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Abstract. We study the impact of stochastic mechanisms on a coupled hybrid system consist-
ing of a general advection-diffusion-reaction partial differential equation and a spatially distributed
stochastic lattice noise model. The stochastic dynamics include both spin-flip and spin-exchange
type interparticle interactions. Furthermore, we consider a new, asymmetric, single exclusion pro-
cess, studied elsewhere in the context of traffic flow modeling, with an one-sided interaction potential
which imposes advective trends on the stochastic dynamics. This look-ahead stochastic mechanism
is responsible for rich nonlinear behavior in solutions. Our approach relies heavily on first deriving
approximate differential mesoscopic equations. These approximations become exact either in the
long range, Kac interaction partial differential equation case, or, given sufficient time separation con-
ditions, between the partial differential equation and the stochastic model giving rise to a stochastic
averaging partial differential equation. Although these approximations can in some cases be crude,
they can still give a first indication, via linearized stability analysis, of the interesting regimes for the
stochastic model. Motivated by this linearized stability analysis we choose particular regimes where
interacting nonlinear stochastic waves are responsible for phenomena such as random switching,
convective instability, and metastability, all driven by stochasticity. Numerical kinetic Monte Carlo
simulations of the coarse grained hybrid system are implemented to assist in producing solutions and
understanding their behavior.
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1. Introduction
Hybrid systems, consisting of coupled deterministic partial differential equations

and microscopic, stochastic lattice particle systems, arise in numerous applied fields
[23, 15, 20, 18, 24, 14] and can exhibit a host of complex behaviors. In this work we
study the influence of micro-/sub-grid scale fluctuations in hybrid dynamical systems
and microscopic, stochastic lattice particle systems. We focus on model prototype sys-
tems similar to those proposed in [6] that are computationally tractable with direct
numerical simulations but can still exhibit a host of complex phenomena [6, 7, 19].
Microscopic noise will significantly alter the deterministic mean field behavior of the
hybrid system yielding corresponding regimes with phenomena driven by the interac-
tion of nonlinearity and noise across scales, such as strong intermittency, stochastic
resonance, and random oscillations. Our findings [6, 7, 8] strongly suggest that de-
terministic closures of the hybrid system such as mean field, a stochastic averaging
principle, or moment equations may be either inadequate as descriptions of the overall
system or simply difficult to both derive and assess their effectiveness.

In general fluctuations play a dominant role in the stochastic system as is evident
in long time simulations [7] and asymptotic analysis in a linearized stochastic PDE
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limit [8]. The influence of fluctuations is also pronounced in the case of phase transi-
tion regimes. In general we show that fluctuation-driven rare events occur in several
parameter regimes and are not captured by the deterministic mesoscopic equations.
Along these lines, computational closure methods relying on relatively short runs of
microsimulators such as the equation-free [2, 13] and HMM [4] approaches may also
have to account for such phenomena when deciding the integration time for the micro
simulation and determining suitable coarse-grained observables such as a number of
moments.

We face challenges both in implementation and simulation, as well as in the inter-
pretation of the results of such hybrid systems. Problems arise in the direct numer-
ical simulation of realistic size systems due to scale disparities between the discrete
stochastic microscopic models and the continuum macroscopic equations. Secondly,
the fact that the coupled systems have nonlinear interactions across a wide range of
scales implies that the stochasticity inherited from the microscopic model can play
a subtle but important role in the dynamic behavior of the overall system. There is
a critical interplay between interactions across scales and random fluctuations which
must be kept into consideration in any type of closure. These considerations moti-
vated work in [6, 7] as well as in the present paper, advocating methods capable of
producing solutions in reasonable time while mainting some control of the possible
error committed while still capturing the essential features of those solutions. We
consider a class of stochastic closures that yield a computationally efficient hybrid
system while still capturing the transient and long-time behavior of the full hybrid
system. Such stochastic closures were first developed in [7] for hybrid systems without
phase transitions in the microscopic dynamics, as well as in [14] as a stochastic param-
eterization of unresolved features of tropical convection and are based on systematic
coarse-grainings of (uncoupled) stochastic lattice dynamics that were developed in
[9, 10, 12]. The goal there was to describe microscopic stochastic lattice dynamics
with a hierarchy of coarser — and thus computationally preferable — but still discrete,
stochastic observables, while maintaining a controlled error in the approximation.
The related stochastic closures for hybrid systems with phase transitions, presented
in section 2.3, give rise to computationally inexpensive reduced hybrid models that
correctly capture the transient and long-time behavior of the full hybrid system. Such
closures capture essential features of their complex hybrid counterparts but allow for
testing computationally inexpensive mesoscopic deterministic and stochastic closures
and permit computationally feasible detailed statistical comparisons of the derived
mesoscopic theories against direct numerical simulations of the full hybrid system.
We further enhance the stochastic dynamics and introduce a new type of stochas-
tic look-ahead interactions with direct links to physical applications [21, 22, 1]. As
a result the hybrid system under the influence of directional fluctuations from the
stochastic piece may cooperate or conflict against advective trends arising from the
PDE. New solution profiles emerge which can not be predicted in terms of stability
analysis. Stochastically induced advective effects and their impact on these solutions
are analyzed.

This paper has the following outline. We introduce the hybrid system in section
2.1. We then provide all the details for the microscopic stochastic surface processes
in section 2.2. In particular we present details about stochastic processes for adsorp-
tion/desorption and/or surface diffusion of particles with spin-flip/exchange Ising sys-
tems coupled to a PDE exhibiting a similar variety of dynamic and stability behaviors
in different parameter regimes. Both microscopic and coarse grained dynamics are
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described in detail and coarse grained approximations are produced in that section.
Subsequently stochastic averaging closures as well as mesoscopic approximations for
symmetric and look-ahead potentials are obtained in section 3. These approximations
are then subjected to linear stability analysis in section 4. In that section we are able
to identify parameter regimes which are critical toward stability of solutions. These
parameters are subsequently perturbed through simulations producing numerical so-
lutions for our hybrid system in section 5.

2. System dynamics and stochastic mechanisms
In this section we give the details of the coupled system which is comprised of

a PDE and a stochastic noise model. We pay particular attention to the structure
of the stochastic component for this system. Specifically spin-flip and spin-exchange
dynamics are described for both look-ahead as well as classical potentials. Although
we start by describing the microscopic look-ahead dynamics in section 2.2 it is mainly
the coarse grained look-ahead dynamics which we focus on in section 2.3.

2.1. System overview. We propose the following coupled system in vari-
ables (Y,u)≡ (Y (x,t),u(x,t)) which represent the evolution of a deterministic partial
differential equation (PDE) coupled to a spatially stochastic lattice noise model

{
∂tY = 1

τc
F [Y,u] := 1

τc

(
D∂2

xY +A∂xY +RY +Mu+C
)

E∂tf(σ)= ELf(σ).
(2.1)

Here E denotes expected value, f a test function, σ(x,t) denotes a microscopic stochas-
tic Ising type process, details of which will be provided below, and evolves on a fine
lattice Λ={1,2,... ,N} comprised of N cells. The microscopic generator L incorpo-
rates both spin-flip and spin-exchange dynamics

L=dfLsf +deLse

and is described in detail in section 3. The coefficients df and de involve the charac-
teristic time for the corresponding stochastic process. The parameter τc appearing in
(2.1), on the other hand, denotes the characteristic time for the deterministic equa-
tion. The quantity u= σ̄ ranges as 0≤u≤1 and represents the averaged solution over
a spatial subdomain. Many instances of the constants D,A,R,M,C will be specified
later, in the numerics of section 5, according to behavior desired to be exhibited by
the PDE (excitable, oscillatory, etc.). Note that the coupling mechanism for system
(2.1) is bidirectional. The PDE is coupled to the stochastic model through the vari-
able u(x,t), a local density quantity, while the stochastic model is coupled to the PDE
through an external interaction potential function h(Y ) (see section 2.2.2). In this
work we derive and analyze a coarse grained approximation of (2.1) which will be used
in order to obtain our main results. Error estimates as well as potential impact and
limitations of this coarse grained approximation have been established in [11]. The
coarse grained equivalent of (2.1) is realized as follows: we introduce a new coarse
lattice ΛM on which this new coarse process will be defined. We therefore define M
coarse cells Dk, k =1,...,M , and N =Mq based on the microscopic number of cells N
of the original lattice Λ. We define a new Markovian process η(k,t) as an averaged
quantity over each coarse cell Dk

u(k,t)=η(k,t) :=
1

q

∑

x∈Dk

σ(x,t).
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Fig. 2.1. Lattice coarse graining

See figure 2.1 as well as section 2.3 for the details.

