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VORTICES IN TWO-DIMENSIONAL NEMATICS∗

IBRAHIM FATKULLIN† AND VALERIY SLASTIKOV‡

Abstract. We study a two-dimensional model describing spatial variations of orientational
ordering in nematic liquid crystals. In particular, we show that the spatially extended Onsager-
Maier-Saupe free energy may be decomposed into Landau-de Gennes-type and relative entropy-type
contributions. We then prove that in the high concentration limit the states of the system display
characteristic vortex-like patterns and derive an asymptotic expansion for the free energy of the
system.
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1. Introduction
The major phenomenological theories describing spatial variations of orientational

order in nematic liquid crystals are due to Oseen and Frank [18, 12], Ericksen [8],
and de Gennes [4]. The central object in these theories is a free energy functional
whose critical points correspond to equilibrium states of the liquid crystalline sys-
tem. In the Oseen-Frank theory the free energy is a functional of a director field of
locally-preferred orientations of liquid crystalline molecules, whereas in the de Gennes
(Landau-de Gennes) theory it is a functional of a tensor order parameter field. The
Ericksen model is based on a director field whose magnitude may vary reflecting
the strength of nematic ordering. A microscopic derivation of free energy for ne-
matic liquid crystals was first suggested by Onsager [17]. In Onsager’s framework the
free energy is a functional of probability density of orientations (of liquid crystalline
molecules) derived via some cluster or virial expansion. The Onsager theory, how-
ever, is insensitive to spatial variations of orientation distribution, i.e., the latter is
obtained via sampling over all molecules in the system rather than via local, “meso-
scopic,” sampling. Even though modern density-functional theories [22, 21] address
this issue, some of their essential quantities (e.g., the direct pair-correlation function)
cannot be readily computed from microscopic principles, so some phenomenological
approximations must still be made to obtain any specific results.

In [11] we suggested a class of models where, as in the density-functional method,
the state of the system is described by a spatially-dependent orientation probability
density. However, instead of following the microscopic approach to full extent, we
proposed using a Landau-de Gennes-type phenomenological elastic contribution to
penalize the spatial variations. The principal reason for employing this particular
methodology is recent improvement of analytical techniques addressing (spatially-
homogeneous) Onsager-type theories. For example, a complete classification of all
critical points in various models of this type has been recently established, see e.g.,
[3, 10, 9, 14, 23]. Combining these ideas with a Dirichlet energy estimate for S

1-maps
due to Sandier [20] allows us to achieve a complete rigorous understanding of patterns
arising in the suggested model. We first prove that the spatially extended Onsager-
Maier-Saupe free energy may be decomposed into a Landau-de Gennes-type and a
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relative entropy-type contributions; in essence this shows that the order-parameter
is the correct macroscopic variable for this system. Next, we prove that in the high
concentration limit the states of the system display characteristic vortex-like patterns.
Finally, we sketch a derivation of an asymptotic expansion of the energy reducing
the problem of finding equilibrium patterns to variational problem for energy of an
ensemble of finitely many particles (vortices).

The paper is organized as follows. In the remaining part of the introduction we
review the model presented in [11] specializing to the two-dimensional case and give
an informal overview of the principal results obtained in this work. In section 2 we
formulate our main results in a systematic rigorous manner and then prove them
in section 3. The Appendix contains various auxiliary results and technical details
needed for the proofs.

1.1. The two-dimensional spatially-extended Onsager-Maier-Saupe
model. In our model the orientation parameter of liquid-crystalline rods is a number
in T=R/2π, i.e., it parametrizes a unit circle. The actual orientation (of a symmetric
rod-like particle) is really a point on a projective line (a circle with identified diamteri-
cally opposed points), however, we follow the traditional approach accepted in physics
literature which is also more transparent mathematically (see figure 1.3 and the end
of section 1.2 for additional discussion). The spatial domain Ω is two-dimensional
and is a subset of the complex plane C: we treat the spatial degree of freedom as a
complex scalar rather than a two-dimensional vector. The state of the system is char-
acterized by the space-dependent orientation probability density of liquid-crystalline
rods ̺(ϕ,z), ϕ∈T, z∈Ω⊂C (at each z∈Ω, ̺(ϕ,z) integrates to unity over ϕ).

The free energy of the system E(̺,Ω) is a functional of orientation probability
density ̺(ϕ,z) and may be represented as an integral over the spatial domain Ω of
two contributions:

Eγ(̺,Ω) =

∫

Ω

[

Fγ
o (̺)+Fe(̺)

]

dz. (1.1)

The orientational free energy density Fo is an Onsager-type functional with Maier-
Saupe interaction [15] (i.e., a two-dimensional version of it):

Fγ
o (̺) =

∫ 2π

0

̺(ϕ,z) ln
[

2π̺(ϕ,z)
]

dϕ (1.2)

− γ

2

∫∫ 2π

0

cos2(ϕ−ϕ′)̺(ϕ,z)̺(ϕ′,z) dϕdϕ′+Cγ , (1.3)

where the constant Cγ is chosen to have Fo(̺)≥0 (see Appendix B for details). The
factor of 2π in the first term in (1.2) emphasizes that this term is the relative entropy
with respect to the uniform density on the circle. Note that neither the constant Cγ
nor this factor affect the critical points of the functionals in (1.1) and (1.2) and are
introduced for mathematical convenience. The positive parameter γ is referred to as
concentration and is explicitly indicated as we are particularly interested in the limit
when γ→∞. Note that even though we call this limit the limit of high concentration,
physically it is more appropriate to call it the long rods limit: it corresponds to
systems where the ratio of length of nematic particles to their thickness is large.

The elastic free energy density is a quadratic functional of the order-paramter
field equivalent to that of the Landau-de Gennes theory:

Fe(̺) =
κ

2
|∇n(z)|2. (1.4)
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Here n(z) is the order parameter field related to the orientation probablity density
function ̺ via

n(z) =

∫ 2π

0

e2iϕ̺(ϕ,z)dϕ. (1.5)

The positive parameter κ in equation (1.4) is called the elastic modulus. Observe that
the director field in the sense of Ericksen or Oseen and Frank behaves roughly like√

n, i.e., the 2π-increment of the phase (rotation) of the order-parameter corresponds
to the π-rotation of the director. At the same time n contains exactly the same
information as the Landau-de Gennes tensor order parameter.

The boundary effects may be accounted for by augmenting the free energy (1.1)
with boundary terms modeling interaction of liquid-crystalline molecules with the
container or other surface effects. This can be done, e.g., by means of the following
boundary energy:

Ebnd(̺,∂Ω) = −
∮

∂Ω

n(z) ·U(z) dℓ(z), (1.6)

where U(z) is a boundary potential which provides the preferred orientation of the
director field on the boundary and ℓ(z) is the measure of the boundary length (one-
dimensional Hausdorff measure). Such boundary energy corresponds to imposing Neu-
mann boundary conditions (for the Euler-Lagrange equation) on the order-parameter
field: κ∂νn(z) = U(z) for z∈∂Ω (hereafter ∂ν denotes normal derivative with the
respect to the boundary ∂Ω). In this paper, however, we use a simplified approach
and prescribe the boundary values for n(z) directly, imposing Dirichlet boundary
conditions. Physically, such boundary conditions are quite natural and correspond to
situations when it is possible to control orientation of nematic particles on the bound-
ary. Note that imposing boundary conditions on ̺(ϕ,z) will generally lead to an
ill-posed problem. The reason is that the Euler-Lagrange equation for the functional
Eγ(̺,Ω) reduces to an equation for n(z) alone, from which the density of orientations
is recovered uniquely. Because of this, unless the boundary conditions only involve
n(z), there is no guarantee that such a density will match them.

