COMMUN. MATH. SCI. (© 2009 International Press
Vol. 7, No. 3, pp. 595-610

A REVERSIBLE MULTISCALE INTEGRATION METHOD*

GIL ARIELT, BJORN ENGQUIST, AND RICHARD TSAI®

Abstract. A multiscale, time reversible method for computing the effective slow behavior of
systems of highly oscillatory ordinary differential equations is presented. The proposed method
relies on correctly tracking a set of slow variables that is sufficient to approximate any variable and
functional that are slow under the dynamics of the system. The algorithm follows the framework
of the heterogeneous multiscale method. The notion of time reversibility in the multiple time-scale
setting is discussed. The algorithm requires nontrivial matching between the microscopic state
variables and the macroscopic slow ones. Numerical examples show the efficiency of the multiscale
method and the advantages of time reversibility.
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1. Introduction

The dynamics of Hamiltonian systems are known to have special geometrical
symmetries. Let H(q,p) denote the Hamiltonian of a system with position coordinates
q and momentum p. An important property of the Hamiltonian dynamics is that if
(a(t),p(t)) is a solution then (q(—t),—p(—t)) is also a solution. Time reversible and
symplectic schemes have proven to be highly valuable tools for integrating systems
of ordinary differential equations (ODEs) [18, 24] whose solutions possess similar
symmetries. These methods are particularly useful for integration over long time
segments. However, for general systems involving two or more time scales, most such
schemes require a step size that is of the order of the fastest scale, typically due to
stability and accuracy considerations. As a result, application of conventional schemes
becomes prohibitively expensive and inefficient. Accordingly, devising a multiscale
time reversible algorithm seems desirable particularly if it can inherit the benefits of
both the multiscale and the time reversible approaches.

Many challenges of multiscale numerical integration have been addressed by sev-
eral different approaches. Stiff problems with fast transients can be optimally solved
by implicit schemes [8, 19, 21]. The Chebyshev methods [1, 23] as well as the projec-
tive integrator approach [16] provide stable and explicit computational strategies for
this class of problems in general. For near harmonic oscillatory problems, traditional
numerical approaches attempt to either filter out or fit fast oscillations to some known
functions in order to reduce the complexity, e.g. [15, 22, 30], or use some notion of
Poincaré map to determine slow changes in the orbital structure [17, 27].

A general class of approaches aiming at Hamiltonian systems are geometric inte-
gration schemes that preserve a discrete version of certain invariances. We refer the
readers to [18] and [24] for an extensive list of literature. Many schemes specialized
for finite dimensional mechanical systems can be conveniently derived from the view
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596 A REVERSIBLE MULTISCALE INTEGRATION METHOD

point of variational integrators [26]. In certain applications, special considerations
are given to the expensive cost of evaluating non-local potentials in large systems, see
e.g. the impulse method and its derivatives [24]. For a recent review on numerical
methods for highly oscillatory systems see [7].

In this paper we propose a multiscale numerical scheme that approximates the
slowly varying effective dynamics of highly oscillatory ODE systems. The numerical
method is time reversible in the sense that, upon time reversal, the algorithm traces
back to the initial condition with no truncation error. To be more precise, let h>0
denote the step size used in the algorithm. Then, taking a step of size h followed
by a step of size —h, the algorithm goes back to the initial state. The only error
is in round-off. We follow the framework of the Heterogeneous Multiscale Methods
(HMM) [9, 10, 11, 32], and the general strategy proposed in [13]. We point out here
that it is not entirely clear if for general highly oscillatory systems which are time-
reversible in the Hamiltonian sense, the effective slow dynamics is also reversible in the
same sense. Nevertheless, it is reasonable to ask if the multiscale scheme can update
the fast scale variables in a (numerically) reversible way, without fully resolving all
the fast oscillations at all time while remaining consistent with the slow dynamics.
Furthermore, it is interesting to see if this additional symmetry brings any benefit
for the overall multiscale approzimation. To this end we give two numerical examples
whose main purpose is to demonstrate that reversible methods may in fact be superior
to non-reversible ones. In the first example of the inverted pendulum, we find that
the reversible method allows bigger macro steps than a non-reversible method of the
same order. In the Fermi-Pasta-Ulam (FPU) example [14], we show that energy drift
is much smaller with the reversible method. The energy can stay constant over long
time segments and does not increase linearly in time as with non-reversible schemes.
In this respect, the purpose of the examples is more than just a proof of concept.
They also serve to demonstrate the advantages of a reversible macro-solver.