{
∂tY = 1

τc
F [Y,u] := 1

τc

(
D∂2

xY +A∂xY +RY +Mu+C
)

E∂tf(η)= ELCf(η),
(2.2)

where the coarse grained generator LC in (2.2) is an approximation of the original
microscopic generator L in (2.1). More details for the coarse grained approximation
η, its generator LC , and in general the coarse grained coupled system will be provided
in section 2.3.

2.2. Microscopic dynamics. We start by describing the stochastic micro-
scopic spin dynamics. We define an one-dimensional periodic lattice which is parti-
tioned into N cells via,

Λ={1,2,... ,N}.

On each of the lattice points x∈Λ we define an order parameter σ(x) via,

σ(x)=

{
1, if there exists a particle at site x
0, if the site at x is empty.

. (2.3)

A spin configuration σ is an element of the configuration space Σ={0,1}Λ and we
write σ ={σ(x) :x∈Λ} where σ(x) denotes the spin at location x. Since there are |Λ|
sites on the lattice then the system can be in any of 2|Λ| possible states. The local
situation at each of those states is appraised by the interaction potential J . We let J
denote, as usual, a symmetric short range interaction potential,

J(x,y)=γV (γ|x−y|) , x,y∈Λ, (2.4)

where γ =1/(2L+1) is a parameter prescribing the range of microscopic interactions
and therefore L denotes the potential radius. Here we let V :R→R and set,

V (r)=0, r∈R− and V (r)=0 for r≥1.

For now we assume a uniform potential of the form,

V (r)=

{
J0, if 0<r<1
0, otherwise.

(2.5)

where J0 is a parameter which describes attractive, repulsive, or no-interactions based
on its sign.
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2.2.1. ASEP with look-ahead potential. In models involving stochastic
lattice dynamics it is common to employ a symmetric interaction potential J concep-
tually similar in form to the one presented in (2.4). Micromagnetic interactions is an
example of a typical application where a symmetric interaction potential works well to
simulate the physical properties of magnetic dipoles. Here we propose a different type
of potential which, due to a novel direction mechanism, attributes advective affects
in the stochastic dynamics. This one-sided potential originated from modeling appli-
cations in traffic flow [21, 22] where look-ahead dynamics produce a natural medium
for the physics involved in vehicle motion. We introduce this new mechanism and
stochastic dynamics by focusing on the interaction potential J in (2.4) which involves
a simple but crucial modification,

J(x,y)=γV (γ(x−y)), x,y∈Λ, (2.6)

where once again γ =1/(2L+1) is a parameter prescribing the range of microscopic
interactions and L is the potential radius and V as in (2.5). Note however that
now this modification of V and J allows direction detection since only interactions
where x>y, are possible. This seemingly simple potential function is responsible for
completely altering the behavior of our system since, as we will see later through
stability analysis and numerical results in sections 4 and 5, it creates advective trends
in the stochastic component of the system (2.2).

2.2.2. Diffusion Arrhenius dynamics. In this section we describe a stochas-
tic process equipped with look-ahead conservative, spin-exchange type, Arrhenius
dynamics. Under this engine the simulation is driven based on the energy barrier

a particle has to overcome in changing from one state to another. During such a
spin-exchange between nearest neighbor sites x and y the system will actually allow
the order parameter σ(x) at location x to exchange value with the one at y. We
keep track of inter-particle interactions via the potential U(x) which is comprised of
contributions from short range, exchange interactions Use, and external interactions,
h(Y ):

U(x)=Use(x)+h(Y ). (2.7)

The stochastic model is coupled to the PDE through the external potential h(Y ). We
assume for simplicity that h(Y ) depends linearly on Y as follows:

h(Y )=α(Y +γ)

for given parameters α and γ. This coupling mechanism is simple yet sufficient to
produce interesting departures from usual mean field behavior. Nonlinear dependence
of the external potential to Y is also possible and have been explored in detail [6, 8].
The short range exchange interaction potential is described via [17]:

Use(x)=
∑

z 6=x

Jse(x,z)σ(z), (2.8)

with Jse from (2.4). Note that the spin-exchange, due to the specific construction of
the interaction potential Jse in (2.4), can take effect if and only if the location at x
is occupied while the location at y is not. Overall, the rate at which the stochastic
process {σt}t≥0 will perform a spin-exchange using Arrhenius dynamics is defined [17]
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via

cse(x,y,σ)=







c0 exp[−U(x)], if σ(x)=1, σ(y)=0
c0 exp[−U(y)], if σ(x)=0, σ(y)=1
0, otherwise,

(2.9)

where c0 =1/τ0 with τ0 the characteristic or relaxation time for the process. We note
that for classical potentials y =x±1 while for one-sided potentials, (2.9) implies that
y =x+1. figure 2.2 displays such a situation. The stochastic process {σt}t≥0, whose

Fig. 2.2. One-sided potential interactions in a given lattice.

dynamics were described in detail in this section, is a continuous time, jump, Markov
process on L∞(Σ;R) with generator [17]

(Lsef)(σ)=
∑

x,y∈Λ

cse(x,y,σ)[f(σx,y)−f(σ)] (2.10)

for any bounded test function f ∈L∞(Σ;R) with cse(x,y,σ) defined in (2.9). Here
σx,y denotes the configuration after an exchange of the spins at location x and y such
that,

σx,y(z)=







σ(y) if z =x
σ(x) if z =y
σ(z) otherwise.

Therefore observables f (test functions) evolve with the rule

d

dt
Ef(σ)=E(Lsef)(σ) (2.11)

which is equivalent to the Dynkin formula.

2.2.3. Non-conservative microscopic dynamics. We now further equip
our stochastic process {σ}t≥0 with non-conservative, spin-flip, Arrhenius dynamics.
During a spin-flip the system will actually allow the order parameter σ(x) at location
x to change value without reciprocating this change at any other location. This is
interpreted as placing (removing) a particle at (from) x if σ(x)=0(1). Thus the
overall lattice density can now be changed according to influences from the PDE and
vice versa. As a result conservation of mass on the lattice will not hold while such
a process is active. On the application side, once again these dynamics allow our
system to model a number of non-conservative physical processes. The rate at which
a process will perform such a spin-flip Arrhenius move is given by [17]

csf (x,σ)=

{
cde

−βUsf (x), when σ(x)=1
ca, when σ(x)=0,

(2.12)
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where

Usf (x)=
∑

z 6=x

Jsf (x,z)σ(z). (2.13)

We assume for simplicity that both the adsorption and desorption constants are equal
c1 := ca = cd, where c1 =1/τ1 denotes the characteristic, or relaxation, time of the
spin-flip process. This together with section 2.2.2 completes the details for both
spin-flip and spin-exchange microscopic stochastic dynamics which characterize the
interactions in this model. Note that the mechanisms which we developed in section
2.2.2 and 2.2.3 can be realized in its full generality with two different interaction
potential functions Jse and Jsf . For simplicity however we allow here that J ≡Jsf =
Jse.