1.2. Informal statement of the results. This paper contains two principal
results. The first concerns decomposition of the energy Eγ(̺,Ω) and the structure
of its critical points. The second is an asymptotic result regarding the structure of
states with appropriately bounded energy in the γ→∞ limit. In what follows we use
a few special functions, e.g., the modified Bessel functions Iν(·), the function A(·), etc.
Some of their properties essential for our presentation may be found in Appendix B.
We also use bold face font for complex-valued quantities and regular font for their
absolute values, e.g., n= |n|.

Equilibrium states of the system correspond to the critical points of the total
free energy (1.1). As it is informally shown in [10] and presented here as a part of
Theorem 2.1, all critical points of the free energy (1.1) are given by

̺(ϕ,z)=
exp

{

A
(

n(z)
)

cos
(

2ϕ−argn(z)
)}

2π I0
(

A(n)
) . (1.7)

Here the field n(z) is itself a critical point of the reduced energy

Eγ(n,Ω) =

∫

Ω

[ κ

2

∣

∣∇n(z)
∣

∣

2
+W γ

(

n(z)
)

]

dz (1.8)
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Fig. 1.1. Graphs of the potential W γ(n) given by equation (1.9). The values of γ, represented
from light to dark, are 0.2, 2, 4, 6. The values γ≤2 correspond to isotropic state: W γ(n) has
a minimum at n=0; the values γ >2 correspond to nematic state: W γ(n) has a minimum at
n=nγ

eq >0. Note that as γ→∞, nγ
eq →1 in a very fast manner (in particular this implies that a

distinctly nematic state may be observed at fairly low concentrations).

with the potential W γ given by

W γ(n) = nA(n)− γn2

2
− lnI0

(

A(n)
)

+Cγ . (1.9)

A few graphs of W γ(n) are presented on figure 1.1. One can immediately recognize
similarity between the energy Eγ(n,Ω) and the (zero magnetic field) Ginzburg-Landau
energy for super-conductivity in which the potential is a fourth-order polynomial of
the order parameter [13]. Note that the two-dimensional Landau-de Gennes theory of
liquid crystals is mathematically equivalent to the Ginzburg-Landau theory. In our
model the potential W γ(n) is more complicated, however, it has a similar structure.
In some sense, the potential (1.9), unlike the Ginzburg-Landau potential, is derived
from the underlying microscopic model rather than postulated from phenomenological
principles.

The role of the energy Eγ(n,Ω) goes beyond just the critical points: we also prove
that the total energy Eγ(̺,Ω) may be decomposed into the sum

Eγ(̺,Ω) = Eγ(n,Ω) +

∫

Ω

S(̺| ˆ̺)dz, (1.10)

where the order parameter field n is related to ̺ via formula (1.5), ˆ̺ is related to
n via (1.7), and S(̺| ˆ̺) is the relative entropy of ̺ with respect to ˆ̺. The field ˆ̺
has a straightforward interpretation: it is the optimal probability density field in
the class of all fields with the same order-parameter n(z) as ̺, see figure 1.2 for
illustration. This decomposition is also quite natural from the physical point of view,
in essence it reflects the fact that the order-parameter field n(z) provides a complete
thermodynamic (or macroscopic) description of the system while its microscopic state
is characterized by the density field of orientations ̺(ϕ,z). Whenever some given
orientation density ̺(ϕ,z) may be represented as in (1.7) for some order-parameter
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Fig. 1.2. Schematic representations of the orientation densities ̺(ϕ) (left) and ˆ̺(ϕ) (right)
in polar coordinates; actually plotted are the graphs of 1+̺(ϕ). The density ˆ̺ is produced by the
order parameter n corresponding to ̺ (depicted as an arrow) via formula (1.7) and is the “locally-
equilibrated” version of ̺. The dashed line corresponds to the actual director and points along
1/2argn.

field n(z) we say that ̺ is in local equilibrium, in this case S(̺| ˆ̺)=0. From this
point of view the field ρ̂ is the “locally-equilibrated” version of ̺; in our theory the
particular functional form (1.7) plays a role similar to the role of Maxwell-Boltzmann
distribution in gas dynamics.

The high concentration limit is obtained by sending γ→∞. As γ becomes
large, the system prefers to be in the nematic state with |n(z)|≈nγeq, where nγeq is
the minimizer of the potential W γ(n) (note that nγeq→1 as γ→∞). However, if the
boundary data for n(z) has a nonzero degree (winding number) d, the field n(z) has
to “melt” in some region, i.e., take values with |n(z)|≈0. This allows its orientation
to rotate without incurring a huge energy penalty. In Theorem 2.2 we prove that for
the states with appropriately controlled energy, the tempered states (see Definition 2.2
in section 2), this melting region is comprised of |d| distinct patches localized near
some points zj . The size of each patch is roughly 1/

√
γ, so as γ→∞ the patches

shrink to point singularities: vortices. As this happens the order parameter field
converges to

u∗(z) = e iφ(z)

|d|
∏

j=1

[

z−zj

|z−zj |

]sgnd

(1.11)

with some sufficiently regular function φ(z), while the orientation density field ̺(ϕ,z)
converges to α(z)δ

(

ϕ−ψ(z)
)

+
(

1−α(z)
)

δ(ϕ−ψ(z)−π), with α(z)∈ [0,1], ψ(z)=
1
2 argu∗(z) (mod 2π). The factor α(z) here is a mathematical artifact which appears
because we parametrize the orientations (which really are points on a projective line)
by a number in T, i.e., ϕ and ϕ+π correspond to the same point on a projective line,
i.e., are indistinguishable physically. When pulled back to the projective line such ̺
becomes a point mass concentrated at a single location. Another consequence of such
a parametrization is the effective doubling of the degrees of singularities. For example,
single vortices (degree one) of the limiting order-parameter field u∗(z) treated as a
vector field correspond to “twisters” (degree one half) of the nematic director field,
which is essentially

√

u∗(z); double vortices of u∗ correspond to single vortices of
the director field; etc., see figure 1.3 for illustration. With this in mind we should
note that formula (1.11) implies that all admissible singularities of the tempered
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Fig. 1.3. Matching singularities in vector (left) and director (right) fields u∗(z) and
p

u∗(z).
Lines represent integral curves of the fields in the neighborhood of a defect (star). A simple vor-
tex (degree one) in the Ginzburg-Landau-type theory corresponds to a twister (degree one half) in
nematics.

nematic states are actually twisters in the physically observable patterns. We may
also comment that such vector-director correspondence is quite useful for description
of various patterns arising in systems which are not directly related to nematics, see
e. g., [16, 6, 7].

