thermal lapse rate in the atmosphere across one
unit of the vertical scale, 8y =6.5K/km x 5km~33K. These parameters correspond
to a Brunt-Viisild frequency of 10725~ !, which arises from a constant linear gra-
dient of potential temperature, so that 6 is the deviation from this linear gradi-
ent. The equatorial §-plane in the free troposphere occupies the domain 0<z <,
—40/3<x<40/3 and —10/3<y<10/3. Notice that the natural horizontal velocity
scale is Lg/Tr ~50m/s, which is also the dry gravity wave speed and the unit for ver-
tical velocity is (Hp/m)/Tg ~16cm/s. The density is scaled to that at the base of the
free troposphere, p(z=0)=1 (and is elsewhere less than or equal to one). Hereafter
we shall use the assumption of incompressibility, p(z) =1 everywhere, which does not
change the conclusions and makes for more streamlined notation.

The sources of zonal and meridional momentum forcing, S“, SV are upscale fluxes
from meso- and smaller scales and drag due to downscale cascade to these same scales,
as would be expected in a turbulent environment. At this stage we wish to simply
model the dynamics below the synoptic scales; we shall employ only a linear drag
law closure to describe the momentum dissipation to sub-synoptic scales, S*=—du
and SY=—dv. These should only be thought of as placeholders which contain the
necessary time scales of momentum dissipation as resolved on the synoptic spatial
scales. No aspect of the following asymptotic analysis relies on the detailed description
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of drag, only its magnitude. For example, in their theory of the MJO, the authors
have already discussed a more general boundary layer drag prescription for IPESD [3].
However, linear models are common in the atmospheric literature and the dissipation
time associated with these models is ascribed to cumulus drag; it has been estimated
to be about 5 days [21] from observations of large scale tropical flows, which yields a
dissipation rate of d=.07 in non-dimensional units.

One non-dimensional unit of the thermal forcing corresponds to a 100 Kelvin per
day heating rate; it has been divided into two pieces on the right hand side of equation
(2.1). The second term, S%, describes radiative damping; note that this notation is
slightly modified from previous work [27, 2, 3, 5]. For elucidation, we shall use a linear
Newtonian cooling law, S? = —dy 0 where observational estimates for the cooling time
are of the order 15 days, dy ~.023 [21, 31].

The first term, H, describes latent heat release due to condensation in the bulk
of the troposphere. Since it arises from moisture, a description of moisture dynamics
is necessary at this stage in the derivation. Our basis for including moisture are the
equations of bulk cloud microphysics, their fully dimensional version

DO Lo

= 2 (C4—E,)
Dt ¢, T
Dq,

—=—(Cy—E,
D (Ca )
Dg.

~=Cq— A, —C,
Dt

D(jr _ a(VT er)
Di FE

+ A +C,—E, (2.3)

was also used as the basis for the cloud/moisture models in [7, 16]; for further de-
tails of bulk cloud microphysics see [6]. For consistency with IPESD, we use the
(dimensional) potential temperature in the first microphysics equation and employ
the anelastic constraint to remove the density from the advective derivative. The
actual temperatue appears in the denominator on the right hand side of the potential
temperature equation and can be written in terms of the potential temperature and
the total tropospheric pressure,

[P\
ro(2)" o

The new equations describe the mass fractions of water vapor, ¢,, water in clouds,
de, and rain water, §.. Therefore, the water conversion terms on the right hand sides
of these equations are simply rates (grams per kilogram per unit time) and for our
derivation we shall not describe the specific physics associated with them. It suffices
to record that Cy is the condensation rate of water vapor forming cloud water, E,
is the re-evaporation rate of rain into dry air, A, is the autoconversion rate of cloud
into rain, and C,. is the rate at which falling rain collects liquid water from clouds.
Rain is assumed to quickly move downward at its terminal velocity, Vr. In these
equations, the total liquid water, ¢, +§.+ ¢, is materially conserved, other than for
its loss through the downward rain flux. The ratio of the latent heat released through
the condensation of one gram of water to the specific heat of dry air sets an important
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temperature scale

L 2260J /g -
¢, 1.0041/(g-K) =2250K=0r. (2.5)
Hats have been used above the variables of equation (2.3) to distinguish these quan-
tities from their non-dimensional or, in the case of the mixing ratios, their rescaled
version which will be used to develop the asymptotic framework.
The rainwater conversion terms can be eliminated from this system of equations
by writing an equation for the mixing ratio of the total liquid water ¢; =q.+ g

D(jl a(VT(jr) 2
—=——"4+H 2.6
Dt 0% i (2:6)

where H=Cy— F, is the net conversion rate of liquid water, whose dimensions are
inverse time. Thus we consider the simpler system

DO ) .
Do, 0
Dt T
Dqu 2
S 2.7
Dt 27)

along with equation (2.6) as describing moist processes. Of course, this system is
not closed since there is no explicit equation for §,, but this does not cause problems
since the asymptotic theory considers synoptic and larger scale dynamics so that the
specifics of rain and cloud processes must be modeled anyway. The ratio of poten-
tial temperature to actual temperature appearing on the right hand side of the first
equation in (2.7) is dominated by the mean temperature and potential temperature
soundings in the troposphere, equivalently, by the background pressure stratification
from equation (2.4). The ratio effectively acts as a vertical weighting of the heating
associated with the condensation of water. The analysis of the moisture equations
and the derivation of IMMD are the same whether or not the vertical dependence of
the ratio is retained. In order to simplify the equations as in [7], we fix this ratio to
its value at the base of the troposphere, é/T: 1.