Remark 2.1. The combined mechanism for spin-flip and spin-exchange dynamics is
given by aggregating together rates (2.9) and (2.12). Thus the probability for spin-flip
at x or spin-exchange between locations x and y during time [t,t+∆t] is given by [17]

csf (x,σ)∆t+cse(x,y,σ)∆t+O(∆t2). (2.14)

2.2.4. Invariant measures. Since there are N = |L| sites on the lattice, the
system can be in any of 2|L| possible states while the energy of any particular state
is given by the following Hamiltonian,

H(σ)=−
1

2

∑

x∈L

∑

y 6=x

J(x,y)σ(x)σ(y)+
∑

x

hσ(x), (2.15)

where J(x,y) is an interparticle potential as in (2.4) and h is a given external potential.
Here J is assumed to be even, J(r)=J(−r), and as an example we can take a form
similar to (2.5). Applying a spin-flip stochastic model we create new states from old
ones generated by a Markov process as described previously. Equilibrium states of
the stochastic model are described by the Gibbs states

µβ,N (dσ)=
1

Z
eβH(σ)PN (dσ) (2.16)

where β =1/(kT ) and T denotes the temperature. Here PN (dσ) denotes the (product)
prior distribution on L,

PN (dσ)=
∏

x∈L

p(dσ(x)) and p(σ(x)=0)=
1

2
, p(σ(x)=1)=

1

2
,

where Z is the partition function, guaranteeing that (2.16) is a probability measure.
Note that k =1.3810−23JK−1 is the Boltzmann constant. Note that in the case
of a look-ahead potential such as the one presented in section 2.2.1 it is not clear
whether such a Hamiltonian description is valid or can even exist at all. The stochastic
dynamics described by an ASEP no longer guarantee that an invariant Gibbs state
may exist. Nevertheless, for several applications it is not the equilibrium dynamics
which we are after but the transient states. Therefore we undertake description of such
non-equilibrium look-ahead potentials with respect to this perspective and propose
these dynamics in order to describe complex physical processes.
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2.3. Coarse grained approximations. We now apply ideas from [9] and
introduce a process η on a new coarse lattice which will approximate the original mi-
croscopic process σ. This new coarse process η will furthermore be shown to produce
a stochastic closure of the original full system (2.1). Through this coarse graining it
will be possible to extract a closed stochastic coupled system which does not depend
on the expected value of the microscopic process σ but instead on the new coarse
process η(k). Rigorous details for the coarse process η as well as estimates of the
approximation error can be found in [11]. We start by first defining the new coarse
lattice ΛM . We consider M coarse cells Dk where 1≤k≤M , each of size q, so that
N =Mq. We let ΛM ={1,2,... ,M} represent a new coarse lattice where ΛM ⊂Λ. We
can now define the new coarse grained random process,

η(k)=T (σ)(k) :=
∑

y∈Dk

σ(y), for k =1,... ,M (2.17)

and denote η ={η(k) :k∈ΛM}, with η(k)∈{0,1,... ,q} the coverage of the coarse cell
Dk for 1≤k≤M . Note that each Dk consists of q microcells and the order parameter
η(k) counts the number of particles in each such coarse cell Dk. We further define
the coarse configuration space HM,q ={0,1,... ,q}ΛM . The projection operator T is
defined implicitly by (2.17). For any test function g∈L∞(HM,q;R) we have

f(σ) :=g(T (σ))=g(η), (2.18)

where f is a test function in L∞(Λ;R). In the next section we equip this new coarse
process with either spin-flip or spin-exchange non-symmetric look-ahead dynamics.
The symmetric, non look-ahead, dynamics case is also provided at the end of the
section.

2.3.1. Spin-exchange coarse grained dynamics with look-ahead. We
have now built the coarse grained dynamics for the new process η which was defined
above in section 2.3. The dynamics in this section allow for spin-exchange interactions
using a non-symmetric, look-ahead, potential. An equivalent look-ahead stochastic
mechanism for microscopic spin-exchange dynamics related to traffic flow has been
proposed in [21] and [22]. The corresponding coarse grained mechanism is now in-
troduced below. Starting from the generator (2.10) of the microscopic spin-exchange
process σ defined previously we can derive a corresponding coarse grained generator
for the new coarse process η as follows:

d
dt

Ef(σ) =E
∑

x,y∈ΛN
cse(x,y,σ)[f(σx,y)−f(σ)]

=E
∑

k,l∈ΛM

∑

x∈Dk,y∈Dl
c(x,y,σ)[f(σx,y)−f(σ)],

(2.19)

where cse(x,y,σ) with y =x denotes the microscopic diffusion rate for look-ahead
dynamics,

cse(x,x+1,σ)=







c0exp[−U(x)], if σ(x)=1, σ(x+1)=0
c0exp[−U(x+1)], if σ(x)=0, σ(x+1)=1
0, otherwise,

(2.20)

which can be written as,

cse(x,x+1,σ)

= c0σ(x)(1−σ(x+1))exp(−βU(x))+c0σ(x+1)(1−σ(x))exp(−βU(x+1)). (2.21)
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Note that for x∈Dk and y =x+1∈Dl we have

T (σx,y)=T (σ)+σ(y)(1−σ(x))(δk−δl)+σ(x)(1−σ(y))(δl−δk),

where δk,δl ∈HM,q denotes the configuration with a single particle at site k,l∈ΛM .
Thus using the above and the mapping in (2.18) the right hand side of (2.19) can be
expressed in terms of the coarse grained test function g∈L∞(HM,q;R) as

f(σx,y)−f(σ)= σ(y)(1−σ(x))[g(η+δk−δl)−g(η)]
+σ(x)(1−σ(y))[g(η+δl−δk)−g(η)].

Thus we obtain,

d
dt

Eg(η)=E
∑

k,l∈ΛM

∑

x∈Dk,y∈Dl
cse(x,y,σ)[σ(y)(1−σ(x))g(η+δk−δl)

+σ(x)(1−σ(y))g(η+δl−δk)−g(η)].
(2.22)

With the assumption that x,y are nearest neighbors we can express (2.21) through
the corresponding coarse grained potential as follows:

U(x)=U(l)+O

(
q

2L+1

)

,

where

Ū(k)=
∑

l∈ΛM

l 6=k

J̄LA(k,l)η(l)+ J̄LA(0,0)(η(k)−1) (2.23)

and for simplicity we let h≡0 for this derivation. The coarse grained interaction
potential J̄LA(k,l) is computed as an average of pairwise interactions between micro-
scopic spins on coarse cells Dk and Dl,

J̄LA(l,k)=M2

∫

Dk

∫

Dl

J(r−s)dr ds, (2.24)

where J as in (2.6) indicates a length range for spatial interactions in the microscopic

lattice level. Note that the resulting coarse grained interaction potential as defined
above in (2.24) is a coarse grained look-ahead type potential. In order now to derive
the corresponding coarse grained generator for our stochastic process η we start from
the microscopic spin-exchange rate in (2.21). We assume that particles are approxi-
mately independent inside the coarse cells and replace σ(x),σ(y) in (2.21) everywhere
by η(k)/q and η(l)/q respectively. Here l=k+1 due to the look-ahead potential.
Performing simple clean-up operations it is easy to see that (2.22) becomes

d

dt
Eg(η)= qE

∑

k,k+1∈ΛM

cCG(k,k+1,η)[g(η+δk+1−δk)−g(η)], (2.25)

where

cCG(k,k+1,η)= c0
η(k)

q

(

1−
η(k+1)

q

)

exp(−βU(k+1)) (2.26)

with c0 from (2.9). The spin-exchange coarse grained generator therefore is defined
to be