Let us emphasize once more that these tempered states are not necessarily critical
points: the temperedness condition merely limits the energy in the asymptotic limit,
i.e., these results provide description of all states with appropriately controlled energy
as γ→∞. Finally, we also sketch a derivation of a lower bound on the energy of the
system which shows that after subtracting the relative entropy and the (logarithmi-
cally) diverging contribution from the vortices, the remaining free energy is a function
which only depends on the vortex locations and boundary conditions. Moreover, this
lower bound is achieved exactly on probability density fields which are generated by
n(z) as in (1.7) with n(z) minimizing the energy Eγ(n,Ω) in the class of functions
with prescribed vortex locations.

2. Main results

Before we formulate our principal results, let us fix some notational conventions.
We use bold face font for complex-valued quantities and regular font for their absolute
values, e.g., n= |n|. Given a curve Γ in C, we denote the winding number (degree) of
a complex-valued function w(z) with respect to Γ by deg(w,Γ). If z0 is a point in C,
we denote the winding number of w with respect to a sufficiently small circle around
z0 by deg(w,z0). In what follows we need a few special functions, e.g., the modified
Bessel functions Iν(·), the function A(·), etc. Their definitions and properties may be
found in Appendix B.

Throughout this paper we assume that our spatial domain Ω⊂C is an open,
bounded, and simply connected subset of complex plane with smooth (C1) boundary
∂Ω.

Our first result concerns decomposition of the energy Eγ(̺,Ω) given by formula
(1.1) and the structure of its critical points.

Theorem 2.1 (Energy decomposition and critical points). Consider a density field
̺(ϕ,z). The following statements hold:
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1. The energy Eγ(̺,Ω) may be represented as

Eγ(̺,Ω) = Eγ(n[̺],Ω) +

∫

Ω

S(̺| ˆ̺)dz, (2.1)

where n[̺] is the order-parameter field generated from ̺:

n[̺](z) =

∫ 2π

0

e2iϕ̺(ϕ,z)dϕ, (2.2)

ˆ̺ is the mollification of ̺, i.e., ˆ̺=̺[n[̺]] where

̺[n](ϕ,z)=
exp

{

A
(

n(z)
)

cos
(

2ϕ−argn(z)
)}

2π I0
(

A(n)
) , (2.3)

and S(̺| ˆ̺) is the relative entropy functional,

S(̺| ˆ̺) =

∫ 2π

0

ln
̺(ϕ)

ˆ̺(ϕ)
̺(ϕ)dϕ. (2.4)

2. Critical points of the energy functionals Eγ(̺,Ω) and Eγ(n,Ω) are in one-to-
one correspondence, i.e., whenever a field n(z) is a critical point of Eγ(n,Ω),
the induced orientation density field ̺[n](ϕ,z) is a critical point of Eγ(̺,Ω),
and all critical points of Eγ(̺,Ω) may be obtained this way. Moreover, the
corresponding critical points have the same stability properties, i.e., n(z) is
a minimizer of Eγ(n,Ω) if and only if ̺[n](ϕ,z) is a minimizer of Eγ(̺,Ω).

Remark 2.1. Given any field n(z), n[̺[n]]=n, i.e., by direct computation we can
verify that

n[̺[n]] =
[

2π I0
(

A(n)
)]−1

∫ 2π

0

e2iϕ exp
{

A(n) cos(2ϕ−argn)
}

dϕ= n. (2.5)

The similar statement that given any ̺(ϕ,z), ̺[n[̺]]=̺ is generally not true since an
arbitrary ̺(ϕ,z) does not have the particular form (2.3). However, since S(̺| ˆ̺)=0
if and only if ̺= ˆ̺, the first assertion of Theorem 2.1 implies that ̺[n[̺]]=̺ z-a.e.
if and only if Eγ(̺,Ω)=Eγ(n[̺],Ω). In particular, ̺[n[̺]]=̺ for all critical points of
Eγ(̺,Ω).

Our second result describes the structure of families of orientation density fields
̺γ(ϕ,z) and the corresponding order parameter fields n

γ(z) whose energy is controlled
in the limit as γ→∞. We need a few definitions.

Definition 2.1 (Well-prepared boundary data). Fix a map u :∂Ω→S
1 ={z∈C :

|z|=1} with degree (winding number) d on ∂Ω. A family of boundary values n
γ |∂Ω

is well-prepared if

n
γ(z) = nγequ(z) for z∈∂Ω, (2.6)

where nγeq is the minimizer of the potential W γ(n).

Definition 2.2 (Tempered fields). A family of order-parameter fields n
γ(z) is tem-

pered, if n
γ |∂Ω is well-prepared (in the sense of Definition 2.1) and n

γ satisfies the
energy bound

Eγ(nγ ,Ω) ≤ πκ|d|ln√γ+C, (2.7)
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where d=deg(u,∂Ω) and C is a constant independent of γ. A family of orientation
probability densities ̺γ(ϕ,z) is tempered if it produces tempered order-parameter field
n[̺].

Theorem 2.2 (Convergence of tempered fields). Let ̺γ(ϕ,z) be a tempered family
of orientation probability densities and n

γ(z)=n[̺γ ](z) be the corresponding family
of order-parameter fields. Then there exists an unbounded increasing sequence {γk},
|d| distinct points z1,... ,z|d|∈Ω, and a function φ with ∇φ∈L2(Ω) generating an
S

1-map

u∗(z) = e iφ(z)
d

∏

j=1

z−zj

|z−zj |
for d>0, u∗(z) = e iφ(z)

|d|
∏

j=1

z̄− z̄j

|z−zj |
for d<0,

(2.8)
such that as k→∞,

1. n
γk ⇀u∗ in H1

loc

(

Ω̄\{z1,... ,z|d|}
)

,

2. ̺γk(ϕ,z)→α(z)δ
(

ϕ−ψ(z)
)

+
(

1−α(z)
)

δ(ϕ−ψ(z)−π) z-a.e., with ψ(z)=
1

2
argu∗(z) (mod 2π), and some α :Ω→ [0,1].

Remark 2.2. The S
1-field u∗(z) is the so-called multi-vortex field: the products in

(2.8) explicitly reveal the singularities while the phase φ(z) is a regular single-valued
function. The field u∗ may be regarded as an extension of the field u prescribed on
the boundary ∂Ω into Ω.

Remark 2.3. The factor α(z) in the second assertion is some measurable function
which is irrelevant physically and appears because we parametrize the orientations
which are points on a projective line by a number in T, i.e., physically, ϕ and ϕ+π
correspond to the same orientation.

Remark 2.4 (Asymptotic expansion of the energy). One can establish the following
lower bound on the energy Eγ(n,Ω):

liminf
k→∞

[

Eγk(nγk ,Ω)−πκ|d|ln√γ−|d|E0−κẼ(z1,... ,z|d|,φ)
]

≥ 0, (2.9)

where E0 is a constant independent of γ, and Ẽ is the renormalized multi-vortex
energy given by

Ẽ(z1,... ,z|d|,φ) =
1

2

∫

Ω

|∇φ(z)|2dz − π

|d|
∑

i,j=1, i 6=j

ln|zi−zj | (2.10)

−
|d|
∑

j=1

∮

∂Ω

ln|z−zj |∂τ argu(z)dℓ(z)− 1

2

|d|
∑

i,j=1

∮

∂Ω

ln|z−zj |∂ν ln|z−zi|dℓ(z).

