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Abstract. We investigate noise-induced transitions in non-gradient systems when complex
invariant sets emerge. Our example is the Lorenz system in three representative Rayleigh number
regimes. It is found that before the homoclinic explosion bifurcation, the only transition state is
the saddle point, and the transition is similar to that in gradient systems. However, when the
chaotic invariant set emerges, an unstable limit cycle continues from the homoclinic trajectory. This
orbit, which is embedded in a local tube-like manifold around the initial stable stationary point as a
relative attractor, plays the role of the most probable exit set in the transition process. This example
demonstrates how limit cycles, the next simplest invariant set beyond fixed points, can be involved
in the transition process in smooth dynamical systems.
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1. Introduction

In recent years, there has been a great deal of progress in the study of weak
noise-induced transition in equilibrium systems whose dynamics are determined by
gradient flows [1, 2, 3, 4]. One main feature in these systems is that in the limit as
the noise amplitude goes to 0, the so called most probable escape path (MPEP) must
approach a saddle point on the separatrix of the unperturbed system. Such a saddle
point with only one unstable direction is thus the most probable exit point or the
transition state. At the same time, it has been realized that non-gradient systems or
systems that lack of the property of time reversibility can give rise to a large variety
of new phenomena. Examples of these systems range from Josephson junctions [5]
and switching in lasers [6] to protein folding [7] and electronic circuits [8]. Some of
the most interesting findings include a preexponential factor of the Kramers rate and
the transition state of an unstable point [9], a symmetry breaking bifurcation of the
optimal escape path [10], and the phenomenon of cycling of exit point distribution
from a planar unstable limit cycle [11].

One of the fundamental questions in the study of the noise-induced transitions
between metastable states is what kind of new transition states appear in the per-
turbed non-gradient systems, and how to find them. The identification of the optimal
transition path is very useful. The optimal transition path is where the distribution
of the fluctuational trajectories which make successful transitions between attractors
sharply peaks around. The optimal transition path is deterministic in spite of the
stochastic nature of the transition process. In gradient systems, the optimal transi-
tion path is always parallel to the drift b=−∇V and the MPEP is the time reversed
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heteroclinic trajectory of the unperturbed system connecting the attractor and the
saddle point [12, 2]. The generic feature of the optimal transition path between two
attractors is that it approaches certain transition state (such as saddle points in gra-
dient systems) on the basin boundary of one attractor, then it runs along the unstable
manifold of that transition state and enters the basin of attraction of the second at-
tractor. The optimal transition path provides lots of information for the transition
mechanism. Once it is known, one can analyze the path to identify transition states
in the phase space.

There has been some theoretical progress on finding the optimal transition path
and the transition states in some examples of non-gradient systems. Even though
many non-gradient systems still possess saddle points (with one positive eigenvalue)
as transition states, they are not the only possible transition states, even in a simple
planar system without a limit cycle [13], where the MPEP asymptotically approaches
an unstable fixed point on the separatrix. In the case of a limit cycle, which itself
is the basin boundary in a planar system, the MPEP spirals toward the limit cycle
asymptotically and its ω-limit set is the complete limit cycle [11].

Meanwhile, there has been much work on the two-dimensional discrete maps per-
turbed by weak white noise by using statistical analysis of the sampled transition
trajectories. These works [14, 15, 16, 17, 18, 19, 20, 21, 22] cover a variety of classi-
cal discrete map models. In these examples, the invariant sets involved in transition
processes include primary homoclinic tangencies within nonhyperbolic chaotic attrac-
tors [16] and saddle periodic orbits within some chaotic attractors or on fractal basin
boundaries [22]. Based on a small number of numerical examples, it was conjectured
[17] that in the noise-induced escape from the basin of attraction of an invariant set,
the chaotic behavior of low-dimensional dynamical systems is largely determined by
the position and stability properties of unstable cycles built into the chaotic structures.