The water mixing ratios are on the order of 10g/kg ~ 1072, so it will be convenient
to rescale the vapor and liquid water mixing ratios according to

. qo - do

Gv=q04: @="pa and G=par, (2.8)
where qg is the typical water vapor mixing ratio scale and R>1 is the ratio of this
scale to the typical liquid water mixing ratio scale. These rescalings are substituted
into the temperature and water equations with time and potential temperature non-
dimensionalized as before. The conversion rate of rain is non-dimensionalized by

H=HyH, (2.9)
where

T 0. Tg

The water vapor scale qg is chosen to remove constants from the water vapor conver-
sion equation,

Hy =4x10"2day " (2.10)

go=HoTp=15x10"2. (2.11)
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Since typical mixing water ratios at saturation are of order 10~2 in the lower tro-
posphere, then H =1 means that a typical parcel of water could go from dry to
saturation a few times per day. Using these definitions, the potential temperature
and water vapor equations take the simple form

DY
Dt~
Dg _

=—H. 2.12
Dt (2.12)

A cloud model constitutes a specification of H, either through a deterministic or
stochastic dynamical model. In particular, the multi-cloud models considered in KM
use three types of clouds: congestus, deep, and stratiform, corresponding to heating
rates which project strongly onto the lower, middle and upper troposphere, respec-
tively.

Turning our attention to the liquid water equation, we non-dimensionalize the
terminal velocity by the vertical length scale, equatorial deformation time, and the
ratio R,

Hr

VT:RﬂTE

Vr. (2.13)
Assuming typical rain terminal velocities of about 3 m/s yields R =20 and the liquid
water equation becomes

Dql 0
Dt

8Z(qur)+}f]. (2.14)

Notice that the large value of R suggests that the water vapor of a parcel of air exceeds
the liquid water in a parcel of air by a factor of R (from the rescalings in (2.8)); most
of the air in the tropical troposphere exists as moist unsaturated air, not cloud or
rain.

Before concluding the discussion of moisture, we mention two additional features
which aid in the incorporation of the multi-cloud models of KM. The first concerns the
vertical average of the liquid water advection equation (2.14). In the limit R — oo,
the sum of the terms in parentheses on the right hand side of equation (2.14) must
vanish in order for the advection of ¢; to remain finite. Integrating the right hand
side over the height of the troposphere and defining the total precipitation, P, as the
flux of the liquid water mixing ratio at the ground, we find

1 ™
zf/ Hdz, (2.15)
z=0 T™Jo

where we have used the fact that the flux of rain through the top of the troposphere is
zero. As in most GCMs the cloud models of KM and [7] are built on the assumption
that column integrated liquid water processes are fast compared to the equatorial
synoptic time scale.

The final point regarding moisture concerns the source of water vapor in equation
(2.12) and liquid water in equation (2.14). There is apparently no source of total
water in these equations and only the sink due to the flux of rain through the lower
boundary. Physically the moisture source of the free troposphere arises through its
interaction with a dynamic moist boundary layer and the strong coupling of this

_r
=g, 4
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boundary layer to the warm ocean. The system of equation (2.1) and the moisture
equation in (2.12) constitute an almost closed system of equations, except for a model
of the heating, H. Coupling to a boundary layer is readily included by considering a
layer below z=0 and matching fluxes through this layer. The careful incorporation
of boundary layer effects is a necessary further step in the asymptotic analysis which
is beyond the scope of this paper. However a carefully derived system of equations
which includes boundary layer effects and the conservation of column integrated moist
static energy is the basis for the multi-cloud models of KM. See [36] for the derivation
of non-linear fluxes in the boundary layer.

3. Derivation of IMMD

Now that the non-dimensionalized primitive equation (2.1) and the moisture equa-
tion in (2.12) are established and we have a precise understanding of the magnitudes
and scales over which these equations are valid, we are in a position to derive the
Intraseasonal Multi-scale Moist Dynamics equations (IMMD).

There are only two assumptions involved in the derivation of IPESD from the
equatorial (-plane equations, and only one of these will be used in the derivation
of IMMD. That is, though the forcing terms on the right hand side of (2.1) and
(2.12) have been non-dimensionalized to 150 m/s/day, 100 K/day and a moist mass
fraction conversion rate of .04 dayfl, the equations themselves describe motions on
synoptic and larger scales and actual average rates over these scales is much smaller.
The measured atmospheric heating in the tropics associated with latent heat release
and resolved on synoptic scales and larger is of order 10 K/day, a tenth of the non-
dimensional scale. Furthermore, the drag dissipation and Newtonian cooling rate are
also small. This motivates the introduction of a small parameter

Measured heating rate on synopticscales
= - - . - =0.1 (3.1)
Nondimensional unit of heating rate

from which the IPESD and IMMD asymptotics emerge. In the IPESD asymptotics,
€ also becomes the Froude number of the flow, i.e., the ratio of horizontal flow speeds
to the dry gravity wave speed, and the parameter which measures the separation
of the synoptic and planetary scales and synoptic and intraseasonal scales. While
€ still measures the separation of scales in the IMMD framework, it is no longer a
measure of the strength of the winds. Since IMMD allows for zonal flows which are of
the same order of magnitude as the dry gravity wave speed, the Froude number (at
least when measured using the modulating zonal winds) is no longer small. However,
IMMD does maintain the notion of a small Froude number for the anomalies from the
climatology, which are of order e times the planetary zonal wind speeds. Rescaling
the latent heating, momentum, and temperature dissipation rates by e the primitive
equations are rewritten as

D = —p—ed

Dtu Yv=—py —€du

D

Ev—i—yu:—py—edv

—DG =eH —edpt

Dt +w=€eH —cay (3.2)

D
Eq—Qow:—EH

Dz =6
Ug + 0y +w, =0
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where, now, d=0.7, dg =0.23, and one unit of latent heating corresponds to 10 K/day
or a moist mass fraction rate of 4 x 10_3day71. Much like the temperature equation,
we have redefined g as the deviation from a background profile which decreases mono-
tonically with height with gradient —Qo(z) [7]. Since the moisture stratification tends
to be an exponential function of height in the troposphere, it is appropriate to retain
the vertical dependence of Q.