Recently, Calvo and Sanz-Serna suggested an HMM scheme that is both time
reversible and symplectic [6]. Their method can be applied to some types of Hamil-
tonian systems, for example, mechanical systems that are driven by a single external
fast oscillation. These ideas were further developed for stiff mechanical systems with
constraints [20].

Here, we consider general ODE systems of the form

x=c1f(x)+g(x), x(0) =xo, t€1[0,7], (1.1)

where 0 < e<eg, x=(71,...,74) ER? and 0 < T < 0o is independent of €. It is assumed
that the solution of (1.1) remains in a domain Dy C R% which is bounded independent
of € for all t€[0,T]. For fixed € and initial condition xq, the solution of (1.1) is
denoted x(t;¢,x¢). For brevity we will write x(¢) when the dependence on € and xg is
not directly relevant to the discussion. Furthermore, in this paper we only consider
the case in which the fast dynamics is oscillatory in nature rather than dissipative. In
particular, we assume that the unperturbed system, g(x) =0, has a continuous family
of periodic solutions or an asymptotically stable periodic limit cycle.

The general approach previously developed in [2, 3, 4, 12] and [13], is to identify
a set of functions in the state space whose values change slowly along the oscillatory
trajectories. The time evolution of these slow variables is used to guide the slow time-
scale dynamics. The ODE (1.1) is then integrated following the HMM framework: a
Macro-solver integrates the effective, but generally unknown evolution equation for
the slow variables under the dynamics of (1.1). The rates of change for these slow
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variables are computed on-the-fly by a micro-solver that integrates the full ODE (1.1)
for short time segments. For a recent review see [11].

In the typical HMM setting, the macroscopic system evolves a set of slowly chang-
ing quantities (slow variables in our case), denoted here by &

d
%ng(gvt)v (12)

where the right hand side F(¢,t) is evaluated by the appropriate averaging of the
solutions of (1.1) with suitable initial conditions. See section 2 for details. Hence, one
can formally apply any desirable scheme to discretize (1.2). One possibility includes
time reversible schemes such as the leapfrog scheme

£n+1:§n71 +2AtF(£n7t)a (13)

where &, denotes the numerical approximation for £ at the nth macroscopic step.
However, this is not the complete story at the level of actual numerical discretiza-
tion, which involves nontrivial coupling of the numerical schemes for the macro- and
micro-scales, e.g. the evaluation of F'(&,,t) via suitable solutions of (1.1). Additional
challenges emerge if we want to update the microscopic variables x,, in a reversible
way while remaining consistent with the underlying effective dynamics regulated by
the macroscopic slow variables.

Despite the fact that in general leapfrog is second order accurate, the slow vari-
ables need to be related to the original fast state variable. In section 3 we show that
a naive implementation may lead to a reduction in accuracy and describe a way to re-
gain the second order accuracy of leapfrog. All these couplings make time reversibility
at both the macroscopic and the microscopic levels in an HMM scheme non-trivial.

The organization of the paper is as follows. Section 2 reviews the main results and
algorithms developed in [2], [3], and [12] and examines the notion of time reversibility
in our multiple time-scale setting. Section 3 describes particular implementations of
the method which are time reversible and analyzes their accuracy. A few examples
are presented in section 4. We end with concluding remarks in section 5.

2. The HMM scheme

In order to study the long time properties of (1.1) we need to distinguish between
the fast and slow constituents of the dynamics. We say that a real valued smooth
function (variable) a(x) is slow with respect to (1.1) in an open connected set A if

xoeg}?ex[o,T] dta(x(t;gxo))‘ <y, (2.1)
where Cj is a constant that is independent of €. Otherwise, a(x) is said to be fast.
Similarly, we say that a quantity or constant is of order one if it is bounded indepen-
dent of € in Dy or [0,T].

Of course, any function of slow variables is also slow. Therefore, it is reasonable
to look for variables which are functionally independent, i.e., a vector of slow variables
£=(EW(x),...,£0)(x)) such that VEW (x),...,VET) (x) are linearly independent in A.
Since r is bounded by the dimension, d, it is useful to look at a set with a maximal
number of functionally independent slow variables. Augmenting the slow variables
with d—r fast ones z=(z1,...,24—,) such that 9(§,z)/0x is non-singular in A, one
obtains a local coordinate system, i.e., a chart of the state space. We will refer to a
chart in which a maximal number of coordinates is slow as a maximal slow chart for
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A with respect to the ODE (1.1). Covering the set Dy by maximal slow charts we
obtain a maximal slow atlas for Dy.