All of the above findings suggest that in general nongradient systems, it is not a
single saddle point that acts as a transition state, but generally involves other types
of invariant sets, such as periodic orbits, or an unstable manifold of an unstable sta-
tionary point on the separatrix [13]. These invariant sets either lie on the regular
separatrix or are embedded in fractal basin boundary. When transitions take place,
the transition trajectories cross these invariant sets with dominated probability com-
pared with crossing other parts on the separatrix. We call such invariant sets as most
probable exit invariant sets or transition sets.

Up to now, the investigations of higher dimensional smooth (autonomous) dy-
namical systems (such as PDE systems in [23, 24]) do not show any new examples
of transition sets except saddle points. We investigate the Lorenz system in this
paper, where the chaotic invariant set emerges. On the other hand, from a numer-
ical perspective, identifying the transition states or transition sets in an arbitrary
dynamical system remains a serious challenge. We will make use of the minimum
action method [23], which is based on the Freidlin-Wentzell theory [25], to identify
the optimal transition path. We are going to report the transition paradigms between
two symmetric stable fixed points in the weak noise perturbed Lorenz system with
three representative values of the Rayleigh number ρ. These three cases account for
the three representative phase space structures in the Lorenz system when the two
symmetric fixed points still maintain their stabilities. We find that the transition
process is similar to that in gradient systems before a homoclinic explosion bifurca-
tion ρ<ρt ≈13.92. However, when the chaotic invariant set emerges in the Lorenz
system, a pair of symmetric unstable limit cycles (L± in figure 2.1) continues from
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Fig. 2.1. The Lorenz system with two different values of the Rayleigh number ρ. Γ± (red curve)
is the unstable manifold of the origin O. The pair of the simplest limit cycles (L±) belonging to the
strange invariant set Λ are labelled by the isolated blue circles. “×” and “+” show two nontrivial
stationary points, q− and q+ respectively. In panel (b), a trajectory in the Lorenz attractor is colored
in brown to illustrate the position of the Lorenz attractor.

the homoclinic trajectory. One of these two limit cycles, which is embedded in a local
tube-like manifold around the initial stable stationary point as a relative attractor,
plays a key role in the transition process. The optimal transition path escapes from
the initial stable stationary point by approaching this limit cycle and then enters the
chaotic invariant set. The transition path continues to approach a saddle point, the
origin, which is a second transition state. Then the path moves towards the other
stable stationary point. There is a slight difference between the situations of transient
chaos ρ<ρa ≈24.06 and chaotic attractor ρ>ρa, but the transition set, the limit cy-
cle, and the transition state, the saddle origin, are both present in these two transition
processes. It suggests that limit cycles, the next simplest invariant set beyond the
fixed points, can in general be involved in the transition process in smooth dynamical
systems.

The paper consists of five sections. The basic results on the Lorenz system and
its phase space structure are reviewed in section 2. In section 3, we review the mini-
mum action method since it is our basic tool. The main results about the transition
paradigms in the Lorenz system are presented and discussed in detail in section 4.
Conclusions are drawn in the last section.

2. The Lorenz system and its phase space structures

ρ=1 pitchfork bifurcation the origin O loses 1-dim stability;
two stable stationary points q± arise.

ρt ≈13.92 homoclinic explosion W u(O)⊂W s(O): homoclinic orbits;
preturbulence [26] transient chaos arise (L± appear).

ρa ≈24.06 bifurcation to Lorenz attractor W u(O)⊂W s(L±) ( refer to figure 2.1);
heteroclinic orbits chaotic attractor arise (“butterfly” shape).

ρh ≈24.74
`

470
19

´

subcritical Hopf bifurcation L± disappear and q± lose stability.

Table 2.1. Bifurcations in the Lorenz system
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The example we investigate in this paper is the Lorenz system:







ẋ = σ(y−x),
ẏ = ρx−y−xz,
ż = −βz+xy.