Here u :∂Ω→S
1 appears in the boundary data for n

γ according to Definition 2.1, and
∂τ denotes derivative in the direction tangential to ∂Ω. Up to the constant E0, the
renormalized energy Ẽ(z1,... ,z|d|,φ) is exactly the same energy that appears in the
Ginzburg-Landau theory [2]. The constant E0 arises from the so-called optimal profile
problem: it is the O(1) contribution from the vicinity of a vortex and its precise value
depends on specifics of the potential W γ(n). It is possible to construct a recovery
sequence for which equality in (2.9) is obtained exactly. We sketch a derivation of this
result in section 3.2.3 but do not present a complete proof due to space constraints
and its essential similarity to existing results in the Ginzburg-Landau theory [2, 19].
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3. Proofs and auxiliary results
Now we prove the theorems stated in the previous section. The proof of Theo-

rem 2.1 is relatively straightforward and only uses the properties of relative entropy
and the potential W γ(n). The proof of Theorem 2.2 uses an estimate of Dirichlet
energy D(u) of an S

1-map u(z) due to Sandier [20] which is presented here in Theo-
rem A.1, Appendix A.

3.1. Proof of the energy decomposition theorem. Let ˆ̺ be related to ̺
as in the statement of Theorem 2.1. We observe the following simple fact:
(∗) Given an arbitrary n0, ̺=̺[n0] defined via (2.3) is a minimizer of S

(

̺| ˆ̺
)

.
Indeed, by direct calculation we can verify that if ̺=̺[n0] for some n0, then ˆ̺=
̺[n[̺]]=̺, and thus S(̺| ˆ̺)=0. However, S(̺|̺0)≥0 for all ̺, ̺0, i.e., ̺=̺[n0] is a
minimizer of S(̺| ˆ̺).

Proof. (Theorem 2.1) Observing that

∫∫ 2π

0

cos2(ϕ−ϕ′)̺(ϕ)̺(ϕ′) dϕdϕ′ = n2, (3.1)

and using that

∫ 2π

0

ln
[

2π̺(ϕ)
]

dϕ=

∫ 2π

0

ln
[

2π̺[n](ϕ)
]

dϕ+ S
(

̺|̺[n]
)

, (3.2)

we can represent the energy Eγ(̺,Ω) as

Eγ(̺,Ω) =

∫

Ω

[

κ

2
|∇n|2 +

∫ 2π

0

̺(ϕ)ln
[

2π̺[n](ϕ)
]

dϕ− γn2

2
+Cγ

]

dz

+

∫

Ω

S
(

̺|̺[n]
)

dz. (3.3)

Via straightforward calculation we find that

∫ 2π

0

̺(ϕ)ln
[

2π̺[n](ϕ)
]

dϕ= A(n)

∫ 2π

0

cos(2ϕ−argn)̺(ϕ)dϕ− lnI0(A(n))

= nA(n)− lnI0(A(n)). (3.4)

Substituting this expression into equation (3.3) and comparing with formula (1.9) for
the potential W γ(n) we verify the first assertion of the theorem.

To verify the second asserion first let n0(z) be a critical point of Eγ(n,Ω), so that
the variation DEγ(n0,Ω)=0. Since by (∗), ̺=̺[n0] is a critical point of S

(

̺| ˆ̺
)

, its
variation vanishes and so does the variation DEγ(̺[n0],Ω), i.e., ̺=̺[n0] is a critical
point of Eγ(̺,Ω). Now let ̺0 be a critical point of Eγ(̺,Ω), i.e., variation of the
energy Eγ(̺,Ω) vanishes. Varying ̺0 so that the order parameter remains fixed and
equal to n0 =n[̺0] and taking into account that Eγ only depends on n[̺], we get
that δEγ(̺)= δS(̺|̺[n0])=0. The corresponding Euler-Lagrange equation implies
that ̺0 =̺[n0]. This fact however can be deduced without the use of Euler-Lagrange
equation: since S(̺|̺[n0]) is a convex functional of ̺ and the constraint that n[̺]=n0

is linear, the constrained variational problem has a unique critical point (minimum),
which clearly is ̺[n0]. From (∗) we then get that ̺0 is a critical point of S(̺| ˆ̺) by
itself (and without any constraints) and thus DEγ(n[̺0],Ω)=0.
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Finally, we prove that the corresponding critical points of Eγ(n,Ω) and Eγ(̺,Ω)
have the same stability properties. Indeed, let n0(z) be a minimizer of Eγ(n,Ω).
Since all critical points of S(̺| ˆ̺) are minimizers, ̺[n0] is a minimizer of Eγ(̺,Ω).
Now assume that n0(z) is a saddle point, i.e., there exists a continuous curve nt,
t≥0 such that Eγ(nt,Ω) is decreasing. However since S(̺[nt]| ˆ̺[nt])=0, Eγ(̺[nt],Ω)
is also decreasing, i.e., ̺[n0] is also a saddle point.

3.2. Proof of the convergence theorem.

Outline of the proof. The first step is obtaining a rough lower bound on the
energy Eγ(nγ ,Ω) of a tempered family of order-parameter fields n

γ(z); this result is
formulated in Lemma 3.1. This lower bound, as shown in Lemma 3.2, implies existence
of a subsequence {nγk} converging weakly to some S

1-map u∗(z) with at most |d|
singularities (vortices), where d is the degree of the boundary data. In order to show
that the map u∗ has exactly |d| singularities we use the fact that a vortex of degree dj
contributes ∼πd2

j κ ln
√
γ into the energy (Lemma A.3) which is only compatible with

the upper bound (2.7) if all dj =sgnd. Lemma A.2 states that any such function u∗

may be represented as in formula (2.8). Finally we translate convergence of the order-
parameter fields {nγk} into convergence of orientation probability densities {̺γk}
using the fact that as |nγk |→1, ̺γk which generates it necessarily converges to some
atomic measure.

In what follows we use the following conventions: given an order-parameter field
n(z) we denote n= |n|, u=n/n, ωt={z∈Ω:n(z)<t}, Ωt={z∈Ω:n(z)>t}. For
a set A⊂C we denote its one-dimensional Hausdorff measure by ℓ(A); |A| denotes
its diameter which is defined as the infimum of the sum D1 + ···+Dk over all finite
coverings of A by open disks with dimaters Dj . Finally, unless specified explicitly, C
denotes a generic positive constant independent of γ.

3.2.1. Rough lower bound.
Lemma 3.1 (Rough lower bound). Let n

γ have well-prepared boundary values
(see Definition 2.1). Then

Eγ(nγ ,Ω) ≥ π|d|κ ln
√
γ −C. (3.5)

Moreover, if n
γ is tempered (see Definition 2.2) then

π|d|κ ln
√
γ −C ≤ κ

2

∫

Ω

|nγ∇u
γ |2dz ≤ π|d|κ ln

√
γ +C, (3.6)

where we denoted nγ = |nγ |, u
γ =n

γ/|nγ |.

Remark 3.1. The second assertion of this lemma implies that in the limit as γ→
∞, the phase of n

γ provides the principal contribution into the energy while the
contribution from the absolute value nγ remains bounded:

∫

Ω

[κ

2
|∇nγ |2 +W γ(nγ)

]

dz ≤ C. (3.7)

The proof of this Lemma is essentially an adaptation of the proof of Theorem 2 in
[20]. The major difference appears in the estimates on the potential part of the energy,
W γ(n) which is slightly more technical since the dependence on the parameter γ is
not as explicit as in the Ginzburg-Landau potential W γ

GL(n)=γ (1−n2)2. In order to
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avoid cluttering the formulas we omit the superscript γ whenever this does not cause
confusion.