One of the important observations which follows from our definition of a slow
chart is that typical slow variables do not appear in conjugate pairs of some gener-
alized position and momentum. Hence, there is no clear notion of macroscopic time
reversibility in the Hamiltonian sense. In [20], the slow behavior of a particular class
of stiff mechanical systems is studied. It is shown that in the limit of ¢ — 0 the dy-
namics can be approximated by an effective equation with Holonomic constraints [5].
As a result, this effective dynamics is time reversible.

We continue by examining the relations between the original state variables, which
are typically fast, and the slow coordinates in a maximal slow chart. In particular, we
wish to establish the existence of an effective evolution equation for the slow variables
&(x(t)) under the flow of (1.1). The assumption that the unperturbed dynamics is
periodic implies that the only fast coordinate is equivalent to rotation on the unit
circle with constant velocity, i.e., ¢ €S!. This case is quite general since many weakly
perturbed integrable systems in resonance fall into this category through the notion
of action-angle variables. Then, an averaging principle can be used to prove that for
small €, £(x(t;€,%0)) is well approximated in [0,7] by an effective equation of the form

E=F(&), &(0)=£(xo); (2.2)

see [2, 5, 28] for details. The requirement that (£,¢) is a maximal slow chart is critical
for the derivation of (2.2). Without it, there is no guarantee that the right hand side
of the averaged equation does not depend on additional slow variables which may be
hidden or unknown.

The effective equation (2.2) may not be available as an explicit formula. Instead,
the idea behind the HMM algorithm is to evaluate F'(§) by numerical solutions of the
original ODE (1.1) on significantly reduced time intervals. In this way, the HMM algo-
rithm approximates an assumed effective equation whose form is typically unknown.
This strategy is advantageous if F(£) can be approximated efficiently. The additional
requirement of a time reversibility poses constraints on the way the F'(£) is evaluated.
Furthermore, integration of (2.2) should be done while keeping the sequence of fast
state variables reversible even across macroscopic steps. The next section describes
such an algorithm.

2.1. The algorithm.  Suppose £ = (¢ (x),...,£)(x)) are the slow variables
in a slow atlas for (1.1). The system is integrated using a two level algorithm, each level
corresponding to a different time scale. The first is a Macro-solver which integrates
the effective equation (2.2) for the slow variables £&. The second level is a micro-solver
that is invoked whenever the Macro-solver needs an estimate of F(£). The micro-
solver computes a short time solution of (1.1) using suitable initial data. Then, the
time derivative of £ is approximated by

) ) n/2
E(t) ~ (€)(1) = / E(x(t+7)) Ky (t—7)dr, (2.3)

-n/2
where, K, (-) denotes a smooth averaging kernel with support on [—7/2,7/2]. Note
that £ is not necessarily slow. However, it is bounded independent of €. The properties
of averaging with respect to a kernel will be reviewed shortly.

To better explain the algorithm, denote the Macro-solver sample times by
to,...,tny, N=T/H, and its output at corresponding times by xq,...,xy. At the
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n-th Macro-step, the micro-solver can be implemented using any scheme with step-
size h and initial condition x(t,) =x,. It integrates the full ODE both backward and
forward in time to approximate the solution in [t, —1/2,t,+n/2]. The structure of
the algorithm, depicted in figure 2.1, is as follows [10, 13]

1. Initial conditions: x(0) =x¢, £ =&(x0) and n=0.
2. Force estimation:
(a) micro-simulation: solve (1.1) in [t, —1/2,t, +n/2] with initial conditions
X(tn) =Xnp.
(b) Averaging: approximate £(t,) by (€),(t,).
3. Macro-step (forward Euler example): &1 =5, +H (§)y(tn).
4. Reconstruction: find x,41 consistent with &,41.

Take X1 =%, +H Fn, where F), is the least squares solution of the linear
system

0&(xp)
ox

5. n=n+1. Repeat steps (2) and (3) to time 7.