(2.1)

This model has a natural symmetry (x,y,z)→ (−x,−y,z) for all values of the param-
eters. As usual, we fix the parameters σ =10, β = 8

3 . Table 2.1 briefly summarizes the
bifurcations in this system and figure 2.1 shows two pictorial descriptions of the phase
space. More detailed analysis and discussions can be found in the books [27, 28] and
other references [29, 30, 31, 26]. The global stable manifolds in the Lorenz system
were analyzed and visualized in [32, 33, 34, 35].

According to Table 2.1, we choose three representative values of the Rayleigh
parameter ρ: ρ1 =10, ρ2 =19.375 and ρ3 =24.08. In this regime, the two nontrivial
stationary points

q± =(±
√

β(ρ−1),±
√

β(ρ−1),ρ−1)

are stable and the origin O is a saddle point with one dimensional unstable manifold
Wu(O) and two dimensional stable manifold W s(O). The one dimensional manifold
Wu(O) has two branches Γ+ and Γ− (Γ+ is defined to point to the direction of positive
values of x and y and Γ− is the symmetric image of Γ+).

The phase space structures for ρ1, ρ2 and ρ3 can be summarized as follows.

1. ρ1 =10. This is the simplest case. The whole phase space is divided by W s(O)
into two basins of attractions of the stable stationary points q− and q+ , i.e.,
the separatrix of q± is the two-dimensional surface W s(O) and the saddle
point O is the unique fixed point on this manifold. All trajectories on the
separatrix W s(O) go to this saddle point O (thus, this saddle point is called
relative attractor in some references). The unstable manifold Wu(O) has two
branches Γ+ and Γ− which are heteroclinic orbits, from the origin O to the
stationary point q+ and q−, respectively. There is no limit cycle or chaotic
invariant set at this value ρ1.

2. ρ2 =19.375. If ρ=ρt, then each of Γ± forms a homoclinic orbit at the origin.
When ρ passes this value, e.g., at ρ=ρ2, Γ± wind around the z-axis and then
spiral to q∓ respectively, instead of q±. The phase space undergoes a dramatic
change. A hyperbolic invariant set Λ of saddle type is identified by the Lorenz
geometric model. The symbolic description of Λ is similar to that of Smale’s
horseshoe. Λ contains a countable number of periodic orbits of arbitrarily
long periods as well as an uncountable number of bounded aperiodic orbits,
generated from the homoclinic explosion. Two simplest periodic orbits L±

belonging to the invariant set Λ, with symbols 0̄ and 1̄ (cf. [27]), are shown in
figure 2.1. L± wind around the nontrivial stationary points q±, respectively.
These two periodic orbits are of saddle type. Both their geometric sizes
and periods shrink as ρ increases further and they collapse onto q± at the
subcritical Hopf bifurcation point ρh where q± become saddle points. The
Lebesgue measure of the invariant set Λ is zero and almost all trajectories
ultimately tend to one of the two sinks q+ or q−. Yet the transient time to
reach q+ or q− is very long and highly sensitive to the starting points of the
trajectories. Hence, this is called transient chaos, or preturbulence [26]. The
hyperbolic set Λ separates regions of phase space which have different patterns
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of revolutions about q+ and q− before they reach a small neighborhood of one
of these points and “settle down”. These two regions stagger each other to
make the basin boundary fractal (cf. figure 4.5).

3. ρ3 =24.08. At this value, a strange attractor arises while the stationary points
q± are still stable since the Hopf bifurcation does not occur yet. The strange
attractor, the Lorenz attractor, is emerged from the invariant set Λ discussed
above. We still denote this strange attractor by Λ. However, this Lorenz
attractor is different from the original strange invariant set at ρ2 because
the orbits in the Lorenz attractor will never set down to any fixed point
or periodic orbit. The Lorenz attractor Λ consists of a Cantor set of two-
dimensional sheets, excluding a neighborhood of the stable stationary points
q±. The saddle cycles L± are not part of the attractor and their stable
manifolds separate the trajectories that approach q± from those that approach
the Lorenz attractor Λ.