Proof. Recollect the coarea formula:

∫

ωt

f(z)|∇n(z)|dz =

∫ t

0

[
∫

∂ωs

f(z)dℓ(z)

]

ds. (3.8)

We start by representing the total energy Eγ(n,Ω) as

Eγ(n,Ω) =

∫

Ω

[κ

2
|∇n(z)|2 +W γ

(

n(z)
)

]

dz +
κ

2

∫

Ω

n2(z)|∇u(z)|2dz. (3.9)

Using Cauchy-Schwarz inequality and the coarea formula, we get the following lower
bound of the first term in equation (3.9):

∫

Ω

[κ

2
|∇n(z)|2 +W γ

(

n(z)
)

]

dz ≥
∫

Ω

√

2κW γ
(

n(z)
)

|∇n(z)|dz (3.10)

≥
∫ neq

0

∫

∂ωt

√

2κW γ(t) dℓ(z)dt=

∫ neq

0

√

2κW γ(t)ℓ(∂ωt)dt.

Here we used the fact that n=neq on ∂Ω and hence for all 0<t<neq we have
∂ωt \∂Ω=∂ωt. Since ℓ(∂ωt)≥|ωt| for all η≤neq we have

∫

Ω

[κ

2
|∇n(z)|2 +W γ

(

n(z)
)

]

dz ≥
∫ η

0

√

2κW γ(t) |ωt|dt. (3.11)

The parameter η is left undefined at this point and will be assigned a suitable value
at the right time to simplify some technical calculations. The second term in (3.9)
may be rewritten using the coarea formula and integration by parts as

κ

2

∫

Ω

n2(z)|∇u(z)|2dz ≥ κ

2

∫ neq

0

t2
∫

∂Ωt

|∇u(z)|2/|∇n(z)|dℓ(z) dt (3.12)

= −κ
2

∫ neq

0

t2
d

dt

∫

Ωt

|∇u(z)|2dzdt≥ κ

∫ neq

0

t

∫

Ωt

|∇u(z)|2dzdt.

Using Theorem A.1 (Sandier [20]) we estimate

∫

Ωt

|∇u(z)|2dz ≥−2π|d| ln |ωt| −C, (3.13)

and combining (3.11) and (3.12) find that

Eγ(n,Ω) ≥
∫ η

0

[

√

2κW γ(t) |ωt|−2π|d|κt ln |ωt|
]

dt−C. (3.14)

We see that the only unknown function on the right-hand side is |ωt|. In order to find
a lower bound we are going to optimize with respect to |ωt|. We consider

Jλ(φ) =

∫ η

0

[

λ
√

2κW γ(t)φ(t)−2π|d|κt lnφ(t)
]

dt, (3.15)
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where λ>0 is a parameter. Clearly, Eγ(n,Ω) ≥ infφJ1(φ)−C. Minimizing Jλ(φ)

with respect to φ(t), we find the optimal function φ(t)=π|d|t/λ
√

2κ/W γ(t) and the
estimate

inf
φ
Jλ(φ) ≥ π|d|κ

∫ η

0

t lnW γ(t)dt−C. (3.16)

Now we observe that W γ(t)≥Cγ−γt2/2, where neq is the nonzero solution of γt=
A(t), see Appendix B. We choose η so that Cγ−γη2/2=1 and note that such η
satisfies η<neq. Therefore we have

inf
φ
Jλ(φ) ≥ π|d|κ

∫ η

0

t ln(Cγ−γt2/2)dt−C =
π|d|κ
γ

(Cγ lnCγ−Cγ+1)−C. (3.17)

Using Fact B.3 (see Appendix B) we know that as γ→∞, Cγ = γ/2+O(lnγ), and
finally estimate

inf
φ
Jλ(φ) ≥ π|d|κ ln

√
γ −C. (3.18)

Notice the crucial fact that the principal contribution here does not depend on λ (the
choice of λ only affects the constant C). Setting λ=1 we recover the first claim.

Now assume that n
γ is tempered, i.e., satisfies the upper bound

Eγ(nγ ,Ω) =

∫

Ω

[κ

2
|∇n(z)|2 +W γ

(

n(z)
)

]

dz +
κ

2

∫

Ω

n2(z)|∇u(z)|2dz

≤ π|d|κ ln
√
γ +C. (3.19)

From the lower-bound on J1/2(φ) we obtain

1

2

∫

Ω

[κ

2
|∇n(z)|2 +W γ

(

n(z)
)

]

dz +
κ

2

∫

Ω

n2(z)|∇u(z)|2dz ≥ π|d|κ ln
√
γ −C.

(3.20)
Subtracting these inequalities we immediately obtain that

∫

Ω

[κ

2
|∇n(z)|2 +W γ

(

n(z)
)

]

dz ≤ C, (3.21)

which, in turn, implies the second claim.

3.2.2. Convergence.
Lemma 3.2 (Convergence). Let n

γ be tempered (see Definition 2.2); then there
exists an unbounded increasing sequence {γk}, exactly |d| distinct points z1,... ,z|d|∈
Ω̄, and an S

1-map u∗∈H1
loc(Ω̄\{z1,... ,z|d|}) such that for all j deg(u∗,zj)=sgnd,

and

n
γk ⇀ u∗ weakly in H1

loc(Ω̄\{z1,... ,z|d|}). (3.22)

Proof. From the Remark 3.1 following Lemma 3.1 we know that the “radial and
nonlinear” contributions into the energy are of O(1) as γ→∞, which implies using
formula (3.11) that

∫ nγ
eq

0

√

2κW γ(t) |ωt|dt≤ C. (3.23)
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Fig. 3.1. Illustration of the domain Ω. Light grey: Ωη ={z∈Ω:n(z)>η}; dark grey: ωη =
{z∈Ω:n(z)<η}. The whole set ωη may be covered by non-intersecting disks Bj , j =1,... ,m≤|d|,
whose radii do not exceed r∼C/

√
γ. At the same time, according to (3.32), the energy in Ω\∪jBj

remains bounded as γ→∞, i.e., all singularities are localized within the disks Bj .