The machinery for establishing the multi-scale IPESD or IMMD frameworks is
that of multiple scales asymptotic theory. In particular, IPESD and IMMD are derived
by trying to establish the dynamics on the synoptic zonal length and time scales. The
solvability condition of the resultant system then requires modulating the dynamics
on longer zonal length scales and time scales; these are the planetary zonal scales
and the intraseasonal time scales [27, 25]. The primary length and time scales are
Lg=1500km and Tg=2_8.3hours, the equatorial deformation radius and time. Lg
is also referred to as the equatorial synoptic length scale and we shall employ that
terminology in this paper. T is the time it takes for linear wave solutions of equation
(3.2) to travel one synoptic length scale, and following [2, 4] we refer to this as the
synoptic time scale. The planetary length scale and intraseasonal time scales are
large compared to the synoptic length and time scales and it will turn out that e
from the definition in equation (3.1) also measures the separation of these scales.
Therefore, the planetary scale is Lp=¢~! Lr~15000km and the intraseasonal time
scale is T = ¢! Tg ~3.5days for the parameter values we have chosen.

The first step in a multiple scales theory is the ansatz that the solutions corre-
sponding to any of the physical variables in equation (3.2) can be approximated by
functions which vary on both length scales and both time scales. Formally, this cor-
responds to augmenting the independent variables by new coordinates which describe
the planetary zonal scale and the intraseasonal time scale and which are independent
of the original synoptic zonal and time scales. For example, for the zonal velocity
field, this corresponds to the replacement,

u(z,t) — uf(z,ex,t,et) (3.3)

where the dependence on y and z is suppressed since they do not actively participate
in the multiple scales asymptotics. For the applied reader, we would like to clearly
spell out the interpretation of the functional replacement in equation (3.3). Focus on
the time variables; the zonal variables will have the same interpretation. We allow
that when any of the arguments of u¢ varies an order one amount, then u¢ can, at
most, vary an order one amount . An order one variation in ¢ equals 8.3 hours, which
is a synoptic time unit. An order one variation in et means that et~ 1, or that ¢ varies
an order of €', which is equal to 10 times 8.3 hours or 3 days, an intraseasonal time
unit. Introducing the planetary zonal variable and intraseasonal time variable

X=ex T=cet (3.4)
amounts to assuming a multi-scale solution
u(z,t) =u(z,X,t,T) (3.5)
where zonal derivatives and time derivatives are replaced by their multi-scale coun-
terparts
ou ous . ous
e €
Ox Oz 0X
ou ous . ous
- € .
ot ot oT
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This same ansatz holds for meridional and vertical velocity fields, pressure, potential
temperature and moisture. Implicit in the ansatz of equation (3.5) is that if any of
the independent variables z,X,¢ or T varies an amount which is order one then u¢
can also vary an amount which is order one, but it cannot vary by amounts larger
than order one.

The second step in the theory is to pose an asymptotic expansion of the dynamic
variables. This expansion is meant to be well ordered for all synoptic time and for
planetary time scales of order ¢! and longer. A consistent solution of the moist
dynamics in equation (3.2) requires the asymptotic expansion

ut =U(X,T)+e(u (2, X,t,T) +a(X,t,T)) + € uy + ...

V= e(v'(z, X, t,T) +0(X,t,T)) + vy + ...

w= e(w' (2, X, t,T) +w(X,t,T)) + e wy + ...
pe=P(X,T)+e(p'(z,X,t,T)+p(X,t,T)) + € pa+ ...

0°=O0(X,T)+e(@ (2, X,t,T)+0(X,t,T)) + € Og+...

¢ =Q(X,T)+elq (x, X,t,T)+q(X,t,T)) + €2 g2 + ... (3.7)

where, again, all of the fields also depend on y and z. The overbars denote averaging
with respect to the synoptic zonal scale

f(XtT—hféoﬁ/ flz,X,¢,T)d (3.8)

and the primed variables are mean zero,
flz, X, t,T)=f(X,t,T)+ f'(x,X,t,T) where f'=0. (3.9)

For the applied scientist who may be less familiar with the intricacies of multi-scale
asymptotics, we emphasize an important feature of the asymptotic expansion posed
in equation (3.7). Based on the assumptions of the model — for IMMD, equation
(3.1) - and considering initial conditions which are consistent with the expansion in
(3.7), then the multiscale asymptotic procedure seeks solutions which are consistent
with this expansion for long times; in the case of IMMD), intraseasonal time scales.
Furthermore, while the theory allows uppercase variables (the climatology) to vary
on intraseasonal (3.5 day time unit) or longer timescales, their being stationary over
these timescales is also consistent with the asymptotics.