3. The Minimum action method

Methods for finding optimal transition paths can be divided into two categories:
Monte Carlo methods and variational methods. Monte Carlo simulation solves the
underlying stochastic differential equation for sufficiently long time so that a large
number of realizations of the transition events can be collected for statistical analysis.
The approach for constructing prehistory distribution in [36] relies on this method.
It has been extensively applied to low-dimensional problems, such as those in [37].
Variational methods [23] are based on the Freidlin-Wentzell theory which states that
the optimal transition path in zero noise limit can be characterized as the minimizer
of the Freidlin-Wentzell action functional which has the following form [25],

ST1,T2
[ϕ]=

1

2

∫ T2

T1

|ϕ̇(t)−b(ϕ(t))|2 dt, (3.1)

where ϕ(t) is an absolutely continuous function in C[T1,T2] and b is the vector field of
the unperturbed dynamical system.

An auxiliary Hamiltonian system associated with the Freidlin-Wentzell functional
can be derived:

{

ϕ̇ = b(ϕ)+p,
ṗ = −(∇b)T p,

where the Hamiltonian H(ϕ,p)= 〈b(ϕ),p〉+〈p,p〉/2. The solutions of the auxiliary
Hamiltonian ODE with the value of the Hamiltonian being zero are called zero-energy

trajectories. According to the Freidlin-Wentzell theory, the MPEP (which may not be
unique in some cases) is the zero-energy trajectory that escapes from the attractor and
has the least action S∗ = min

H(ϕ,p)=0
S[ϕ] when ϕ escapes the basin of attraction. The

escape action can be viewed as a function of a set of parameters characterizing the
initial conditions of the zero-energy trajectories. A topological method based on this
fact, which is essentially a shooting method, was suggested in [38] and applied to two
dimensional continuous time dynamical systems and discrete maps. The application
of this approach in general dynamical systems is severely limited by the difficulties as-
sociated with parametrizing all zero-energy trajectories and finding an efficient search
strategy to explore the parameter space, as well as the unknown boundary condition
where the MPEP exits the basin boundary.
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An alternative numerical algorithm, the minimum action method (“MAM”), was
proposed in [23] which directly minimizes the Freidlin-Wentzell functional. In MAM,
the transition path is a curve which minimizes the Freidlin-Wentzell functional (3.1).
The path obtained in this way is called minimum action path (“MAP”). If the dynam-
ical system is a gradient system, the minimum action path has a simpler geometric
characterization (the minimum energy path, or “MEP”) and a simplified algorithm,
the string method developed in [3, 4], works better for this case. There have been
some recent improvements of MAM: the adaptive minimum action method (“aMAM”,
[39]) and the geometric minimum action method (“gMAM”, [40]). Both are designed
to overcome the difficulties associated with representing the optimal path using the
physical time. The gMAM is based on a reformulation of the Freidlin-Wentzell func-
tional in the arclength parametrization. The aMAM uses the original physical time
to parametrize the transition path but incorporates the moving mesh strategy. In the
end, both methods allow us to optimally distribute the grid points at places where
the transition takes place.

One potentially tricky point is the choice of the parameter T1 and T2. In principle,
we want to choose them to be infinite. In practice, we need to use finite values. A nice
thing is that the error due to finite truncation drops very fast (nearly exponentially)
with increasing T2−T1 [39]. In our computations for the Lorenz system, we tested
different transition times and numbers of mesh points to ensure that our numerical
results are robust. The results presented here correspond to the transition time T2−
T1 =80 and the number of mesh points is 2000 for the case with ρ1 and 4000 for the
cases with ρ2 and ρ3. These are sufficient for the features that we report below. In
our computation for the MAP, we found that higher accuracy was necessary for the
parameter values ρ2 and ρ3 than for the value ρ1 to capture the shape of the path
along Γ− (see Section IV). One main source of error comes from insufficient resolution
of the saddle point O. Once we are assured that the saddle point O is a transition
state, we split the MAP from q− to q+ into two parts: from q− to O and from O to q+

and run the MAM separately for each part. This simple trick gives us more accurate
paths for the ρ2 and ρ3 cases.