Using this estimate with (3.18) we obtain

−2π|d|κ
∫ nγ

eq

0

t ln|ωt|dt≥ π|d|κ ln
√
γ−C. (3.24)

From (3.12) and temperedness condition on {nγ} we obtain that

∫ nγ
eq

0

t

∫

Ωt

|∇u
γ(z)|2dz ≤ π|d|ln√γ+C. (3.25)

These two inequalities imply the following bound

∫ nγ
eq

0

t

(
∫

Ωt

|∇u
γ(z)|2dz + 2π|d|ln |ωt|

)

dt≤ C. (3.26)

Now we can use lower bound inequality (3.13) and obtain

∫ nγ
eq

0

∣

∣

∣

∣

t

∫

Ωt

|∇u
γ(z)|2dz + 2tπ|d|ln |ωt|

∣

∣

∣

∣

dt≤ C. (3.27)

Pick arbitrary 0<η1<η2<1, and consider γ large enough so that nγeq>η2. Since
the integral expression in (3.27) is positive, we may integrate over [η1,η2] with the
inequality intact. By the mean value theorem there exists some η∈ [η1,η2] for which

∣

∣

∣

∣

∣

∫

Ωη

|∇u
γ(z)|2dz + 2π|d|ln |ωη|

∣

∣

∣

∣

∣

≤ C. (3.28)

Thus for this η we have

D(uγ ,Ωη) ≤−π|d|ln |ωη|+C. (3.29)

Similarly, consider the inequality (3.23). Using that |ωt| is an increasing function of
t and Fact B.4 from Appendix B, we get that |ωη|<C/

√
γ (note that this is true for

any fixed 0<η<1).
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Fig. 3.2. Decomposition of the domain Ω employed in proving that m= |d|. Locations of the
vortices zj are marked with star symbols; dark grey corresponds to the set ωM ={z∈Ω:n(z)<M};
annuli Aj are depicted using medium grey color.

Using Theorem A.1 we know that for any r such that C/
√
γ<r<C, we may

cover ωη with m disjoint disks Bj , j=1,... ,m≤|d|, with radii at most r, so that

D(uγ ,Ω∩(∪mj=1Bj)\ωη) ≥ π|d| ln r

|ωη|
−C, (3.30)

see figure 3.1 for illustration. Note that ωη is covered by ∪jBj and thus Ω\∪jBj =
Ωη \(∪jBj \ωη). Therefore subtracting the last two formulas we obtain

D(uγ ,Ω\∪mj=1Bj) ≤−π|d|lnr+C. (3.31)

Taking into account the remark after Lemma 3.1 we immediately deduce the following
fact:
(∗) For arbitrary η∈ (0,1) and R satisfying C/

√
γ <R<C, we may cover ωη with m

disjoint disks Bj , j=1,... ,m≤|d|, whose radii rj do not exceed R, so that

Eγ(nγ ,Ω\∪mj=1Bj) ≤−π|d|κ lnR+C. (3.32)

Fix some η∈ (1/2,1), and some sequence of positive numbers {Rl} which tends to zero
as l→∞. For each Rl consider the family z

γ
l,j of centers of such covering disks as in

(∗). Since Ω̄ is compact, for any fixed l there exists an unbounded increasing sequence
{γl,p} such that z

γl,p

l,j →zl,j ∈ Ω̄ as p→∞. By the same compactness argument, as

l→∞, there exists a subsequence such that (up to relabeling) zl,j→zj ∈ Ω̄. Thus by

a diagonalization argument there exist subsequences {lk}, {pk}, such that z
γlk,pk

lk,j
→

zj as k→∞. For notational convenience we denote the sequence {γlk,pk
} by {γk}.

Applying (∗) to the corresponding sequence of order parameter fields {nγk} we get
that their energy is bounded outside arbitrarily small disks BR(zj). Thus the norms of
n
γk(z) are bounded in H1

(

Ω̄\∪BR(zj)
)

for all R>0, i.e., there exists a subsequence
converging weakly in H1

loc(Ω\{z1,... ,zm}) to some field u∗. The fact that |u∗(z)|=1
z-a.e. follows from the estimate on the nonlinear part of the energy (see Remark 3.1
following Lemma 3.1).

Now we prove that m= |d| exactly. Let us split Ω into three subdomains: Ω=ω∪
A∪B, where ω=∪jBR1

(zj), A=∪jAj , Aj =BR2
(zj)\BR1

(zj), B=Ω\∪jBR2
(zj);

see figure 3.2. We keep R2 sufficiently small but fixed, while from (∗) we know that
for any M<1 we may choose R1 so that C1/

√
γ≤R1≤C2/

√
γ and n

γk ≥M in
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Ω\j ∪BR1
(zj). Consider a sequence {nγk} converging to u∗. We have, discarding the

contribution from ω,

Eγk(nγk ,Ω) ≥ Eγk(nγk ,A) +Eγk(nγk ,B) ≥ Eγk(nγk ,A) +C, (3.33)

since in B, Eγk(nγk ,B)→D(u∗,B). Within each annulus Aj ,

Eγk(nγk ,Aj) ≥
κ

2
D(nγk ,Aj) ≥

κ

2
M2D(uγk ,Aj), (3.34)

and thus employing Lemma A.1, we obtain

Eγk(nγk ,Aj) ≥ πd2
jκM

2 ln
R2

R1
≥ πd2

jκM
2 ln

√
γ −C. (3.35)

Summing up the contributions from all Aj , we obtain

Eγk(nγk ,Ω) ≥ πκM2 ln
√
γ

m
∑

j=1

d2
j −C ≥ M2|d|

m
πκ|d| ln√γ −C. (3.36)

If m< |d|, we can chose M ∈ (
√

m/|d|,1) so that M2|d|/m>1 and obtain a lower
bound on the energy Eγk(nγk ,Ω) contradicting our assumption that n

γ is tempered.
Thus m= |d|.

Proof. [Theorem 2.2.] By Lemma 3.2 there exists an unbounded increasing se-
quence {γk} such that the sequence of order-parameter fields {nγk =n[̺γk ]} converges
weakly in H1

loc(Ω̄\{z1,... ,z|d|}) to some S
1-map u∗(z) with deg(u∗,zj)=sgnd for all

j=1,... ,|d|. By Lemma A.2, u∗(z) may be represented as in (2.8). This concludes
the proof of Assertion 1.

We have

∣

∣n
γk(z)

∣

∣

2
= 1−2

∫∫ 2π

0

sin2(ϕ−ψ)̺γk(ϕ)̺γk(ψ)dϕdψ. (3.37)

Since the space of measures with finite mass over T×Ω is compact, ̺γk converges (up
to some sub-sequence) to some finite measure µ(ϕ,z). Since |nγk(z)|→1 z-a.e., we
obtain

∫∫ 2π

0

sin2(ϕ−ψ) dµ(ϕ)dµ(ψ) = 0 z-a.e., (3.38)

which implies that there exist some functions α :Ω→ [0,1] and ψ :Ω→R such that
the measure µ(ϕ,z)=α(z)δ

(

ϕ−ψ(z)
)

+
(

1−α(z)
)

δ(ϕ−ψ(z)−π) z-a.e. Since we also
have

u∗(z) =

∫ 2π

0

e2iϕdµ(ϕ) = e2iψ(z)
z-a.e., (3.39)

we verify Assertion 2.

3.2.3. Expansion of the energy. Finally, we sketch an argument which
yields expansion (2.9) in Remark 2.4 following the theorem. Denote ωr=∪jBr(zj),
Ωr=Ω\ωr and represent the energy Eγk as

Eγk(nγk ,Ω) = Eγk(nγk ,Ωr) +Eγk(nγk ,ωr). (3.40)
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Since n
γk ⇀u∗ in H1(Ωr), employing Lemma A.3 we have

liminf
k→∞

Eγk(nγk ,Ωr) ≥ κD(u∗,Ωr) = −π|d|κ lnr+ κẼ(z1,... ,z|d|,φ) +O(r lnr).