Here, 0£/0x is a matrix whose k’th row is VEF) | The scheme described above
can be generalized to Macro-solvers with higher order accuracy.

g

Fn = <£>n(tn)

’ \ ’ | \ ’ ! \
/ \ ’ | \ / | \
| |
-_— ’ | \ | \
V/H\HHHHHH\\I \/\HHHVHH\H\\I \/\HHHVHHH\\\I
X IRRARRRARARRRRNAN T T T T
X(0) ! h micro-solver

Fic. 2.1. The cartoon depicts the time steps taken by the HMM scheme. At the n-th Macro
step, a micro-solver with step size h integrates (1.1) to approxzimate x(t) in a time segment [t, —
1/2,tn+n/2]. This data is used to calculate (£(x))n(t). Then, the Macro-solver takes a big step of
size HE},, where Fy, is consistent with (é(k>>n for all slow variables £€*) in the mazimal slow chart.

2.2. Updating state variables. At the core of the HMM framework lies the
idea that we are actually solving the effective equation f =F(¢) at the macroscopic
time scale. Accordingly, one has the freedom of using an integrator of choice. For
example, applying forward Euler with step size H yields a single-step rule

gn—&-l :€7L+HF(§YL)7 (24)

where &,, denotes the approximation for £(¢,). Alternatively, one can use the familiar
two-step leapfrog method, which is reversible in time

§n+1:§n—1 —|—2HF(§n). (2-5)

As in the algorithm described above, F(&,) is approximated by solving the full system
for a very short time window.
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Once new values for the slow variables are determined, it is necessary to find a
new set of state variables, x,11, that are consistent with the new slow state, &,41, i.e.,
&(xnt1)=E&nt1- This stage is referred to as reconstruction. Instead, the algorithm
described above bypasses this difficulty by evolving the state variables x directly
[2, 13]. Hence, step (3) of the algorithm above does not need to be performed. Of
course, this has to be done in a way that is consistent with the slow dynamics (to
some order in H). With single-step methods, the Macro-step takes the form

Xpi1 =Xp +HF(x,,6). (2.6)

Comparing this with (2.4) we find that to order H? F(x,,,) can be taken to be the
least squares solution of the linear system

0&(%n) ~ _
Ox F(xy,60) = F(&n)-

Higher order schemes following Runge-Kutta methods are developed in [2].

The main goal of this paper is to develop a time reversible leapfrog scheme for
the state variables which consistently embeds the leapfrog scheme for &, (2.5). For
example, a naive attempt for a reversible reconstruction step is to take

Xni1=Xn_1+2HF,, (2.7)
where F), is the least squares solution of the linear system

3 (Xn>

Ox Fn = <£>n(tn)

Although this approach is simple, in section 3 it is shown that this leads to a method
which is only first order accurate in H. This low order accuracy is often too poor and
impractical.

More generally, the scheme can be written implicitly in the form

G(Xnagn;xn—laxn-&-l)zov (28)

where we require that x,,—1 and x,,11 are consistent with (2.5) to some known power
of H. In section 3, we suggest possible forms for G, which are skew-symmetric in
Xp—1 and Xp41, i.€.,

G(Xn,§n§xn71,Xn+1) = _G<Xna§n;xn+lyxn71)-

As a result, the evolution operator is time reversible. The process of finding a mi-
croscopic state x,,+1, consistent with the Macroscopic £,41 is underdetermined since
different x may correspond to the same slow coordinates . Using (2.8) one picks a
particular possible solution in such a way that the entire algorithm become reversible
in time.

Stability of the new scheme is inherited from that of the leap-from method for
&, (2.5). Note that the approximation is only consistent for the slow variables £ and
not for the original state variables x, since any information on the fast coordinate is
discarded.
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2.3. Averaging using kernels. Let K(-) denote a smooth kernel function
with support on [—1,1] with unit mass, filK(T)dT: 1, and vanishing first moment,

fil K(7)7dr=0. In this paper we restrict the discussion to kernels which are symmet-
ric with respect to their mid-point. For example, the following smooth exponential
kernel was found useful:

. 51
K(t)=Z"exp <_4(t—1)(t+1)> ) (2.9)

for t€(—1,1) and zero otherwise. Here, Z is a normalization constant. For >0 let,

2 2
K,(r)=-K|-7]). 2.10
(=25 (2r) (2.10)
We will take 7 to be € dependent such that 0 < e <1< 1. The convolution of a function
a(t) with K, is denoted as (recall (2.3))

n/2
(ahy (1) :/ a(t+7) I, (t—7)dr. (2.11)
-n/2

Typically, the fast dynamics in equations such as (1.1) are one of two types (compare
to the linear case, f(x)= Ax). The first consists of modes that are attracted to a low
dimensional manifold in a time scale of order one. These modes are referred to as
transient or dissipative modes and will not be discussed in this paper. The second
type consists of oscillators with constant or slowly changing frequencies. Averaging of
oscillatory modes filters out high frequency oscillations. The errors introduced by the
averaging are estimated in [2] and [12]. For example, for a function 3(t) with period
one and a kernel with ¢ continuous derivatives, we have that

q
_ = €
1Ky ()% B = B < Al 1K [l (n) , (2.12)
where 3= folﬂ(’r)d7'7 | |lo denotes the sup norm in Dy,
[18]loo = sup [B(x)], (2.13)
xE€Dy
and
1
| K| |lw.a :/ |KD(t)|dt. (2.14)
-1

Here, K9 denotes the ¢-th derivative of K.