4. Transition Paradigms in the Lorenz model

We now report our findings for the transition processes between the two equilibria
q± of the Lorenz system (2.1) with weak additive white noise,







ẋ = σ(y−x)+
√

εdW x
t ,

ẏ = ρx−y−xz+
√

εdW y
t ,

ż = −βz+xy+
√

εdW z
t .

4.1. ρ=ρ1. Figure 4.1 shows the numerically calculated minimum action
path (MAP). This path has a sharp turn at the saddle point O, which divides the
path into two segments. The first one is the MPEP and the second one coincides with
the heteroclinic orbit Γ+. Our next quantitative analysis of the MAP is presented in
figure 4.2. Fig. 4.2a and figure 4.2b confirm that only one single point, the saddle O,
separates the MAP into two segments which lie in basins of attraction of q− and q+,
respectively. figure 4.2c is the plot of the amplitude of the noise ‖ϕ̇−b(ϕ)‖, reflecting
the contributions of the fluctuational noise for the system to escape from the basin of
attraction of q−. Thus, figure 4.2 provides solid evidences to the fact that the origin
O, the unique saddle point in the phase space is exactly the location where the optimal
transition path crosses the basin boundary, i.e., the saddle point O is the transition
state, which is very similar to that of gradient systems. The transition process here
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Fig. 4.1. The simple bistable case (ρ=10): the MAP (blue curve, open circles) spirals out from
the initial state q− and lands toward the final state q+ spirally, exactly passing the saddle point (the
origin) . The heteroclinic orbits Γ± (red curve, filled circles) starting from the origin O are also
shown for comparison.

can be viewed as simply as “q−→O→ q+” in this bistable system, although the
global structure of the separatrix of the Lorenz system, i.e., W s(O), is “pleat”-like
and “twisted”, especially near the z axis or away from the origin (cf. figure 11 and
figure 12 in [32]).

4.2. ρ=ρ2 : transient chaos. The numerical MAP in this case is plotted
in figure 4.3. The first observation by measuring the distance between the MAP
and the point O as before, is that the MAP still goes through the saddle point O.
Refer to figure 4.4c. After passing the saddle point, the path follows the orbit Γ− to
approach q+. This reflects the fact that at the homoclinic bifurcation when ρ passes
ρt, the heteroclinic trajectory from O to q+ makes a change from Γ+ to Γ−. A sample
of fluctuational transition path from Monte Carlo simulation is plotted in figure 4.3
to suggest one possibility of the transition process. The numerical discrepancy at
Γ− near the origin O between the sample path and the MAP is due to the very
strong expansion rate of the Lorenz system along Γ− and the finite noise intensity. It
may suggest that the distribution of the fluctuational transition trajectories is non-
Gaussian and skewed on one side of the MAP, instead of centering along the MAP.
This is a generic feature for non-gradient systems [41].

A new phenomenon arises in the life time plot of figure 4.4. There is a segment
in the middle of the MAP showing extremely high sensitivity of life time. We mark
this segment of the MAP by two ends A and B in figure 4.3 and call it “chaotic” life
time segment for convenience. The part of the MAP before the point A is completely
in the basin of attraction of q−. The appearance of this “chaotic” life time segment
after the point A implies that there is a qualitative change in the phase space near
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Fig. 4.2. (a) The life time plot for each point on the MAP in figure 4.1. The horizontal
axis is the arclength parameter of the MAP. The sharp jump point in the top figure corresponds
to the origin O. The life time is defined to be the (signed) time in the original dynamical system
to reach the α-neighborhood of the final state (positive life time) or the initial state (negative life
time). α=5×10−4 in our numerical experiments. This value guarantees that, for all ρ1, ρ2 and ρ3

considered in this paper, the α-neighborhood is always completely included in the basin of attraction
of the stable stationary point inside of it. (b) the Euclid distance to the origin O from points on
the MAP. (c) The L2 norm of the optimal fluctuation force ‖ϕt−b(ϕ)‖2 (b is the vector field of the
Lorenz system) for each point on the MAP ϕ.

the point A and the curve AB travels through the chaotic invariant set Λ.