Establishing the theory requires that each successive order of the asymptotic ex-
pansion be solvable — in particular, us is solvable. This further implies that the error
of our approximation on these scales is less than O(€?), which for the zonal velocity
corresponds to 0.5 m/s. There is no a priori reason that the asymptotics should yield
the structure in equation (3.7); it ultimately reveals itself upon attempting to solve
the successive orders of the theory.

Except for the moisture variable ¢ and the lowest order terms, U, P,0,(Q, the ex-
pansion in (3.7) is the same as that in the IPESD framework [27, 25]. The inclusion
of a lowest order zonal flow, U, means that the IMMD framework can account for
zonal flows of order 50 m/s and the pressure, P, which is in meridional geostrophic
and hydrostatic balance with such flows. Thus, unlike IPESD, IMMD is not a low
Froude number theory; it is able to describe the stronger zonal flows associated with
the Trade Winds. The pressure that these trade winds generate will generate a poten-
tial temperature perturbation, ©, from the hydrostatic constraint and the theory also
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accounts for a moisture stratification which is the same strength as this temperature
perturbation. In the IMMD framework the Trade Winds, and their companion ther-
modynamic variables, modulate on the planetary zonal scale, X, and the intraseasonal
time scale, T', but not on the synoptic zonal or temporal scales. In the appendix, we
discuss how the loosening of the restriction on the synoptic zonal mean heating rate
naturally leads to the addition of the stronger zonal flow.

The first order correction to the Trade Winds have horizontal velocities on the
order of 5 m/s. We explicitly separate these flows into their synoptic scale fluctuating
components, u’,v’,w’,p’,0" and ¢ and their synoptic scale means, @,o,w,p,0 and §.
The expansion (3.7) allows for a second order correction in the terms with a subscript
2" and it will become evident below how these terms participate in the theory.

For conciseness of exposition we have written the asymptotic expansion of equa-
tion (3.2) in Appendix A, and in the following subsections we describe how to solve
them at each order, thereby obtaining a closed, multi-scale asymptotic theory. We
define the synoptic (or fast) time average

Dex)= o [ pexand (3.10)

and, since the derivation will separately describe the fast and slow variations of a
zonal synoptic mean field, we define

fXT) = f(X,6,T)— (f)(X,T). (3.11)

Clearly < f > =0 and f describes all of the synoptic time scale variation of the zonal
mean fields.

3.1. Trade winds and Hadley circulation (TH). The asymptotic expan-
sion of equation (3.2) are written in Appendix A equations (A.1)—(A.7) and we shall
often refer to these in deriving the IMMD equations. The lowest order of equations
(A.1)—(A.7) is € and occurs in equation (A.2) and (A.6). They describe the merid-
ional geostrophic and hydrostatic balance of the pressure and zonal wind

yU+P,=0

3.12
P, =0. (3:12)

At order ¢!, we arrive at the first result of IMMD which is more general than the
IPESD framework. Taking the synoptic zonal and time averages of equation (A.1),
(A.3), (A.4), and (A.7) we find

—U V+Px=—-dU
DT yvV+rx

D _
— = (H)-d
H7O+W (H)—dy©
D _
—Q-—-QuW=—(H
Q- QoW =—(H)
Ux+Vy,+W,=0, (3.13)
where the notation

V=(@) and W=(®) (3.14)
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is introduced in order to describe the meridional/vertical structure of the Hadley
Circulation. The advective derivative is taken with respect to the intraseasonal time
scale and the full three dimensional flow described by the Hadley Circulation

D 0 0] 0 0

DT78T+U8X+V8y+W6z' (3.15)
Notice that all zonal derivatives are with respect to the planetary zonal scale, X.
The choice of a cloud model constitutes a prescription of H, and the coupling of
the free troposphere to a boundary layer would affect the lower boundary conditions
on the system of equation (3.12)—(3.13). Otherwise, this system constitutes a closed
description of the Hadley Circulation, (U,V,W), and the pressure, temperature, and
moisture stratification induced by this flow, P,©,Q. As such, it is the TH scale
of the IMMD framework. We emphasize that while we have chosen to begin with
incompressible dynamics in order to simplify the discussion, the anelastic constraint
would have applied had we chosen to include the density at the outset [27].

The TH scale consists of three dimensional incompressible flows which are in
equatorial meridional geostrophic and hydrostatic balance. The equations in (3.12)
and (3.13) are nonlinear equatorial long wave equations which allow for zonal jets,
barotropic waves and equatorial baroclinic Rossby and Kelvin waves while filtering
out equatorial inertio-gravity and mixed Rossby gravity waves. They can describe
both a mean Hadley Circulation and its zonal modulation on planetary scales over
timescales no faster than the intraseasonal timescale. Therefore, linear models of
the Trade Wind/Hadley circulation must result from the additional assumption that
the strength of the forcing on the planetary scales is O(e) weaker than that which
is allowed in this IMMD derivation. Conversely, if the actual Trade Wind/Hadley
circulation is observed to modulate on intraseasonal timescales with wind strengths
of 50 m/s zonally and 5 m/s meridionally, then equations (3.13) imply that advective
non-linearities are not negligible.

TH can couple to smaller scales through the cloud model and the boundary layer.
Models for H such as KM or Betts-Miller type parameterizations [1] are strongly
non-linear functions of the thermodynamic variables so spatio-temporal averages of
these functions cannot be separated into different, uncoupled scales. This heating
term, therefore, is the primary source of coupling between the Trade Winds/Hadley
circulation and synoptic and smaller scale flows.