3. A consistent and reversible multiscale solver

In this section we describe our strategy that enables time reversibility in the entire
HMM algorithm described in section 2.1 while maintaining the consistency between
the macro- and micro states. Let x(¢) denote the exact solution of the full ODE system
(1.1) with the initial condition x(0) =x. In addition, let H denote the Macroscopic
step size used in the Macro-solver, x, =x(nH) and ATx, 1 =%, —X,_1.

For illustration purposes, consider the following linear system describing a slowly
expanding spiral

(3.1)

1 :—6_122+21
Zo :6_12’1 + 29,
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with initial conditions z1(0)=1 and 22(0)=0. The exact solution of (3.1) is x(¢t)=
(21(t),22(t)) = (et cose~tt,etsine™1t) and £(x) =27 +23 is a slow variable. Figure 3.1
depicts a forward Euler type Macro-step for (3.1).

Let v denote a smooth curve connecting xg and x; =x(H). The change in £(x)
along the curve can be expressed as

A €(ox0) =€(x1) - €(xo) = [ VE(0)-dx. (32)

¥
We are interested in two particular curves. The first is along the solution of the ODE.
Taking v={x(¢)|0<t<H}, (3.2) yields

H H
A €xo) = [ Velx(r)sdr= [ éx(r)r
0 0
For 0 <e<n< H, we obtain an estimate

Ate(xo)=H (£(x)) (0)+O(H?+e), (3.3)
n
where e denotes the error from approximating the average 5 using kernels. We assume
e is negligible compared to H2.
An alternative choice of curve follows the straight line in phase space connecting
xp and x;. Parameterizing the segment as sx; + (1 —s)xo with s €[0,1] yields

1
ATE(xo) :/0 VE(x0+5A%x0) - (x1 —x0)ds = VE(x0) - AT x0+ O(H?). (3.4)

Comparing (3.3) and (3.4) we deduce that to second order in H,
H(£(x))y(0) = VE(x0) - A xq. (3:5)

Thus, solving for Atxg, (3.5) yields the forward Euler Macro-step formula used for
the algorithm described in section 2.1 with a local truncation error that is second
order in H. For larger systems with several slow variables (3.5) generalizes to a linear
system whose components directly come from each of the slow variables, and (3.5)
can be solved using singular value decomposition.

The derivation above can be generalized to high order Runge-Kutta type methods
by improving the approximation in (3.2) and (3.4). This approach is developed in [2].
More attention is needed for multistep methods that directly use the original variables
of the full system at the Macroscopic level. In the following, we discuss our approach
for designing such schemes.

Suppose the multiscale algorithm has already produced the first two Macroscopic
steps, xo=x(0) and x; =x(H). We are looking for the next Macro-step xo =x(2H).
In analogy to the leap frog method, we would like to find the value for x5 using xg, x1,

and the derivative at the middle point xi, (§),(H). In particular, any reversible ex-
plicit scheme cannot use the derivatives at xgq, <§ )n(0). Figure 3.2 depicts a reversible
Macroscopic two-step solver.

Following the discussion above, we consider the change in a slow variable £ be-

tween xg to xo

A% =€ (x) — E(xp) = / VE(x) dx, (3.6)

v
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where v is a smooth curve starting at xy and ending at x,. Integrating along the
solution of the ODE, x(t), yields

A= [ Extrir= [ (00 (r)ar+O(HE) =2 () (1) +OUT?). (37

On the other hand, we expand £(x) around the middle point x;
1
E(x1+0x)=E&(x1) +Vv-0x+ §5xTA6X—|—O(\6x|3),
where v=V¢(x;) and A= D?¢(x1) is the Hessian of £(x) evaluated at x;. We have