(3.41)
Obtaining the exact lower bound for the energy Eγk

(

n
γk ,Br(zj)

)

inside each ball
Br(zj) is the so-called optimal profile problem. In essence, one can show that

liminf
k→∞

[

Eγk
(

n
γk ,Br(zj)

)

− πκ ln
√
γk

]

≥ πκ lnr+ κE0 +O(r), (3.42)

where κE0 is O(1) contribution into the energy (as γ→∞) from the following min-
imization problem: minimize Eγ

(

n,Br(0)
)

given deg
(

n,∂Br(0)
)

=1 and n(0)=0.

Since for sufficiently small r, ωr=∪|d|
j=1Br(zj), combining the estimates in (3.42) and

(3.41) and sending r→0, we recover the asserted lower bound.

4. Concluding remarks
The study of the free energy functionals undertaken in this work provides in-

formation about the structure of equilibrium (or more generally, tempered ) states of
two-dimensional nematics. In order to explore their out-of-equilibrium properties,
one has to look into the associated dynamics. The simplest dynamics are purely dis-
sipative and describe the systems in which the solvent has already equilibrated and
evolution is only manifested via diffusive transport of orientations. For example, the
Doi dynamics [5] for the orientation probability density is governed by the following
(kinetic) equation:

∂t̺(ϕ,z,t)=∂ϕ

{

̺ ∂ϕ
δE(̺)

δ̺(ϕ,z)

}

. (4.1)

At the same time, dissipative dynamics in order parameter-based theories, e.g,
Landau-de Gennes theory, are described by the usual gradient flows for the functional
E(n,Ω), e.g.,

∂tn(z,t)=−δE(n)

δn̄(z)
. (4.2)

However the order parameter n(z) is a moment of the orientations probability density
̺(ϕ,z), cf. formula (2.2), thus equation (4.2), or its equivalent, must be derivable from
the more general (4.1). This is a particular example of the general problem of deriva-
tion of hydrodynamic-type equations from kinetic-type equations. Since Theorem 2.1
provides an explicit decomposition of the total free energy into the Landau-de Gennes-
type energy and relative entropy, our theory provides a natural setting for studying
this problem, i.e., the relation between the Doi dynamics and Landau-de Gennes
dynamics. The estimates in Theorem 2.2 and Remark 2.4 then provide essential in-
gredients for analysis of the vortex dynamics which arises in the high concentration
limit.

Appendix A. Some properties of S
1-maps. Recollect that the Dirichlet

energy of a function w(z)=u(x,y)+iv(x,y) in a domain Ω⊂C is given by (denoting
w= |w|)

D(w,Ω) =
1

2

∫

Ω

|∇w|2dz =
1

2

∫

Ω

(

|∇w|2 +w2|∇argw|2
)

dz

=
1

2

∫

Ω

(

u2
x+u2

y+v2
x+v2

y

)

dxdy. (A.1)
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We use the following lemmas.

Lemma A.1 (Dirichlet energy of S
1-maps in an annulus). Consider an S

1-map
u∈H1(Ar,R). Let d=deg(u,∂BR), ψ(z)=argu(z)−dargz. Then the Dirichlet en-
ergy of u may be represented as

D(u,Ar,R) = D(ψ,Ar,R) + πd2 ln(R/r). (A.2)

Proof. Since |u|=1, D(u,Ar,R)=D(argu,Ar,R)=D(ψ+dargz,Ar,R). Expand-
ing the last expression we obtain

D(u,Ar,R) = D(ψ,Ar,R) + d

∫

Ar,R

∇ψ(z) ·∇argz dz +
d2

2

∫

Ar,R

|∇argz|2 dz. (A.3)

The second term on the right-hand side of (A.3) is zero: integrate by parts using
that argz is harmonic in Ar,R and ∂ν argz =0 on ∂Ar,R. The asserted formula
(A.2) is then recovered computing the last term in (A.3) explicitly employing that
|∇argz|=1/|z|.

Lemma A.2 (Multi-vortex maps). Consider an S
1-map

u∈H1
loc(Ω\{z1,... ,zm}). Let dj =deg(u,zj),

∑

d2
j <∞. Suppose there exists a con-

stant C such that for all sufficiently small r

D
(

u,Ω\∪mj=1Br(zj)
)

≤−π
m

∑

j=1

d2
j lnr+C. (A.4)

Then u is a multi-vortex map, i.e., it may be represented as

u(z) = e iφ(z)
m
∏

j=1

[

z−zj

|z−zj |

]dj

= exp
{

iφ(z)+i
m

∑

j=1

dj arg(z−zj)
}

with ∇φ∈L2(Ω). (A.5)

Proof. Once some particular branch of arg(·) is chosen, the function

φ(z) = argu(z)−
m

∑

j=1

dj arg(z−zj) (A.6)

is well-defined (single-valued) in Ω, and satisfies equation (A.5). We have to prove
that ∇φ∈L2(Ω). Fix some j and represent the energy in the annulus Ar,R(zj) as

D
(

u,Ar,R(zj)
)

=D
(

u,Ω\∪mj=1Br(zj)
)

−
m

∑

i=1, i 6=j

D
(

u,Ar,R(zj)
)

−D
(

u,Ω\∪mj=1BR(zj)
)

. (A.7)

Applying Lemma A.1 in the annuli Ar,R(zi) we obtain D
(

u,Ar,R(zi)
)

≥ πd2
i ln(R/r),

which together with the bound (A.4) implies

D
(

u,Ar,R(zj)
)

≤−πd2
j lnr+C. (A.8)
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Using Lemma A.1 now in Ar,R(zj), we obtain that (ψ(z) below is defined as in
Lemma A.1)

D
(

u,Ar,R(zj)
)

= D
(

ψ,Ar,R(zj)
)

+ πd2
j ln(R/r) ≤−πd2

j lnr+C, (A.9)

i.e., D(ψ,Ar,R(zj)) is bounded as r→0 and thus ∇ψ∈L2(BR(zj)). However for
z∈BR(zj),

φ(z) = ψ(z) +

m
∑

i=1, i 6=j

diarg(z−zi), (A.10)

and since for sufficiently small R the right-hand side of formula (A.10) has no singu-
larities in BR(zj), ∇φ∈L2(BR(zj)) for all j. At the same time u∈H1(ΩR), where
ΩR=Ω\∪jBR(zj), and since the right-hand side of (A.6) has no singularities in ΩR,
∇φ∈L2(ΩR) and thus ∇φ∈L2(Ω).