3.2. Zonal synoptic scale fluctuations (S). Focusing on order ¢! terms in
equations (A.1), (A.3), (A.2), (A.4), and (A.7) we subtract from these terms their
synoptic scale zonal mean to find

up+Uul+ (W'U)p+@0'U)y+ (w'U), —yv +p,,=0
vy +U v, +yu' +pi, =0
0,+U0, +w' + (uW'O)y+(v'0), + (w'8),=H'
4+Ud—Qow' + (W Q)+ (v'Q)y +(w'Q). = —H'
p.="0
uy, +v, +w, =0, (3.16)
which describe the synoptic scale fluctuating dynamics (S). Since the mean wind,

temperature, and moisture do not depend on the zonal synoptic scale, the synoptic
scale incompressibility constraint has been used to rewrite the terms corresponding
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to the advection of the mean state by the fluctuations explicitly as divergence terms,
which is to say

VU, +w' U, =W U)+(0'U)y+('U),, (3.17)

and similarly for © and Q.

Considered in isolation, the synoptic scale fluctuating flows are described by linear
equations — the nonlinearities arise through coupling to the planetary scale or the
cloud model, H’'. The synoptic scale flows are advected by the zonal component of
the Trade Winds but do not respond to the meridional flow of the Hadley Circulation.
They are additionally coupled to the zonal component of the Hadley Circulation and
the stratification through the divergence of zonal momentum and temperature across
scales; the divergence terms describe a wave/mean flow coupling on the synoptic
spatial and temporal scales. Also, these equations retain the features of the IPESD
synoptic scale theory [27, 25] in that the momentum and temperature dissipation does
not directly affect the synoptic scale flows, but will do so through their upscale fluxes
to the planetary scales.

3.3. Planetary scale anomalies from the climatology (P). Consider the
synoptic zonal mean of the order €' terms in equations (A.1)—(A.7). Subtracting
from these the synoptic time average of the same equations (which is tantamount to
subtracting equation (3.13)) and using the definition in (3.11) yields

4 (U )y + (0U), —yo=0
Vg +yu+p, =0
0; + 0+ (90), + (w0), = H
Gt — Qo+ (0Q)y+ (0 Q). = —H
p.=0
By + 10, =0, (3.18)

which describes the fast time scale modulation of planetary scale anomalies from the
modulating climatology described by TH. As in section 3.2, we have used the incom-
pressibility constraint to write the coupling to the planetary scales as the divergence
of a flux.

Equations (3.18) describe fast moving waves whose amplitudes, by definition, have
synoptic time mean equal to zero. Unlike the synoptic scale fluctuations, these waves
are not advected by the zonal component of the Trade Winds; in fact, there is no
zonal coupling in these equations since there are no zonal derivatives. These waves
propagate only in the meridional and vertical directions. Their physical interpretation
is much like that of an intertio-gravity wave, which communicates the presence of an
imposed heating source and leaves an adjusted density stratification in its wake. In the
presence of a heating source at the same planetary scale zonal location, the waves in
(3.18) communicate the adjustment to this heat source in the meridional and vertical
direction.

We now derive the equations governing the zonal planetary scale anomalies from
the mean climatology which, themselves are modulated on intraseasonal time scales.
To do so, we introduce one more notational simplification

<’H’> —u, <}5> —D,
<0_> —0, (@) —q,
(v3) =, (W) —w (3.19)
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and the equations that we seek will describe the modulation of these variables.
Consider the zonal and temporal mean of the terms of order ¢! in equation (A.2),
(A.6), and the terms of order €2 in equation (A.7). The constraints

Yyu+py=—dV
pzze
ux +vy+w, =0 (3.20)

arise after exploiting the fact that the synoptic time average of a synoptic time deriva-
tive must vanish

(k) —B(—t)
O —

—0. (3.21)

Notice that the anomalies are not in strict meridional geostrophic balance since
the meridional component of the Hadley circulation appears as a forcing for the
geostrophic constraint. See [3] for a discussion of how such a forcing can be in-
corporated into a zonal momentum forcing and heating.

The order € terms in equation (A.1), (A.3), and (A.4) constitute an inhomoge-
neous linear system of PDEs for the second order corrections to the zonal momentum,
temperature, and moisture, us,6s,q2, respectively. They can be written concisely as

U2 ¢ +UU2,x + P2, = Gu
02,t —|—U927x =Gy
Q2+ U0 =Gy (3.22)

where the pressure is given by the hydrostatic relation ps , =62 from equation (A.6)
and G,,Gy, and G encapsulate all of the remaining terms at second order. In order
for the asymptotic expansion posed in equation (3.7) to be well ordered for all time,
these equations cannot describe secular growth in wus,65,g2. Since U is independent of
x,t, its variables, X, T (and y,z, which have been suppressed) appear as parameters in
the inhomogeneous equation (3.22); effectively, each X, T,y are decoupled in equation
(3.22), and different vertical levels couple because of the hydrostatic pressure rela-
tion. Therefore, for each X,T,y,z, a necessary and sufficient condition for non-secular
growth of the synoptic scale zonal means of us,6s,q2 is that the synoptic zonal and
temporal mean of the forcing terms on each of the right hand sides of the equations
in (3.22) must vanish. Taking the synoptic zonal and time average of the right hand
sides results in the following system of equations for the intraseasonal dynamics of
the synoptic zonal and time averaged planetary scale zonal momentum, temperature,
and moisture anomaly

D
ot @l)x +@U)y+ (wU). —yv+px = F* —du

D _
St wt @O)x + Vo), +(we). = F?+ (Hy)—dgt

4= Qo (uQ)x + (vQ)y + (wQ). = F — (), (323)

where the advective derivatives are defined in equation (3.15) and the fluxes on the
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right hand side are given by

F'= =), = ('), — (o), - (@a),
F":—<W>y—<W>z—<ﬁ§>y— b))
Fi=—(vq) —(w'q),~(5q),— (@q),. (3.24)

Together, equation (3.23) and the upscale fluxes (3.24) describe the evolution of the
planetary scale anomalies in the IMMD framework.