§(x2) =&(x1) +v-(x2—x1)+ %(Xz —x1)" A(x2 —x1) +O(|x2 —x:1[°)
and
§(x0) =&(x1) + v (x0—x1) + %(Xo—xl)TA(Xo —x1)+O(|x0 —x1[?).
Hence,
A% =E(x2) —£(x0) = V- (x2 —x0) + O(|x2 —x1|* +[x0 —x:1*). (3.8)

Assuming that £(¢) is Lipshitz in the domain of interest, Dy, we have that |xo —x1|
and |xo— x| are both of order H. Note that, in general, the second order term does
not cancel. Therefore, comparing (3.7) and (3.8) yields, to order H?,

2H(§(x))n(H) =v - (x2 —X0). (3.9)
In order to achieve a local truncation error as small as possible, we look for the solution
x5 such that |xo —x1]| is minimal. Together with (3.9), this is a convex optimzation
problem with a unique solution. The reversibility of the algorithm then hinges on the
fact that (3.9) is anti-symmetric with respect to switching xo and xs and that both
|x2 —x1| and |x¢—x1| are minimal. More precisely, given initial conditions xo and
x; the micro-solver is used to approximate the force at x;, (£(x)),(H), and we find
the unique solution of (3.9) that is closest to x; and call it xo. When this process is
reversed, and the initial conditions are taken to be the same x5 and x; found above,
the solution of (3.9) that is closest to x;, will be identical to the x¢ used above to
find xs.

As discussed above, the sequence of microscopic states xgq,...,Xy is generated
in a reversible manner in the sense that, given xy and xy_1, the algorithm can be
traced back to obtain xy and x; up to round off errors. However, the method is not
reversible for the corresponding slow variables & =¢&(xg),...,én =&(xn). Starting
with macroscopic states, &y and &y_1, requires identification of new microscopic
states, x and xy_1, such that {y =&(xy) and {n_1=&(xny_1). Tracing back to
t=0, the new value for & will be different than the initial £(x¢) by an order H. The
lack of reversibility for the slow variables is also apparent in the fact that the order
of accuracy is even. The second order correction does not vanish, as expected for
reversible schemes.

Using (3.9), the error in each Macro step is of order H2. Hence, the global error of
the Macro-solver is of order H. In order to obtain a second order method, we expand
the slow variable £(x; +0x) to second order in 0x

f(xl—|—5X)=§(X1)—|—V-(5X-‘r%(5X~A5X—|—O((53X). (3.10)
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micro—solver
. “ . Macro-step
V N
LA - X
o N 1

Fi1c. 3.1. A forward Euler type Macro-step for the expanding spiral (3.1).

micro—solver

-7 A%
"5/ Macro-step
VA Xo N
+ N At X
.,_<_..-‘ -

FiG. 3.2. A leapfrog type Macro-step for the expanding spiral (3.1).

Using (3.6), (3.7), and (3.10) yields an equation for x that is accurate to order H?
. 1 1
2H({{(x))n(H)=(x2—%0) - (V—Ax1)+ 3%z -Axg — 3%0 Axg. (3.11)

As before, in order to have a reversible scheme, we look for a solution that is closest
to the middle point x;. With several slow variables £, ... (") x, is the minimum of
|x2 —x1|? under the constraint (3.11) for each of the slow variables. Using Lagrange
multipliers, xo satisfies

{ (x2—Xp) - (v — Ax1) + 2x2- Axo — Lxg- Axg =AW k=1...r (3.12)

2X9 —2X1 4+ 5y Ak [V+ A(x2 —x1)] =0,

where A%¢(F) :2H(£(k) (x))n(H) and A;...\, are the Lagrange multipliers. For sys-
tems of coupled oscillators, the slow variables correspond to amplitudes and the rela-
tive phase between the oscillators. In [2, 3], we show that for periodic systems there



GIL ARIEL, BJORN ENGQUIST AND RICHARD TSAI 605

exists r=d—1 functionally independent slow variables. Hence, (3.12) is a quadratic
system of 2d—1 equations and 2d —1 unknowns. In the examples appearing at the
next section, (3.12) is solved using Newton-Raphson with a required accuracy e. Tak-
ing the second order approximation (3.9) and A\; =---=\, =0 is a good initial guess.
Since the system is quadratic, convergence is usually rapid.
We summarize our method with the following algorithm. Notations are the same
as in section 2.
1. Initial conditions: x(0)=x and n=0.
2. Force estimation:
(a) micro-simulation: solve (1.1) in [t,, —n/2,t, +n/2] with initial conditions
X(tn) =Xp.
(b) Averaging: approximate &(t,,) by (£),(t,).
3. Macro-step: evolving ¢ and reconstructing x,+1 (leap frog example)

solve G(xp,2H (&) (tn);Xn—1,Xnt1) =0 for x,,11, where G is given by (3.12).