LC
seg(η) :=

∑

k,k+1∈ΛM

cCG(k,k+1,η)[g(η+δk+1−δk)−g(η)]. (2.27)
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2.3.2. Spin-flip coarse grained dynamics with look-ahead. Microscopic
spin-flip dynamics with look-ahead interactions have recently been explored in [3] and
[1] in the context of traffic flow modeling. The coarse grained spin-flip mechanism
with look-ahead interactions is now presented below. Following the derivation above
(see also [9]) the coarse grained generator corresponding to the microscopic spin-flip
dynamics from (2.12) is

LC
sfg(η)=

∑

y∈ΛM

ca(y,η)[g(η+δy)−g(η)]+cd(y,η)[g(η−δy)−g(η)], (2.28)

for g∈L∞(HM,q;R) where ca(y,η),cd(y,η) denote the coarse grained diffusive adsorp-
tion and desorption rates. Following the ideas of the derivation for the spin-exchange
process presented in section 2.3.1 above we can similarly derive the expressions for the
corresponding coarse grained adsorption and desorption spin-flip rates. The coarse
grained adsorption rate is

ca(y,η)= c1[q−η(y)], (2.29)

with c1 from (2.12) which expresses the rate by which η(y) is increased by 1, up to
its possible maximum q. Respectively the coarse grained desorption rate is,

cd(y,η)= c1η(y)exp(−βU(y))exp

(

O

(
q

2L+1

))

,

with a similar form for U(y) as in (2.23). The expression above involves a known
error term due to the necessary approximation from the truncation in the microscopic
exponential (see [10] for details).

Remark 2.2. it is an easy extension of the ideas from section 2.2.1 to develop
symmetric, non-look-ahead, coarse grained interaction potentials. In that respect
we must employ the microscopic interaction potential U(x) in (2.4) and (2.5) and
based on the ideas presented in both of the previous section 2.3.1 and 2.3.2 carry
out equivalent expansions and approximations in order to eliminate Eσ in favor of
η. Specifically, for classical interaction potentials we replace J̄LA with J̄ where the
functional dependence on J under the integral in (2.24) is instead given by (2.4).
This automatically adjusts our look-ahead potential to a symmetric potential since it
allows interactions in every direction. For more details we refer to [10] and [11] where
the ideas for such symmetric potentials have been provided.

2.4. Simplified coarse-grained model with look-ahead dynamics and
single-column spin flip mechanism. In this section we present an outline of an
alternative stochastic model with very rich phenomenology which involves a version
of the coarse grained dynamics described above. The model implements a number
of the stochastic mechanisms which we already described previously in the coarse
grained setting. We consider the coarse grained lattice and corresponding process
discussed in section 2.3 equipped with spin-exchange and look-ahead dynamics for
nearest neighbors. In fact to simplify this process further we assume that the look-
ahead interaction range is such that, in the coarse grained setting, we only interact
with a single coarse cell ahead. We further equip this process with single-column,
spin-flip dynamics. The dynamics for such a spin-flip process therefore do not involve
any interactions with its neighbors. As a result the spin-flip process seems to act as a
birth-death type process for each corresponding coarse-grained lattice cell. Note that
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Look−ahead(x) (y)...
...

η(k+1)(k)η
Spin
Exchange

Spin
Flip

σ σ

Fig. 2.3. Depiction of a simple, yet rich in behavior, coarse grained model with spin-exchange,
nearest neighbor, look-ahead dynamics and birth-death type (no interactions) spin-flip dynamics.
The look-ahead only encompasses one coarse grained cell.

this stochastic process is computationally inexpensive due to the overall reduction
in neighbor interactions. At the same time it accounts for many basic mechanisms
involving advective motion of particles as well as density changes through the spin-flip
piece. Overall this simplified model is a special case of the coarse grained models of
the previous section. As a result this model is simple to simulate and is expected to
have similar phenomenology with the model presented previously. We will explore
this model further in the future.

3. Mesoscopic approximations

Our perspective in this section involves obtaining mesoscopic approximations
which later can be used together with linear stability analysis in order to identify
critical parameter regimes responsible for nonlinear phenomena. We will present two
different types of mesoscopic estimates. In the first estimate we explore the long
range interaction, Kac potential, with look-ahead. In the second case we present a
stochastic averaging closure where we must assume that the process is ergodic as
well as that the stochastic system has a time scale separation from the deterministic
piece. In this case, the long-range potential interactions requirement used for our first
mesoscopic estimate is no longer necessary assuming that no phase transitions exist.
We start by first obtaining closures at different temporal and spatial scales for the
microscopic spin-flip, spin-exchange stochastic dynamics model. The analysis carried
out here involves the case of a symmetric interaction potential as described in (2.4).
The one-sided ASEP case introduced in section 2.2.1 is obtained later in section 3.2.
The stochastic piece of our system is described from equation (2.11) by its generator
L, which incorporates both spin-flip and spin-exchange dynamics,

Lf(σ)= Lsef(σ)+Lsff(σ)

=
∑

x∈Λ

(

c1(1−σ(x))+c1σ(x)exp(−Usf (x,σ)
)[

f(σx)−f(σ)
]

+
∑

x∈Λ c0σ(x)(1−σ(x))exp(−Use(x,σ))[f(σx,y)−f(σ)],

(3.1)

with c0 from (2.9) and c1 from (2.12). Here σx denotes the configuration prior to a
change at location x as follows,

σx =







σ(y)+1=1 if x=y and σ(y)=0
σ(y)−1=0 if x=y and σ(y)=1
σ(y) otherwise,

(3.2)

and σx,y denotes an exchange of the values of the stochastic process σ at locations x
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and y,

σx,y(z)=







σ(y) if z =x
σ(x) z =y
σ(z) otherwise.

. (3.3)

3.1. Mesoscopic equations for spin-flip/exchange dynamics. In this
section we derive mesoscopic approximations based on the microscopic dynamics.
More details for this procedure can be found in [9] and [10]. We let the test function
f(σ)=σ(z), for a specific value z∈Λ, and consider the average quantity Eσt(z). Based
on (3.2) and (3.3) above we can write,

∂tELσ(z)=
∑

y∈nn(z)

E(Lseσ(y)+Lsfσ(y))

where nn(z) denotes the nearest neighbors to z. Thus from the above we obtain

∂tELσ(z)=
∑

y∈nn(z)

E(cse(z,y,σ)+csf (z,σ))E[σ(y)−σ(z)].

Note that the above equation is not closed for Eσ(z). To close this system we pass
to the limit of weak, uniform, long range interactions. At large space/time scales
and for weak long range potentials the small-scale fluctuations of icing systems are
suppressed and an almost deterministic pattern emerges described by (stochastic)
integrodifferential equations. The limit L−1→0 in the potential expression in (2.4)
(i.e., long potential range) is known as the Lebowitz-Penrose limit. We further assume
that our stochastic process is a perturbation of the simple exclusion process considered
in [16]. As such the process has a Bernoulli product invariant measure and at local
equilibrium the probability measure is expected to be a product measure. Thus we
can distribute the expected value through all the products. If we further assume
propagation of chaos then the fluctuations of the spins about their mean values are
independent and the law of large numbers formally applies. Thus the following further
approximation for both rates csf and cse holds,

E exp(−U(x,σ))≈ exp(−U(x,E(σ))+oN (1).