The planetary scale anomalies are advected by all components of the Hadley
Circulation and evolve on the intraseasonal time scale, just like the background cli-
matology. They further experience an in-scale flux through their interaction with the
planetary scale flow. Because of the incompressibility constraint, this flux can also be
thought of as the advection of the background climatology by the anomalies.

The anomalies are directly forced by the flux terms, F*, F?, and F? which are
defined in equation (3.24), each of which consists of two pieces. The first two terms
in each flux correspond to the spatial upscale flux from synoptic scale fluctuations to
the planetary scale and are further divided into meridional and vertical components.
The second two terms defining each flux correspond to fast, mean zero fluctuations
of the planetary scale anomalies nonlinearly driving time averaged planetary scale
anomalies; again, these have both meridional and vertical components. Due to the
original, physically motivated choice that the dissipation timescales are intraseasonal
the anomalies are also subject to both zonal momentum and temperature dissipation.

The last term appearing in the planetary scale theory is the synoptic zonal and
time average of the second order mean heating; dimensionally, this term is measured
in units of 1.5 K/day. Examining the definition in equation (A.5), we can see that
separating this term out from the lowest order mean heating makes no sense a priori
since one can always redefine (H) to include (Hs) by simply redefining (equivalently,
renormalizing) the small parameter, e. Therefore, the presence of <H2> makes sense
only when <H > vanishes, that is to say, only when we can say with certainty that the
forcing from latent heating is everywhere no greater than a few Kelvin per day. Oth-
erwise any planetary scale mean heating can always be absorbed into the term <H >
We elaborate on this point in Appendix B where IPESD and IMMD are compared.

3.4. On describing the synoptic time dynamics by a single system
of equations. As it has been derived, IMMD breaks up into four systems of
equations, each system being coupled to one or more of the others. We can reduce
this to three systems of equations by combining the synoptic scale fluctuating fields
(v, v, w',p’,0',q"), which have synoptic zonal mean equal to zero, with the planetary
scale fast oscillating flows (a,v,w, ﬁ,é,c]) which have synoptic time average equal to
zero. The corresponding fields in equations (3.16) and (3.18) are the same order in
€, so they can be added to one another while maintaining asymptotic consistency.
Defining the sum of the synoptic fluctuations and the fast time fluctuations of the
planetary scale means as

fr=f'+f sothat (f*)=0, (3.25)
then the first order terms in the asymptotic expansion in (3.7) can be re-expressed as

F= () f (3.26)
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Therefore, neither the spatial nor temporal mean of f* vanish, but together its spatial-
temporal mean is zero. The starred variables are thus the synoptic space/time fluc-
tuations. Adding equations (3.16) and (3.18) and substituting the definition of the
starred variables, we can replace those two systems of equations with the following
single system of equations for the synoptic space/time fluctuations

uy+Uus+ wU) e+ (0'U)y+ (w*U), —yv*+pi=0
vy +Uv +yu” +p, =0
0; +U 0, +w* +(u*0), +(v*0), +(w*O), =H"
4 +U ¢ —Qow™ +(u'Q)s + (v Q)y + (w'Q), = —H"
pr=0"
uy +vy +w; = 0. (3.27)

Structurally, this system is identical to that in (3.16), with the exception that the
synoptic space/time average of H* is zero — in contrast to the synoptic spatial average
of H' vanishing in (3.16).

The fluxes defined in equation (3.24) which are the primary forcing for the
anomalies in (3.23), are now replaced by simpler expressions in terms of the synoptic
space/time fluctuations

FY=— <v*u*>y — (w¥u*),
P =), - (),
Fi=— <W>y —(w¥q"). (3.28)

This more concise representation clearly shows how the combined synoptic space/time
fluctuations create the fluxes which force the anomalies from the background clima-
tology.

4. Discussion

We have used multiscale asymptotic analysis to systematically derive the moist
multi-scale dynamics of the tropical atmosphere. By making the sole assumption that
the forcing of the tropical troposphere is of order 10 Kelvin/day when resolved on the
synoptic scales and larger, we have constructed a multi-time and multi-space theory
for the evolution of synoptic and planetary scale flows on synoptic and intraseasonal
time scales. The Intraseasonal Multi-scale Moist Dynamics framework for the tropical
troposphere (IMMD) is valid on horizontal synoptic scales and zonal planetary scales
and describes variations on equatorial synoptic and intraseasonal time scales. There
are three scales of motion in the IMMD framework.

The first, TH, governs the modulation of the Trade Winds and Hadley circula-
tion on planetary zonal length scales (15000 km) and intraseasonal time scales (3.5
days). Zonal flows of order 50 m/s, meridional flows of order 5 m/s, and temperature
variations of order 33 Kelvin are allowed by the theory. The TH system consists of
equation (3.13) with the constraints (3.12) which are fully non-linear equatorial moist
long wave equations forced by the synoptic zonal and time averaged diabatic heating
rate and dissipated by linear dissipation. Coupling to smaller scales occurs through
the non-linearities involved in averaging the heating rate.