4. n=n+1. Repeat steps (2) and (3) to time 7.
Finally, we remark that higher order quadrature methods can be constructed in a
similar fashion using two or more steps for approximating (3.7) and additional terms
in the Taylor expansion (3.10).

4. Examples

In this section we apply the reversible HMM algorithm described above to several
model systems. The main purpose of the examples is to show the advantages of time
reversibility in he multiscale setting.

4.1. The inverted pendulum. The following example considers a pendulum
with a rigid arm that is attached at one of its ends to a mechanical motor. The setup is
depicted in figure 4.1. The motor causes the point of suspension of the arm to vibrate
up and down with amplitude e and frequency ¢~!. Surprisingly, the fast vibrations of
the motor can cause the pendulum to oscillate slowly (with a O(1) frequency) around
the inverted position, in which its arm is pointing up. Denoting by 6 the angle between
the pendulum arm and the upward direction, the equation of motion for the system
becomes

16 = [g—|—eflsin(2ﬂ'eflt)] sinf, (4.1)

where 6 denotes the angle between the arm and the upward direction, [ is the arm’s
length and ¢ is the gravitational constant [25]. Rewriting (4.1) as a first order au-
tonomous system yields an ODE of the form

0, =6,

y -1 1 :

Qg =171 (g+e 1)1)sinb, (4.2)
Y1 =2me My

e =—2me M.

In [2] we describe a variational numerical method for identifying the slow variable for
(4.2). The method identifies three slow variables that constitute a slow atlas:

¢ =0,

€9 =7 443 ws)
£3) =0, + (2m]) " tepysind;.
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Indeed, it is easily verified that (d/dt)¢*)(x(t)) is bounded independent of e for
k=1,2,3. Figure 4.2a depicts the numerical HMM solution for (4.2) with g=0.1
and [=0.05 using the reversible, second order Macro-solver (3.11). Simulation pa-
rameters are e=107°, h=¢/25, H=0.25, n=06.2¢ and the exponential kernel (2.9).
The Newton-Raphson algorithm for solving (3.12) never requires more than two it-
erations. Initial conditions are 61(0)=0, 02(0)=—-0.4, ¥1(0)=0 and 92(0)=1. The
value for £(2) is practically constant with an error that is less than 10~3%. Invariance
of quadratic constants of motion is a typical advantage of reversible methods. With
the above parameters the HMM algorithm runs over 5000 times faster than Verlet.
Figure 4.2b depicts a similar numerical HMM solution for (4.2) using the exact same
parameters, but with a Macro-solver applying the mid-point rule. All other parame-
ters are the same. Although both methods are second order accurate, the errors using
the midpoint rule re visibly larger. Additional approaches for applying the HMM
strategy on this example can be found at [6, 29, 31].

e]

Fic. 4.1. The inverted pendulum has a rigid arm which is attached to a motor that is vibrating
fast. The centrifugal force pulls the arm upwards.

4.2. Fermi-Pasta-Ulam. The Fermi-Pasta-Ulam model [14] is a one di-
mensional system of unit mass particles connected by springs. The springs alternate
between stiff linear and soft non-linear ones [18]. The model is derived from the
following Hamiltonian

2k k k
— 1 2 1 -2 9 4
H= 5;% +1€ Z(Q% —q2i-1) -I-Z(qgiﬂ —q2i)". (4.4)

i=1 =0

The following linear change of variables is convenient since it separates the elongations
of the k stiff springs and associated momentum:

zi=€ (quio1—q2:)/V2,  vi=(p2i1—p2i)/V2, (4.5)
and a second set of variables associated with the k soft springs:

Yi = (q2i—1 +Q2i)/\/§ , U= (p2ic1 erzi)/\[?- (4.6)
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F1G. 4.2. (a) Comparison of the HMM approzimation for the solution of (4.2) to the Verlet
method with step size of order e. Solid curve: €1 =0y, dotted curve: £(3) =02+ (271) "L4pasind .
5(2) is constant. (b) The same system with a Macro-solver applying the mid-point rule. All other
parameters are the same. With the mid-point rule errors are visibly larger.