We want to break down how “chaotic” life time segment of the MAP enters the
set Λ at the point A. By using Newton’s method in [42] to search for limit cycles, we
find that this point A is located on a limit cycle L− (cf. figure 4.4b). This limit cycle
L− was introduced in Section II. It is of saddle type and has a two-dimensional stable
manifold and a two-dimensional unstable manifold. Thus, it is also called saddle cycle.
It is the most probable invariant set, or transition set, from the stationary point q−
to the transient chaos Λ. The complete transition process from q− to q+ therefore
can be viewed as a successive series of steps: “q−→L−→O→ q+”.

A few remarks are in order. The first is about the point A, which is also the
intersection point of the numerical MAP and the saddle cycle L− (cf. figure 4.3c).
It should be distinguished from the most probable exit point on a limit cycle when a
small but finite amount of noise is present, which has been examined both analytically
[43, 11] and numerically [44] for a planar system, the inverted van de Pol system with
the noise amplitude ε. The authors there discovered an oscillatory behavior or cycling
effect, namely, that for each given noise amplitude ε, there is a most probable exit
location Aε on the limit cycle and this location Aε (the peak of the exit distribution
on the limit cycle) slowly oscillates along the limit cycle with the period ∼|logε|
as ε↓0. In the zero-noise limit, the MPEP spirals outward to the complete limit
cycle asymptotically and never intersects with the limit cycle. It is actually the
heteroclinic orbit between the stable fixed point and the limit cycle in the augmented
Hamiltonian system. The arclength of the MPEP is thus infinite. In our example, the
intersection point A here in figure 4.3 is a numerical artifact due to the finite length
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Fig. 4.3. The transient chaos case (ρ=19.375) : the MAP is the blue solid curve. A realization
of the transition path with ε=0.01 is also shown as a dotted grey curve. The red curve with small
solid dots is Γ− connecting the origin O and the stationary point q+. The big open red circles
represent the saddle cycle L− surrounding the stationary point q−. The segment of the path from
A to B is the “chaotic” life time segment (non-smooth part of the lifetime plot in figure 4.4a; refer
to the text).

of the calculated MAP and it does not mean that A=lim
ε↓0

Aε since this limit does not

exist and the set of the accumulation points of limε↓0Aε is the limit cycle L−. In this
sense, we can say that the invariant set L− is the most probable exit set. Another
numerical consequence of this finite arclength approximation is that the numerical
value of the optimal fluctuational force is not as satisfactory at the intersection point
A and the final state q− as at the saddle point O (cf. figure 4.4d) because the true
MAP spirals in an infinite number of loops near A and q+.

Although the calculated MAP does not automatically give the most probable
invariant set, in this case the set L−, it does provide a good approximation for the
point where the most probable exit invariant intersects the MAP (here the point A).
Usually, such an intersection point can be seen from the life time plot. In this case,
we were able to find the limit cycle L− using Newton’s method with a good initial
guess, the point A, and confirm that the point A is on the limit cycle L−.

The reason why the most probable invariant exit set is the one-dimensional limit
cycle L− in the three-dimensional Lorenz system is not as trivial as in planar systems
where the limit cycle itself is the basin boundary. It has its origin in the qualitative
behavior of the Lorenz system. In the Lorenz system, the limit cycle L− is of saddle
type and at the intersection of its two-dimensional unstable manifold Wu(L−) and



350 NOISE-INDUCED TRANSITIONS IN LORENZ SYSTEM

0 200 400 600 800 1000 1200
−100

−50

0

50

100

0 200 400 600 800 1000 1200
0

10

20

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

0 200 400 600 800 1000 1200
0

10

20

30

40

(a)

(b)

(c)

(d)