The second set of equations governs the synoptic scale fluctuations, S. This system
is written in equation (3.16). Synoptic scale fluctuations occur on the 8 hour time scale
and are of order 5 m/s in the horizontal direction with temperature perturbations of
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order 3.3 Kelvin. The synoptic scale flows are advected only by the zonal component
of the Hadley Circulation. They further couple to the modulating climatology through
the advection of the climatology by the synoptic scale fluctuations. Equivalently, these
terms can be interpreted as the cross-scale flux of zonal momentum, temperature,
and moisture from the planetary scales to the synoptic scales. The synoptic scale
fluctuating flows are directly forced by the latent heat fluctuations, but they are not
damped by the weaker dissipation.

The third system of equations describes planetary scale anomalies, P, which evolve
on both the synoptic and intraseasonal time scales.

The synoptic time evolution of the planetary scale anomaly is given by the equa-
tions in (3.18) where the flow in the meridional/vertical plane is two-dimensional
incompressible. From the second equation in (3.18), the meridional velocity is accel-
erated by the portion of the zonal velocity and pressure which are not in (meridional)
geostrophic balance. The vertical velocity is determined from the meridional veloc-
ity through the incompressibility constraint: the last equation in (3.18). Therefore
the dynamics in equation (3.18) describe meridional and vertically propagating waves
which adjust the planetary scale anomalies to a steadily (on the synoptic time scale)
forced system in meridional geostrophic balance. These waves interact with the in-
traseasonally modulating Hadley Circulation and thermodynamic stratification, but
disperse too quickly to modify them. The horizontal flow generated by these waves is
of order 5 m/s and the temperature perturbation is 3.3 Kelvin.

In section 3.4 we showed how the equations governing the synoptic scale fluctu-
ations in S and the synoptic time evolution of the planetary scale anomalies from P
can be reconstituted so that all synoptic time dynamics are described by one system
of equation (3.27).

The intraseasonal evolution of the planetary scale anomaly is governed by the
equations (3.20) and (3.23). While zonal flow anomalies remain of order 5 m/s and
temperature anomalies are of order 3.3 Kelvin, the meridional flow anomaly is smaller,
of order 0.5 m/s; this is due to the anisotropic scaling in the equatorial long wave
theory. The planetary scale anomalies show a rich dynamical structure and it is in
these fields that the MJO envelope presents itself. In the planetary scale theory, syn-
optic mean zonal winds, temperature and moisture are advected on the intraseasonal
time scales by the Hadley Circulation and Trade Winds. Furthermore, the flow set
up by these anomalies interacts with the zonal component of the Trade Winds and
the stratification which modulates the anomaly but not the mean climatology. This is
expressed as an in-scale flux divergence in equation (3.23). The anomalies are further
forced by two flux divergences from equation (3.24). The first is an upscale flux from
the synoptic scale fluctuating flow in equation (3.16) while the second is an in-scale
flux from the fast oscillating adjustment waves in equation (3.18).

The IMMD framework, the three systems of equation (3.13), (3.23), and (3.27),
plus the constraints (3.12) and (3.20), provide a conceptual basis for making dynamical
models and for the interpretation of observations. The climatology is only forced by
the mean heating whereas the synoptic scale fluctuations are forced by the synoptic
scale fluctuating heating. On the other hand, the primary driver of planetary scale
flow anomalies are the upscale fluxes from the synoptic scales. The existence of a mean
upscale flux from the synoptic scale is equivalent to the synoptic scale flow having some
average organization, such as would arise if there are vertically or meridionally tilted
heating profiles; this organization was discussed in the IPESD MJO models [2, 3, 5]
and has been extracted from the observations [30]. Ultimately, mean heating sets
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up a climatology and synoptic organization modulates that climatology to generate a
MJO.

One could ask, why not combine the equations for the climatology and the anoma-
lies just like the equations for synoptic timescale dynamics in (3.27)7 First, the am-
plitudes of the two flows are different orders in the asymptotic expansion, so such a
combination is not asymptotically consistent. Second, the computational simplifica-
tion that the flows are only advected by the mean climatology — not the anomalies
— is lost if the two are combined. Third, such a combination would obscure the point
that the planetary anomalies are forced by synoptic scale organization — therefore
the notion that synoptic scale organization is necessary to produce the MJO. Fourth,
one could envision an MJO model where the mean heating is stationary on the in-
traseasonal time scales, thereby generating a stationary climatology. In this scenario,
only the synoptic organization develops in time, thereby driving the MJO envelope,
and this would reduce the model to two systems of equations much like IPESD.

Finally, implicit in the IMMD framework is a multi-scale algorithm for the numer-
ical integration of large scale tropical dynamics which we describe as follows. Filter
initial conditions onto planetary scale climatology and synoptic scale fluctuations.
Integrate the synoptic scale fluctuations (3.27) in the presence of a cloud model (for
H*) over one unit of fast, synoptic time. At every sub-step of the fast time inte-
gration (fractions of a synoptic timescale) take the synoptic zonal spatial average of
the heating rate and the dynamical fields and subtract them from the result. The
remaining fluctuating components are used to continue the integration of the synoptic
scale fluctuations and to compute the upscale fluxes using (3.28) after one synoptic
timescale is reached. Use the synoptic time/space averaged upscale fluxes to integrate
the planetary scale anomaly. Use the temporally integrated synoptic averaged mean
heating (which was subtracted from the previous integration) to integrate the clima-
tology. Iterate this process. Notice that this algorithm discards the small mean flow
that is generated in the process of integrating the synoptic scale fluctuation equations.
However, it preserves the mean heating that is generated from the synoptic scales and
uses it to integrate the TH equations. As long as the mean heating remains order one
throughout the integration — which is consistent with the 10 Kelvin/day heating rate
— then discarding the mean flows they generate over synoptic timescales is consistent
with the asymptotics.