Defining yo =20 =y2r+1 =22r+1 =0, the equations of motion can be written as

Ui =

. -1

& =€ vy

e , , (4.7)
U =—(Yi— € —Yi—1 —€xi—1)" + (Yit1 — €Tip1 — Y — €T;)

b == wit (Y —eri—yio1 — i) + (Yir1 — €Tigr —Yi —€x;)’

As discussed in [2], the slow atlas for the system consists of 4k — 1 slow variables. First
are all the degrees of freedom which are related to the soft springs: y; and u;, i =1...k.
Second, the total energy (kinetic + potential) of the stiff springs, I;=x?+v?, i=
1...k. Finally, the relative phases between the different stiff springs, ¢; =x12; +v1v;,
1=2...k. Any other function a(x) which is slow under the dynamics of (4.7) can be
written as a function of the 4k —1 variables described above.

On the O(1) time scale the energy of the stiff springs and their relative phases
are fixed, while the degrees of freedom that correspond to the soft springs oscillate
in a complicated, non-harmonic way. On the O(e~!) time scale the dynamics be-
comes more interesting as the energies I; begin to change [14, 18]. The purpose of
this example is to demonstrate the benefits of the reversible algorithm. Indeed, with
non-reversible Macro-solvers the algorithm suffers from relatively high energy dissipa-
tion and the method is unpractical for computations on the O(e~!) time scale. The
reversible solver greatly improves energy conservation and a posteriori error analysis
suggests that it is convergent. While it is possible to construct a method that works
on the correct, O(e~!) time scale, this is beyond the scope of the current paper.

Figure 4.3a depicts our results for a system with three stiff springs, k=3. Ini-
tial conditions are 1 =—1, y; =—0.5, y1 =u; =23 =1, v3=—0.5 and zero otherwise.
Fixing e=1073, simulation parameters were varied until amplitude values changed
by 5—10%. It was particularly difficult to get convergence using the standard Verlet
method.

HMM parameters are h=¢/50, H=0.1, n=060¢, and the exponential kernel (2.9).
The second order accurate reversible HMM (3.12) is compared to the Verlet solution
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with step size €/200. Note the significantly smaller step size required for Verlet.
Figure 4.3b depicts the drift in the total energy of the entire system, which is smaller
than 0.4%, even though our method does not guarantee convergence on the e~ ! time
scale.

The Newton-Raphson method used for solving the equations obtained by the La-
grange multipliers, (3.12), becomes inefficient if the partial derivatives matrix of the
right hand side of (3.12) is close to singular. In principle, one should then use a differ-
ent method for solving these equations. Since in this example we are mostly interested
in demonstrating energy conservation, we bypass this difficulty by integrating the full
system (4.7) using Verlet for a time H whenever this problem occurs. In practice, the
Verlet method is used in a few segments whose total length is less than 1% of [0,T]
and therefore does not reduce the efficiency considerably. In addition, these segments
improve the stability of the algorithm as they smooth out oscillations between even
and odd steps. We stress that the difficulties discussed above only occur on the long,
O(e™1) time scale.

0.4

(b)

0.3r

0.2

0.11

energy change in %

0 500 1000
t

Fic. 4.3. (a) Comparison of the HMM approxzimation for the solution of the Fermi-Pasta-Ulam
equations of motion (4.7) to the one obtained using the Verlet method. (b) Energy dissipation with
reversible HMM.

5. Conclusion

Previously, we have proposed an approach for identifying a change of variables
that decomposes a vector field into its fast and slow constituents [2, 3]. The decom-
position is used in an HMM algorithm that efficiently integrates the slow parts of the
dynamics without fully resolving the fast parts over the computed time interval. The
algorithm applies a different integrator to each of the time scales in the problem. In
this paper we further develop this approach and describe a method in which both the
integrators and the feedback between the different scales are implemented in a time
reversible way. As a result, we obtain a numerical scheme in which the sequence of
microscopic states is reversible. The method is not reversible for the slow variables.
A particular set of slow variables does not correspond to a unique microscopic state.
As a result, given the final slow states £x_1 and £y, it is necessary to find xy_1 and
xn such that Ey_1=&(xy—1) and &y =&(xn). This reconstruction procedure can
only be preformed approximately. Hence, one cannot trace back to &, exactly. This
is consistent with the fact that the dynamics of the slow variables is not reversible in
the sense of Hamiltonian systems.
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We demonstrate that the new approach enjoys many of the benefits of traditional
time reversible integrators such as low energy dissipation. These properties are critical
for integrating Hamiltonian systems over long time periods, as was demonstrated in
the Fermi-Pasta-Ulam example.
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