Lemma A.3 (Dirichlet energy of multi-vortex maps). Let u be a multi-vortex
map prescribed as in formula (A.5). Then, in the limit as r→0, its Dirichlet energy
in Ωr=Ω\∪jBr(zj) admits the following asymptotic expansion:

D(u,Ωr) =− π

m
∑

k=1

d2
k lnr+D(φ,Ωr)− π

m
∑

j,k=1, j 6=k

djdk ln|zj−zk|

−
m

∑

k=1

dk

∮

∂Ω

ln|z−zk|∂τ argu(z)dℓ(z)

− 1

2

m
∑

j,k=1

djdk

∮

∂Ω

ln|z−zj |∂ν ln|z−zk|dℓ(z)+O(r lnr). (A.11)

Proof. First of all, observe the following simple identity:

∇argz =∇⊥ ln|z| = (−y,x)
|z|2 . (A.12)

Substituting expression (A.5) into the formula for Dirichlet energy (A.1) and using
(A.12) we obtain

D(u,Ωr) = D(φ,Ωr) +
m

∑

k=1

dk

∫

Ωr

∇φ(z) ·∇arg(z−zk)dz

+
1

2

m
∑

j,k=1

djdk

∫

Ωr

∇ln|z−zj | ·∇ln|z−zk|dz. (A.13)

Integrating by parts using formula (A.12) and harmonicity of arg(z−zk) and
ln|z−zk| in Ωr, we obtain (recall that ∂ν and ∂τ denote the normal and tangential
derivatives respectively)

D(u,Ωr) = D(φ,Ωr) +

m
∑

k=1

dk

∮

∂Ωr

φ(z)∂τ ln|z−zk|dℓ(z)

+
1

2

m
∑

j,k=1

djdk

∮

∂Ωr

ln|z−zj |∂ν ln|z−zk|dℓ(z). (A.14)
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Decomposing the integrals over ∂Ωr into the integrals over ∂Ω and ∂Br(zl) (l=
1,... ,m) and employing the relations (A.16) below, we arrive at

D(u,Ωr) =− π

m
∑

k=1

d2
k lnr+D(φ,Ωr)− π

m
∑

j,k=1, j 6=k

djdk ln|zj−zk|

+

m
∑

k=1

dk

∮

∂Ω

φ(z)∂τ ln|z−zk|dℓ(z)

+
1

2

m
∑

j,k=1

djdk

∮

∂Ω

ln|z−zj |∂ν ln|z−zk|dℓ(z)+O(r lnr). (A.15)

Finally, we verify the assertion (A.11) integrating the first integral term in (A.15) by
parts and using that φ=argu−∑

j dj arg(z−zj).

A few useful relations may be obtained via straightforward computation (esti-
mate (A.16b) is obtained using integration by parts, the Cauchy-Schwarz inequality,
and that

∣

∣∇ln|z|
∣

∣=1/|z|):
∮

∂Br(zk)

φ(z)∂τ ln|z−zk|dℓ(z) = 0; (A.16a)

∣

∣

∣

∣

∣

∮

∂Br(zl)

φ(z)∂τ ln|z−zk|dℓ(z)

∣

∣

∣

∣

∣

≤
√
πr‖∇φ‖L2(Br(zl))
∣

∣|zk−zl| − r
∣

∣

= O(r), l 6=k;

(A.16b)
∣

∣

∣

∣

∣

∮

∂Br(zl)

ln|z−zj |∂ν ln|z−zk|dℓ(z)

∣

∣

∣

∣

∣

≤ 2πr max
z∈∂Br(zl)

∣

∣ ln|z−zj |
∣

∣

|z−zk|
= O(r), l 6= j,k;

(A.16c)
∣

∣

∣

∣

∣

∮

∂Br(zj)

ln|z−zj |∂ν ln|z−zk|dℓ(z)

∣

∣

∣

∣

∣

≤ 2πr|lnr|
∣

∣|zj−zk|−r
∣

∣

= O(r lnr), j 6=k;

(A.16d)
∮

∂Br(zk)

ln|z−zj |∂ν ln|z−zk|dℓ(z) = 2π ln|zk−zj |+O(r), j 6=k; (A.16e)

∮

∂Br(zk)

ln|z−zk|∂ν ln|z−zk|dℓ(z) = 2π lnr. (A.16f)

The following theorem by Sandier [20] provides estimates on Dirichlet energy of
S

1-maps that are employed in our work.

Theorem A.1 (Sandier ‘98, [20]). Let ω̄ be a compact subset of a bounded domain
Ω⊂C, u :Ω→S

1. Then

D(u,Ω\ ω̄) ≥−π|d| ln |ω̄| −C, (A.17)

where C depends only on Ω and H1/2+ǫ norm of u|∂Ω, and d is the winding number of
u|∂Ω. Moreover, the energy of u may be localized: there exists R>0 (which depends
on Ω) such that for any r satisfying |ω̄|<r<R, there exist k disjoint disks {Bj},
j=1,... ,k≤|d|, with radii at most r such that

D
(

u,Ω∩(∪kj=1Bj)\ ω̄
)

≥ π|d| ln(r/|ω̄|)−C, (A.18)
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Fig. B.1. Graphs of several special functions employed in this work. The light and dark grey
lines, respectively, represent the modified Bessel functions I0(n), and I1(n); the black line corresponds
to the function A(n), the inverse function of I1(n)/I0(n). A(n) has a vertical asymptote at n=1.

where C is the same constant as above.

Appendix B. Special functions and potential W
γ(n). Finally, we review

some properties of several special functions and provide more details regarding the
potential W γ(n) employed in this work. These properties may be found in (or directly
derived from) [1].

Fact B.1 (Sommerfeld representation of Bessel functions). For any integer ν, we
have

Iν(z) =
1

π

∫ π

0

cosνϕ ezcosϕdϕ. (B.1)

Fact B.2 (Asymptotics of Bessel functions). Let |argz|<π/2, then for fixed ν, as
|z|→∞,

Iν(z) ∼ ez

√
2πz

[

1− µ−1

8z
+

(µ−1)(µ−9)

128z2
−···

]

, µ=4ν2. (B.2)

B.1. Properties of the potential. Recall, that potential W γ(n) is given by
(its graphs are displayed in figure 1.1)

W γ(n) = nA(n)− γn2

2
− lnI0

(

A(n)
)

+Cγ . (B.3)

Here the function A(n) is the inverse function of I1(n)/I0(n), see figure B.1 for
the graphs. The constant Cγ is chosen so that W γ(n)≥0 with equality achieved at
n=nγeq, where nγeq is the (nonzero for γ >2) solution of γn=A(n). From the basic
properties of Bessel functions (see above) it is not hard to establish the following facts:
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Fact B.3 (Asymptotics of Cγ). From the expansion (B.2) it is straightforward to
establish that as nր1, A(n)=1/[2(1−n)]+O(1), which implies that as γ→∞, nγeq =
1−1/2γ+O(1/γ2) and

Cγ =
γ

2
+O(lnγ). (B.4)

Fact B.4 (Lower bound on the potential W γ(n)). From (B.1) we immediately get

that I′0(n)=I1(n), and thus
[

nA(n)− lnI0
(

A(n)
)]′

=A(n)≥0. This, in turn, implies

that nA(n)− lnI0
(

A(n)
)

≥0 and therefore for all n∈ [0,1),

W γ(n) ≥ Cγ −
γn2

2
≥ γ

2
(1−n2) +O(lnγ). (B.5)
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Boston, 2000.

[20] E. Sandier, Lower bounds for the energy of unit vector fields and applications, Journal of
Functional Analysis, 152(2), 379–403, 1998.



938 VORTICES IN TWO-DIMENSIONAL NEMATICS

[21] S. Singh, Phase transitions in liquid crystals, Physics Reports, 324(2), 107–269, 2000.
[22] Y. Singh, Molecular theory of liquid crystals: applications to the nematic phase, Physical

Review A, 30(1), 583–593, 1984.
[23] Q. Wang, S. Sircar and H. Zhou, Steady state solutions of the Smoluchowski equation for rigid

nematic polymers under imposed fields, Commun. Math. Sci., 3(4), 605–620, 2005.