A
B

L

O

Fig. 4.4. (a) The life time plots for the MAP in figure 4.4. The horizontal axis is the arclength
parameter of the MAP. The chaotic life time segment is between the labels A and B (cf. figure 4.3).
(b) the Euclid distance to the limit cycle L− from points on the MAP. The label “L” indicates the
position on the MAP which has the minimum distance to the limit cycle L−. “L” coincides with the
point A by checking their arclength parameters. (c) the Euclid distance to the origin O from points
on the MAP. (d) the optimal fluctuational force ‖ϕ′−b(ϕ)‖. The error is slightly larger near the
final state q+ because the flowlines are highly spiralling and the optimization method in MAM has
ill condition number near there.

stable manifold W s(L−). The stable manifold W s(L−) forms a tube (cf. visualization
in [45] ) around q−; the unstable manifold Wu(L−) inside the tube goes to the point
q− while to the chaotic set Λ on the other side. Thus, the tube, W s(L−), works like
a separatrix. Any trajectories inside this tube are attracted toward the stationary
point q− and the life time smoothly depends on the initial condition. This part
of the phase space inside W s(L−) can be viewed as a regular part of the basin of
attraction of q−. Outside of the tube lie the chaotic invariant set Λ and the stable
manifold of the origin O. The above discussion helps us to understand the role of L−

in the noise-induced transition process. L− is actually the relative attractor on the
separatrix-like two-dimensional tube W s(L−). The fluctuational noise drives most of
the transition trajectories to leave the regular part, which is inside the tube, of the
basin of attraction of q− through the small neighborhood (its size is dependent on the
noise intensity ε) of this limit cycle.

Outside of the limit cycle L− lies the stable manifold of the point O, which
separates the basins of attractions of q− and q+. However, this manifold W s(O)
is not a regular two dimensional surface, but a fractal set (cf. [33]). There are an

infinite number of convoluted sheets of W s(O) organized in a complicated way and
accumulating on each other just outside the tube W s(L−), so that W s(L−) is the
α-limit set of W s(O). The spacing between neighboring sheets tends to zero when
approaching the limit cycle L−. The intervals between neighboring sheets correspond
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to basins of attractions of q− or q+, which stagger across each other (cf. figure 4.5).
Trajectories starting from different intervals between these sheets may ultimately
reach either q− or q+. It is this structure that causes the emergence of the chaotic
invariant set in the Lorenz system. [33] schematically illustrated the structure of the
infinite number of sheets of W s(O) just outside the limit cycle L− using numerical
simulations. Since the manifold W s(O) asymptotically rolls onto the limit cycle L−,
there is a heteroclinic orbit starting from L− and going to the origin O, which lies
exactly on W s(O). This heteroclinic orbit is the true solution of the MAP from L−

to O and the life time for this heteroclinic orbit should be infinite since all flow lines
starting from points on W s(0) head for the origin O. However, any deviation from
the true solution, no matter how small, will lead to qualitative change in the life time
plot since they will likely leave W s(0). That is the reason why the life time from A to
O shown in figure 4.4a is not infinite. The appearance of the chaotic life time segment
between A and B is due to the irregular staggering of the basins of attractions of
q− and q+ near the limit cycle L−. The smooth part from B to O is due to more
regular basins of attractions of q− and q+ near the origin. Figure 4.5 illustrates the
local basins of attractions around two points near L− and near O, respectively. In
our computations of MAP from q− to q+ with different numerical precisions, we find
that the position of the point B where life time shifts from being chaotic to being
regular varies largely with different numbers of grid points and transition time interval
T2−T1; however the point A where life time shifts from being regular to being chaotic
always stay very close to or on the limit cycle L− and the origin O is always very close
to the MAP. Thus the point B depends on the numerical resolution in the cascade of
scales in the chaotic invariant set Λ. But the limit cycle L− and the saddle point O
are very stable as the transition set and transition state, respectively.

The sensitivity of the life time for the part of the MAP on the separatrix W s(O)
reminds us to exercise caution when using life time plots to draw conclusions since
it is extremely difficult to be very accurate when computing the heteroclitic orbit
which lies on a fractal basin boundary. In such cases, we should combine the life time
plot with other information, such as the geometric distance plots in figure 4.4b and
figure 4.4c.