We now define the average density u(z,t)=Eσt(z) and drop the oN (1) to obtain

∂tu(z,t)=
∑

y∈nn(z)

(cse(z,y,u)+csf (z,u))E[σ(y)−σ(z)]

=
∑

y∈nn(z)

c0u(y,t)(1−u(z,t))exp(−βUse(y,u))

−c0u(z,t)(1−u(y,t))exp(−βUse(z,u))

+c1(1−u(z)−u(z)exp(−βUsf (z,u)). (3.4)

We now apply that y =nn(z) and obtain

∂tu(z,t)= c0u(z−1)(1−u(z))exp(−βUse(z−1,u))

−c0u(z)(1−u(z+1))exp(−βUse(z,u))

+c1[1−u−uexp(−βUsf (z,u))]+O

(
1

N2

)

. (3.5)
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Taylor expanding the above in ∆z =1/N as N →∞ where N denotes the number of
cells in the lattice we obtain

∂tu(z,t)= c0

(

u−
1

N
uz +

1

2N2
uzz

)

(1−u)

(

e−βUse +
β

N
U

′

see
−βUse −

β

2N2
U

′′

see
−βUse

)

−c0u

(

1−u−
1

N
uz −

1

2N2
uzz

)

e−βUse

+c1[1−u−ue−βUsf ]+O

(
1

N3

)

. (3.6)

The above simplifies,

∂tu(z,t)= c0e
−βUse

[
1

N
(−uz +2uuz +βU

′

se(1−u)u)

1

N2

(
1

2
uzz −βuz(1−u)U

′

se−
1

2
βu(1−u)U

′′

se

)]

+c1[1−u−ue−βUsf ]+O

(
1

N3

)

. (3.7)

where we assume for now a symmetric type interaction potential such as (2.4),

U(u(z)=βJ ∗u(z) :=

∫ ∞

−∞

J(y−z)u(y)dy. (3.8)

Here J can be either Jse or Jsf . In the limit of N →∞ we omit the O( 1
N3 ) term in

(3.7) and obtain,

∂tu(z,t)+c0
1

N
∂zF∗(z,t)+c0

1

N2
∂zH∗(z,t)= c1G∗(z,t), (3.9)

where F∗(z),G∗(z), and H∗(z) are as follows:

F∗(z,t) :=u(z)(1−u(z))exp(−βJse ∗u(z)+h(z)) , and

H∗(z,t) := [uz −βu(z)(1−u(z))U
′

se(u(z)]exp(−βJse ∗u(z)+h(z)) , and

G∗(z,t) :=1−u(z,t)−u(z,t)exp(−βJsf ∗u(z)+h(z)). (3.10)

In the case where only diffusion processes are included in (3.9) then c=0. Thus
rescaling in time as t→ t/N the H∗(z) term becomes a first order correction,

∂tu(z,t)+c0∂zF∗(z,t)+c0
1

N
∂zH∗(z,t)=0.

If adsorption/desorption processes are also included however the dominant term due
to these dynamics is of order O(1) and the full equation (3.9) is used without rescaling.
In that case the diffusion process terms of order 1/N and 1/N2 become higher order
corrections. We omit terms of order 1/N2 in (3.9) and further examine the resulting
PDE,

∂tu(z,t)+c0
1

N
∂zF∗(z,t)= c1G∗(z,t). (3.11)
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3.2. Mesoscopic equations for ASEP with a look-ahead potential. In
this section we outline the derivation of the equivalent mean field system under the
special ASEP process introduced in section 2.2.1. In that respect, due to the one-
sided nature of the potential in (2.6) the spin-exchange process will only occur, using
the notation from section 3.1 above, if y >x. Specifically, since x and y are nearest
neighbors we must have y =x+1. The analysis of the derivation for this case is almost
identical to that presented above in section 3.1 and is therefore left to the reader. We
only outline the main results below. The main change is that equation (3.8) becomes

exp(−J ◦u) :=

∫ ∞

z

J(y−z)u(y)dy. (3.12)

Therefore (3.6) simplifies to,

∂tu(z,t)+c0
1

N
∂zFo(z,t)= c1Go(z,t)+O(1/N2)

with Fo and Go as follows:

Fo(z,t) :=u(z,t)(1−u(z,t))exp(−β(Jse ◦u(z)+h(z))) , and

Go(z,t) :=1−u(z,t)−u(z,t)exp(−β(Jsf ◦u(z)+h(z)), (3.13)

where we have employed the one sided convolution from (3.12) instead of (3.8). Note
that once again we omit the O(1/N2) term above and rescale time to absorb 1/N

t→Nt

in order to obtain the following partial differential equation,

∂tu+c0∂zFo = c1NGo,

where Fo and Go as in (3.13). Remark: see later results in section 4 where this
partial differential operator (PDO) is approximated with various diffusive, dispersive
equations.

3.3. Stochastic averaging. Another method which can often be used in ob-
taining closures for systems of stochastic differential equations involves the assumption
of scale separation and ergodicity. We refer to [6] for these details. In particular we
assume that the stochastic system evolves with a characteristic time which is much
faster compared to that of the ODE. In this case we can employ a stochastic aver-
aging principle utilizing the existing fast and slow scales [5]. The key ingredient for
this method is the property of ergodicity for the stochastic process σ. We assume
that the stochastic process σ has a unique invariant measure which for the case of
spin-flip/spin-exchange dynamics is described by µβ,N (dσ) in (2.16). Assuming no
phase transitions and fast relaxation time for the microscopic dynamics we can define

lim
T→∞

1

T

∫ T

0

F [Y,σ̄t]ds= F̄ [Y ] :=D∂2
xY +A∂xY +RY +Muβ,N (h)+C (3.14)

where

uβ,N (h)=Eµβ,N
σ̄t, (3.15)

and we assume that N and Y ∈R2 is finite and fixed. Since F depends linearly on u
in (2.2) we have

Eµβ,N
F [Y,σ̄]=F [Y,uβ,N (h(Y ))].
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Note that for spin-flip/spin-exchange interactions uβ,N is analytic in h for finite N .
We therefore do not have to worry about the adverse effects of phase transitions often
resulting from the N →∞ case. As a result the following reduced system is always
well defined,







d
dt

ȳt = 1
τc
F̄ [ȳt]

F̄ [ȳt] =D∂2
xȳt +A∂xȳt +Rȳt +Muβ,N (h(ȳt))+C

ȳ0 =y

for t∈ [0,T ], (3.16)

where ȳ can be as close as we like to Y : for any δ >0,

lim
τI→0

P
(

sup
0≤t≤T

|Y (t)− ȳ(t)|>δ
)

=0, (3.17)

assuming an arbitrary bounded time interval [0,T ] and fixed number of interacting
particles N as well as characteristic time τc. Phase transitions can still occur due to
the coupling mechanism through the external potential h. These phase transitions
however are attributed to hysteresis. We will provide examples where such phase
transitions occur in section 5. For more details on phase transition phenomena under
this case we also refer to work in [9]. Remark: we also note that it is not necessary
to assume linearity in (3.15). By doing so however it becomes much easier to obtain
analytical formulas which can later be used as benchmarks for comparisons. We also
note that in the case of look-ahead potentials it is not obvious that the property of
ergodicity is satisfied. For such potentials therefore stochastic averaging closures may
not be applicable.