The IMMD framework provides a clear multi-scale framework for discussing the
modulation and rectification of the Hadley Circulation as well as the Madden-Julian
Oscillation. Latent heat release from synoptic scale flows directly drives synoptic
scale fluctuations which are advected by the trade winds in the mean stratification.
The synoptic scale means of the latent heating modulate the mean stratification and
Hadley Circulation. The upscale fluxes from the synoptic scale fluctuations drive
the planetary scale anomalies, which are advected by the zonal component Hadley
Circulation and constitute the envelope of the Madden-Julian Oscillation. Section
2 presents a road map for adding moisture models to the IMMD dynamics and we
will incorporate the multi-cloud models of KM into this multi-scale framework in a
forthcoming paper.

Appendix A. Full multi-scale asymptotic expansion of the primitive
equations. Substituting the multi-scale asymptotic expansion from equation (3.7)
into the rescaled moist primitive equation (3.2) yields a coupled set of asymptotic
PDEs. We record them below up to the order of relevance needed for the derivation
of the IMMD framework and explicitly write the order of the neglected terms in each
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equation. The zonal velocity equation is
elUr+u,+ a4+ UUx +ul)+ (v +0)Uy + (w' +0)U, —yv' —yv+ Px +pl, +dU]
+ € [ug s +ulp +ar +U (uy +ix +ugy) + (0 +3)(Ux +ul,)+ (0 +0) (v +a),
+vo Uy + (' +w) (v + ), +wa Uy —yva2 + Py +Dx +p2,x +d(u +u)] = O(®).

The meridional velocity equation is
yU +Py+e [v;+ 0+ Ul +y(u' + 1) +pl, +py +dV] = O(€). (A.2)
The potential temperature,
€[Or+0;+0,+U(Ox+0,)+ (v +0)0y+ (w' +w)O, — H' — H +dy O]
+ 6 (024 + 07+ 07+ U (0 +0x +025) + (u' +u)(Ox +6,)+ (v +0)(6' +0),
+020, + (W' +w) (0" +0). +w2 O, +dp(0' +0)] = O(e*), (A.3)
and moisture equations,

e[Qr+a+a+U@Qx +4,)+ (' +0)Qy+ (W' +0)Q. + H'+ H]
+e (a2 +ar +ar+U (¢ +ax +q2.0) + (0 +0)(Qx +4;)
' +0)(¢' + @)y +02Qy + (0 +D)(¢' +7): +w2 Q2] = O(€%), (A4)
are essentially identical and we have explicitly split the heating rate into the mean,

the fluctuating components, and the possibility of heating which is weaker than either
of these two

H=H'+H+eH,. (A.5)

We shall find that Hy is only relevant if the mean of the lower order H vanishes.
Otherwise, all weaker heating can be incorporated into the either of the lower order
terms. What remains are the expansions of the hydrostatic

P.4e(p.+p.) +€p2.=0+e(0 +0)+e202+0(e?) (A.6)
and incompressible constraints

€ [Ux +ul+v), 40y +w, +w, | + € [uy +ix +v2y +way] =0(e®). (A7)

Appendix B. Comparison of IMMD with IPESD and the MJO models.
The IPESD framework [27, 25] is a dry theory concerned with synoptic scale fluctu-
ations and planetary scale anomalies only. It therefore does not describe the zonal
component of the Hadley Circulation or the modulation of the mean stratification of
temperature that arises from this wind. In order to compare these two theories, we
must entirely neglect the moisture equation, set U =0, and allow only vertical varia-
tions of the pressure and potential temperature perturbations, O(z), P(z). Therefore
the squared Brunt-Viisild frequency is N2=1+d0O/dz. Furthermore, IPESD allows
for a general zonal momentum forcing of the order 15 m/s/day, S*. Making these
substitutions in equation (3.13) yields the system of equations

N*W = (H)
‘/'IJ+WZ:O; (Bl)
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describing the Hadley Circulation, V,W; notice that this notation differs from [27].
Since these are three equations for the two unknowns there must be a solvability
condition. Isolating V in the first equation in (B.1) and setting the divergence of the
circulation equal to zero yields the constraint

RO

which is discussed in [27, 25, 3]. This is a not unexpected requirement that a steady
climatology requires a careful balance between mean heating and zonal momentum
dissipation. Though such a balance is not physically implausible, requiring it a priori
reduces the generality of the IPESD framework. The allowance of a mean zonal wind
obviates this balance. We emphasize that, with the modification described above and
the additional caveat that IMMD includes an equation for the moisture, the IMMD
framework exactly reduces to the IPESD framework.

The MJO models of [26, 2, 3, 5] consider mean heating rates which are smaller
than 10 K/day, whereby <H >:0. Clearly, the Hadley Circulation is zero in this
setting so that the there remain no terms corresponding to advection by, or cross-
scale interaction with the background flow in the equations for the synoptic scale
fluctuations, (3.27). In the equations for the planetary anomaly, the advective time
derivative is replaced by the regular partial derivative with respect to the intraseasonal
time scale and, again, there is no mean flow. In this instance, the weaker mean heating
<H'2>, which is of order a few Kelvin/day, plays an essential role in the MJO theory.
As discussed in section 3.3, if the mean heating rate were stronger, then <h72> could
be incorporated into <ﬁ > but the equations for the modulating Hadley Circulation
and background stratification (3.13) would need to be included.
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