4.3. ρ=ρ3: strange attractor. When the parameter ρ passes the value
ρa, the chaotic invariant set Λ becomes the Lorenz attractor and there is a global
bifurcation that the two branches of the unstable manifolds of the origin, Γ±, approach
toward the limit cycle L∓, respectively, rather than toward the nontrivial stationary
points q∓. The Lorenz attractor is located, roughly speaking, between Γ± and L±

with a butterfly shape (cf. figure 2.1). But there is no qualitative change of the
tube-like stable manifold of the limit cycle L−.

The calculated MAP is shown in figure 4.6 and the related quantities are presented
in figure 4.7. The MAP still crosses over L− to escape from the basin of attraction of
q−. Now, the stable manifold of L− separates the basin of attraction of q− and the
basin of attraction of the Lorenz attractor. Thus, trajectories starting outside of the
saddle cycle L− never settle down either on q− or q+, but are attracted to the Lorenz
attractor. This part of the MAP corresponds to the blank interval in the life time
plot of figure 4.7a.

After crossing the saddle cycle L−, the MAP stays in the Lorenz attractor Λ for
quite a few loops around the saddle cycle with increasing size and then heads towards
the saddle point O. Along the unstable manifold Γ−, the MAP approaches the second
limit cycle L+ which is embedded in the basin boundary of q+ (cf. figure 4.7b). After
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crossing this limit cycle L+, the MAP goes to the final state q+. The complete
transition process involves three attractors q± and Λ and looks in a simple way like
“q−→L−→Λ →O→L+→ q+”.

Since Λ is a strange attractor, the fluctuational trajectories spend considerable
amount of time wandering on the attractor before exit to q+. The exit problem from
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Fig. 4.7. (a) The life time plot for the MAP in figure 4.6. The horizontal axis is the arclength
parameter of the MAP. The blank interval of the arclength around 225-1120 means that the trajectory
goes neither to q+ nor to q−, but to the Lorenz attractor (the life time value is thus infinite). (b) The
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limit cycle L− (L+). (c) The Euclidean distance to the origin O from points on the MAP. (d) The
numerical optimal fluctuational force. After the origin O, the numerical result deviates from the
true solution (zero value) because the optimization is ill conditioned, although the geometric shape
of the MAP is not distinguishable from the true solution Γ− in figure 4.6.

Λ to q+ has been investigated in [37] using Monte Carlo simulation. The authors
observed enhancement of the invariant measure near the heteroclinic orbits Γ± with
the presence of noise and the crossing of the fluctuational trajectories in transitions
from the saddle cycle L+ toward q+. The optimal transition path they obtained from
the Monte Carlo simulation is consistent with the calculated MAP here. But they did
not discuss the MPEP from q− to O and the importance of L−.

Let us summarize the above three transition paradigms. They all have the saddle
point O as the transition state. At ρ2 and ρ3, the limit cycle L− around the initial
state q− takes the additional role of the most probable exit invariant set. At ρ3, the
second limit cycle L+ shows up where the MAP enters the basin of attraction of q+.

5. Discussion

The example of the Lorenz system demonstrates the possibility that limit cycles of
saddle type, the next simplest invariant sets beyond fixed points, determines the most
probable exit locations on the basin boundary in the fluctuational transition. More-
over, although both the transient chaos and the Lorenz attractor have complicated
dynamical structures, the transition process can be understood in a much simpler way
as long as we identify the saddle cycle L− and the saddle point O as transition sets.
The saddle cycle L− delimitates the basin of attraction of q− with the chaotic set and
the saddle point O separates the chaotic set from the basin of attraction of q+. These
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two simple structures function like two gateways on the road of transition processes
from q− to q+. The observed fluctuational trajectories in experiments typically goes
through these gateways successively along the MAP. These findings might be relevant
for other non-gradient systems.
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