4. Linearized stability analysis of the mesoscopic models
In order to better understand the overall behavior for system (2.1) we produce

PDEs which approximate the mesoscopic equations obtained previously in section 3.
To that endeavor we employ linearization techniques as well as expansions around
constant states. In section 3 above we obtained the following nonlinear, time rescaled
(t→Nt), integrodifferential approximation in the case of symmetric interaction po-
tentials, with contributions from both spin-flip and spin-exchange dynamics:

∂tu(z,t)+c0∂zF∗(z,t)= c1NG∗(z,t). (4.1)

Here u(z,t)≈Eσt(z) denotes the average density and

F∗(z,t) =u(z,t)(1−u(z,t))exp(−β(Jse ∗u(z)+h(z)))

G∗(z,t) =1−u(z,t)−u(z,t)exp(−β(Jsf ∗u(z)+h(z)),

where for J ≡Jse or J ≡Jsf we have

βJ ∗u(z)=β

∫ ∞

−∞

J(y−z)u(y)dy. (4.2)

We will now carry out expansions of the PDE/integrodifferential (4.1) in order to
obtain through linearizations subsequent PDE approximations. Note that if more
detail is required one can also carry out the same analysis for (4.1) without the
partial differential operator (PDO) approximation (4.3) below. We further note that
this analysis can be relevant for either attractive or repulsive potentials [19].
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4.1. Differences between symmetric and look-ahead potentials. The
main difference between look-ahead and symmetric potentials is attributed to the
convolution mechanism (4.2). This mechanism is responsible for accounting for all
local contributions and differentiating between symmetric and look-ahead interactions
as follows:

• In the case of symmetric potentials, we expand (4.2),

βJ ∗v(z) :=
∫ ∞

−∞
βJ(y−z)u(y)dy=x=y−z

=
∫ ∞

−∞
βJ(x)u(x+z)dx= J̄0u+ J̄1ux + J̄2uxx + J̄3uxxx + ... ,

(4.3)
where for J >0 gives (i.e., assuming that J ≡Jse and J ≡Jsf are positive),

J̄0 =β
∫ ∞

−∞
J(x)dx>0, J̄1 =β

∫ ∞

−∞
xJ(x)dx=0

J̄2 =β
∫ ∞

−∞
x2

2 J(x)dx>0, J̄3 =β
∫ ∞

−∞
x3

6 J(x)dx=0.
(4.4)

• In the case of look-ahead potentials, (4.2) becomes

βJ ◦v(z) :=
∫ ∞

0
βJ(y−z)u(y)dy=x=y−z

=
∫ ∞

0
βJ(x)u(x+z)dx= Ĵ0u+ Ĵ1ux + Ĵ2uxx + Ĵ3uxxx + ... ,

(4.5)

where

Ĵ0 =β
∫ ∞

0
J(x)dx>0, Ĵ1 =β

∫ ∞

0
xJ(x)dx>0

Ĵ2 =β
∫ ∞

0
x2

2 J(x)dx>0, Ĵ3 =β
∫ ∞

0
x3

6 J(x)dx>0
(4.6)

Note that the correspondence between symmetric (4.4) and look-ahead parameters
(4.6) in the expansion of the interaction potentials above provides the following rela-
tionship,

Ĵ0 =
J̄0

2
, Ĵ2 =

J̄2

2
, etc. (4.7)

We also note that although for symmetric potentials, J̄1 = J̄3 = ···=0, this relationship
is not necessarily true for look-ahead potentials, Ĵ1,Ĵ3,... . We apply either (4.3) or
(4.5) and approximate the exponential from

exp(−β(J ∗u+h))≈ e−J0u−βhe−J1uz−J2uzz−J3uzzz

≈ e−J0u−βh[1−J1uz −J2uzz −J3uzzz],
(4.8)

where Jn ≡ J̄n or Jn ≡ Ĵn for n=0,1,2,... depending on whether symmetric or look-
ahead potentials are used. As a result we obtain the following approximation for
(4.1),

∂tu+F a =F r +F d +F s, (4.9)

where we define (and highlight the contributions of each process)

spin-exchange spin-flip.

F r := c1N(1−u−ue−J0ue−βh)

F a := c0

(
u(1−u)e−J0ue−βh

)

z
− c1NuJ1e

−J0ve−βhvz

F d := c0

(
u(1−u)J1uze

−J0ue−βh
)

z
+ c1NuJ2e

J0ue−βhuzz

F s := c0

(
u(1−u)J2uzze

−J0ue−βh
)

z
+ c1NuJ3e

J0ue−βhuzzz,
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The PDE can be written all together as follows,

Advection

d
dt

u(z,t) +
︷ ︸︸ ︷

c0[u(1−u)e−J0ue−βh]z −c1NJ1e
−J0ue−βhuuz =

Reaction

=
︷ ︸︸ ︷

c1N
(
1−u−ue−J0ue−βh

)

Diffusion

+
︷ ︸︸ ︷

c0

(
u(1−u)J1uze

−J0ue−βh
)

z
+c1NJ2e

−J0ue−βhuuzz

Dispersion

+
︷ ︸︸ ︷

c0

(
u(1−u)J2uzze

−J0ue−βh
)

z
+c1NuJ3e

−J0ue−βhuzzz .

(4.10)

Note that the corresponding integrodifferential equations based on each of the two
stochastic mechanisms have the following form:
For, non-conservative, spin-flip dynamics only (i.e., c0 =0):

d
dt

u(z,t)−c1NJ1e
−J0ue−βhuuz

= c1N
(
1−u−ue−J0ue−βh

)
+c1NJ2e

−J0ue−βhuuzz +c1NJ3e
−J0ue−βhuuzzz.

(4.11)
For, conservative, spin-exchange dynamics only (i.e., c1 =0):

d
dt

u(z,t)+c0[u(1−u)e−J0ue−βh]z

= c0

(
u(1−u)J1uze

−J0ue−βh
)

z
+c0

(
u(1−u)J2uzze

−J0ue−βh
)

z
.

(4.12)

Below, we carry out stability analysis for parts of (4.10), with either (4.11) or (4.12) in
an effort to better understand the behavior of each stochastic mechanism. The purpose
of this analysis is to identify critical parameter regimes for which small perturbations
can produce substantial departures from the expected mean field behavior.

4.2. Constant States. Typical solution behavior for system (2.2) can be
understood by examining its constant states. We provide a brief outline of such
states here. Details for solution behavior of hybrid systems involving ODEs coupled
to stochastic noise models can be found in [6]. For similar systems undergoing phase
transitions details can be found in [8]. We first note that the stochastic system already
described in section 2 may undergo a phase transition if βJ0≥βcJ0 :=4, where βc

denotes a critical temperature threshold. In that respect the constant states of (2.2),
which includes effects due to a possible phase transition, are described by

d
dt

Y =RY +Mu+C
d
dt

u =g(u)−Y,
(4.13)

where g(u) is a cubic polynomial in u. Note that for g(u)=u(a−u)(u−1) (4.13)
is equivalent to the FitzHugh Nagumo (FHN) equation [19]. The constant states
of (4.13) are changing depending on the value of βJ0. If βJ0 <4 then the bottom
equation of (2.2) becomes monotone and has a single stable, excitable state as can be
seen in figure 4.1a. If on the other hand we are in the phase transition regime βJ0≥4
then the stability profile may have multiple states exhibiting excitable, oscillatory
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Fig. 4.1. Direction field and phase portrait for mean field system (4.13) under different pa-
rameter regimes. Cases of excitability for no phase transitions, βJ̄0 =2, and excitability, bistability
and oscillations respectively for phase transition regime with βJ̄0 =6. Compare with pp. 328–329
of [19]. The behavior shown here is exactly the same for the FitzHugh-Nagumo equation shown in
(4.13).

or bistable behavior depending on the parameters used. See figure 4.1b, c, d for
those examples. In the ensuing stability analysis we carry out expansions around the
constant states of (2.2). The results will be shown to carry through and agree with
the behavior of the solutions for (4.13). In the following presentation we denote those
constant states as u0,Y0.

4.3. Linear stability for system with symmetric dynamics. We now
examine the stability of the coupled system which includes some of the major mech-
anisms, advection, diffusion, and dispersion, contributed from the stochastic piece in
(4.10). In this section we examine stability under the case of symmetric potentials
J as in (4.2). We assume for simplicity that the coupling is imposed only on the
spin-flip and not the spin-exchange dynamics. The analysis however can be carried
out in exactly the same way in the case that h(Y ) is included in both potentials. The
expansion for the corresponding potentials was provided in (4.3) and (4.8). Thus,
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using these contributions from (4.10) in our coupled system we obtain







∂tY = D∂xxY +A∂xY +RY +Mu+C

∂tu= d0∂x[u(1−u)e−J̄0u]+d1∂x[u(1−u)e−J̄0u∂xu]

+d2∂x[u(1−u)e−J̄0u∂xxu]+d3(1−u−uexp[−J̄0u+βh(Y )]),

(4.14)

where d0,d1,d2, and d3 are chosen appropriately from (4.10) and depend on c0,c1, and
N . Other free parameters will be chosen in the numerical section later. Here h(Y )=
α(Y −γ) and the parameters α and γ are to be specified in the numerical section and
depend on the type of behavior we wish the system to exhibit. Note that contributions
of J̄1,J̄3,... are zero due to the symmetry of the potential in (4.3). We consider all
non-zero terms greater than or equal to J̄2 as higher order corrections to (4.14) and
therefore we do not present them here. Also note that all coupling contributions from
the solution Y of the PDE to the stochastic piece are accounted for in a single term
originating from the spin-flip dynamics. We assume no coupling contributions from
the spin-exchange Arrhenius dynamics. We apply a small perturbation around the
known equilibrium solutions u0,Y0,

Y = Y0 +Y1e
st+Ikx

u= u0 +u1e
st+Ikx.

Note that it is sufficient for now to apply the same perturbation in both u and Y . We
obtain a simplified Jacobian of the form

J̄ =

[
F̄Y1

F̄u1

ḠY1
Ḡu1

]

:=

[
s+Dk2−IAk−R −M
Ē(J̄0)αkIu0[u0−1] s−Ē(J̄0)Ik[1−(J̄0 +2)u0 + J̄0u

2
0]

]

,

where Ē(J̄0)≡Ēu0,Y0
(J̄0) :=exp(−J̄0u0 +βh(Y0)). Note that we consider terms greater

than or equal to J̄2 as correction terms for this approximation. A specific example
of this Jacobian is provided below for J̄0 =1. To simplify the presentation we apply
values for some variables which exhibit excitable behavior. In this case the Jacobian
has the form

J̄ =

[
s+Dk2−IAk−R −M

.05 s− .52Ikd0 + .1d1k
2 + .1d2Ik3 +1.9

]

. (4.15)

We also omitted terms J2 and higher for convenience although they can become
important, as correction terms, in higher order approximations. Based on our analysis
from this system we find that the effects of advection and dispersion are in general
counteracting each other. Furthermore, although not surprising, we also find that
diffusion due to its natural mixing improves the stability of an already stable solution.
We also note that although the analysis carried out above is general it is presented
here for the case of a classical type interaction potential as given in (2.4). The case
of the new, one-sided, potential (2.6) is analyzed below:

4.4. Linear stability for system with look-ahead advection. We now
examine the stability for system (2.2) as approximated through (4.10) for the case
of the one-sided look-ahead interaction potential (2.6) and (3.12). The only differ-
ence from the derivation leading to equation (4.10) is that we now use the one-sided
ASEP process which in effect alters the description of the convolution in (4.2) in the
way presented in (4.6). Again, for simplicity, we assume that the coupling h(Y ) is
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only through the spin-flip and not the spin-exchange dynamics. The corresponding
expansions can be found in (4.5) and (4.8). The equivalent mean field version for a
system with look-ahead potentials including contributions up to and including Ĵ1 is
given below,







∂tY = D∂xxY +A∂xY +RY +Mu+C

∂tu= d0∂x[u(1−u)e−(Ĵ0+Ĵ1)u]+d1∂x[u(1−u)e−(Ĵ0+Ĵ1)u∂xu]

+d2∂x[u(1−u)e−(Ĵ0+Ĵ1)u∂xxu]+d3(1−u−uexp[−(Ĵ0 + Ĵ1)u+βh(Y )]),
(4.16)

where, once again, the parameters d0,d1,d2, and d3 depend explicitly on c0,c1, and
N from (4.10). The Jacobian for this system is

Ĵ =

[
F̂Y1

F̂u1

ĜY1
Ĝu1

]

:=

[
s+Dk2−IAk−R −M

Ê(Ĵ0,Ĵ1)αkIu0[u0−1] s−Ê(Ĵ0,Ĵ1)Ik[1−(Ĵ0 + Ĵ1 +2)u0 +(Ĵ0 + Ĵ1)u
2
0],

]

(4.17)
where Ê(Ĵ0,Ĵ1)≡Êu0,Y0

(Ĵ0,Ĵ1) :=exp(−(Ĵ0 + Ĵ1)u0 +βh(Y0)). Terms greater than or

equal to Ĵ2 are considered to be correction terms here. The eigenvalues of of this Jaco-
bian are influenced by the, non-zero, perturbation Ĵ1 due to the look-ahead dynamics.
Notice that such a perturbation is impossible for symmetric potentials since Ĵ1 =0.
As an example of (4.17) we display below, in figure 4.2, the real part of the first and
second eigenvalues corresponding to excitable type of behavior, for appropriate values
of the constant parameters.

Fig. 4.2. Linear stability behavior of the Jacobian (4.17) for look-ahead dynamics. We display
the real part of the first (left) and second (right) eigenvalues with respect to advection A and diffusion
D. The arrow displays a lateral move of the surface as d0, in (4.16), ranges from −10 to 10.
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5. Stochastic effects

In this section we use Monte Carlo methods to simulate the full system (2.2) for
those critical parameter regimes identified in section 4. Thus, as linearized stability
analysis points out, closures of the original system (2.2), although useful, must be
applied with care especially if the system is undergoing transient or long-time dy-
namics. Furthermore, look-ahead dynamics are responsible for dramatically changing
the behavior of the solutions for the coupled system. A number of new states emerge
as a result of applying the look-ahead dynamics which evolve through translations,
synchronization, intermittency, focusing/defocusing effects, and more. Those states
are not part of the usual mean field profile for our system but rather a result of the
one sided look-ahead potential of the stochastic component of the coupled system.
We present below several examples which display vast differences in the behavior of
the solutions for our system due to influences originating in the stochastic component
and in particular in the look-ahead mechanism. The simulations which are presented
below focus in the following topics:

• differences between solutions of the PDE versus the ODE

• effects attributed to noise. This includes differences between mean field and
stochastic solutions

• effects due to lateral lattice interactions.

5.1. Instability attributed to advection. In this section we examine the
influence of advection A and stochasticity on the stability of the solutions. We discover
that large advection, acting as a strong stirring mechanism, becomes a catalyst to
promote stability in the solutions. In contrast, low advection in conjunction with
stochastic perturbations can produce large excitations from equilibrium and eventual
instability. Specifically we display two examples in figure 5.1 where we have fixed all
parameters exactly the same except for the advection parameter A. On the top row
of figure 5.1 we display the mean field (left column) and stochastic (right column)
solutions of our system for a large advective parameter, A=20, while the exact same
results are displayed on the bottom row for smaller advection value of A= .2. Clearly
the stochastic solution in the bottom part of that figure, corresponding to the small
advection value A= .2, is unstable. Overall we would therefore describe the behavior
of this system as, a stochastically induced, convective instability phenomenon. This
instability is attributed both to convection as well as stochastic perturbations. We
should also point out the the equivalent system for A=0, not presented here, produced
stable solutions as well. Note that the instability we observe here is not that of a blow-
up type but instead one which does not allow the system to relax to its constant state.
For values of A≤σ/k we observe that the system is constantly pushed away from its
equilibrium. This behavior is what we call convective instability.

5.2. Random switching between stochastic waves. In this
example we present a phase transition phenomenon which is induced by stochastic
nonlinear effects. Specifically the system, due to strong particle interactions and look-
ahead dynamics, is undergoing a phase change, or transition, from one orbit to another
as can be seen in the phase plot of figure 5.2. Note that the system reorganizes in time
and attains a new traveling wave solution which reaches a pointedly different wave
speed than the solution before it had. We also note that in order for such a phase
transition to occur the system must undergo a reorganization and synchronization in
space and time in order to achieve the new state.
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Fig. 5.1. Instability due to convection. Solution profiles are displayed for both, initial and
final times, for the excitable regime. Top row displays results for high advection speed A=20.
Bottom row for lower advection speed A= .2. Mean-field system (4.14) on the left and full stochastic
coarse grained system (2.2) on the right. Convective instability is displayed in subfigure (d) which
corresponds to the case of low advection value A= .2. The case of A=20 produced stable solutions.

In a relevant example, in figure 5.3, we observe the influence of look-ahead dy-
namics responsible for generating a traveling wave on the stochastic component of
the coupled system which, in turn, produces an overall traveling wave solution for the
system. In contrast, the corresponding solution for the system without look-ahead,
also included in figure 5.3, displays non-moving constant structures.

5.3. Altering the solution profile. We present further numerical evidence
of the role of look-ahead dynamics in altering the original system profile. Specifically,
in figure 5.4 we observe how look-ahead dynamics perturb the system solution just
enough to alter its profile from excitable to oscillatory. The stability analysis which
is also included in figure 4.2 sheds further insight as to what kind of behavior we
should expect based on the values of advection A and diffusion D. Based on this
analysis it is clear that the overall behavior of the PDE depends on the real parts of
each of the two eigenvalues for given values of A and D in relation to noise levels of
the stochastic piece. With enough noise and assuming that the real parts are not too
negative then the imaginary parts of the eigenvalues can take over and produce the
oscillation observed in some of our simulations. Our findings therefore suggest:

excitability→ spikes in u→ spatial structures in Y (highly oscillatory).
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Fig. 5.2. Random switching resulting in attaining different orbits. Solutions presented for case
of full hybrid system (2.2) with look-ahead dynamics. On left bottom plot the dotted line indicates
the mean field ODE profile corresponding to system (4.13).

Note that spikes in u, induced by stochastic noise, will not develop into “island” type
structures as in the nearest neighbor case presented later in figure 5.7.

5.4. Random pulses. The stochastic coupled system is responsible for rich
solution behavior including random pulses. Such an effect is presented in the solution
of system (2.2) in the right subplot of figure 5.5. In that figure we observe synchro-
nization in both space and time which is responsible for the eventual reorganization
of the solution into a pulse. The look-ahead potential has contributed substantially
towards the development of such random single pulses. Without these one-sided dy-
namics the pulse does not occur. This was observed in several examples one of which
is shown in the left part of figure 5.5. The only difference between this and the right
part of figure 5.5 is the inclusion of the look-ahead potential.

5.5. Profile translations. In the next numerical example we study a com-
plete shift in the phase plane solutions attributed, as we might expect by now, to the
look-ahead dynamics inclusion in the stochastic component. In figure 5.6 the phase
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Fig. 5.3. Solution u from (2.1). Look-ahead dynamics, on the right, result in traveling waves
in the stochastic component. Left: no look-ahead. All other parameters are kept the same in both
figures.
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Fig. 5.4. Phase plane. Look-ahead dynamics, on the right, alter the solution profile from
excitable to oscillatory. Left: usual potential. The only difference in creating the two figures above
is that on the left no look-ahead is used while on the right we include look-ahead dynamics. The
mean field ODE profile corresponding to (4.13) is also noted with a doted line in the figures above.

plane reveals that the original oscillatory solution has shifted due to the look-ahead
potential. Overall, we observe that, using the look-ahead mechanism we can com-
pletely alter the system dynamics. The system solution therefore can be perturbed to
eventually produce bistable, oscillatory, pulsating and excitable type behavior even
though this was not even possible for the original system profile according to either
mean field theory or stability analysis. From our simulations we observe that this can
be achieved by changing either the look-ahead interaction range and/or the relaxation
time τI of the stochastic component.
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Fig. 5.5. PDE solution. Time, space synchronization which evolves into a single pulse at-
tributed to use of the one-sided look-ahead dynamics. The only difference in creating the two figures
above is that on the left no look-ahead is used while on the right we include look-ahead dynamics.

5.6. Generation of island like structures. In this section we examine the
behavior of our system under the influence of spatial interactions due to inclusion of
nearest neighbor interactions in space. This is in constrast to birth-death type dy-
namics which do not involve information from neighbors. We present results in figure
5.7 for the excitable regime and compare the solutions against the equivalent solutions
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Fig. 5.6. Oscillatory regime. Phase plane solutions display a shift downwards attributed to
inclusion of the look-ahead potential. The only difference in creating the two figures above is that
on the left no look-ahead is used while on the right we include look-ahead dynamics. The mean field
ODE profile is also indicated in the plots above with a dotted line.

in the case of birth death dynamics (no lateral interactions in space). We further note
that in this example we implement a symmetric interaction potential (2.4). Note
that the behavior due to the spatial nearest neighbor mechanism resulted in creating
sustainable ‘island’ type structures in space and time for u, as well as eliminating
the previously observed oscillations in space in Y (not shown here). Therefore in the
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excitable regime we find that,

nearest neighbor interactions → ‘island’ structures → smoother mean field behavior
destroy noisy spikes in u are created in u in Y (no oscillations)

See figure 5.7 for comparisons between birth-death and nearest neighbor interactions
in the excitable regime. Overall we find that when comparing, under similar condi-
tions, birth-death vs nearest neighbor dynamics the former are observed to be much
more susceptible to noise. In general we observe that nearest neighbor interactions al-
low synchronization and spatial reorganization to occur in the solution while attaining
its equilibrium.
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Fig. 5.7. Lateral interactions resulting from nearest neighbor interactions. Left: solution u

from mean field system (4.14). Right: solution of system (2.2) depicting evolution of island type
structures due to nearest neighbor interactions.

6. General comments and remarks
We studied a hybrid system consisting of a PDE and a stochastic noise model.

The stochastic model is coupled directly to the PDE through a linear term while the
PDE is coupled to the stochastic through its local interaction potential. Asymptotic
derivations were carried out in order to produce the mesoscopic equivalent PDEs cor-
responding to our hybrid system. The hybrid system as well as the mean field closures
were considered under extreme cases undergoing random wave switching and metasta-
bility. Mean field closures can not be expected to be able to capture the solution of
such systems and in fact fail. In contrast we presented a stochastic type hierarchical
closure which is able to produce approximate solutions under all parameter regimes.
We examined the overall system behavior under a variety of stochastic dynamics in-
cluding spin-flip and spin-exchange interactions. In the context of this hybrid system
we also presented a new type of look-ahead interactions which produce advective
effects in the stochastic component. The overall behavior of the system changed dra-
matically because of the inclusion of such dynamics. Through linear stability analysis
we were able to observe that unexpected solution profiles emerged. Numerical simu-
lations further revealed rich solution behavior comprised of random pulses, figure 5.5,
and random switching between orbits, figure 5.2. Some further findings and remarks
are included below:
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• Mean field closures cannot be trusted to produce system solutions even if the
system is considered under strong flows induced from either the PDE or the
stochastic. Fluctuations and their nonlinear effects are still important.

• When nearest neighbor interactions are considered nucleation phenomena oc-
cur and creation of island type structures similar to those presented in figure
5.7 are possible. Deterministic closures can not capture these random struc-
tures. An interesting follow up question would be to understand for what
strength of interactions J does the nucleation phenomenon are subsequent
generation of these structures occur.
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